xref: /dragonfly/sys/dev/netif/tl/if_tl.c (revision 409b4c59)
1 /*
2  * Copyright (c) 1997, 1998
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_tl.c,v 1.51.2.5 2001/12/16 15:46:08 luigi Exp $
33  * $DragonFly: src/sys/dev/netif/tl/if_tl.c,v 1.40 2008/08/17 04:32:34 sephe Exp $
34  */
35 
36 /*
37  * Texas Instruments ThunderLAN driver for FreeBSD 2.2.6 and 3.x.
38  * Supports many Compaq PCI NICs based on the ThunderLAN ethernet controller,
39  * the National Semiconductor DP83840A physical interface and the
40  * Microchip Technology 24Cxx series serial EEPROM.
41  *
42  * Written using the following four documents:
43  *
44  * Texas Instruments ThunderLAN Programmer's Guide (www.ti.com)
45  * National Semiconductor DP83840A data sheet (www.national.com)
46  * Microchip Technology 24C02C data sheet (www.microchip.com)
47  * Micro Linear ML6692 100BaseTX only PHY data sheet (www.microlinear.com)
48  *
49  * Written by Bill Paul <wpaul@ctr.columbia.edu>
50  * Electrical Engineering Department
51  * Columbia University, New York City
52  */
53 
54 /*
55  * Some notes about the ThunderLAN:
56  *
57  * The ThunderLAN controller is a single chip containing PCI controller
58  * logic, approximately 3K of on-board SRAM, a LAN controller, and media
59  * independent interface (MII) bus. The MII allows the ThunderLAN chip to
60  * control up to 32 different physical interfaces (PHYs). The ThunderLAN
61  * also has a built-in 10baseT PHY, allowing a single ThunderLAN controller
62  * to act as a complete ethernet interface.
63  *
64  * Other PHYs may be attached to the ThunderLAN; the Compaq 10/100 cards
65  * use a National Semiconductor DP83840A PHY that supports 10 or 100Mb/sec
66  * in full or half duplex. Some of the Compaq Deskpro machines use a
67  * Level 1 LXT970 PHY with the same capabilities. Certain Olicom adapters
68  * use a Micro Linear ML6692 100BaseTX only PHY, which can be used in
69  * concert with the ThunderLAN's internal PHY to provide full 10/100
70  * support. This is cheaper than using a standalone external PHY for both
71  * 10/100 modes and letting the ThunderLAN's internal PHY go to waste.
72  * A serial EEPROM is also attached to the ThunderLAN chip to provide
73  * power-up default register settings and for storing the adapter's
74  * station address. Although not supported by this driver, the ThunderLAN
75  * chip can also be connected to token ring PHYs.
76  *
77  * The ThunderLAN has a set of registers which can be used to issue
78  * commands, acknowledge interrupts, and to manipulate other internal
79  * registers on its DIO bus. The primary registers can be accessed
80  * using either programmed I/O (inb/outb) or via PCI memory mapping,
81  * depending on how the card is configured during the PCI probing
82  * phase. It is even possible to have both PIO and memory mapped
83  * access turned on at the same time.
84  *
85  * Frame reception and transmission with the ThunderLAN chip is done
86  * using frame 'lists.' A list structure looks more or less like this:
87  *
88  * struct tl_frag {
89  *	u_int32_t		fragment_address;
90  *	u_int32_t		fragment_size;
91  * };
92  * struct tl_list {
93  *	u_int32_t		forward_pointer;
94  *	u_int16_t		cstat;
95  *	u_int16_t		frame_size;
96  *	struct tl_frag		fragments[10];
97  * };
98  *
99  * The forward pointer in the list header can be either a 0 or the address
100  * of another list, which allows several lists to be linked together. Each
101  * list contains up to 10 fragment descriptors. This means the chip allows
102  * ethernet frames to be broken up into up to 10 chunks for transfer to
103  * and from the SRAM. Note that the forward pointer and fragment buffer
104  * addresses are physical memory addresses, not virtual. Note also that
105  * a single ethernet frame can not span lists: if the host wants to
106  * transmit a frame and the frame data is split up over more than 10
107  * buffers, the frame has to collapsed before it can be transmitted.
108  *
109  * To receive frames, the driver sets up a number of lists and populates
110  * the fragment descriptors, then it sends an RX GO command to the chip.
111  * When a frame is received, the chip will DMA it into the memory regions
112  * specified by the fragment descriptors and then trigger an RX 'end of
113  * frame interrupt' when done. The driver may choose to use only one
114  * fragment per list; this may result is slighltly less efficient use
115  * of memory in exchange for improving performance.
116  *
117  * To transmit frames, the driver again sets up lists and fragment
118  * descriptors, only this time the buffers contain frame data that
119  * is to be DMA'ed into the chip instead of out of it. Once the chip
120  * has transfered the data into its on-board SRAM, it will trigger a
121  * TX 'end of frame' interrupt. It will also generate an 'end of channel'
122  * interrupt when it reaches the end of the list.
123  */
124 
125 /*
126  * Some notes about this driver:
127  *
128  * The ThunderLAN chip provides a couple of different ways to organize
129  * reception, transmission and interrupt handling. The simplest approach
130  * is to use one list each for transmission and reception. In this mode,
131  * the ThunderLAN will generate two interrupts for every received frame
132  * (one RX EOF and one RX EOC) and two for each transmitted frame (one
133  * TX EOF and one TX EOC). This may make the driver simpler but it hurts
134  * performance to have to handle so many interrupts.
135  *
136  * Initially I wanted to create a circular list of receive buffers so
137  * that the ThunderLAN chip would think there was an infinitely long
138  * receive channel and never deliver an RXEOC interrupt. However this
139  * doesn't work correctly under heavy load: while the manual says the
140  * chip will trigger an RXEOF interrupt each time a frame is copied into
141  * memory, you can't count on the chip waiting around for you to acknowledge
142  * the interrupt before it starts trying to DMA the next frame. The result
143  * is that the chip might traverse the entire circular list and then wrap
144  * around before you have a chance to do anything about it. Consequently,
145  * the receive list is terminated (with a 0 in the forward pointer in the
146  * last element). Each time an RXEOF interrupt arrives, the used list
147  * is shifted to the end of the list. This gives the appearance of an
148  * infinitely large RX chain so long as the driver doesn't fall behind
149  * the chip and allow all of the lists to be filled up.
150  *
151  * If all the lists are filled, the adapter will deliver an RX 'end of
152  * channel' interrupt when it hits the 0 forward pointer at the end of
153  * the chain. The RXEOC handler then cleans out the RX chain and resets
154  * the list head pointer in the ch_parm register and restarts the receiver.
155  *
156  * For frame transmission, it is possible to program the ThunderLAN's
157  * transmit interrupt threshold so that the chip can acknowledge multiple
158  * lists with only a single TX EOF interrupt. This allows the driver to
159  * queue several frames in one shot, and only have to handle a total
160  * two interrupts (one TX EOF and one TX EOC) no matter how many frames
161  * are transmitted. Frame transmission is done directly out of the
162  * mbufs passed to the tl_start() routine via the interface send queue.
163  * The driver simply sets up the fragment descriptors in the transmit
164  * lists to point to the mbuf data regions and sends a TX GO command.
165  *
166  * Note that since the RX and TX lists themselves are always used
167  * only by the driver, the are malloc()ed once at driver initialization
168  * time and never free()ed.
169  *
170  * Also, in order to remain as platform independent as possible, this
171  * driver uses memory mapped register access to manipulate the card
172  * as opposed to programmed I/O. This avoids the use of the inb/outb
173  * (and related) instructions which are specific to the i386 platform.
174  *
175  * Using these techniques, this driver achieves very high performance
176  * by minimizing the amount of interrupts generated during large
177  * transfers and by completely avoiding buffer copies. Frame transfer
178  * to and from the ThunderLAN chip is performed entirely by the chip
179  * itself thereby reducing the load on the host CPU.
180  */
181 
182 #include <sys/param.h>
183 #include <sys/systm.h>
184 #include <sys/sockio.h>
185 #include <sys/mbuf.h>
186 #include <sys/malloc.h>
187 #include <sys/kernel.h>
188 #include <sys/socket.h>
189 #include <sys/serialize.h>
190 #include <sys/bus.h>
191 #include <sys/rman.h>
192 #include <sys/thread2.h>
193 #include <sys/interrupt.h>
194 
195 #include <net/if.h>
196 #include <net/ifq_var.h>
197 #include <net/if_arp.h>
198 #include <net/ethernet.h>
199 #include <net/if_dl.h>
200 #include <net/if_media.h>
201 
202 #include <net/bpf.h>
203 
204 #include <vm/vm.h>              /* for vtophys */
205 #include <vm/pmap.h>            /* for vtophys */
206 
207 #include "../mii_layer/mii.h"
208 #include "../mii_layer/miivar.h"
209 
210 #include <bus/pci/pcireg.h>
211 #include <bus/pci/pcivar.h>
212 
213 /*
214  * Default to using PIO register access mode to pacify certain
215  * laptop docking stations with built-in ThunderLAN chips that
216  * don't seem to handle memory mapped mode properly.
217  */
218 #define TL_USEIOSPACE
219 
220 #include "if_tlreg.h"
221 
222 /* "controller miibus0" required.  See GENERIC if you get errors here. */
223 #include "miibus_if.h"
224 
225 /*
226  * Various supported device vendors/types and their names.
227  */
228 
229 static struct tl_type tl_devs[] = {
230 	{ TI_VENDORID,	TI_DEVICEID_THUNDERLAN,
231 		"Texas Instruments ThunderLAN" },
232 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10,
233 		"Compaq Netelligent 10" },
234 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100,
235 		"Compaq Netelligent 10/100" },
236 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_PROLIANT,
237 		"Compaq Netelligent 10/100 Proliant" },
238 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_DUAL,
239 		"Compaq Netelligent 10/100 Dual Port" },
240 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_INTEGRATED,
241 		"Compaq NetFlex-3/P Integrated" },
242 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P,
243 		"Compaq NetFlex-3/P" },
244 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_BNC,
245 		"Compaq NetFlex 3/P w/ BNC" },
246 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_EMBEDDED,
247 		"Compaq Netelligent 10/100 TX Embedded UTP" },
248 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_T2_UTP_COAX,
249 		"Compaq Netelligent 10 T/2 PCI UTP/Coax" },
250 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_TX_UTP,
251 		"Compaq Netelligent 10/100 TX UTP" },
252 	{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2183,
253 		"Olicom OC-2183/2185" },
254 	{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2325,
255 		"Olicom OC-2325" },
256 	{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2326,
257 		"Olicom OC-2326 10/100 TX UTP" },
258 	{ 0, 0, NULL }
259 };
260 
261 static int tl_probe		(device_t);
262 static int tl_attach		(device_t);
263 static int tl_detach		(device_t);
264 static int tl_intvec_rxeoc	(void *, u_int32_t);
265 static int tl_intvec_txeoc	(void *, u_int32_t);
266 static int tl_intvec_txeof	(void *, u_int32_t);
267 static int tl_intvec_rxeof	(void *, u_int32_t);
268 static int tl_intvec_adchk	(void *, u_int32_t);
269 static int tl_intvec_netsts	(void *, u_int32_t);
270 
271 static int tl_newbuf		(struct tl_softc *,
272 					struct tl_chain_onefrag *);
273 static void tl_stats_update	(void *);
274 static void tl_stats_update_serialized(void *);
275 static int tl_encap		(struct tl_softc *, struct tl_chain *,
276 						struct mbuf *);
277 
278 static void tl_intr		(void *);
279 static void tl_start		(struct ifnet *);
280 static int tl_ioctl		(struct ifnet *, u_long, caddr_t,
281 						struct ucred *);
282 static void tl_init		(void *);
283 static void tl_stop		(struct tl_softc *);
284 static void tl_watchdog		(struct ifnet *);
285 static void tl_shutdown		(device_t);
286 static int tl_ifmedia_upd	(struct ifnet *);
287 static void tl_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
288 
289 static u_int8_t tl_eeprom_putbyte	(struct tl_softc *, int);
290 static u_int8_t	tl_eeprom_getbyte	(struct tl_softc *,
291 						int, u_int8_t *);
292 static int tl_read_eeprom	(struct tl_softc *, caddr_t, int, int);
293 
294 static void tl_mii_sync		(struct tl_softc *);
295 static void tl_mii_send		(struct tl_softc *, u_int32_t, int);
296 static int tl_mii_readreg	(struct tl_softc *, struct tl_mii_frame *);
297 static int tl_mii_writereg	(struct tl_softc *, struct tl_mii_frame *);
298 static int tl_miibus_readreg	(device_t, int, int);
299 static int tl_miibus_writereg	(device_t, int, int, int);
300 static void tl_miibus_statchg	(device_t);
301 
302 static void tl_setmode		(struct tl_softc *, int);
303 static int tl_calchash		(caddr_t);
304 static void tl_setmulti		(struct tl_softc *);
305 static void tl_setfilt		(struct tl_softc *, caddr_t, int);
306 static void tl_softreset	(struct tl_softc *, int);
307 static void tl_hardreset	(device_t);
308 static int tl_list_rx_init	(struct tl_softc *);
309 static int tl_list_tx_init	(struct tl_softc *);
310 
311 static u_int8_t tl_dio_read8	(struct tl_softc *, int);
312 static u_int16_t tl_dio_read16	(struct tl_softc *, int);
313 static u_int32_t tl_dio_read32	(struct tl_softc *, int);
314 static void tl_dio_write8	(struct tl_softc *, int, int);
315 static void tl_dio_write16	(struct tl_softc *, int, int);
316 static void tl_dio_write32	(struct tl_softc *, int, int);
317 static void tl_dio_setbit	(struct tl_softc *, int, int);
318 static void tl_dio_clrbit	(struct tl_softc *, int, int);
319 static void tl_dio_setbit16	(struct tl_softc *, int, int);
320 static void tl_dio_clrbit16	(struct tl_softc *, int, int);
321 
322 #ifdef TL_USEIOSPACE
323 #define TL_RES		SYS_RES_IOPORT
324 #define TL_RID		TL_PCI_LOIO
325 #else
326 #define TL_RES		SYS_RES_MEMORY
327 #define TL_RID		TL_PCI_LOMEM
328 #endif
329 
330 static device_method_t tl_methods[] = {
331 	/* Device interface */
332 	DEVMETHOD(device_probe,		tl_probe),
333 	DEVMETHOD(device_attach,	tl_attach),
334 	DEVMETHOD(device_detach,	tl_detach),
335 	DEVMETHOD(device_shutdown,	tl_shutdown),
336 
337 	/* bus interface */
338 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
339 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
340 
341 	/* MII interface */
342 	DEVMETHOD(miibus_readreg,	tl_miibus_readreg),
343 	DEVMETHOD(miibus_writereg,	tl_miibus_writereg),
344 	DEVMETHOD(miibus_statchg,	tl_miibus_statchg),
345 
346 	{ 0, 0 }
347 };
348 
349 static driver_t tl_driver = {
350 	"tl",
351 	tl_methods,
352 	sizeof(struct tl_softc)
353 };
354 
355 static devclass_t tl_devclass;
356 
357 DECLARE_DUMMY_MODULE(if_tl);
358 DRIVER_MODULE(if_tl, pci, tl_driver, tl_devclass, 0, 0);
359 DRIVER_MODULE(miibus, tl, miibus_driver, miibus_devclass, 0, 0);
360 
361 static u_int8_t
362 tl_dio_read8(struct tl_softc *sc, int reg)
363 {
364 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
365 	return(CSR_READ_1(sc, TL_DIO_DATA + (reg & 3)));
366 }
367 
368 static u_int16_t
369 tl_dio_read16(struct tl_softc *sc, int reg)
370 {
371 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
372 	return(CSR_READ_2(sc, TL_DIO_DATA + (reg & 3)));
373 }
374 
375 static u_int32_t
376 tl_dio_read32(struct tl_softc *sc, int reg)
377 {
378 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
379 	return(CSR_READ_4(sc, TL_DIO_DATA + (reg & 3)));
380 }
381 
382 static void
383 tl_dio_write8(struct tl_softc *sc, int reg, int val)
384 {
385 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
386 	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), val);
387 	return;
388 }
389 
390 static void
391 tl_dio_write16(struct tl_softc *sc, int reg, int val)
392 {
393 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
394 	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), val);
395 	return;
396 }
397 
398 static void
399 tl_dio_write32(struct tl_softc *sc, int reg, int val)
400 {
401 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
402 	CSR_WRITE_4(sc, TL_DIO_DATA + (reg & 3), val);
403 	return;
404 }
405 
406 static void
407 tl_dio_setbit(struct tl_softc *sc, int reg, int bit)
408 {
409 	u_int8_t			f;
410 
411 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
412 	f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
413 	f |= bit;
414 	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
415 
416 	return;
417 }
418 
419 static void
420 tl_dio_clrbit(struct tl_softc *sc, int reg, int bit)
421 {
422 	u_int8_t			f;
423 
424 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
425 	f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
426 	f &= ~bit;
427 	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
428 
429 	return;
430 }
431 
432 static void
433 tl_dio_setbit16(struct tl_softc *sc, int reg, int bit)
434 {
435 	u_int16_t			f;
436 
437 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
438 	f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
439 	f |= bit;
440 	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
441 
442 	return;
443 }
444 
445 static void
446 tl_dio_clrbit16(struct tl_softc *sc, int reg, int bit)
447 {
448 	u_int16_t			f;
449 
450 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
451 	f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
452 	f &= ~bit;
453 	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
454 
455 	return;
456 }
457 
458 /*
459  * Send an instruction or address to the EEPROM, check for ACK.
460  */
461 static u_int8_t
462 tl_eeprom_putbyte(struct tl_softc *sc, int byte)
463 {
464 	int		i, ack = 0;
465 
466 	/*
467 	 * Make sure we're in TX mode.
468 	 */
469 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ETXEN);
470 
471 	/*
472 	 * Feed in each bit and stobe the clock.
473 	 */
474 	for (i = 0x80; i; i >>= 1) {
475 		if (byte & i) {
476 			tl_dio_setbit(sc, TL_NETSIO, TL_SIO_EDATA);
477 		} else {
478 			tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_EDATA);
479 		}
480 		DELAY(1);
481 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
482 		DELAY(1);
483 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
484 	}
485 
486 	/*
487 	 * Turn off TX mode.
488 	 */
489 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
490 
491 	/*
492 	 * Check for ack.
493 	 */
494 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
495 	ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA;
496 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
497 
498 	return(ack);
499 }
500 
501 /*
502  * Read a byte of data stored in the EEPROM at address 'addr.'
503  */
504 static u_int8_t
505 tl_eeprom_getbyte(struct tl_softc *sc, int addr, u_int8_t *dest)
506 {
507 	int		i;
508 	u_int8_t		byte = 0;
509 
510 	tl_dio_write8(sc, TL_NETSIO, 0);
511 
512 	EEPROM_START;
513 
514 	/*
515 	 * Send write control code to EEPROM.
516 	 */
517 	if (tl_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
518 		if_printf(&sc->arpcom.ac_if, "failed to send write command, "
519 			  "status: %x\n", tl_dio_read8(sc, TL_NETSIO));
520 		return(1);
521 	}
522 
523 	/*
524 	 * Send address of byte we want to read.
525 	 */
526 	if (tl_eeprom_putbyte(sc, addr)) {
527 		if_printf(&sc->arpcom.ac_if, "failed to send address, "
528 			  "status: %x\n", tl_dio_read8(sc, TL_NETSIO));
529 		return(1);
530 	}
531 
532 	EEPROM_STOP;
533 	EEPROM_START;
534 	/*
535 	 * Send read control code to EEPROM.
536 	 */
537 	if (tl_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
538 		if_printf(&sc->arpcom.ac_if, "failed to send write command, "
539 			  "status: %x\n", tl_dio_read8(sc, TL_NETSIO));
540 		return(1);
541 	}
542 
543 	/*
544 	 * Start reading bits from EEPROM.
545 	 */
546 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
547 	for (i = 0x80; i; i >>= 1) {
548 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
549 		DELAY(1);
550 		if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA)
551 			byte |= i;
552 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
553 		DELAY(1);
554 	}
555 
556 	EEPROM_STOP;
557 
558 	/*
559 	 * No ACK generated for read, so just return byte.
560 	 */
561 
562 	*dest = byte;
563 
564 	return(0);
565 }
566 
567 /*
568  * Read a sequence of bytes from the EEPROM.
569  */
570 static int
571 tl_read_eeprom(struct tl_softc *sc, caddr_t dest, int off, int cnt)
572 {
573 	int			err = 0, i;
574 	u_int8_t		byte = 0;
575 
576 	for (i = 0; i < cnt; i++) {
577 		err = tl_eeprom_getbyte(sc, off + i, &byte);
578 		if (err)
579 			break;
580 		*(dest + i) = byte;
581 	}
582 
583 	return(err ? 1 : 0);
584 }
585 
586 static void
587 tl_mii_sync(struct tl_softc *sc)
588 {
589 	int		i;
590 
591 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
592 
593 	for (i = 0; i < 32; i++) {
594 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
595 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
596 	}
597 
598 	return;
599 }
600 
601 static void
602 tl_mii_send(struct tl_softc *sc, u_int32_t bits, int cnt)
603 {
604 	int			i;
605 
606 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
607 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
608 		if (bits & i) {
609 			tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MDATA);
610 		} else {
611 			tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MDATA);
612 		}
613 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
614 	}
615 }
616 
617 static int
618 tl_mii_readreg(struct tl_softc *sc, struct tl_mii_frame *frame)
619 {
620 	int			i, ack;
621 	int			minten = 0;
622 
623 	tl_mii_sync(sc);
624 
625 	/*
626 	 * Set up frame for RX.
627 	 */
628 	frame->mii_stdelim = TL_MII_STARTDELIM;
629 	frame->mii_opcode = TL_MII_READOP;
630 	frame->mii_turnaround = 0;
631 	frame->mii_data = 0;
632 
633 	/*
634 	 * Turn off MII interrupt by forcing MINTEN low.
635 	 */
636 	minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
637 	if (minten) {
638 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
639 	}
640 
641 	/*
642  	 * Turn on data xmit.
643 	 */
644 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN);
645 
646 	/*
647 	 * Send command/address info.
648 	 */
649 	tl_mii_send(sc, frame->mii_stdelim, 2);
650 	tl_mii_send(sc, frame->mii_opcode, 2);
651 	tl_mii_send(sc, frame->mii_phyaddr, 5);
652 	tl_mii_send(sc, frame->mii_regaddr, 5);
653 
654 	/*
655 	 * Turn off xmit.
656 	 */
657 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
658 
659 	/* Idle bit */
660 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
661 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
662 
663 	/* Check for ack */
664 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
665 	ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA;
666 
667 	/* Complete the cycle */
668 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
669 
670 	/*
671 	 * Now try reading data bits. If the ack failed, we still
672 	 * need to clock through 16 cycles to keep the PHYs in sync.
673 	 */
674 	if (ack) {
675 		for(i = 0; i < 16; i++) {
676 			tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
677 			tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
678 		}
679 		goto fail;
680 	}
681 
682 	for (i = 0x8000; i; i >>= 1) {
683 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
684 		if (!ack) {
685 			if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA)
686 				frame->mii_data |= i;
687 		}
688 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
689 	}
690 
691 fail:
692 
693 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
694 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
695 
696 	/* Reenable interrupts */
697 	if (minten) {
698 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
699 	}
700 
701 	if (ack)
702 		return(1);
703 	return(0);
704 }
705 
706 static int
707 tl_mii_writereg(struct tl_softc *sc, struct tl_mii_frame *frame)
708 {
709 	int			minten;
710 
711 	tl_mii_sync(sc);
712 
713 	/*
714 	 * Set up frame for TX.
715 	 */
716 
717 	frame->mii_stdelim = TL_MII_STARTDELIM;
718 	frame->mii_opcode = TL_MII_WRITEOP;
719 	frame->mii_turnaround = TL_MII_TURNAROUND;
720 
721 	/*
722 	 * Turn off MII interrupt by forcing MINTEN low.
723 	 */
724 	minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
725 	if (minten) {
726 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
727 	}
728 
729 	/*
730  	 * Turn on data output.
731 	 */
732 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN);
733 
734 	tl_mii_send(sc, frame->mii_stdelim, 2);
735 	tl_mii_send(sc, frame->mii_opcode, 2);
736 	tl_mii_send(sc, frame->mii_phyaddr, 5);
737 	tl_mii_send(sc, frame->mii_regaddr, 5);
738 	tl_mii_send(sc, frame->mii_turnaround, 2);
739 	tl_mii_send(sc, frame->mii_data, 16);
740 
741 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
742 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
743 
744 	/*
745 	 * Turn off xmit.
746 	 */
747 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
748 
749 	/* Reenable interrupts */
750 	if (minten)
751 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
752 
753 	return(0);
754 }
755 
756 static int
757 tl_miibus_readreg(device_t dev, int phy, int reg)
758 {
759 	struct tl_softc		*sc;
760 	struct tl_mii_frame	frame;
761 
762 	sc = device_get_softc(dev);
763 	bzero((char *)&frame, sizeof(frame));
764 
765 	frame.mii_phyaddr = phy;
766 	frame.mii_regaddr = reg;
767 	tl_mii_readreg(sc, &frame);
768 
769 	return(frame.mii_data);
770 }
771 
772 static int
773 tl_miibus_writereg(device_t dev, int phy, int reg, int data)
774 {
775 	struct tl_softc		*sc;
776 	struct tl_mii_frame	frame;
777 
778 	sc = device_get_softc(dev);
779 	bzero((char *)&frame, sizeof(frame));
780 
781 	frame.mii_phyaddr = phy;
782 	frame.mii_regaddr = reg;
783 	frame.mii_data = data;
784 
785 	tl_mii_writereg(sc, &frame);
786 
787 	return(0);
788 }
789 
790 static void
791 tl_miibus_statchg(device_t dev)
792 {
793 	struct tl_softc		*sc;
794 	struct mii_data		*mii;
795 
796 	sc = device_get_softc(dev);
797 	mii = device_get_softc(sc->tl_miibus);
798 
799 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
800 		tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
801 	} else {
802 		tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
803 	}
804 
805 	return;
806 }
807 
808 /*
809  * Set modes for bitrate devices.
810  */
811 static void
812 tl_setmode(struct tl_softc *sc, int media)
813 {
814 	if (IFM_SUBTYPE(media) == IFM_10_5)
815 		tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
816 	if (IFM_SUBTYPE(media) == IFM_10_T) {
817 		tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
818 		if ((media & IFM_GMASK) == IFM_FDX) {
819 			tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
820 			tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
821 		} else {
822 			tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
823 			tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
824 		}
825 	}
826 
827 	return;
828 }
829 
830 /*
831  * Calculate the hash of a MAC address for programming the multicast hash
832  * table.  This hash is simply the address split into 6-bit chunks
833  * XOR'd, e.g.
834  * byte: 000000|00 1111|1111 22|222222|333333|33 4444|4444 55|555555
835  * bit:  765432|10 7654|3210 76|543210|765432|10 7654|3210 76|543210
836  * Bytes 0-2 and 3-5 are symmetrical, so are folded together.  Then
837  * the folded 24-bit value is split into 6-bit portions and XOR'd.
838  */
839 static int
840 tl_calchash(caddr_t addr)
841 {
842 	int			t;
843 
844 	t = (addr[0] ^ addr[3]) << 16 | (addr[1] ^ addr[4]) << 8 |
845 		(addr[2] ^ addr[5]);
846 	return ((t >> 18) ^ (t >> 12) ^ (t >> 6) ^ t) & 0x3f;
847 }
848 
849 /*
850  * The ThunderLAN has a perfect MAC address filter in addition to
851  * the multicast hash filter. The perfect filter can be programmed
852  * with up to four MAC addresses. The first one is always used to
853  * hold the station address, which leaves us free to use the other
854  * three for multicast addresses.
855  */
856 static void
857 tl_setfilt(struct tl_softc *sc, caddr_t addr, int slot)
858 {
859 	int			i;
860 	u_int16_t		regaddr;
861 
862 	regaddr = TL_AREG0_B5 + (slot * ETHER_ADDR_LEN);
863 
864 	for (i = 0; i < ETHER_ADDR_LEN; i++)
865 		tl_dio_write8(sc, regaddr + i, *(addr + i));
866 
867 	return;
868 }
869 
870 /*
871  * XXX In FreeBSD 3.0, multicast addresses are managed using a doubly
872  * linked list. This is fine, except addresses are added from the head
873  * end of the list. We want to arrange for 224.0.0.1 (the "all hosts")
874  * group to always be in the perfect filter, but as more groups are added,
875  * the 224.0.0.1 entry (which is always added first) gets pushed down
876  * the list and ends up at the tail. So after 3 or 4 multicast groups
877  * are added, the all-hosts entry gets pushed out of the perfect filter
878  * and into the hash table.
879  *
880  * Because the multicast list is a doubly-linked list as opposed to a
881  * circular queue, we don't have the ability to just grab the tail of
882  * the list and traverse it backwards. Instead, we have to traverse
883  * the list once to find the tail, then traverse it again backwards to
884  * update the multicast filter.
885  */
886 static void
887 tl_setmulti(struct tl_softc *sc)
888 {
889 	struct ifnet		*ifp;
890 	u_int32_t		hashes[2] = { 0, 0 };
891 	int			h, i;
892 	struct ifmultiaddr	*ifma;
893 	u_int8_t		dummy[] = { 0, 0, 0, 0, 0 ,0 };
894 	ifp = &sc->arpcom.ac_if;
895 
896 	/* First, zot all the existing filters. */
897 	for (i = 1; i < 4; i++)
898 		tl_setfilt(sc, (caddr_t)&dummy, i);
899 	tl_dio_write32(sc, TL_HASH1, 0);
900 	tl_dio_write32(sc, TL_HASH2, 0);
901 
902 	/* Now program new ones. */
903 	if (ifp->if_flags & IFF_ALLMULTI) {
904 		hashes[0] = 0xFFFFFFFF;
905 		hashes[1] = 0xFFFFFFFF;
906 	} else {
907 		i = 1;
908 		/* First find the tail of the list. */
909 		for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
910 					ifma = ifma->ifma_link.le_next) {
911 			if (ifma->ifma_link.le_next == NULL)
912 				break;
913 		}
914 		/* Now traverse the list backwards. */
915 		for (; ifma != NULL && ifma != (void *)&ifp->if_multiaddrs;
916 			ifma = (struct ifmultiaddr *)ifma->ifma_link.le_prev) {
917 			if (ifma->ifma_addr->sa_family != AF_LINK)
918 				continue;
919 			/*
920 			 * Program the first three multicast groups
921 			 * into the perfect filter. For all others,
922 			 * use the hash table.
923 			 */
924 			if (i < 4) {
925 				tl_setfilt(sc,
926 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
927 				i++;
928 				continue;
929 			}
930 
931 			h = tl_calchash(
932 				LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
933 			if (h < 32)
934 				hashes[0] |= (1 << h);
935 			else
936 				hashes[1] |= (1 << (h - 32));
937 		}
938 	}
939 
940 	tl_dio_write32(sc, TL_HASH1, hashes[0]);
941 	tl_dio_write32(sc, TL_HASH2, hashes[1]);
942 
943 	return;
944 }
945 
946 /*
947  * This routine is recommended by the ThunderLAN manual to insure that
948  * the internal PHY is powered up correctly. It also recommends a one
949  * second pause at the end to 'wait for the clocks to start' but in my
950  * experience this isn't necessary.
951  */
952 static void
953 tl_hardreset(device_t dev)
954 {
955 	struct tl_softc		*sc;
956 	int			i;
957 	u_int16_t		flags;
958 
959 	sc = device_get_softc(dev);
960 
961 	tl_mii_sync(sc);
962 
963 	flags = BMCR_LOOP|BMCR_ISO|BMCR_PDOWN;
964 
965 	for (i = 0; i < MII_NPHY; i++)
966 		tl_miibus_writereg(dev, i, MII_BMCR, flags);
967 
968 	tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_ISO);
969 	DELAY(50000);
970 	tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_LOOP|BMCR_ISO);
971 	tl_mii_sync(sc);
972 	while(tl_miibus_readreg(dev, 31, MII_BMCR) & BMCR_RESET);
973 
974 	DELAY(50000);
975 	return;
976 }
977 
978 static void
979 tl_softreset(struct tl_softc *sc, int internal)
980 {
981         u_int32_t               cmd, dummy, i;
982 
983         /* Assert the adapter reset bit. */
984 	CMD_SET(sc, TL_CMD_ADRST);
985 
986         /* Turn off interrupts */
987 	CMD_SET(sc, TL_CMD_INTSOFF);
988 
989 	/* First, clear the stats registers. */
990 	for (i = 0; i < 5; i++)
991 		dummy = tl_dio_read32(sc, TL_TXGOODFRAMES);
992 
993         /* Clear Areg and Hash registers */
994 	for (i = 0; i < 8; i++)
995 		tl_dio_write32(sc, TL_AREG0_B5, 0x00000000);
996 
997         /*
998 	 * Set up Netconfig register. Enable one channel and
999 	 * one fragment mode.
1000 	 */
1001 	tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_ONECHAN|TL_CFG_ONEFRAG);
1002 	if (internal && !sc->tl_bitrate) {
1003 		tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
1004 	} else {
1005 		tl_dio_clrbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
1006 	}
1007 
1008 	/* Handle cards with bitrate devices. */
1009 	if (sc->tl_bitrate)
1010 		tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_BITRATE);
1011 
1012 	/*
1013 	 * Load adapter irq pacing timer and tx threshold.
1014 	 * We make the transmit threshold 1 initially but we may
1015 	 * change that later.
1016 	 */
1017 	cmd = CSR_READ_4(sc, TL_HOSTCMD);
1018 	cmd |= TL_CMD_NES;
1019 	cmd &= ~(TL_CMD_RT|TL_CMD_EOC|TL_CMD_ACK_MASK|TL_CMD_CHSEL_MASK);
1020 	CMD_PUT(sc, cmd | (TL_CMD_LDTHR | TX_THR));
1021 	CMD_PUT(sc, cmd | (TL_CMD_LDTMR | 0x00000003));
1022 
1023         /* Unreset the MII */
1024 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_NMRST);
1025 
1026 	/* Take the adapter out of reset */
1027 	tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NRESET|TL_CMD_NWRAP);
1028 
1029 	/* Wait for things to settle down a little. */
1030 	DELAY(500);
1031 
1032         return;
1033 }
1034 
1035 /*
1036  * Probe for a ThunderLAN chip. Check the PCI vendor and device IDs
1037  * against our list and return its name if we find a match.
1038  */
1039 static int
1040 tl_probe(device_t dev)
1041 {
1042 	struct tl_type		*t;
1043 
1044 	t = tl_devs;
1045 
1046 	while(t->tl_name != NULL) {
1047 		if ((pci_get_vendor(dev) == t->tl_vid) &&
1048 		    (pci_get_device(dev) == t->tl_did)) {
1049 			device_set_desc(dev, t->tl_name);
1050 			return(0);
1051 		}
1052 		t++;
1053 	}
1054 
1055 	return(ENXIO);
1056 }
1057 
1058 static int
1059 tl_attach(device_t dev)
1060 {
1061 	int			i;
1062 	u_int16_t		did, vid;
1063 	struct tl_type		*t;
1064 	struct ifnet		*ifp;
1065 	struct tl_softc		*sc;
1066 	int			error = 0, rid;
1067 	uint8_t			eaddr[ETHER_ADDR_LEN];
1068 
1069 	vid = pci_get_vendor(dev);
1070 	did = pci_get_device(dev);
1071 	sc = device_get_softc(dev);
1072 
1073 	t = tl_devs;
1074 	while(t->tl_name != NULL) {
1075 		if (vid == t->tl_vid && did == t->tl_did)
1076 			break;
1077 		t++;
1078 	}
1079 
1080 	KKASSERT(t->tl_name != NULL);
1081 
1082 	pci_enable_busmaster(dev);
1083 
1084 #ifdef TL_USEIOSPACE
1085 	rid = TL_PCI_LOIO;
1086 	sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1087 		RF_ACTIVE);
1088 
1089 	/*
1090 	 * Some cards have the I/O and memory mapped address registers
1091 	 * reversed. Try both combinations before giving up.
1092 	 */
1093 	if (sc->tl_res == NULL) {
1094 		rid = TL_PCI_LOMEM;
1095 		sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1096 		    RF_ACTIVE);
1097 	}
1098 #else
1099 	rid = TL_PCI_LOMEM;
1100 	sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1101 	    RF_ACTIVE);
1102 	if (sc->tl_res == NULL) {
1103 		rid = TL_PCI_LOIO;
1104 		sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1105 		    RF_ACTIVE);
1106 	}
1107 #endif
1108 
1109 	if (sc->tl_res == NULL) {
1110 		device_printf(dev, "couldn't map ports/memory\n");
1111 		error = ENXIO;
1112 		return(error);
1113 	}
1114 
1115 	sc->tl_btag = rman_get_bustag(sc->tl_res);
1116 	sc->tl_bhandle = rman_get_bushandle(sc->tl_res);
1117 
1118 #ifdef notdef
1119 	/*
1120 	 * The ThunderLAN manual suggests jacking the PCI latency
1121 	 * timer all the way up to its maximum value. I'm not sure
1122 	 * if this is really necessary, but what the manual wants,
1123 	 * the manual gets.
1124 	 */
1125 	command = pci_read_config(dev, TL_PCI_LATENCY_TIMER, 4);
1126 	command |= 0x0000FF00;
1127 	pci_write_config(dev, TL_PCI_LATENCY_TIMER, command, 4);
1128 #endif
1129 
1130 	/* Allocate interrupt */
1131 	rid = 0;
1132 	sc->tl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1133 	    RF_SHAREABLE | RF_ACTIVE);
1134 
1135 	if (sc->tl_irq == NULL) {
1136 		device_printf(dev, "couldn't map interrupt\n");
1137 		error = ENXIO;
1138 		goto fail;
1139 	}
1140 
1141 	/*
1142 	 * Now allocate memory for the TX and RX lists.
1143 	 */
1144 	sc->tl_ldata = contigmalloc(sizeof(struct tl_list_data), M_DEVBUF,
1145 	    M_WAITOK | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0);
1146 
1147 	if (sc->tl_ldata == NULL) {
1148 		device_printf(dev, "no memory for list buffers!\n");
1149 		error = ENXIO;
1150 		goto fail;
1151 	}
1152 
1153 	sc->tl_dinfo = t;
1154 	if (t->tl_vid == COMPAQ_VENDORID || t->tl_vid == TI_VENDORID)
1155 		sc->tl_eeaddr = TL_EEPROM_EADDR;
1156 	if (t->tl_vid == OLICOM_VENDORID)
1157 		sc->tl_eeaddr = TL_EEPROM_EADDR_OC;
1158 
1159 	/* Reset the adapter. */
1160 	tl_softreset(sc, 1);
1161 	tl_hardreset(dev);
1162 	tl_softreset(sc, 1);
1163 
1164 	ifp = &sc->arpcom.ac_if;
1165 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1166 
1167 	/*
1168 	 * Get station address from the EEPROM.
1169 	 */
1170 	if (tl_read_eeprom(sc, eaddr, sc->tl_eeaddr, ETHER_ADDR_LEN)) {
1171 		device_printf(dev, "failed to read station address\n");
1172 		error = ENXIO;
1173 		goto fail;
1174 	}
1175 
1176         /*
1177          * XXX Olicom, in its desire to be different from the
1178          * rest of the world, has done strange things with the
1179          * encoding of the station address in the EEPROM. First
1180          * of all, they store the address at offset 0xF8 rather
1181          * than at 0x83 like the ThunderLAN manual suggests.
1182          * Second, they store the address in three 16-bit words in
1183          * network byte order, as opposed to storing it sequentially
1184          * like all the other ThunderLAN cards. In order to get
1185          * the station address in a form that matches what the Olicom
1186          * diagnostic utility specifies, we have to byte-swap each
1187          * word. To make things even more confusing, neither 00:00:28
1188          * nor 00:00:24 appear in the IEEE OUI database.
1189          */
1190         if (sc->tl_dinfo->tl_vid == OLICOM_VENDORID) {
1191                 for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
1192                         u_int16_t               *p;
1193                         p = (u_int16_t *)&eaddr[i];
1194                         *p = ntohs(*p);
1195                 }
1196         }
1197 
1198 	ifp->if_softc = sc;
1199 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1200 	ifp->if_ioctl = tl_ioctl;
1201 	ifp->if_start = tl_start;
1202 	ifp->if_watchdog = tl_watchdog;
1203 	ifp->if_init = tl_init;
1204 	ifp->if_mtu = ETHERMTU;
1205 	ifq_set_maxlen(&ifp->if_snd, TL_TX_LIST_CNT - 1);
1206 	ifq_set_ready(&ifp->if_snd);
1207 	callout_init(&sc->tl_stat_timer);
1208 
1209 	/* Reset the adapter again. */
1210 	tl_softreset(sc, 1);
1211 	tl_hardreset(dev);
1212 	tl_softreset(sc, 1);
1213 
1214 	/*
1215 	 * Do MII setup. If no PHYs are found, then this is a
1216 	 * bitrate ThunderLAN chip that only supports 10baseT
1217 	 * and AUI/BNC.
1218 	 */
1219 	if (mii_phy_probe(dev, &sc->tl_miibus,
1220 	    tl_ifmedia_upd, tl_ifmedia_sts)) {
1221 		struct ifmedia		*ifm;
1222 		sc->tl_bitrate = 1;
1223 		ifmedia_init(&sc->ifmedia, 0, tl_ifmedia_upd, tl_ifmedia_sts);
1224 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1225 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
1226 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1227 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_5, 0, NULL);
1228 		ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_10_T);
1229 		/* Reset again, this time setting bitrate mode. */
1230 		tl_softreset(sc, 1);
1231 		ifm = &sc->ifmedia;
1232 		ifm->ifm_media = ifm->ifm_cur->ifm_media;
1233 		tl_ifmedia_upd(ifp);
1234 	}
1235 
1236 	/*
1237 	 * Call MI attach routine.
1238 	 */
1239 	ether_ifattach(ifp, eaddr, NULL);
1240 
1241 	error = bus_setup_intr(dev, sc->tl_irq, INTR_MPSAFE,
1242 			       tl_intr, sc, &sc->tl_intrhand,
1243 			       ifp->if_serializer);
1244 
1245 	if (error) {
1246 		ether_ifdetach(ifp);
1247 		device_printf(dev, "couldn't set up irq\n");
1248 		goto fail;
1249 	}
1250 
1251 	ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->tl_irq));
1252 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
1253 
1254 	return(0);
1255 
1256 fail:
1257 	tl_detach(dev);
1258 	return(error);
1259 }
1260 
1261 static int
1262 tl_detach(device_t dev)
1263 {
1264 	struct tl_softc *sc = device_get_softc(dev);
1265 	struct ifnet *ifp = &sc->arpcom.ac_if;
1266 
1267 	if (device_is_attached(dev)) {
1268 		lwkt_serialize_enter(ifp->if_serializer);
1269 		tl_stop(sc);
1270 		bus_teardown_intr(dev, sc->tl_irq, sc->tl_intrhand);
1271 		lwkt_serialize_exit(ifp->if_serializer);
1272 
1273 		ether_ifdetach(ifp);
1274 	}
1275 
1276 	if (sc->tl_miibus)
1277 		device_delete_child(dev, sc->tl_miibus);
1278 	bus_generic_detach(dev);
1279 
1280 	if (sc->tl_ldata)
1281 		contigfree(sc->tl_ldata, sizeof(struct tl_list_data), M_DEVBUF);
1282 	if (sc->tl_bitrate)
1283 		ifmedia_removeall(&sc->ifmedia);
1284 	if (sc->tl_irq)
1285 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->tl_irq);
1286 	if (sc->tl_res)
1287 		bus_release_resource(dev, TL_RES, TL_RID, sc->tl_res);
1288 
1289 	return(0);
1290 }
1291 
1292 /*
1293  * Initialize the transmit lists.
1294  */
1295 static int
1296 tl_list_tx_init(struct tl_softc *sc)
1297 {
1298 	struct tl_chain_data	*cd;
1299 	struct tl_list_data	*ld;
1300 	int			i;
1301 
1302 	cd = &sc->tl_cdata;
1303 	ld = sc->tl_ldata;
1304 	for (i = 0; i < TL_TX_LIST_CNT; i++) {
1305 		cd->tl_tx_chain[i].tl_ptr = &ld->tl_tx_list[i];
1306 		if (i == (TL_TX_LIST_CNT - 1))
1307 			cd->tl_tx_chain[i].tl_next = NULL;
1308 		else
1309 			cd->tl_tx_chain[i].tl_next = &cd->tl_tx_chain[i + 1];
1310 	}
1311 
1312 	cd->tl_tx_free = &cd->tl_tx_chain[0];
1313 	cd->tl_tx_tail = cd->tl_tx_head = NULL;
1314 	sc->tl_txeoc = 1;
1315 
1316 	return(0);
1317 }
1318 
1319 /*
1320  * Initialize the RX lists and allocate mbufs for them.
1321  */
1322 static int
1323 tl_list_rx_init(struct tl_softc *sc)
1324 {
1325 	struct tl_chain_data	*cd;
1326 	struct tl_list_data	*ld;
1327 	int			i;
1328 
1329 	cd = &sc->tl_cdata;
1330 	ld = sc->tl_ldata;
1331 
1332 	for (i = 0; i < TL_RX_LIST_CNT; i++) {
1333 		cd->tl_rx_chain[i].tl_ptr =
1334 			(struct tl_list_onefrag *)&ld->tl_rx_list[i];
1335 		if (tl_newbuf(sc, &cd->tl_rx_chain[i]) == ENOBUFS)
1336 			return(ENOBUFS);
1337 		if (i == (TL_RX_LIST_CNT - 1)) {
1338 			cd->tl_rx_chain[i].tl_next = NULL;
1339 			ld->tl_rx_list[i].tlist_fptr = 0;
1340 		} else {
1341 			cd->tl_rx_chain[i].tl_next = &cd->tl_rx_chain[i + 1];
1342 			ld->tl_rx_list[i].tlist_fptr =
1343 					vtophys(&ld->tl_rx_list[i + 1]);
1344 		}
1345 	}
1346 
1347 	cd->tl_rx_head = &cd->tl_rx_chain[0];
1348 	cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
1349 
1350 	return(0);
1351 }
1352 
1353 static int
1354 tl_newbuf(struct tl_softc *sc, struct tl_chain_onefrag *c)
1355 {
1356 	struct mbuf *m_new;
1357 
1358 	m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1359 	if (m_new == NULL)
1360 		return (ENOBUFS);
1361 
1362 	c->tl_mbuf = m_new;
1363 	c->tl_next = NULL;
1364 	c->tl_ptr->tlist_frsize = MCLBYTES;
1365 	c->tl_ptr->tlist_fptr = 0;
1366 	c->tl_ptr->tl_frag.tlist_dadr = vtophys(mtod(m_new, caddr_t));
1367 	c->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
1368 	c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1369 
1370 	return(0);
1371 }
1372 
1373 /*
1374  * Interrupt handler for RX 'end of frame' condition (EOF). This
1375  * tells us that a full ethernet frame has been captured and we need
1376  * to handle it.
1377  *
1378  * Reception is done using 'lists' which consist of a header and a
1379  * series of 10 data count/data address pairs that point to buffers.
1380  * Initially you're supposed to create a list, populate it with pointers
1381  * to buffers, then load the physical address of the list into the
1382  * ch_parm register. The adapter is then supposed to DMA the received
1383  * frame into the buffers for you.
1384  *
1385  * To make things as fast as possible, we have the chip DMA directly
1386  * into mbufs. This saves us from having to do a buffer copy: we can
1387  * just hand the mbufs directly to ether_input(). Once the frame has
1388  * been sent on its way, the 'list' structure is assigned a new buffer
1389  * and moved to the end of the RX chain. As long we we stay ahead of
1390  * the chip, it will always think it has an endless receive channel.
1391  *
1392  * If we happen to fall behind and the chip manages to fill up all of
1393  * the buffers, it will generate an end of channel interrupt and wait
1394  * for us to empty the chain and restart the receiver.
1395  */
1396 static int
1397 tl_intvec_rxeof(void *xsc, u_int32_t type)
1398 {
1399 	struct tl_softc		*sc;
1400 	int			r = 0, total_len = 0;
1401 	struct ether_header	*eh;
1402 	struct mbuf		*m;
1403 	struct ifnet		*ifp;
1404 	struct tl_chain_onefrag	*cur_rx;
1405 
1406 	sc = xsc;
1407 	ifp = &sc->arpcom.ac_if;
1408 
1409 	while(sc->tl_cdata.tl_rx_head != NULL) {
1410 		cur_rx = sc->tl_cdata.tl_rx_head;
1411 		if (!(cur_rx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
1412 			break;
1413 		r++;
1414 		sc->tl_cdata.tl_rx_head = cur_rx->tl_next;
1415 		m = cur_rx->tl_mbuf;
1416 		total_len = cur_rx->tl_ptr->tlist_frsize;
1417 
1418 		if (tl_newbuf(sc, cur_rx) == ENOBUFS) {
1419 			ifp->if_ierrors++;
1420 			cur_rx->tl_ptr->tlist_frsize = MCLBYTES;
1421 			cur_rx->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1422 			cur_rx->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
1423 			continue;
1424 		}
1425 
1426 		sc->tl_cdata.tl_rx_tail->tl_ptr->tlist_fptr =
1427 						vtophys(cur_rx->tl_ptr);
1428 		sc->tl_cdata.tl_rx_tail->tl_next = cur_rx;
1429 		sc->tl_cdata.tl_rx_tail = cur_rx;
1430 
1431 		eh = mtod(m, struct ether_header *);
1432 		m->m_pkthdr.rcvif = ifp;
1433 		m->m_pkthdr.len = m->m_len = total_len;
1434 
1435 		/*
1436 		 * Note: when the ThunderLAN chip is in 'capture all
1437 		 * frames' mode, it will receive its own transmissions.
1438 		 * We drop don't need to process our own transmissions,
1439 		 * so we drop them here and continue.
1440 		 */
1441 		/*if (ifp->if_flags & IFF_PROMISC && */
1442 		if (!bcmp(eh->ether_shost, sc->arpcom.ac_enaddr,
1443 		 					ETHER_ADDR_LEN)) {
1444 				m_freem(m);
1445 				continue;
1446 		}
1447 
1448 		ifp->if_input(ifp, m);
1449 	}
1450 
1451 	return(r);
1452 }
1453 
1454 /*
1455  * The RX-EOC condition hits when the ch_parm address hasn't been
1456  * initialized or the adapter reached a list with a forward pointer
1457  * of 0 (which indicates the end of the chain). In our case, this means
1458  * the card has hit the end of the receive buffer chain and we need to
1459  * empty out the buffers and shift the pointer back to the beginning again.
1460  */
1461 static int
1462 tl_intvec_rxeoc(void *xsc, u_int32_t type)
1463 {
1464 	struct tl_softc		*sc;
1465 	int			r;
1466 	struct tl_chain_data	*cd;
1467 
1468 
1469 	sc = xsc;
1470 	cd = &sc->tl_cdata;
1471 
1472 	/* Flush out the receive queue and ack RXEOF interrupts. */
1473 	r = tl_intvec_rxeof(xsc, type);
1474 	CMD_PUT(sc, TL_CMD_ACK | r | (type & ~(0x00100000)));
1475 	r = 1;
1476 	cd->tl_rx_head = &cd->tl_rx_chain[0];
1477 	cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
1478 	CSR_WRITE_4(sc, TL_CH_PARM, vtophys(sc->tl_cdata.tl_rx_head->tl_ptr));
1479 	r |= (TL_CMD_GO|TL_CMD_RT);
1480 	return(r);
1481 }
1482 
1483 static int
1484 tl_intvec_txeof(void *xsc, u_int32_t type)
1485 {
1486 	struct tl_softc		*sc;
1487 	int			r = 0;
1488 	struct tl_chain		*cur_tx;
1489 
1490 	sc = xsc;
1491 
1492 	/*
1493 	 * Go through our tx list and free mbufs for those
1494 	 * frames that have been sent.
1495 	 */
1496 	while (sc->tl_cdata.tl_tx_head != NULL) {
1497 		cur_tx = sc->tl_cdata.tl_tx_head;
1498 		if (!(cur_tx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
1499 			break;
1500 		sc->tl_cdata.tl_tx_head = cur_tx->tl_next;
1501 
1502 		r++;
1503 		m_freem(cur_tx->tl_mbuf);
1504 		cur_tx->tl_mbuf = NULL;
1505 
1506 		cur_tx->tl_next = sc->tl_cdata.tl_tx_free;
1507 		sc->tl_cdata.tl_tx_free = cur_tx;
1508 		if (!cur_tx->tl_ptr->tlist_fptr)
1509 			break;
1510 	}
1511 
1512 	return(r);
1513 }
1514 
1515 /*
1516  * The transmit end of channel interrupt. The adapter triggers this
1517  * interrupt to tell us it hit the end of the current transmit list.
1518  *
1519  * A note about this: it's possible for a condition to arise where
1520  * tl_start() may try to send frames between TXEOF and TXEOC interrupts.
1521  * You have to avoid this since the chip expects things to go in a
1522  * particular order: transmit, acknowledge TXEOF, acknowledge TXEOC.
1523  * When the TXEOF handler is called, it will free all of the transmitted
1524  * frames and reset the tx_head pointer to NULL. However, a TXEOC
1525  * interrupt should be received and acknowledged before any more frames
1526  * are queued for transmission. If tl_statrt() is called after TXEOF
1527  * resets the tx_head pointer but _before_ the TXEOC interrupt arrives,
1528  * it could attempt to issue a transmit command prematurely.
1529  *
1530  * To guard against this, tl_start() will only issue transmit commands
1531  * if the tl_txeoc flag is set, and only the TXEOC interrupt handler
1532  * can set this flag once tl_start() has cleared it.
1533  */
1534 static int
1535 tl_intvec_txeoc(void *xsc, u_int32_t type)
1536 {
1537 	struct tl_softc		*sc;
1538 	struct ifnet		*ifp;
1539 	u_int32_t		cmd;
1540 
1541 	sc = xsc;
1542 	ifp = &sc->arpcom.ac_if;
1543 
1544 	/* Clear the timeout timer. */
1545 	ifp->if_timer = 0;
1546 
1547 	if (sc->tl_cdata.tl_tx_head == NULL) {
1548 		ifp->if_flags &= ~IFF_OACTIVE;
1549 		sc->tl_cdata.tl_tx_tail = NULL;
1550 		sc->tl_txeoc = 1;
1551 	} else {
1552 		sc->tl_txeoc = 0;
1553 		/* First we have to ack the EOC interrupt. */
1554 		CMD_PUT(sc, TL_CMD_ACK | 0x00000001 | type);
1555 		/* Then load the address of the next TX list. */
1556 		CSR_WRITE_4(sc, TL_CH_PARM,
1557 		    vtophys(sc->tl_cdata.tl_tx_head->tl_ptr));
1558 		/* Restart TX channel. */
1559 		cmd = CSR_READ_4(sc, TL_HOSTCMD);
1560 		cmd &= ~TL_CMD_RT;
1561 		cmd |= TL_CMD_GO|TL_CMD_INTSON;
1562 		CMD_PUT(sc, cmd);
1563 		return(0);
1564 	}
1565 
1566 	return(1);
1567 }
1568 
1569 static int
1570 tl_intvec_adchk(void *xsc, u_int32_t type)
1571 {
1572 	struct tl_softc		*sc;
1573 
1574 	sc = xsc;
1575 
1576 	if (type) {
1577 		if_printf(&sc->arpcom.ac_if, "adapter check: %x\n",
1578 			  (unsigned int)CSR_READ_4(sc, TL_CH_PARM));
1579 	}
1580 
1581 	tl_softreset(sc, 1);
1582 	tl_stop(sc);
1583 	tl_init(sc);
1584 	CMD_SET(sc, TL_CMD_INTSON);
1585 
1586 	return(0);
1587 }
1588 
1589 static int
1590 tl_intvec_netsts(void *xsc, u_int32_t type)
1591 {
1592 	struct tl_softc		*sc;
1593 	u_int16_t		netsts;
1594 
1595 	sc = xsc;
1596 
1597 	netsts = tl_dio_read16(sc, TL_NETSTS);
1598 	tl_dio_write16(sc, TL_NETSTS, netsts);
1599 
1600 	if_printf(&sc->arpcom.ac_if, "network status: %x\n", netsts);
1601 
1602 	return(1);
1603 }
1604 
1605 static void
1606 tl_intr(void *xsc)
1607 {
1608 	struct tl_softc		*sc;
1609 	struct ifnet		*ifp;
1610 	int			r = 0;
1611 	u_int32_t		type = 0;
1612 	u_int16_t		ints = 0;
1613 	u_int8_t		ivec = 0;
1614 
1615 	sc = xsc;
1616 
1617 	/* Disable interrupts */
1618 	ints = CSR_READ_2(sc, TL_HOST_INT);
1619 	CSR_WRITE_2(sc, TL_HOST_INT, ints);
1620 	type = (ints << 16) & 0xFFFF0000;
1621 	ivec = (ints & TL_VEC_MASK) >> 5;
1622 	ints = (ints & TL_INT_MASK) >> 2;
1623 
1624 	ifp = &sc->arpcom.ac_if;
1625 
1626 	switch(ints) {
1627 	case (TL_INTR_INVALID):
1628 #ifdef DIAGNOSTIC
1629 		if_printf(ifp, "got an invalid interrupt!\n");
1630 #endif
1631 		/* Re-enable interrupts but don't ack this one. */
1632 		CMD_PUT(sc, type);
1633 		r = 0;
1634 		break;
1635 	case (TL_INTR_TXEOF):
1636 		r = tl_intvec_txeof((void *)sc, type);
1637 		break;
1638 	case (TL_INTR_TXEOC):
1639 		r = tl_intvec_txeoc((void *)sc, type);
1640 		break;
1641 	case (TL_INTR_STATOFLOW):
1642 		tl_stats_update_serialized(sc);
1643 		r = 1;
1644 		break;
1645 	case (TL_INTR_RXEOF):
1646 		r = tl_intvec_rxeof((void *)sc, type);
1647 		break;
1648 	case (TL_INTR_DUMMY):
1649 		if_printf(ifp, "got a dummy interrupt\n");
1650 		r = 1;
1651 		break;
1652 	case (TL_INTR_ADCHK):
1653 		if (ivec)
1654 			r = tl_intvec_adchk((void *)sc, type);
1655 		else
1656 			r = tl_intvec_netsts((void *)sc, type);
1657 		break;
1658 	case (TL_INTR_RXEOC):
1659 		r = tl_intvec_rxeoc((void *)sc, type);
1660 		break;
1661 	default:
1662 		if_printf(ifp, "bogus interrupt type\n");
1663 		break;
1664 	}
1665 
1666 	/* Re-enable interrupts */
1667 	if (r) {
1668 		CMD_PUT(sc, TL_CMD_ACK | r | type);
1669 	}
1670 
1671 	if (!ifq_is_empty(&ifp->if_snd))
1672 		if_devstart(ifp);
1673 }
1674 
1675 static
1676 void
1677 tl_stats_update(void *xsc)
1678 {
1679 	struct tl_softc *sc = xsc;
1680 	struct ifnet *ifp = &sc->arpcom.ac_if;
1681 
1682 	lwkt_serialize_enter(ifp->if_serializer);
1683 	tl_stats_update_serialized(xsc);
1684 	lwkt_serialize_exit(ifp->if_serializer);
1685 }
1686 
1687 static
1688 void
1689 tl_stats_update_serialized(void *xsc)
1690 {
1691 	struct tl_softc		*sc;
1692 	struct ifnet		*ifp;
1693 	struct tl_stats		tl_stats;
1694 	struct mii_data		*mii;
1695 	u_int32_t		*p;
1696 
1697 	bzero((char *)&tl_stats, sizeof(struct tl_stats));
1698 
1699 	sc = xsc;
1700 	ifp = &sc->arpcom.ac_if;
1701 
1702 	p = (u_int32_t *)&tl_stats;
1703 
1704 	CSR_WRITE_2(sc, TL_DIO_ADDR, TL_TXGOODFRAMES|TL_DIO_ADDR_INC);
1705 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1706 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1707 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1708 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1709 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1710 
1711 	ifp->if_opackets += tl_tx_goodframes(tl_stats);
1712 	ifp->if_collisions += tl_stats.tl_tx_single_collision +
1713 				tl_stats.tl_tx_multi_collision;
1714 	ifp->if_ipackets += tl_rx_goodframes(tl_stats);
1715 	ifp->if_ierrors += tl_stats.tl_crc_errors + tl_stats.tl_code_errors +
1716 			    tl_rx_overrun(tl_stats);
1717 	ifp->if_oerrors += tl_tx_underrun(tl_stats);
1718 
1719 	if (tl_tx_underrun(tl_stats)) {
1720 		u_int8_t		tx_thresh;
1721 		tx_thresh = tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_TXTHRESH;
1722 		if (tx_thresh != TL_AC_TXTHRESH_WHOLEPKT) {
1723 			tx_thresh >>= 4;
1724 			tx_thresh++;
1725 			if_printf(ifp, "tx underrun -- increasing "
1726 				  "tx threshold to %d bytes\n",
1727 				  (64 * (tx_thresh * 4)));
1728 			tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
1729 			tl_dio_setbit(sc, TL_ACOMMIT, tx_thresh << 4);
1730 		}
1731 	}
1732 
1733 	callout_reset(&sc->tl_stat_timer, hz, tl_stats_update, sc);
1734 
1735 	if (!sc->tl_bitrate) {
1736 		mii = device_get_softc(sc->tl_miibus);
1737 		mii_tick(mii);
1738 	}
1739 }
1740 
1741 /*
1742  * Encapsulate an mbuf chain in a list by coupling the mbuf data
1743  * pointers to the fragment pointers.
1744  */
1745 static int
1746 tl_encap(struct tl_softc *sc, struct tl_chain *c, struct mbuf *m_head)
1747 {
1748 	int			frag = 0;
1749 	struct tl_frag		*f = NULL;
1750 	int			total_len;
1751 	struct mbuf		*m;
1752 
1753 	/*
1754  	 * Start packing the mbufs in this chain into
1755 	 * the fragment pointers. Stop when we run out
1756  	 * of fragments or hit the end of the mbuf chain.
1757 	 */
1758 	m = m_head;
1759 	total_len = 0;
1760 
1761 	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1762 		if (m->m_len != 0) {
1763 			if (frag == TL_MAXFRAGS)
1764 				break;
1765 			total_len+= m->m_len;
1766 			c->tl_ptr->tl_frag[frag].tlist_dadr =
1767 				vtophys(mtod(m, vm_offset_t));
1768 			c->tl_ptr->tl_frag[frag].tlist_dcnt = m->m_len;
1769 			frag++;
1770 		}
1771 	}
1772 
1773 	/*
1774 	 * Handle special cases.
1775 	 * Special case #1: we used up all 10 fragments, but
1776 	 * we have more mbufs left in the chain. Copy the
1777 	 * data into an mbuf cluster. Note that we don't
1778 	 * bother clearing the values in the other fragment
1779 	 * pointers/counters; it wouldn't gain us anything,
1780 	 * and would waste cycles.
1781 	 */
1782 	if (m != NULL) {
1783 		struct mbuf *m_new;
1784 
1785 		m_new = m_getl(m_head->m_pkthdr.len, MB_DONTWAIT, MT_DATA,
1786 			       M_PKTHDR, NULL);
1787 		if (m_new == NULL) {
1788 			if_printf(&sc->arpcom.ac_if, "no memory for tx list\n");
1789 			return (1);
1790 		}
1791 		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1792 					mtod(m_new, caddr_t));
1793 		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1794 		m_freem(m_head);
1795 		m_head = m_new;
1796 		f = &c->tl_ptr->tl_frag[0];
1797 		f->tlist_dadr = vtophys(mtod(m_new, caddr_t));
1798 		f->tlist_dcnt = total_len = m_new->m_len;
1799 		frag = 1;
1800 	}
1801 
1802 	/*
1803 	 * Special case #2: the frame is smaller than the minimum
1804 	 * frame size. We have to pad it to make the chip happy.
1805 	 */
1806 	if (total_len < TL_MIN_FRAMELEN) {
1807 		if (frag == TL_MAXFRAGS) {
1808 			if_printf(&sc->arpcom.ac_if, "all frags filled but "
1809 				  "frame still to small!\n");
1810 		}
1811 		f = &c->tl_ptr->tl_frag[frag];
1812 		f->tlist_dcnt = TL_MIN_FRAMELEN - total_len;
1813 		f->tlist_dadr = vtophys(&sc->tl_ldata->tl_pad);
1814 		total_len += f->tlist_dcnt;
1815 		frag++;
1816 	}
1817 
1818 	c->tl_mbuf = m_head;
1819 	c->tl_ptr->tl_frag[frag - 1].tlist_dcnt |= TL_LAST_FRAG;
1820 	c->tl_ptr->tlist_frsize = total_len;
1821 	c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1822 	c->tl_ptr->tlist_fptr = 0;
1823 
1824 	return(0);
1825 }
1826 
1827 /*
1828  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1829  * to the mbuf data regions directly in the transmit lists. We also save a
1830  * copy of the pointers since the transmit list fragment pointers are
1831  * physical addresses.
1832  */
1833 static void
1834 tl_start(struct ifnet *ifp)
1835 {
1836 	struct tl_softc		*sc;
1837 	struct mbuf		*m_head = NULL;
1838 	u_int32_t		cmd;
1839 	struct tl_chain		*prev = NULL, *cur_tx = NULL, *start_tx;
1840 
1841 	sc = ifp->if_softc;
1842 
1843 	/*
1844 	 * Check for an available queue slot. If there are none,
1845 	 * punt.
1846 	 */
1847 	if (sc->tl_cdata.tl_tx_free == NULL) {
1848 		ifp->if_flags |= IFF_OACTIVE;
1849 		return;
1850 	}
1851 
1852 	start_tx = sc->tl_cdata.tl_tx_free;
1853 
1854 	while(sc->tl_cdata.tl_tx_free != NULL) {
1855 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
1856 		if (m_head == NULL)
1857 			break;
1858 
1859 		/* Pick a chain member off the free list. */
1860 		cur_tx = sc->tl_cdata.tl_tx_free;
1861 		sc->tl_cdata.tl_tx_free = cur_tx->tl_next;
1862 
1863 		cur_tx->tl_next = NULL;
1864 
1865 		/* Pack the data into the list. */
1866 		tl_encap(sc, cur_tx, m_head);
1867 
1868 		/* Chain it together */
1869 		if (prev != NULL) {
1870 			prev->tl_next = cur_tx;
1871 			prev->tl_ptr->tlist_fptr = vtophys(cur_tx->tl_ptr);
1872 		}
1873 		prev = cur_tx;
1874 
1875 		BPF_MTAP(ifp, cur_tx->tl_mbuf);
1876 	}
1877 
1878 	/*
1879 	 * If there are no packets queued, bail.
1880 	 */
1881 	if (cur_tx == NULL)
1882 		return;
1883 
1884 	/*
1885 	 * That's all we can stands, we can't stands no more.
1886 	 * If there are no other transfers pending, then issue the
1887 	 * TX GO command to the adapter to start things moving.
1888 	 * Otherwise, just leave the data in the queue and let
1889 	 * the EOF/EOC interrupt handler send.
1890 	 */
1891 	if (sc->tl_cdata.tl_tx_head == NULL) {
1892 		sc->tl_cdata.tl_tx_head = start_tx;
1893 		sc->tl_cdata.tl_tx_tail = cur_tx;
1894 
1895 		if (sc->tl_txeoc) {
1896 			sc->tl_txeoc = 0;
1897 			CSR_WRITE_4(sc, TL_CH_PARM, vtophys(start_tx->tl_ptr));
1898 			cmd = CSR_READ_4(sc, TL_HOSTCMD);
1899 			cmd &= ~TL_CMD_RT;
1900 			cmd |= TL_CMD_GO|TL_CMD_INTSON;
1901 			CMD_PUT(sc, cmd);
1902 		}
1903 	} else {
1904 		sc->tl_cdata.tl_tx_tail->tl_next = start_tx;
1905 		sc->tl_cdata.tl_tx_tail = cur_tx;
1906 	}
1907 
1908 	/*
1909 	 * Set a timeout in case the chip goes out to lunch.
1910 	 */
1911 	ifp->if_timer = 5;
1912 
1913 	return;
1914 }
1915 
1916 static void
1917 tl_init(void *xsc)
1918 {
1919 	struct tl_softc		*sc = xsc;
1920 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1921 	struct mii_data		*mii;
1922 
1923 	/*
1924 	 * Cancel pending I/O.
1925 	 */
1926 	tl_stop(sc);
1927 
1928 	/* Initialize TX FIFO threshold */
1929 	tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
1930 	tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH_16LONG);
1931 
1932         /* Set PCI burst size */
1933 	tl_dio_write8(sc, TL_BSIZEREG, TL_RXBURST_16LONG|TL_TXBURST_16LONG);
1934 
1935 	/*
1936 	 * Set 'capture all frames' bit for promiscuous mode.
1937 	 */
1938 	if (ifp->if_flags & IFF_PROMISC)
1939 		tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
1940 	else
1941 		tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF);
1942 
1943 	/*
1944 	 * Set capture broadcast bit to capture broadcast frames.
1945 	 */
1946 	if (ifp->if_flags & IFF_BROADCAST)
1947 		tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_NOBRX);
1948 	else
1949 		tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NOBRX);
1950 
1951 	tl_dio_write16(sc, TL_MAXRX, MCLBYTES);
1952 
1953 	/* Init our MAC address */
1954 	tl_setfilt(sc, (caddr_t)&sc->arpcom.ac_enaddr, 0);
1955 
1956 	/* Init multicast filter, if needed. */
1957 	tl_setmulti(sc);
1958 
1959 	/* Init circular RX list. */
1960 	if (tl_list_rx_init(sc) == ENOBUFS) {
1961 		if_printf(ifp, "initialization failed: no "
1962 			  "memory for rx buffers\n");
1963 		tl_stop(sc);
1964 		return;
1965 	}
1966 
1967 	/* Init TX pointers. */
1968 	tl_list_tx_init(sc);
1969 
1970 	/* Enable PCI interrupts. */
1971 	CMD_SET(sc, TL_CMD_INTSON);
1972 
1973 	/* Load the address of the rx list */
1974 	CMD_SET(sc, TL_CMD_RT);
1975 	CSR_WRITE_4(sc, TL_CH_PARM, vtophys(&sc->tl_ldata->tl_rx_list[0]));
1976 
1977 	if (!sc->tl_bitrate) {
1978 		if (sc->tl_miibus != NULL) {
1979 			mii = device_get_softc(sc->tl_miibus);
1980 			mii_mediachg(mii);
1981 		}
1982 	}
1983 
1984 	/* Send the RX go command */
1985 	CMD_SET(sc, TL_CMD_GO|TL_CMD_NES|TL_CMD_RT);
1986 
1987 	ifp->if_flags |= IFF_RUNNING;
1988 	ifp->if_flags &= ~IFF_OACTIVE;
1989 
1990 	/* Start the stats update counter */
1991 	callout_reset(&sc->tl_stat_timer, hz, tl_stats_update, sc);
1992 }
1993 
1994 /*
1995  * Set media options.
1996  */
1997 static int
1998 tl_ifmedia_upd(struct ifnet *ifp)
1999 {
2000 	struct tl_softc		*sc;
2001 	struct mii_data		*mii = NULL;
2002 
2003 	sc = ifp->if_softc;
2004 
2005 	if (sc->tl_bitrate)
2006 		tl_setmode(sc, sc->ifmedia.ifm_media);
2007 	else {
2008 		mii = device_get_softc(sc->tl_miibus);
2009 		mii_mediachg(mii);
2010 	}
2011 
2012 	return(0);
2013 }
2014 
2015 /*
2016  * Report current media status.
2017  */
2018 static void
2019 tl_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2020 {
2021 	struct tl_softc		*sc;
2022 	struct mii_data		*mii;
2023 
2024 	sc = ifp->if_softc;
2025 
2026 	ifmr->ifm_active = IFM_ETHER;
2027 
2028 	if (sc->tl_bitrate) {
2029 		if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD1)
2030 			ifmr->ifm_active = IFM_ETHER|IFM_10_5;
2031 		else
2032 			ifmr->ifm_active = IFM_ETHER|IFM_10_T;
2033 		if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD3)
2034 			ifmr->ifm_active |= IFM_HDX;
2035 		else
2036 			ifmr->ifm_active |= IFM_FDX;
2037 		return;
2038 	} else {
2039 		mii = device_get_softc(sc->tl_miibus);
2040 		mii_pollstat(mii);
2041 		ifmr->ifm_active = mii->mii_media_active;
2042 		ifmr->ifm_status = mii->mii_media_status;
2043 	}
2044 
2045 	return;
2046 }
2047 
2048 static int
2049 tl_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2050 {
2051 	struct tl_softc		*sc = ifp->if_softc;
2052 	struct ifreq		*ifr = (struct ifreq *) data;
2053 	int			error = 0;
2054 
2055 	switch(command) {
2056 	case SIOCSIFFLAGS:
2057 		if (ifp->if_flags & IFF_UP) {
2058 			if (ifp->if_flags & IFF_RUNNING &&
2059 			    ifp->if_flags & IFF_PROMISC &&
2060 			    !(sc->tl_if_flags & IFF_PROMISC)) {
2061 				tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
2062 				tl_setmulti(sc);
2063 			} else if (ifp->if_flags & IFF_RUNNING &&
2064 			    !(ifp->if_flags & IFF_PROMISC) &&
2065 			    sc->tl_if_flags & IFF_PROMISC) {
2066 				tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF);
2067 				tl_setmulti(sc);
2068 			} else
2069 				tl_init(sc);
2070 		} else {
2071 			if (ifp->if_flags & IFF_RUNNING) {
2072 				tl_stop(sc);
2073 			}
2074 		}
2075 		sc->tl_if_flags = ifp->if_flags;
2076 		error = 0;
2077 		break;
2078 	case SIOCADDMULTI:
2079 	case SIOCDELMULTI:
2080 		tl_setmulti(sc);
2081 		error = 0;
2082 		break;
2083 	case SIOCSIFMEDIA:
2084 	case SIOCGIFMEDIA:
2085 		if (sc->tl_bitrate)
2086 			error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2087 		else {
2088 			struct mii_data		*mii;
2089 			mii = device_get_softc(sc->tl_miibus);
2090 			error = ifmedia_ioctl(ifp, ifr,
2091 			    &mii->mii_media, command);
2092 		}
2093 		break;
2094 	default:
2095 		error = ether_ioctl(ifp, command, data);
2096 		break;
2097 	}
2098 	return(error);
2099 }
2100 
2101 static void
2102 tl_watchdog(struct ifnet *ifp)
2103 {
2104 	struct tl_softc		*sc;
2105 
2106 	sc = ifp->if_softc;
2107 
2108 	if_printf(ifp, "device timeout\n");
2109 
2110 	ifp->if_oerrors++;
2111 
2112 	tl_softreset(sc, 1);
2113 	tl_init(sc);
2114 
2115 	return;
2116 }
2117 
2118 /*
2119  * Stop the adapter and free any mbufs allocated to the
2120  * RX and TX lists.
2121  */
2122 static void
2123 tl_stop(struct tl_softc *sc)
2124 {
2125 	int		i;
2126 	struct ifnet		*ifp;
2127 
2128 	ifp = &sc->arpcom.ac_if;
2129 
2130 	/* Stop the stats updater. */
2131 	callout_stop(&sc->tl_stat_timer);
2132 
2133 	/* Stop the transmitter */
2134 	CMD_CLR(sc, TL_CMD_RT);
2135 	CMD_SET(sc, TL_CMD_STOP);
2136 	CSR_WRITE_4(sc, TL_CH_PARM, 0);
2137 
2138 	/* Stop the receiver */
2139 	CMD_SET(sc, TL_CMD_RT);
2140 	CMD_SET(sc, TL_CMD_STOP);
2141 	CSR_WRITE_4(sc, TL_CH_PARM, 0);
2142 
2143 	/*
2144 	 * Disable host interrupts.
2145 	 */
2146 	CMD_SET(sc, TL_CMD_INTSOFF);
2147 
2148 	/*
2149 	 * Clear list pointer.
2150 	 */
2151 	CSR_WRITE_4(sc, TL_CH_PARM, 0);
2152 
2153 	/*
2154 	 * Free the RX lists.
2155 	 */
2156 	for (i = 0; i < TL_RX_LIST_CNT; i++) {
2157 		if (sc->tl_cdata.tl_rx_chain[i].tl_mbuf != NULL) {
2158 			m_freem(sc->tl_cdata.tl_rx_chain[i].tl_mbuf);
2159 			sc->tl_cdata.tl_rx_chain[i].tl_mbuf = NULL;
2160 		}
2161 	}
2162 	bzero((char *)&sc->tl_ldata->tl_rx_list,
2163 		sizeof(sc->tl_ldata->tl_rx_list));
2164 
2165 	/*
2166 	 * Free the TX list buffers.
2167 	 */
2168 	for (i = 0; i < TL_TX_LIST_CNT; i++) {
2169 		if (sc->tl_cdata.tl_tx_chain[i].tl_mbuf != NULL) {
2170 			m_freem(sc->tl_cdata.tl_tx_chain[i].tl_mbuf);
2171 			sc->tl_cdata.tl_tx_chain[i].tl_mbuf = NULL;
2172 		}
2173 	}
2174 	bzero((char *)&sc->tl_ldata->tl_tx_list,
2175 		sizeof(sc->tl_ldata->tl_tx_list));
2176 
2177 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2178 
2179 	return;
2180 }
2181 
2182 /*
2183  * Stop all chip I/O so that the kernel's probe routines don't
2184  * get confused by errant DMAs when rebooting.
2185  */
2186 static void
2187 tl_shutdown(device_t dev)
2188 {
2189 	struct tl_softc		*sc;
2190 
2191 	sc = device_get_softc(dev);
2192 
2193 	tl_stop(sc);
2194 
2195 	return;
2196 }
2197