xref: /dragonfly/sys/dev/netif/wi/if_wi.c (revision 1de703da)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/dev/wi/if_wi.c,v 1.103.2.2 2002/08/02 07:11:34 imp Exp $
33  * $DragonFly: src/sys/dev/netif/wi/if_wi.c,v 1.2 2003/06/17 04:28:33 dillon Exp $
34  */
35 
36 /*
37  * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for FreeBSD.
38  *
39  * Written by Bill Paul <wpaul@ctr.columbia.edu>
40  * Electrical Engineering Department
41  * Columbia University, New York City
42  */
43 
44 /*
45  * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
46  * from Lucent. Unlike the older cards, the new ones are programmed
47  * entirely via a firmware-driven controller called the Hermes.
48  * Unfortunately, Lucent will not release the Hermes programming manual
49  * without an NDA (if at all). What they do release is an API library
50  * called the HCF (Hardware Control Functions) which is supposed to
51  * do the device-specific operations of a device driver for you. The
52  * publically available version of the HCF library (the 'HCF Light') is
53  * a) extremely gross, b) lacks certain features, particularly support
54  * for 802.11 frames, and c) is contaminated by the GNU Public License.
55  *
56  * This driver does not use the HCF or HCF Light at all. Instead, it
57  * programs the Hermes controller directly, using information gleaned
58  * from the HCF Light code and corresponding documentation.
59  *
60  * This driver supports the ISA, PCMCIA and PCI versions of the Lucent
61  * WaveLan cards (based on the Hermes chipset), as well as the newer
62  * Prism 2 chipsets with firmware from Intersil and Symbol.
63  */
64 
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #if __FreeBSD_version >= 500033
68 #include <sys/endian.h>
69 #endif
70 #include <sys/sockio.h>
71 #include <sys/mbuf.h>
72 #include <sys/proc.h>
73 #include <sys/kernel.h>
74 #include <sys/socket.h>
75 #include <sys/module.h>
76 #include <sys/bus.h>
77 #include <sys/random.h>
78 #include <sys/syslog.h>
79 #include <sys/sysctl.h>
80 
81 #include <machine/bus.h>
82 #include <machine/resource.h>
83 #include <machine/clock.h>
84 #include <sys/rman.h>
85 
86 #include <net/if.h>
87 #include <net/if_arp.h>
88 #include <net/ethernet.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 #include <net/if_types.h>
92 #include <net/if_ieee80211.h>
93 
94 #include <netinet/in.h>
95 #include <netinet/in_systm.h>
96 #include <netinet/in_var.h>
97 #include <netinet/ip.h>
98 #include <netinet/if_ether.h>
99 
100 #include <net/bpf.h>
101 
102 #include <dev/wi/if_wavelan_ieee.h>
103 #include <dev/wi/wi_hostap.h>
104 #include <dev/wi/if_wivar.h>
105 #include <dev/wi/if_wireg.h>
106 
107 static void wi_intr(void *);
108 static void wi_reset(struct wi_softc *);
109 static int wi_ioctl(struct ifnet *, u_long, caddr_t);
110 static void wi_init(void *);
111 static void wi_start(struct ifnet *);
112 static void wi_stop(struct wi_softc *);
113 static void wi_watchdog(struct ifnet *);
114 static void wi_rxeof(struct wi_softc *);
115 static void wi_txeof(struct wi_softc *, int);
116 static void wi_update_stats(struct wi_softc *);
117 static void wi_setmulti(struct wi_softc *);
118 
119 static int wi_cmd(struct wi_softc *, int, int, int, int);
120 static int wi_read_record(struct wi_softc *, struct wi_ltv_gen *);
121 static int wi_write_record(struct wi_softc *, struct wi_ltv_gen *);
122 static int wi_read_data(struct wi_softc *, int, int, caddr_t, int);
123 static int wi_write_data(struct wi_softc *, int, int, caddr_t, int);
124 static int wi_seek(struct wi_softc *, int, int, int);
125 static int wi_alloc_nicmem(struct wi_softc *, int, int *);
126 static void wi_inquire(void *);
127 static void wi_setdef(struct wi_softc *, struct wi_req *);
128 
129 #ifdef WICACHE
130 static
131 void wi_cache_store(struct wi_softc *, struct ether_header *,
132 	struct mbuf *, unsigned short);
133 #endif
134 
135 static int wi_get_cur_ssid(struct wi_softc *, char *, int *);
136 static void wi_get_id(struct wi_softc *);
137 static int wi_media_change(struct ifnet *);
138 static void wi_media_status(struct ifnet *, struct ifmediareq *);
139 
140 static int wi_get_debug(struct wi_softc *, struct wi_req *);
141 static int wi_set_debug(struct wi_softc *, struct wi_req *);
142 
143 devclass_t wi_devclass;
144 
145 struct wi_card_ident wi_card_ident[] = {
146 	/* CARD_ID			CARD_NAME		FIRM_TYPE */
147 	{ WI_NIC_LUCENT_ID,		WI_NIC_LUCENT_STR,	WI_LUCENT },
148 	{ WI_NIC_SONY_ID,		WI_NIC_SONY_STR,	WI_LUCENT },
149 	{ WI_NIC_LUCENT_EMB_ID,		WI_NIC_LUCENT_EMB_STR,	WI_LUCENT },
150 	{ WI_NIC_EVB2_ID,		WI_NIC_EVB2_STR,	WI_INTERSIL },
151 	{ WI_NIC_HWB3763_ID,		WI_NIC_HWB3763_STR,	WI_INTERSIL },
152 	{ WI_NIC_HWB3163_ID,		WI_NIC_HWB3163_STR,	WI_INTERSIL },
153 	{ WI_NIC_HWB3163B_ID,		WI_NIC_HWB3163B_STR,	WI_INTERSIL },
154 	{ WI_NIC_EVB3_ID,		WI_NIC_EVB3_STR,	WI_INTERSIL },
155 	{ WI_NIC_HWB1153_ID,		WI_NIC_HWB1153_STR,	WI_INTERSIL },
156 	{ WI_NIC_P2_SST_ID,		WI_NIC_P2_SST_STR,	WI_INTERSIL },
157 	{ WI_NIC_EVB2_SST_ID,		WI_NIC_EVB2_SST_STR,	WI_INTERSIL },
158 	{ WI_NIC_3842_EVA_ID,		WI_NIC_3842_EVA_STR,	WI_INTERSIL },
159 	{ WI_NIC_3842_PCMCIA_AMD_ID,	WI_NIC_3842_PCMCIA_STR,	WI_INTERSIL },
160 	{ WI_NIC_3842_PCMCIA_SST_ID,	WI_NIC_3842_PCMCIA_STR,	WI_INTERSIL },
161 	{ WI_NIC_3842_PCMCIA_ATM_ID,	WI_NIC_3842_PCMCIA_STR,	WI_INTERSIL },
162 	{ WI_NIC_3842_MINI_AMD_ID,	WI_NIC_3842_MINI_STR,	WI_INTERSIL },
163 	{ WI_NIC_3842_MINI_SST_ID,	WI_NIC_3842_MINI_STR,	WI_INTERSIL },
164 	{ WI_NIC_3842_MINI_ATM_ID,	WI_NIC_3842_MINI_STR,	WI_INTERSIL },
165 	{ WI_NIC_3842_PCI_AMD_ID,	WI_NIC_3842_PCI_STR,	WI_INTERSIL },
166 	{ WI_NIC_3842_PCI_SST_ID,	WI_NIC_3842_PCI_STR,	WI_INTERSIL },
167 	{ WI_NIC_3842_PCI_ATM_ID,	WI_NIC_3842_PCI_STR,	WI_INTERSIL },
168 	{ WI_NIC_P3_PCMCIA_AMD_ID,	WI_NIC_P3_PCMCIA_STR,	WI_INTERSIL },
169 	{ WI_NIC_P3_PCMCIA_SST_ID,	WI_NIC_P3_PCMCIA_STR,	WI_INTERSIL },
170 	{ WI_NIC_P3_MINI_AMD_ID,	WI_NIC_P3_MINI_STR,	WI_INTERSIL },
171 	{ WI_NIC_P3_MINI_SST_ID,	WI_NIC_P3_MINI_STR,	WI_INTERSIL },
172 	{ 0,	NULL,	0 },
173 };
174 
175 int
176 wi_generic_detach(dev)
177 	device_t		dev;
178 {
179 	struct wi_softc		*sc;
180 	struct ifnet		*ifp;
181 	int			s;
182 
183 	sc = device_get_softc(dev);
184 	WI_LOCK(sc, s);
185 	ifp = &sc->arpcom.ac_if;
186 
187 	if (sc->wi_gone) {
188 		device_printf(dev, "already unloaded\n");
189 		WI_UNLOCK(sc, s);
190 		return(ENODEV);
191 	}
192 
193 	wi_stop(sc);
194 
195 	/* Delete all remaining media. */
196 	ifmedia_removeall(&sc->ifmedia);
197 
198 	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
199 	bus_teardown_intr(dev, sc->irq, sc->wi_intrhand);
200 	wi_free(dev);
201 	sc->wi_gone = 1;
202 
203 	WI_UNLOCK(sc, s);
204 #if __FreeBSD_version >= 500000
205 	mtx_destroy(&sc->wi_mtx);
206 #endif
207 
208 	return(0);
209 }
210 
211 int
212 wi_generic_attach(device_t dev)
213 {
214 	struct wi_softc		*sc;
215 	struct wi_ltv_macaddr	mac;
216 	struct wi_ltv_gen	gen;
217 	struct ifnet		*ifp;
218 	int			error;
219 	int			s;
220 
221 	/* XXX maybe we need the splimp stuff here XXX */
222 	sc = device_get_softc(dev);
223 	ifp = &sc->arpcom.ac_if;
224 
225 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET,
226 	    wi_intr, sc, &sc->wi_intrhand);
227 
228 	if (error) {
229 		device_printf(dev, "bus_setup_intr() failed! (%d)\n", error);
230 		wi_free(dev);
231 		return (error);
232 	}
233 
234 #if __FreeBSD_version >= 500000
235 	mtx_init(&sc->wi_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
236 	    MTX_DEF | MTX_RECURSE);
237 #endif
238 	WI_LOCK(sc, s);
239 
240 	/* Reset the NIC. */
241 	wi_reset(sc);
242 
243 	/*
244 	 * Read the station address.
245 	 * And do it twice. I've seen PRISM-based cards that return
246 	 * an error when trying to read it the first time, which causes
247 	 * the probe to fail.
248 	 */
249 	mac.wi_type = WI_RID_MAC_NODE;
250 	mac.wi_len = 4;
251 	wi_read_record(sc, (struct wi_ltv_gen *)&mac);
252 	if ((error = wi_read_record(sc, (struct wi_ltv_gen *)&mac)) != 0) {
253 		device_printf(dev, "mac read failed %d\n", error);
254 		wi_free(dev);
255 		return (error);
256 	}
257 	bcopy((char *)&mac.wi_mac_addr,
258 	   (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
259 
260 	device_printf(dev, "802.11 address: %6D\n", sc->arpcom.ac_enaddr, ":");
261 
262 	wi_get_id(sc);
263 
264 	ifp->if_softc = sc;
265 	ifp->if_unit = sc->wi_unit;
266 	ifp->if_name = "wi";
267 	ifp->if_mtu = ETHERMTU;
268 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
269 	ifp->if_ioctl = wi_ioctl;
270 	ifp->if_output = ether_output;
271 	ifp->if_start = wi_start;
272 	ifp->if_watchdog = wi_watchdog;
273 	ifp->if_init = wi_init;
274 	ifp->if_baudrate = 10000000;
275 	ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
276 
277 	bzero(sc->wi_node_name, sizeof(sc->wi_node_name));
278 	bcopy(WI_DEFAULT_NODENAME, sc->wi_node_name,
279 	    sizeof(WI_DEFAULT_NODENAME) - 1);
280 
281 	bzero(sc->wi_net_name, sizeof(sc->wi_net_name));
282 	bcopy(WI_DEFAULT_NETNAME, sc->wi_net_name,
283 	    sizeof(WI_DEFAULT_NETNAME) - 1);
284 
285 	bzero(sc->wi_ibss_name, sizeof(sc->wi_ibss_name));
286 	bcopy(WI_DEFAULT_IBSS, sc->wi_ibss_name,
287 	    sizeof(WI_DEFAULT_IBSS) - 1);
288 
289 	sc->wi_portnum = WI_DEFAULT_PORT;
290 	sc->wi_ptype = WI_PORTTYPE_BSS;
291 	sc->wi_ap_density = WI_DEFAULT_AP_DENSITY;
292 	sc->wi_rts_thresh = WI_DEFAULT_RTS_THRESH;
293 	sc->wi_tx_rate = WI_DEFAULT_TX_RATE;
294 	sc->wi_max_data_len = WI_DEFAULT_DATALEN;
295 	sc->wi_create_ibss = WI_DEFAULT_CREATE_IBSS;
296 	sc->wi_pm_enabled = WI_DEFAULT_PM_ENABLED;
297 	sc->wi_max_sleep = WI_DEFAULT_MAX_SLEEP;
298 	sc->wi_roaming = WI_DEFAULT_ROAMING;
299 	sc->wi_authtype = WI_DEFAULT_AUTHTYPE;
300 	sc->wi_authmode = IEEE80211_AUTH_OPEN;
301 
302 	/*
303 	 * Read the default channel from the NIC. This may vary
304 	 * depending on the country where the NIC was purchased, so
305 	 * we can't hard-code a default and expect it to work for
306 	 * everyone.
307 	 */
308 	gen.wi_type = WI_RID_OWN_CHNL;
309 	gen.wi_len = 2;
310 	wi_read_record(sc, &gen);
311 	sc->wi_channel = gen.wi_val;
312 
313 	/*
314 	 * Set flags based on firmware version.
315 	 */
316 	switch (sc->sc_firmware_type) {
317 	case WI_LUCENT:
318 		sc->wi_flags |= WI_FLAGS_HAS_ROAMING;
319 		if (sc->sc_sta_firmware_ver >= 60000)
320 			sc->wi_flags |= WI_FLAGS_HAS_MOR;
321 		if (sc->sc_sta_firmware_ver >= 60006) {
322 			sc->wi_flags |= WI_FLAGS_HAS_IBSS;
323 			sc->wi_flags |= WI_FLAGS_HAS_CREATE_IBSS;
324 		}
325 		sc->wi_ibss_port = htole16(1);
326 		break;
327 	case WI_INTERSIL:
328 		sc->wi_flags |= WI_FLAGS_HAS_ROAMING;
329 		if (sc->sc_sta_firmware_ver >= 800) {
330 			sc->wi_flags |= WI_FLAGS_HAS_IBSS;
331 			sc->wi_flags |= WI_FLAGS_HAS_CREATE_IBSS;
332 		}
333 		/*
334 		 * version 0.8.3 and newer are the only ones that are known
335 		 * to currently work.  Earlier versions can be made to work,
336 		 * at least according to the Linux driver.
337 		 */
338 		if (sc->sc_sta_firmware_ver >= 803)
339 			sc->wi_flags |= WI_FLAGS_HAS_HOSTAP;
340 		sc->wi_ibss_port = htole16(0);
341 		break;
342 	case WI_SYMBOL:
343 		sc->wi_flags |= WI_FLAGS_HAS_DIVERSITY;
344 		if (sc->sc_sta_firmware_ver >= 20000)
345 			sc->wi_flags |= WI_FLAGS_HAS_IBSS;
346 		/* Older Symbol firmware does not support IBSS creation. */
347 		if (sc->sc_sta_firmware_ver >= 25000)
348 			sc->wi_flags |= WI_FLAGS_HAS_CREATE_IBSS;
349 		sc->wi_ibss_port = htole16(4);
350 		break;
351 	}
352 
353 	/*
354 	 * Find out if we support WEP on this card.
355 	 */
356 	gen.wi_type = WI_RID_WEP_AVAIL;
357 	gen.wi_len = 2;
358 	wi_read_record(sc, &gen);
359 	sc->wi_has_wep = gen.wi_val;
360 
361 	if (bootverbose)
362 		device_printf(sc->dev, "wi_has_wep = %d\n", sc->wi_has_wep);
363 
364 	/*
365 	 * Find supported rates.
366 	 */
367 	gen.wi_type = WI_RID_DATA_RATES;
368 	gen.wi_len = 2;
369 	if (wi_read_record(sc, &gen))
370 		sc->wi_supprates = WI_SUPPRATES_1M | WI_SUPPRATES_2M |
371 		    WI_SUPPRATES_5M | WI_SUPPRATES_11M;
372 	else
373 		sc->wi_supprates = gen.wi_val;
374 
375 	bzero((char *)&sc->wi_stats, sizeof(sc->wi_stats));
376 
377 	wi_init(sc);
378 	wi_stop(sc);
379 
380 	ifmedia_init(&sc->ifmedia, 0, wi_media_change, wi_media_status);
381 #define ADD(m, c)       ifmedia_add(&sc->ifmedia, (m), (c), NULL)
382 	if (sc->wi_supprates & WI_SUPPRATES_1M) {
383 		ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, 0, 0), 0);
384 		ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
385 		    IFM_IEEE80211_ADHOC, 0), 0);
386 		if (sc->wi_flags & WI_FLAGS_HAS_IBSS)
387 			ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
388 			    IFM_IEEE80211_IBSS, 0), 0);
389 		if (sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS)
390 			ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
391 			    IFM_IEEE80211_IBSSMASTER, 0), 0);
392 		if (sc->wi_flags & WI_FLAGS_HAS_HOSTAP)
393 			ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
394 			    IFM_IEEE80211_HOSTAP, 0), 0);
395 	}
396 	if (sc->wi_supprates & WI_SUPPRATES_2M) {
397 		ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, 0, 0), 0);
398 		ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
399 		    IFM_IEEE80211_ADHOC, 0), 0);
400 		if (sc->wi_flags & WI_FLAGS_HAS_IBSS)
401 			ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
402 			    IFM_IEEE80211_IBSS, 0), 0);
403 		if (sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS)
404 			ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
405 			    IFM_IEEE80211_IBSSMASTER, 0), 0);
406 		if (sc->wi_flags & WI_FLAGS_HAS_HOSTAP)
407 			ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
408 			    IFM_IEEE80211_HOSTAP, 0), 0);
409 	}
410 	if (sc->wi_supprates & WI_SUPPRATES_5M) {
411 		ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5, 0, 0), 0);
412 		ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
413 		    IFM_IEEE80211_ADHOC, 0), 0);
414 		if (sc->wi_flags & WI_FLAGS_HAS_IBSS)
415 			ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
416 			    IFM_IEEE80211_IBSS, 0), 0);
417 		if (sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS)
418 			ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
419 			    IFM_IEEE80211_IBSSMASTER, 0), 0);
420 		if (sc->wi_flags & WI_FLAGS_HAS_HOSTAP)
421 			ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
422 			    IFM_IEEE80211_HOSTAP, 0), 0);
423 	}
424 	if (sc->wi_supprates & WI_SUPPRATES_11M) {
425 		ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, 0, 0), 0);
426 		ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
427 		    IFM_IEEE80211_ADHOC, 0), 0);
428 		if (sc->wi_flags & WI_FLAGS_HAS_IBSS)
429 			ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
430 			    IFM_IEEE80211_IBSS, 0), 0);
431 		if (sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS)
432 			ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
433 			    IFM_IEEE80211_IBSSMASTER, 0), 0);
434 		if (sc->wi_flags & WI_FLAGS_HAS_HOSTAP)
435 			ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
436 			    IFM_IEEE80211_HOSTAP, 0), 0);
437 		ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_MANUAL, 0, 0), 0);
438 	}
439 	ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, IFM_IEEE80211_ADHOC, 0), 0);
440 	if (sc->wi_flags & WI_FLAGS_HAS_IBSS)
441 		ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, IFM_IEEE80211_IBSS,
442 		    0), 0);
443 	if (sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS)
444 		ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO,
445 		    IFM_IEEE80211_IBSSMASTER, 0), 0);
446 	if (sc->wi_flags & WI_FLAGS_HAS_HOSTAP)
447 		ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO,
448 		    IFM_IEEE80211_HOSTAP, 0), 0);
449 	ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0), 0);
450 #undef ADD
451 	ifmedia_set(&sc->ifmedia, IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0));
452 
453 	/*
454 	 * Call MI attach routine.
455 	 */
456 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
457 	callout_handle_init(&sc->wi_stat_ch);
458 	WI_UNLOCK(sc, s);
459 
460 	return(0);
461 }
462 
463 static void
464 wi_get_id(sc)
465 	struct wi_softc *sc;
466 {
467 	struct wi_ltv_ver       ver;
468 	struct wi_card_ident	*id;
469 
470 	/* getting chip identity */
471 	memset(&ver, 0, sizeof(ver));
472 	ver.wi_type = WI_RID_CARD_ID;
473 	ver.wi_len = 5;
474 	wi_read_record(sc, (struct wi_ltv_gen *)&ver);
475 	device_printf(sc->dev, "using ");
476 	sc->sc_firmware_type = WI_NOTYPE;
477 	for (id = wi_card_ident; id->card_name != NULL; id++) {
478 		if (le16toh(ver.wi_ver[0]) == id->card_id) {
479 			printf("%s", id->card_name);
480 			sc->sc_firmware_type = id->firm_type;
481 			break;
482 		}
483 	}
484 	if (sc->sc_firmware_type == WI_NOTYPE) {
485 		if (le16toh(ver.wi_ver[0]) & 0x8000) {
486 			printf("Unknown PRISM2 chip");
487 			sc->sc_firmware_type = WI_INTERSIL;
488 		} else {
489 			printf("Unknown Lucent chip");
490 			sc->sc_firmware_type = WI_LUCENT;
491 		}
492 	}
493 
494 	if (sc->sc_firmware_type != WI_LUCENT) {
495 		/* get primary firmware version */
496 		memset(&ver, 0, sizeof(ver));
497 		ver.wi_type = WI_RID_PRI_IDENTITY;
498 		ver.wi_len = 5;
499 		wi_read_record(sc, (struct wi_ltv_gen *)&ver);
500 		ver.wi_ver[1] = le16toh(ver.wi_ver[1]);
501 		ver.wi_ver[2] = le16toh(ver.wi_ver[2]);
502 		ver.wi_ver[3] = le16toh(ver.wi_ver[3]);
503 		sc->sc_pri_firmware_ver = ver.wi_ver[2] * 10000 +
504 		    ver.wi_ver[3] * 100 + ver.wi_ver[1];
505 	}
506 
507 	/* get station firmware version */
508 	memset(&ver, 0, sizeof(ver));
509 	ver.wi_type = WI_RID_STA_IDENTITY;
510 	ver.wi_len = 5;
511 	wi_read_record(sc, (struct wi_ltv_gen *)&ver);
512 	ver.wi_ver[1] = le16toh(ver.wi_ver[1]);
513 	ver.wi_ver[2] = le16toh(ver.wi_ver[2]);
514 	ver.wi_ver[3] = le16toh(ver.wi_ver[3]);
515 	sc->sc_sta_firmware_ver = ver.wi_ver[2] * 10000 +
516 	    ver.wi_ver[3] * 100 + ver.wi_ver[1];
517 	if (sc->sc_firmware_type == WI_INTERSIL &&
518 	    (sc->sc_sta_firmware_ver == 10102 ||
519 	     sc->sc_sta_firmware_ver == 20102)) {
520 		struct wi_ltv_str sver;
521 		char *p;
522 
523 		memset(&sver, 0, sizeof(sver));
524 		sver.wi_type = WI_RID_SYMBOL_IDENTITY;
525 		sver.wi_len = 7;
526 		/* value should be the format like "V2.00-11" */
527 		if (wi_read_record(sc, (struct wi_ltv_gen *)&sver) == 0 &&
528 		    *(p = (char *)sver.wi_str) >= 'A' &&
529 		    p[2] == '.' && p[5] == '-' && p[8] == '\0') {
530 			sc->sc_firmware_type = WI_SYMBOL;
531 			sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 +
532 			    (p[3] - '0') * 1000 + (p[4] - '0') * 100 +
533 			    (p[6] - '0') * 10 + (p[7] - '0');
534 		}
535 	}
536 	printf("\n");
537 	device_printf(sc->dev, "%s Firmware: ",
538 	     sc->sc_firmware_type == WI_LUCENT ? "Lucent" :
539 	    (sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil"));
540 
541 	/*
542 	 * The primary firmware is only valid on Prism based chipsets
543 	 * (INTERSIL or SYMBOL).
544 	 */
545 	if (sc->sc_firmware_type != WI_LUCENT)
546 	    printf("Primary %u.%02u.%02u, ", sc->sc_pri_firmware_ver / 10000,
547 		    (sc->sc_pri_firmware_ver % 10000) / 100,
548 		    sc->sc_pri_firmware_ver % 100);
549 	printf("Station %u.%02u.%02u\n",
550 	    sc->sc_sta_firmware_ver / 10000, (sc->sc_sta_firmware_ver % 10000) / 100,
551 	    sc->sc_sta_firmware_ver % 100);
552 	return;
553 }
554 
555 static void
556 wi_rxeof(sc)
557 	struct wi_softc		*sc;
558 {
559 	struct ifnet		*ifp;
560 	struct ether_header	*eh;
561 	struct mbuf		*m;
562 	int			id;
563 
564 	ifp = &sc->arpcom.ac_if;
565 
566 	id = CSR_READ_2(sc, WI_RX_FID);
567 
568 	/*
569 	 * if we have the procframe flag set, disregard all this and just
570 	 * read the data from the device.
571 	 */
572 	if (sc->wi_procframe || sc->wi_debug.wi_monitor) {
573 		struct wi_frame		*rx_frame;
574 		int			datlen, hdrlen;
575 
576 		/* first allocate mbuf for packet storage */
577 		MGETHDR(m, M_DONTWAIT, MT_DATA);
578 		if (m == NULL) {
579 			ifp->if_ierrors++;
580 			return;
581 		}
582 		MCLGET(m, M_DONTWAIT);
583 		if (!(m->m_flags & M_EXT)) {
584 			m_freem(m);
585 			ifp->if_ierrors++;
586 			return;
587 		}
588 
589 		m->m_pkthdr.rcvif = ifp;
590 
591 		/* now read wi_frame first so we know how much data to read */
592 		if (wi_read_data(sc, id, 0, mtod(m, caddr_t),
593 		    sizeof(struct wi_frame))) {
594 			m_freem(m);
595 			ifp->if_ierrors++;
596 			return;
597 		}
598 
599 		rx_frame = mtod(m, struct wi_frame *);
600 
601 		switch ((rx_frame->wi_status & WI_STAT_MAC_PORT) >> 8) {
602 		case 7:
603 			switch (rx_frame->wi_frame_ctl & WI_FCTL_FTYPE) {
604 			case WI_FTYPE_DATA:
605 				hdrlen = WI_DATA_HDRLEN;
606 				datlen = rx_frame->wi_dat_len + WI_FCS_LEN;
607 				break;
608 			case WI_FTYPE_MGMT:
609 				hdrlen = WI_MGMT_HDRLEN;
610 				datlen = rx_frame->wi_dat_len + WI_FCS_LEN;
611 				break;
612 			case WI_FTYPE_CTL:
613 				/*
614 				 * prism2 cards don't pass control packets
615 				 * down properly or consistently, so we'll only
616 				 * pass down the header.
617 				 */
618 				hdrlen = WI_CTL_HDRLEN;
619 				datlen = 0;
620 				break;
621 			default:
622 				device_printf(sc->dev, "received packet of "
623 				    "unknown type on port 7\n");
624 				m_freem(m);
625 				ifp->if_ierrors++;
626 				return;
627 			}
628 			break;
629 		case 0:
630 			hdrlen = WI_DATA_HDRLEN;
631 			datlen = rx_frame->wi_dat_len + WI_FCS_LEN;
632 			break;
633 		default:
634 			device_printf(sc->dev, "received packet on invalid "
635 			    "port (wi_status=0x%x)\n", rx_frame->wi_status);
636 			m_freem(m);
637 			ifp->if_ierrors++;
638 			return;
639 		}
640 
641 		if ((hdrlen + datlen + 2) > MCLBYTES) {
642 			device_printf(sc->dev, "oversized packet received "
643 			    "(wi_dat_len=%d, wi_status=0x%x)\n",
644 			    datlen, rx_frame->wi_status);
645 			m_freem(m);
646 			ifp->if_ierrors++;
647 			return;
648 		}
649 
650 		if (wi_read_data(sc, id, hdrlen, mtod(m, caddr_t) + hdrlen,
651 		    datlen + 2)) {
652 			m_freem(m);
653 			ifp->if_ierrors++;
654 			return;
655 		}
656 
657 		m->m_pkthdr.len = m->m_len = hdrlen + datlen;
658 
659 		ifp->if_ipackets++;
660 
661 		/* Handle BPF listeners. */
662 		if (ifp->if_bpf)
663 			bpf_mtap(ifp, m);
664 
665 		m_freem(m);
666 	} else {
667 		struct wi_frame		rx_frame;
668 
669 		/* First read in the frame header */
670 		if (wi_read_data(sc, id, 0, (caddr_t)&rx_frame,
671 		    sizeof(rx_frame))) {
672 			ifp->if_ierrors++;
673 			return;
674 		}
675 
676 		if (rx_frame.wi_status & WI_STAT_ERRSTAT) {
677 			ifp->if_ierrors++;
678 			return;
679 		}
680 
681 		MGETHDR(m, M_DONTWAIT, MT_DATA);
682 		if (m == NULL) {
683 			ifp->if_ierrors++;
684 			return;
685 		}
686 		MCLGET(m, M_DONTWAIT);
687 		if (!(m->m_flags & M_EXT)) {
688 			m_freem(m);
689 			ifp->if_ierrors++;
690 			return;
691 		}
692 
693 		eh = mtod(m, struct ether_header *);
694 		m->m_pkthdr.rcvif = ifp;
695 
696 		if (rx_frame.wi_status == WI_STAT_MGMT &&
697 		    sc->wi_ptype == WI_PORTTYPE_AP) {
698 			if ((WI_802_11_OFFSET_RAW + rx_frame.wi_dat_len + 2) >
699 			    MCLBYTES) {
700 				device_printf(sc->dev, "oversized mgmt packet "
701 				    "received in hostap mode "
702 				    "(wi_dat_len=%d, wi_status=0x%x)\n",
703 				    rx_frame.wi_dat_len, rx_frame.wi_status);
704 				m_freem(m);
705 				ifp->if_ierrors++;
706 				return;
707 			}
708 
709 			/* Put the whole header in there. */
710 			bcopy(&rx_frame, mtod(m, void *),
711 			    sizeof(struct wi_frame));
712 			if (wi_read_data(sc, id, WI_802_11_OFFSET_RAW,
713 			    mtod(m, caddr_t) + WI_802_11_OFFSET_RAW,
714 			    rx_frame.wi_dat_len + 2)) {
715 				m_freem(m);
716 				ifp->if_ierrors++;
717 				return;
718 			}
719 			m->m_pkthdr.len = m->m_len =
720 			    WI_802_11_OFFSET_RAW + rx_frame.wi_dat_len;
721 			/* XXX: consider giving packet to bhp? */
722 			wihap_mgmt_input(sc, &rx_frame, m);
723 			return;
724 		}
725 
726 		if (rx_frame.wi_status == WI_STAT_1042 ||
727 		    rx_frame.wi_status == WI_STAT_TUNNEL ||
728 		    rx_frame.wi_status == WI_STAT_WMP_MSG) {
729 			if((rx_frame.wi_dat_len + WI_SNAPHDR_LEN) > MCLBYTES) {
730 				device_printf(sc->dev,
731 				    "oversized packet received "
732 				    "(wi_dat_len=%d, wi_status=0x%x)\n",
733 				    rx_frame.wi_dat_len, rx_frame.wi_status);
734 				m_freem(m);
735 				ifp->if_ierrors++;
736 				return;
737 			}
738 			m->m_pkthdr.len = m->m_len =
739 			    rx_frame.wi_dat_len + WI_SNAPHDR_LEN;
740 
741 #if 0
742 			bcopy((char *)&rx_frame.wi_addr1,
743 			    (char *)&eh->ether_dhost, ETHER_ADDR_LEN);
744 			if (sc->wi_ptype == WI_PORTTYPE_ADHOC) {
745 				bcopy((char *)&rx_frame.wi_addr2,
746 				    (char *)&eh->ether_shost, ETHER_ADDR_LEN);
747 			} else {
748 				bcopy((char *)&rx_frame.wi_addr3,
749 				    (char *)&eh->ether_shost, ETHER_ADDR_LEN);
750 			}
751 #else
752 			bcopy((char *)&rx_frame.wi_dst_addr,
753 				(char *)&eh->ether_dhost, ETHER_ADDR_LEN);
754 			bcopy((char *)&rx_frame.wi_src_addr,
755 				(char *)&eh->ether_shost, ETHER_ADDR_LEN);
756 #endif
757 
758 			bcopy((char *)&rx_frame.wi_type,
759 			    (char *)&eh->ether_type, ETHER_TYPE_LEN);
760 
761 			if (wi_read_data(sc, id, WI_802_11_OFFSET,
762 			    mtod(m, caddr_t) + sizeof(struct ether_header),
763 			    m->m_len + 2)) {
764 				m_freem(m);
765 				ifp->if_ierrors++;
766 				return;
767 			}
768 		} else {
769 			if((rx_frame.wi_dat_len +
770 			    sizeof(struct ether_header)) > MCLBYTES) {
771 				device_printf(sc->dev,
772 				    "oversized packet received "
773 				    "(wi_dat_len=%d, wi_status=0x%x)\n",
774 				    rx_frame.wi_dat_len, rx_frame.wi_status);
775 				m_freem(m);
776 				ifp->if_ierrors++;
777 				return;
778 			}
779 			m->m_pkthdr.len = m->m_len =
780 			    rx_frame.wi_dat_len + sizeof(struct ether_header);
781 
782 			if (wi_read_data(sc, id, WI_802_3_OFFSET,
783 			    mtod(m, caddr_t), m->m_len + 2)) {
784 				m_freem(m);
785 				ifp->if_ierrors++;
786 				return;
787 			}
788 		}
789 
790 		ifp->if_ipackets++;
791 
792 		if (sc->wi_ptype == WI_PORTTYPE_AP) {
793 			/*
794 			 * Give host AP code first crack at data
795 			 * packets.  If it decides to handle it (or
796 			 * drop it), it will return a non-zero.
797 			 * Otherwise, it is destined for this host.
798 			 */
799 			if (wihap_data_input(sc, &rx_frame, m))
800 				return;
801 		}
802 		/* Receive packet. */
803 		m_adj(m, sizeof(struct ether_header));
804 #ifdef WICACHE
805 		wi_cache_store(sc, eh, m, rx_frame.wi_q_info);
806 #endif
807 		ether_input(ifp, eh, m);
808 	}
809 }
810 
811 static void
812 wi_txeof(sc, status)
813 	struct wi_softc		*sc;
814 	int			status;
815 {
816 	struct ifnet		*ifp;
817 
818 	ifp = &sc->arpcom.ac_if;
819 
820 	ifp->if_timer = 0;
821 	ifp->if_flags &= ~IFF_OACTIVE;
822 
823 	if (status & WI_EV_TX_EXC)
824 		ifp->if_oerrors++;
825 	else
826 		ifp->if_opackets++;
827 
828 	return;
829 }
830 
831 void
832 wi_inquire(xsc)
833 	void			*xsc;
834 {
835 	struct wi_softc		*sc;
836 	struct ifnet		*ifp;
837 	int			s;
838 
839 	sc = xsc;
840 	ifp = &sc->arpcom.ac_if;
841 
842 	sc->wi_stat_ch = timeout(wi_inquire, sc, hz * 60);
843 
844 	/* Don't do this while we're transmitting */
845 	if (ifp->if_flags & IFF_OACTIVE)
846 		return;
847 
848 	WI_LOCK(sc, s);
849 	wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_COUNTERS, 0, 0);
850 	WI_UNLOCK(sc, s);
851 
852 	return;
853 }
854 
855 void
856 wi_update_stats(sc)
857 	struct wi_softc		*sc;
858 {
859 	struct wi_ltv_gen	gen;
860 	u_int16_t		id;
861 	struct ifnet		*ifp;
862 	u_int32_t		*ptr;
863 	int			len, i;
864 	u_int16_t		t;
865 
866 	ifp = &sc->arpcom.ac_if;
867 
868 	id = CSR_READ_2(sc, WI_INFO_FID);
869 
870 	wi_read_data(sc, id, 0, (char *)&gen, 4);
871 
872 	/*
873 	 * if we just got our scan results, copy it over into the scan buffer
874 	 * so we can return it to anyone that asks for it. (add a little
875 	 * compatibility with the prism2 scanning mechanism)
876 	 */
877 	if (gen.wi_type == WI_INFO_SCAN_RESULTS)
878 	{
879 		sc->wi_scanbuf_len = gen.wi_len;
880 		wi_read_data(sc, id, 4, (char *)sc->wi_scanbuf,
881 		    sc->wi_scanbuf_len * 2);
882 
883 		return;
884 	}
885 	else if (gen.wi_type != WI_INFO_COUNTERS)
886 		return;
887 
888 	len = (gen.wi_len - 1 < sizeof(sc->wi_stats) / 4) ?
889 		gen.wi_len - 1 : sizeof(sc->wi_stats) / 4;
890 	ptr = (u_int32_t *)&sc->wi_stats;
891 
892 	for (i = 0; i < len - 1; i++) {
893 		t = CSR_READ_2(sc, WI_DATA1);
894 #ifdef WI_HERMES_STATS_WAR
895 		if (t > 0xF000)
896 			t = ~t & 0xFFFF;
897 #endif
898 		ptr[i] += t;
899 	}
900 
901 	ifp->if_collisions = sc->wi_stats.wi_tx_single_retries +
902 	    sc->wi_stats.wi_tx_multi_retries +
903 	    sc->wi_stats.wi_tx_retry_limit;
904 
905 	return;
906 }
907 
908 static void
909 wi_intr(xsc)
910 	void		*xsc;
911 {
912 	struct wi_softc		*sc = xsc;
913 	struct ifnet		*ifp;
914 	u_int16_t		status;
915 	int			s;
916 
917 	WI_LOCK(sc, s);
918 
919 	ifp = &sc->arpcom.ac_if;
920 
921 	if (sc->wi_gone || !(ifp->if_flags & IFF_UP)) {
922 		CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
923 		CSR_WRITE_2(sc, WI_INT_EN, 0);
924 		WI_UNLOCK(sc, s);
925 		return;
926 	}
927 
928 	/* Disable interrupts. */
929 	CSR_WRITE_2(sc, WI_INT_EN, 0);
930 
931 	status = CSR_READ_2(sc, WI_EVENT_STAT);
932 	CSR_WRITE_2(sc, WI_EVENT_ACK, ~WI_INTRS);
933 
934 	if (status & WI_EV_RX) {
935 		wi_rxeof(sc);
936 		CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
937 	}
938 
939 	if (status & WI_EV_TX) {
940 		wi_txeof(sc, status);
941 		CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX);
942 	}
943 
944 	if (status & WI_EV_ALLOC) {
945 		int			id;
946 
947 		id = CSR_READ_2(sc, WI_ALLOC_FID);
948 		CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
949 		if (id == sc->wi_tx_data_id)
950 			wi_txeof(sc, status);
951 	}
952 
953 	if (status & WI_EV_INFO) {
954 		wi_update_stats(sc);
955 		CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO);
956 	}
957 
958 	if (status & WI_EV_TX_EXC) {
959 		wi_txeof(sc, status);
960 		CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX_EXC);
961 	}
962 
963 	if (status & WI_EV_INFO_DROP) {
964 		CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO_DROP);
965 	}
966 
967 	/* Re-enable interrupts. */
968 	CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
969 
970 	if (ifp->if_snd.ifq_head != NULL) {
971 		wi_start(ifp);
972 	}
973 
974 	WI_UNLOCK(sc, s);
975 
976 	return;
977 }
978 
979 static int
980 wi_cmd(sc, cmd, val0, val1, val2)
981 	struct wi_softc		*sc;
982 	int			cmd;
983 	int			val0;
984 	int			val1;
985 	int			val2;
986 {
987 	int			i, s = 0;
988 	static volatile int count  = 0;
989 
990 	if (count > 1)
991 		panic("Hey partner, hold on there!");
992 	count++;
993 
994 	/* wait for the busy bit to clear */
995 	for (i = 500; i > 0; i--) {	/* 5s */
996 		if (!(CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY)) {
997 			break;
998 		}
999 		DELAY(10*1000);	/* 10 m sec */
1000 	}
1001 	if (i == 0) {
1002 		device_printf(sc->dev, "wi_cmd: busy bit won't clear.\n" );
1003 		count--;
1004 		return(ETIMEDOUT);
1005 	}
1006 
1007 	CSR_WRITE_2(sc, WI_PARAM0, val0);
1008 	CSR_WRITE_2(sc, WI_PARAM1, val1);
1009 	CSR_WRITE_2(sc, WI_PARAM2, val2);
1010 	CSR_WRITE_2(sc, WI_COMMAND, cmd);
1011 
1012 	for (i = 0; i < WI_TIMEOUT; i++) {
1013 		/*
1014 		 * Wait for 'command complete' bit to be
1015 		 * set in the event status register.
1016 		 */
1017 		s = CSR_READ_2(sc, WI_EVENT_STAT);
1018 		if (s & WI_EV_CMD) {
1019 			/* Ack the event and read result code. */
1020 			s = CSR_READ_2(sc, WI_STATUS);
1021 			CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
1022 #ifdef foo
1023 			if ((s & WI_CMD_CODE_MASK) != (cmd & WI_CMD_CODE_MASK))
1024 				return(EIO);
1025 #endif
1026 			if (s & WI_STAT_CMD_RESULT) {
1027 				count--;
1028 				return(EIO);
1029 			}
1030 			break;
1031 		}
1032 		DELAY(WI_DELAY);
1033 	}
1034 
1035 	count--;
1036 	if (i == WI_TIMEOUT) {
1037 		device_printf(sc->dev,
1038 		    "timeout in wi_cmd 0x%04x; event status 0x%04x\n", cmd, s);
1039 		return(ETIMEDOUT);
1040 	}
1041 	return(0);
1042 }
1043 
1044 static void
1045 wi_reset(sc)
1046 	struct wi_softc		*sc;
1047 {
1048 #define WI_INIT_TRIES 3
1049 	int i;
1050 	int tries;
1051 
1052 	/* Symbol firmware cannot be initialized more than once */
1053 	if (sc->sc_firmware_type == WI_SYMBOL && sc->sc_enabled)
1054 		return;
1055 	if (sc->sc_firmware_type == WI_SYMBOL)
1056 		tries = 1;
1057 	else
1058 		tries = WI_INIT_TRIES;
1059 
1060 	for (i = 0; i < tries; i++) {
1061 		if (wi_cmd(sc, WI_CMD_INI, 0, 0, 0) == 0)
1062 			break;
1063 		DELAY(WI_DELAY * 1000);
1064 	}
1065 	sc->sc_enabled = 1;
1066 
1067 	if (i == tries) {
1068 		device_printf(sc->dev, "init failed\n");
1069 		return;
1070 	}
1071 
1072 	CSR_WRITE_2(sc, WI_INT_EN, 0);
1073 	CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
1074 
1075 	/* Calibrate timer. */
1076 	WI_SETVAL(WI_RID_TICK_TIME, 8);
1077 
1078 	return;
1079 }
1080 
1081 /*
1082  * Read an LTV record from the NIC.
1083  */
1084 static int
1085 wi_read_record(sc, ltv)
1086 	struct wi_softc		*sc;
1087 	struct wi_ltv_gen	*ltv;
1088 {
1089 	u_int16_t		*ptr;
1090 	int			i, len, code;
1091 	struct wi_ltv_gen	*oltv, p2ltv;
1092 
1093 	oltv = ltv;
1094 	if (sc->sc_firmware_type != WI_LUCENT) {
1095 		switch (ltv->wi_type) {
1096 		case WI_RID_ENCRYPTION:
1097 			p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
1098 			p2ltv.wi_len = 2;
1099 			ltv = &p2ltv;
1100 			break;
1101 		case WI_RID_TX_CRYPT_KEY:
1102 			p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
1103 			p2ltv.wi_len = 2;
1104 			ltv = &p2ltv;
1105 			break;
1106 		case WI_RID_ROAMING_MODE:
1107 			if (sc->sc_firmware_type == WI_INTERSIL)
1108 				break;
1109 			/* not supported */
1110 			ltv->wi_len = 1;
1111 			return 0;
1112 		case WI_RID_MICROWAVE_OVEN:
1113 			/* not supported */
1114 			ltv->wi_len = 1;
1115 			return 0;
1116 		}
1117 	}
1118 
1119 	/* Tell the NIC to enter record read mode. */
1120 	if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_READ, ltv->wi_type, 0, 0))
1121 		return(EIO);
1122 
1123 	/* Seek to the record. */
1124 	if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
1125 		return(EIO);
1126 
1127 	/*
1128 	 * Read the length and record type and make sure they
1129 	 * match what we expect (this verifies that we have enough
1130 	 * room to hold all of the returned data).
1131 	 */
1132 	len = CSR_READ_2(sc, WI_DATA1);
1133 	if (len > ltv->wi_len)
1134 		return(ENOSPC);
1135 	code = CSR_READ_2(sc, WI_DATA1);
1136 	if (code != ltv->wi_type)
1137 		return(EIO);
1138 
1139 	ltv->wi_len = len;
1140 	ltv->wi_type = code;
1141 
1142 	/* Now read the data. */
1143 	ptr = &ltv->wi_val;
1144 	for (i = 0; i < ltv->wi_len - 1; i++)
1145 		ptr[i] = CSR_READ_2(sc, WI_DATA1);
1146 
1147 	if (ltv->wi_type == WI_RID_PORTTYPE && sc->wi_ptype == WI_PORTTYPE_IBSS
1148 	    && ltv->wi_val == sc->wi_ibss_port) {
1149 		/*
1150 		 * Convert vendor IBSS port type to WI_PORTTYPE_IBSS.
1151 		 * Since Lucent uses port type 1 for BSS *and* IBSS we
1152 		 * have to rely on wi_ptype to distinguish this for us.
1153 		 */
1154 		ltv->wi_val = htole16(WI_PORTTYPE_IBSS);
1155 	} else if (sc->sc_firmware_type != WI_LUCENT) {
1156 		switch (oltv->wi_type) {
1157 		case WI_RID_TX_RATE:
1158 		case WI_RID_CUR_TX_RATE:
1159 			switch (ltv->wi_val) {
1160 			case 1: oltv->wi_val = 1; break;
1161 			case 2: oltv->wi_val = 2; break;
1162 			case 3:	oltv->wi_val = 6; break;
1163 			case 4: oltv->wi_val = 5; break;
1164 			case 7: oltv->wi_val = 7; break;
1165 			case 8: oltv->wi_val = 11; break;
1166 			case 15: oltv->wi_val = 3; break;
1167 			default: oltv->wi_val = 0x100 + ltv->wi_val; break;
1168 			}
1169 			break;
1170 		case WI_RID_ENCRYPTION:
1171 			oltv->wi_len = 2;
1172 			if (ltv->wi_val & 0x01)
1173 				oltv->wi_val = 1;
1174 			else
1175 				oltv->wi_val = 0;
1176 			break;
1177 		case WI_RID_TX_CRYPT_KEY:
1178 			oltv->wi_len = 2;
1179 			oltv->wi_val = ltv->wi_val;
1180 			break;
1181 		case WI_RID_CNFAUTHMODE:
1182                         oltv->wi_len = 2;
1183 			if (le16toh(ltv->wi_val) & 0x01)
1184 				oltv->wi_val = htole16(1);
1185 			else if (le16toh(ltv->wi_val) & 0x02)
1186 				oltv->wi_val = htole16(2);
1187 			break;
1188 		}
1189 	}
1190 
1191 	return(0);
1192 }
1193 
1194 /*
1195  * Same as read, except we inject data instead of reading it.
1196  */
1197 static int
1198 wi_write_record(sc, ltv)
1199 	struct wi_softc		*sc;
1200 	struct wi_ltv_gen	*ltv;
1201 {
1202 	u_int16_t		*ptr;
1203 	int			i;
1204 	struct wi_ltv_gen	p2ltv;
1205 
1206 	if (ltv->wi_type == WI_RID_PORTTYPE &&
1207 	    le16toh(ltv->wi_val) == WI_PORTTYPE_IBSS) {
1208 		/* Convert WI_PORTTYPE_IBSS to vendor IBSS port type. */
1209 		p2ltv.wi_type = WI_RID_PORTTYPE;
1210 		p2ltv.wi_len = 2;
1211 		p2ltv.wi_val = sc->wi_ibss_port;
1212 		ltv = &p2ltv;
1213 	} else if (sc->sc_firmware_type != WI_LUCENT) {
1214 		switch (ltv->wi_type) {
1215 		case WI_RID_TX_RATE:
1216 			p2ltv.wi_type = WI_RID_TX_RATE;
1217 			p2ltv.wi_len = 2;
1218 			switch (ltv->wi_val) {
1219 			case 1: p2ltv.wi_val = 1; break;
1220 			case 2: p2ltv.wi_val = 2; break;
1221 			case 3:	p2ltv.wi_val = 15; break;
1222 			case 5: p2ltv.wi_val = 4; break;
1223 			case 6: p2ltv.wi_val = 3; break;
1224 			case 7: p2ltv.wi_val = 7; break;
1225 			case 11: p2ltv.wi_val = 8; break;
1226 			default: return EINVAL;
1227 			}
1228 			ltv = &p2ltv;
1229 			break;
1230 		case WI_RID_ENCRYPTION:
1231 			p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
1232 			p2ltv.wi_len = 2;
1233 			if (le16toh(ltv->wi_val)) {
1234 				p2ltv.wi_val =htole16(PRIVACY_INVOKED |
1235 				    EXCLUDE_UNENCRYPTED);
1236 				if (sc->wi_ptype == WI_PORTTYPE_AP)
1237 					/*
1238 					 * Disable tx encryption...
1239 					 * it's broken.
1240 					 */
1241 					p2ltv.wi_val |= htole16(HOST_ENCRYPT);
1242 			} else
1243 				p2ltv.wi_val =
1244 				    htole16(HOST_ENCRYPT | HOST_DECRYPT);
1245 			ltv = &p2ltv;
1246 			break;
1247 		case WI_RID_TX_CRYPT_KEY:
1248 			p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
1249 			p2ltv.wi_len = 2;
1250 			p2ltv.wi_val = ltv->wi_val;
1251 			ltv = &p2ltv;
1252 			break;
1253 		case WI_RID_DEFLT_CRYPT_KEYS:
1254 		    {
1255 			int error;
1256 			int keylen;
1257 			struct wi_ltv_str	ws;
1258 			struct wi_ltv_keys	*wk =
1259 			    (struct wi_ltv_keys *)ltv;
1260 
1261 			keylen = wk->wi_keys[sc->wi_tx_key].wi_keylen;
1262 
1263 			for (i = 0; i < 4; i++) {
1264 				bzero(&ws, sizeof(ws));
1265 				ws.wi_len = (keylen > 5) ? 8 : 4;
1266 				ws.wi_type = WI_RID_P2_CRYPT_KEY0 + i;
1267 				memcpy(ws.wi_str,
1268 				    &wk->wi_keys[i].wi_keydat, keylen);
1269 				error = wi_write_record(sc,
1270 				    (struct wi_ltv_gen *)&ws);
1271 				if (error)
1272 					return error;
1273 			}
1274 			return 0;
1275 		    }
1276 		case WI_RID_CNFAUTHMODE:
1277 			p2ltv.wi_type = WI_RID_CNFAUTHMODE;
1278 			p2ltv.wi_len = 2;
1279 			if (le16toh(ltv->wi_val) == 1)
1280 				p2ltv.wi_val = htole16(0x01);
1281 			else if (le16toh(ltv->wi_val) == 2)
1282 				p2ltv.wi_val = htole16(0x02);
1283 			ltv = &p2ltv;
1284 			break;
1285 		case WI_RID_ROAMING_MODE:
1286 			if (sc->sc_firmware_type == WI_INTERSIL)
1287 				break;
1288 			/* not supported */
1289 			return 0;
1290 		case WI_RID_MICROWAVE_OVEN:
1291 			/* not supported */
1292 			return 0;
1293 		}
1294 	} else {
1295 		/* LUCENT */
1296 		switch (ltv->wi_type) {
1297 		case WI_RID_TX_RATE:
1298 			switch (ltv->wi_val) {
1299 			case 1: ltv->wi_val = 1; break;  /* 1Mb/s fixed */
1300 			case 2: ltv->wi_val = 2; break;  /* 2Mb/s fixed */
1301 			case 3: ltv->wi_val = 3; break;  /* 11Mb/s auto */
1302 			case 5: ltv->wi_val = 4; break;  /* 5.5Mb/s fixed */
1303 			case 6: ltv->wi_val = 6; break;  /* 2Mb/s auto */
1304 			case 7: ltv->wi_val = 7; break;  /* 5.5Mb/s auto */
1305 			case 11: ltv->wi_val = 5; break; /* 11Mb/s fixed */
1306 			default: return EINVAL;
1307 			}
1308 		}
1309 	}
1310 
1311 	if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
1312 		return(EIO);
1313 
1314 	CSR_WRITE_2(sc, WI_DATA1, ltv->wi_len);
1315 	CSR_WRITE_2(sc, WI_DATA1, ltv->wi_type);
1316 
1317 	ptr = &ltv->wi_val;
1318 	for (i = 0; i < ltv->wi_len - 1; i++)
1319 		CSR_WRITE_2(sc, WI_DATA1, ptr[i]);
1320 
1321 	if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_WRITE, ltv->wi_type, 0, 0))
1322 		return(EIO);
1323 
1324 	return(0);
1325 }
1326 
1327 static int
1328 wi_seek(sc, id, off, chan)
1329 	struct wi_softc		*sc;
1330 	int			id, off, chan;
1331 {
1332 	int			i;
1333 	int			selreg, offreg;
1334 	int			status;
1335 
1336 	switch (chan) {
1337 	case WI_BAP0:
1338 		selreg = WI_SEL0;
1339 		offreg = WI_OFF0;
1340 		break;
1341 	case WI_BAP1:
1342 		selreg = WI_SEL1;
1343 		offreg = WI_OFF1;
1344 		break;
1345 	default:
1346 		device_printf(sc->dev, "invalid data path: %x\n", chan);
1347 		return(EIO);
1348 	}
1349 
1350 	CSR_WRITE_2(sc, selreg, id);
1351 	CSR_WRITE_2(sc, offreg, off);
1352 
1353 	for (i = 0; i < WI_TIMEOUT; i++) {
1354 		status = CSR_READ_2(sc, offreg);
1355 		if (!(status & (WI_OFF_BUSY|WI_OFF_ERR)))
1356 			break;
1357 		DELAY(WI_DELAY);
1358 	}
1359 
1360 	if (i == WI_TIMEOUT) {
1361 		device_printf(sc->dev, "timeout in wi_seek to %x/%x; last status %x\n",
1362 			id, off, status);
1363 		return(ETIMEDOUT);
1364 	}
1365 
1366 	return(0);
1367 }
1368 
1369 static int
1370 wi_read_data(sc, id, off, buf, len)
1371 	struct wi_softc		*sc;
1372 	int			id, off;
1373 	caddr_t			buf;
1374 	int			len;
1375 {
1376 	int			i;
1377 	u_int16_t		*ptr;
1378 
1379 	if (wi_seek(sc, id, off, WI_BAP1))
1380 		return(EIO);
1381 
1382 	ptr = (u_int16_t *)buf;
1383 	for (i = 0; i < len / 2; i++)
1384 		ptr[i] = CSR_READ_2(sc, WI_DATA1);
1385 
1386 	return(0);
1387 }
1388 
1389 /*
1390  * According to the comments in the HCF Light code, there is a bug in
1391  * the Hermes (or possibly in certain Hermes firmware revisions) where
1392  * the chip's internal autoincrement counter gets thrown off during
1393  * data writes: the autoincrement is missed, causing one data word to
1394  * be overwritten and subsequent words to be written to the wrong memory
1395  * locations. The end result is that we could end up transmitting bogus
1396  * frames without realizing it. The workaround for this is to write a
1397  * couple of extra guard words after the end of the transfer, then
1398  * attempt to read then back. If we fail to locate the guard words where
1399  * we expect them, we preform the transfer over again.
1400  */
1401 static int
1402 wi_write_data(sc, id, off, buf, len)
1403 	struct wi_softc		*sc;
1404 	int			id, off;
1405 	caddr_t			buf;
1406 	int			len;
1407 {
1408 	int			i;
1409 	u_int16_t		*ptr;
1410 #ifdef WI_HERMES_AUTOINC_WAR
1411 	int			retries;
1412 
1413 	retries = 512;
1414 again:
1415 #endif
1416 
1417 	if (wi_seek(sc, id, off, WI_BAP0))
1418 		return(EIO);
1419 
1420 	ptr = (u_int16_t *)buf;
1421 	for (i = 0; i < (len / 2); i++)
1422 		CSR_WRITE_2(sc, WI_DATA0, ptr[i]);
1423 
1424 #ifdef WI_HERMES_AUTOINC_WAR
1425 	CSR_WRITE_2(sc, WI_DATA0, 0x1234);
1426 	CSR_WRITE_2(sc, WI_DATA0, 0x5678);
1427 
1428 	if (wi_seek(sc, id, off + len, WI_BAP0))
1429 		return(EIO);
1430 
1431 	if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
1432 	    CSR_READ_2(sc, WI_DATA0) != 0x5678) {
1433 		if (--retries >= 0)
1434 			goto again;
1435 		device_printf(sc->dev, "wi_write_data device timeout\n");
1436 		return (EIO);
1437 	}
1438 #endif
1439 
1440 	return(0);
1441 }
1442 
1443 /*
1444  * Allocate a region of memory inside the NIC and zero
1445  * it out.
1446  */
1447 static int
1448 wi_alloc_nicmem(sc, len, id)
1449 	struct wi_softc		*sc;
1450 	int			len;
1451 	int			*id;
1452 {
1453 	int			i;
1454 
1455 	if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) {
1456 		device_printf(sc->dev,
1457 		    "failed to allocate %d bytes on NIC\n", len);
1458 		return(ENOMEM);
1459 	}
1460 
1461 	for (i = 0; i < WI_TIMEOUT; i++) {
1462 		if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
1463 			break;
1464 		DELAY(WI_DELAY);
1465 	}
1466 
1467 	if (i == WI_TIMEOUT) {
1468 		device_printf(sc->dev, "time out allocating memory on card\n");
1469 		return(ETIMEDOUT);
1470 	}
1471 
1472 	CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
1473 	*id = CSR_READ_2(sc, WI_ALLOC_FID);
1474 
1475 	if (wi_seek(sc, *id, 0, WI_BAP0)) {
1476 		device_printf(sc->dev, "seek failed while allocating memory on card\n");
1477 		return(EIO);
1478 	}
1479 
1480 	for (i = 0; i < len / 2; i++)
1481 		CSR_WRITE_2(sc, WI_DATA0, 0);
1482 
1483 	return(0);
1484 }
1485 
1486 static void
1487 wi_setmulti(sc)
1488 	struct wi_softc		*sc;
1489 {
1490 	struct ifnet		*ifp;
1491 	int			i = 0;
1492 	struct ifmultiaddr	*ifma;
1493 	struct wi_ltv_mcast	mcast;
1494 
1495 	ifp = &sc->arpcom.ac_if;
1496 
1497 	bzero((char *)&mcast, sizeof(mcast));
1498 
1499 	mcast.wi_type = WI_RID_MCAST_LIST;
1500 	mcast.wi_len = (3 * 16) + 1;
1501 
1502 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1503 		wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
1504 		return;
1505 	}
1506 
1507 #if __FreeBSD_version < 500000
1508 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1509 #else
1510 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1511 #endif
1512 		if (ifma->ifma_addr->sa_family != AF_LINK)
1513 			continue;
1514 		if (i < 16) {
1515 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1516 			    (char *)&mcast.wi_mcast[i], ETHER_ADDR_LEN);
1517 			i++;
1518 		} else {
1519 			bzero((char *)&mcast, sizeof(mcast));
1520 			break;
1521 		}
1522 	}
1523 
1524 	mcast.wi_len = (i * 3) + 1;
1525 	wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
1526 
1527 	return;
1528 }
1529 
1530 static void
1531 wi_setdef(sc, wreq)
1532 	struct wi_softc		*sc;
1533 	struct wi_req		*wreq;
1534 {
1535 	struct sockaddr_dl	*sdl;
1536 	struct ifaddr		*ifa;
1537 	struct ifnet		*ifp;
1538 
1539 	ifp = &sc->arpcom.ac_if;
1540 
1541 	switch(wreq->wi_type) {
1542 	case WI_RID_MAC_NODE:
1543 		ifa = ifaddr_byindex(ifp->if_index);
1544 		sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1545 		bcopy((char *)&wreq->wi_val, (char *)&sc->arpcom.ac_enaddr,
1546 		   ETHER_ADDR_LEN);
1547 		bcopy((char *)&wreq->wi_val, LLADDR(sdl), ETHER_ADDR_LEN);
1548 		break;
1549 	case WI_RID_PORTTYPE:
1550 		sc->wi_ptype = le16toh(wreq->wi_val[0]);
1551 		break;
1552 	case WI_RID_TX_RATE:
1553 		sc->wi_tx_rate = le16toh(wreq->wi_val[0]);
1554 		break;
1555 	case WI_RID_MAX_DATALEN:
1556 		sc->wi_max_data_len = le16toh(wreq->wi_val[0]);
1557 		break;
1558 	case WI_RID_RTS_THRESH:
1559 		sc->wi_rts_thresh = le16toh(wreq->wi_val[0]);
1560 		break;
1561 	case WI_RID_SYSTEM_SCALE:
1562 		sc->wi_ap_density = le16toh(wreq->wi_val[0]);
1563 		break;
1564 	case WI_RID_CREATE_IBSS:
1565 		sc->wi_create_ibss = le16toh(wreq->wi_val[0]);
1566 		break;
1567 	case WI_RID_OWN_CHNL:
1568 		sc->wi_channel = le16toh(wreq->wi_val[0]);
1569 		break;
1570 	case WI_RID_NODENAME:
1571 		bzero(sc->wi_node_name, sizeof(sc->wi_node_name));
1572 		bcopy((char *)&wreq->wi_val[1], sc->wi_node_name, 30);
1573 		break;
1574 	case WI_RID_DESIRED_SSID:
1575 		bzero(sc->wi_net_name, sizeof(sc->wi_net_name));
1576 		bcopy((char *)&wreq->wi_val[1], sc->wi_net_name, 30);
1577 		break;
1578 	case WI_RID_OWN_SSID:
1579 		bzero(sc->wi_ibss_name, sizeof(sc->wi_ibss_name));
1580 		bcopy((char *)&wreq->wi_val[1], sc->wi_ibss_name, 30);
1581 		break;
1582 	case WI_RID_PM_ENABLED:
1583 		sc->wi_pm_enabled = le16toh(wreq->wi_val[0]);
1584 		break;
1585 	case WI_RID_MICROWAVE_OVEN:
1586 		sc->wi_mor_enabled = le16toh(wreq->wi_val[0]);
1587 		break;
1588 	case WI_RID_MAX_SLEEP:
1589 		sc->wi_max_sleep = le16toh(wreq->wi_val[0]);
1590 		break;
1591 	case WI_RID_CNFAUTHMODE:
1592 		sc->wi_authtype = le16toh(wreq->wi_val[0]);
1593 		break;
1594 	case WI_RID_ROAMING_MODE:
1595 		sc->wi_roaming = le16toh(wreq->wi_val[0]);
1596 		break;
1597 	case WI_RID_ENCRYPTION:
1598 		sc->wi_use_wep = le16toh(wreq->wi_val[0]);
1599 		break;
1600 	case WI_RID_TX_CRYPT_KEY:
1601 		sc->wi_tx_key = le16toh(wreq->wi_val[0]);
1602 		break;
1603 	case WI_RID_DEFLT_CRYPT_KEYS:
1604 		bcopy((char *)wreq, (char *)&sc->wi_keys,
1605 		    sizeof(struct wi_ltv_keys));
1606 		break;
1607 	default:
1608 		break;
1609 	}
1610 
1611 	/* Reinitialize WaveLAN. */
1612 	wi_init(sc);
1613 
1614 	return;
1615 }
1616 
1617 static int
1618 wi_ioctl(ifp, command, data)
1619 	struct ifnet		*ifp;
1620 	u_long			command;
1621 	caddr_t			data;
1622 {
1623 	int			error = 0;
1624 	int			len;
1625 	u_int8_t		tmpkey[14];
1626 	char			tmpssid[IEEE80211_NWID_LEN];
1627 	struct wi_softc		*sc;
1628 	struct wi_req		wreq;
1629 	struct ifreq		*ifr;
1630 	struct ieee80211req	*ireq;
1631 #if __FreeBSD_version >= 500000
1632 	struct thread		*td = curthread;
1633 #else
1634 	struct proc		*td = curproc;		/* Little white lie */
1635 #endif
1636 	int			s;
1637 
1638 	sc = ifp->if_softc;
1639 	WI_LOCK(sc, s);
1640 	ifr = (struct ifreq *)data;
1641 	ireq = (struct ieee80211req *)data;
1642 
1643 	if (sc->wi_gone) {
1644 		error = ENODEV;
1645 		goto out;
1646 	}
1647 
1648 	switch(command) {
1649 	case SIOCSIFADDR:
1650 	case SIOCGIFADDR:
1651 	case SIOCSIFMTU:
1652 		error = ether_ioctl(ifp, command, data);
1653 		break;
1654 	case SIOCSIFFLAGS:
1655 		/*
1656 		 * Can't do promisc and hostap at the same time.  If all that's
1657 		 * changing is the promisc flag, try to short-circuit a call to
1658 		 * wi_init() by just setting PROMISC in the hardware.
1659 		 */
1660 		if (ifp->if_flags & IFF_UP) {
1661 			if (sc->wi_ptype != WI_PORTTYPE_AP &&
1662 			    ifp->if_flags & IFF_RUNNING) {
1663 				if (ifp->if_flags & IFF_PROMISC &&
1664 				    !(sc->wi_if_flags & IFF_PROMISC)) {
1665 					WI_SETVAL(WI_RID_PROMISC, 1);
1666 				} else if (!(ifp->if_flags & IFF_PROMISC) &&
1667 				    sc->wi_if_flags & IFF_PROMISC) {
1668 					WI_SETVAL(WI_RID_PROMISC, 0);
1669 				} else {
1670 					wi_init(sc);
1671 				}
1672 			} else {
1673 				wi_init(sc);
1674 			}
1675 		} else {
1676 			if (ifp->if_flags & IFF_RUNNING) {
1677 				wi_stop(sc);
1678 			}
1679 		}
1680 		sc->wi_if_flags = ifp->if_flags;
1681 		error = 0;
1682 		break;
1683 	case SIOCSIFMEDIA:
1684 	case SIOCGIFMEDIA:
1685 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
1686 		break;
1687 	case SIOCADDMULTI:
1688 	case SIOCDELMULTI:
1689 		wi_setmulti(sc);
1690 		error = 0;
1691 		break;
1692 	case SIOCGWAVELAN:
1693 		error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1694 		if (error)
1695 			break;
1696 		if (wreq.wi_len > WI_MAX_DATALEN) {
1697 			error = EINVAL;
1698 			break;
1699 		}
1700 		/* Don't show WEP keys to non-root users. */
1701 		if (wreq.wi_type == WI_RID_DEFLT_CRYPT_KEYS && suser(td))
1702 			break;
1703 		if (wreq.wi_type == WI_RID_IFACE_STATS) {
1704 			bcopy((char *)&sc->wi_stats, (char *)&wreq.wi_val,
1705 			    sizeof(sc->wi_stats));
1706 			wreq.wi_len = (sizeof(sc->wi_stats) / 2) + 1;
1707 		} else if (wreq.wi_type == WI_RID_DEFLT_CRYPT_KEYS) {
1708 			bcopy((char *)&sc->wi_keys, (char *)&wreq,
1709 			    sizeof(struct wi_ltv_keys));
1710 		}
1711 #ifdef WICACHE
1712 		else if (wreq.wi_type == WI_RID_ZERO_CACHE) {
1713 			sc->wi_sigitems = sc->wi_nextitem = 0;
1714 		} else if (wreq.wi_type == WI_RID_READ_CACHE) {
1715 			char *pt = (char *)&wreq.wi_val;
1716 			bcopy((char *)&sc->wi_sigitems,
1717 			    (char *)pt, sizeof(int));
1718 			pt += (sizeof (int));
1719 			wreq.wi_len = sizeof(int) / 2;
1720 			bcopy((char *)&sc->wi_sigcache, (char *)pt,
1721 			    sizeof(struct wi_sigcache) * sc->wi_sigitems);
1722 			wreq.wi_len += ((sizeof(struct wi_sigcache) *
1723 			    sc->wi_sigitems) / 2) + 1;
1724 		}
1725 #endif
1726 		else if (wreq.wi_type == WI_RID_PROCFRAME) {
1727 			wreq.wi_len = 2;
1728 			wreq.wi_val[0] = sc->wi_procframe;
1729 		} else if (wreq.wi_type == WI_RID_PRISM2) {
1730 			wreq.wi_len = 2;
1731 			wreq.wi_val[0] = sc->sc_firmware_type != WI_LUCENT;
1732 		} else if (wreq.wi_type == WI_RID_SCAN_RES &&
1733 		    sc->sc_firmware_type == WI_LUCENT) {
1734 			memcpy((char *)wreq.wi_val, (char *)sc->wi_scanbuf,
1735 			    sc->wi_scanbuf_len * 2);
1736 			wreq.wi_len = sc->wi_scanbuf_len;
1737 		} else {
1738 			if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq)) {
1739 				error = EINVAL;
1740 				break;
1741 			}
1742 		}
1743 		error = copyout(&wreq, ifr->ifr_data, sizeof(wreq));
1744 		break;
1745 	case SIOCSWAVELAN:
1746 		if ((error = suser(td)))
1747 			goto out;
1748 		error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1749 		if (error)
1750 			break;
1751 		if (wreq.wi_len > WI_MAX_DATALEN) {
1752 			error = EINVAL;
1753 			break;
1754 		}
1755 		if (wreq.wi_type == WI_RID_IFACE_STATS) {
1756 			error = EINVAL;
1757 			break;
1758 		} else if (wreq.wi_type == WI_RID_MGMT_XMIT) {
1759 			error = wi_mgmt_xmit(sc, (caddr_t)&wreq.wi_val,
1760 			    wreq.wi_len);
1761 		} else if (wreq.wi_type == WI_RID_PROCFRAME) {
1762 			sc->wi_procframe = wreq.wi_val[0];
1763 		/*
1764 		 * if we're getting a scan request from a wavelan card
1765 		 * (non-prism2), send out a cmd_inquire to the card to scan
1766 		 * results for the scan will be received through the info
1767 		 * interrupt handler. otherwise the scan request can be
1768 		 * directly handled by a prism2 card's rid interface.
1769 		 */
1770 		} else if (wreq.wi_type == WI_RID_SCAN_REQ &&
1771 		    sc->sc_firmware_type == WI_LUCENT) {
1772 			wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
1773 		} else {
1774 			error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
1775 			if (!error)
1776 				wi_setdef(sc, &wreq);
1777 		}
1778 		break;
1779 	case SIOCGPRISM2DEBUG:
1780 		error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1781 		if (error)
1782 			break;
1783 		if (!(ifp->if_flags & IFF_RUNNING) ||
1784 		    sc->sc_firmware_type == WI_LUCENT) {
1785 			error = EIO;
1786 			break;
1787 		}
1788 		error = wi_get_debug(sc, &wreq);
1789 		if (error == 0)
1790 			error = copyout(&wreq, ifr->ifr_data, sizeof(wreq));
1791 		break;
1792 	case SIOCSPRISM2DEBUG:
1793 		if ((error = suser(td)))
1794 			goto out;
1795 		error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1796 		if (error)
1797 			break;
1798 		error = wi_set_debug(sc, &wreq);
1799 		break;
1800 	case SIOCG80211:
1801 		switch(ireq->i_type) {
1802 		case IEEE80211_IOC_SSID:
1803 			if(ireq->i_val == -1) {
1804 				bzero(tmpssid, IEEE80211_NWID_LEN);
1805 				error = wi_get_cur_ssid(sc, tmpssid, &len);
1806 				if (error != 0)
1807 					break;
1808 				error = copyout(tmpssid, ireq->i_data,
1809 					IEEE80211_NWID_LEN);
1810 				ireq->i_len = len;
1811 			} else if (ireq->i_val == 0) {
1812 				error = copyout(sc->wi_net_name,
1813 				    ireq->i_data,
1814 				    IEEE80211_NWID_LEN);
1815 				ireq->i_len = IEEE80211_NWID_LEN;
1816 			} else
1817 				error = EINVAL;
1818 			break;
1819 		case IEEE80211_IOC_NUMSSIDS:
1820 			ireq->i_val = 1;
1821 			break;
1822 		case IEEE80211_IOC_WEP:
1823 			if(!sc->wi_has_wep) {
1824 				ireq->i_val = IEEE80211_WEP_NOSUP;
1825 			} else {
1826 				if(sc->wi_use_wep) {
1827 					ireq->i_val =
1828 					    IEEE80211_WEP_MIXED;
1829 				} else {
1830 					ireq->i_val =
1831 					    IEEE80211_WEP_OFF;
1832 				}
1833 			}
1834 			break;
1835 		case IEEE80211_IOC_WEPKEY:
1836 			if(!sc->wi_has_wep ||
1837 			    ireq->i_val < 0 || ireq->i_val > 3) {
1838 				error = EINVAL;
1839 				break;
1840 			}
1841 			len = sc->wi_keys.wi_keys[ireq->i_val].wi_keylen;
1842 			if (suser(td))
1843 				bcopy(sc->wi_keys.wi_keys[ireq->i_val].wi_keydat,
1844 				    tmpkey, len);
1845 			else
1846 				bzero(tmpkey, len);
1847 
1848 			ireq->i_len = len;
1849 			error = copyout(tmpkey, ireq->i_data, len);
1850 
1851 			break;
1852 		case IEEE80211_IOC_NUMWEPKEYS:
1853 			if(!sc->wi_has_wep)
1854 				error = EINVAL;
1855 			else
1856 				ireq->i_val = 4;
1857 			break;
1858 		case IEEE80211_IOC_WEPTXKEY:
1859 			if(!sc->wi_has_wep)
1860 				error = EINVAL;
1861 			else
1862 				ireq->i_val = sc->wi_tx_key;
1863 			break;
1864 		case IEEE80211_IOC_AUTHMODE:
1865 			ireq->i_val = sc->wi_authmode;
1866 			break;
1867 		case IEEE80211_IOC_STATIONNAME:
1868 			error = copyout(sc->wi_node_name,
1869 			    ireq->i_data, IEEE80211_NWID_LEN);
1870 			ireq->i_len = IEEE80211_NWID_LEN;
1871 			break;
1872 		case IEEE80211_IOC_CHANNEL:
1873 			wreq.wi_type = WI_RID_CURRENT_CHAN;
1874 			wreq.wi_len = WI_MAX_DATALEN;
1875 			if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq))
1876 				error = EINVAL;
1877 			else {
1878 				ireq->i_val = wreq.wi_val[0];
1879 			}
1880 			break;
1881 		case IEEE80211_IOC_POWERSAVE:
1882 			if(sc->wi_pm_enabled)
1883 				ireq->i_val = IEEE80211_POWERSAVE_ON;
1884 			else
1885 				ireq->i_val = IEEE80211_POWERSAVE_OFF;
1886 			break;
1887 		case IEEE80211_IOC_POWERSAVESLEEP:
1888 			ireq->i_val = sc->wi_max_sleep;
1889 			break;
1890 		default:
1891 			error = EINVAL;
1892 		}
1893 		break;
1894 	case SIOCS80211:
1895 		if ((error = suser(td)))
1896 			goto out;
1897 		switch(ireq->i_type) {
1898 		case IEEE80211_IOC_SSID:
1899 			if (ireq->i_val != 0 ||
1900 			    ireq->i_len > IEEE80211_NWID_LEN) {
1901 				error = EINVAL;
1902 				break;
1903 			}
1904 			/* We set both of them */
1905 			bzero(sc->wi_net_name, IEEE80211_NWID_LEN);
1906 			error = copyin(ireq->i_data,
1907 			    sc->wi_net_name, ireq->i_len);
1908 			bcopy(sc->wi_net_name, sc->wi_ibss_name, IEEE80211_NWID_LEN);
1909 			break;
1910 		case IEEE80211_IOC_WEP:
1911 			/*
1912 			 * These cards only support one mode so
1913 			 * we just turn wep on what ever is
1914 			 * passed in if it's not OFF.
1915 			 */
1916 			if (ireq->i_val == IEEE80211_WEP_OFF) {
1917 				sc->wi_use_wep = 0;
1918 			} else {
1919 				sc->wi_use_wep = 1;
1920 			}
1921 			break;
1922 		case IEEE80211_IOC_WEPKEY:
1923 			if (ireq->i_val < 0 || ireq->i_val > 3 ||
1924 				ireq->i_len > 13) {
1925 				error = EINVAL;
1926 				break;
1927 			}
1928 			bzero(sc->wi_keys.wi_keys[ireq->i_val].wi_keydat, 13);
1929 			error = copyin(ireq->i_data,
1930 			    sc->wi_keys.wi_keys[ireq->i_val].wi_keydat,
1931 			    ireq->i_len);
1932 			if(error)
1933 				break;
1934 			sc->wi_keys.wi_keys[ireq->i_val].wi_keylen =
1935 				    ireq->i_len;
1936 			break;
1937 		case IEEE80211_IOC_WEPTXKEY:
1938 			if (ireq->i_val < 0 || ireq->i_val > 3) {
1939 				error = EINVAL;
1940 				break;
1941 			}
1942 			sc->wi_tx_key = ireq->i_val;
1943 			break;
1944 		case IEEE80211_IOC_AUTHMODE:
1945 			sc->wi_authmode = ireq->i_val;
1946 			break;
1947 		case IEEE80211_IOC_STATIONNAME:
1948 			if (ireq->i_len > 32) {
1949 				error = EINVAL;
1950 				break;
1951 			}
1952 			bzero(sc->wi_node_name, 32);
1953 			error = copyin(ireq->i_data,
1954 			    sc->wi_node_name, ireq->i_len);
1955 			break;
1956 		case IEEE80211_IOC_CHANNEL:
1957 			/*
1958 			 * The actual range is 1-14, but if you
1959 			 * set it to 0 you get the default. So
1960 			 * we let that work too.
1961 			 */
1962 			if (ireq->i_val < 0 || ireq->i_val > 14) {
1963 				error = EINVAL;
1964 				break;
1965 			}
1966 			sc->wi_channel = ireq->i_val;
1967 			break;
1968 		case IEEE80211_IOC_POWERSAVE:
1969 			switch (ireq->i_val) {
1970 			case IEEE80211_POWERSAVE_OFF:
1971 				sc->wi_pm_enabled = 0;
1972 				break;
1973 			case IEEE80211_POWERSAVE_ON:
1974 				sc->wi_pm_enabled = 1;
1975 				break;
1976 			default:
1977 				error = EINVAL;
1978 				break;
1979 			}
1980 			break;
1981 		case IEEE80211_IOC_POWERSAVESLEEP:
1982 			if (ireq->i_val < 0) {
1983 				error = EINVAL;
1984 				break;
1985 			}
1986 			sc->wi_max_sleep = ireq->i_val;
1987 			break;
1988 		default:
1989 			error = EINVAL;
1990 			break;
1991 		}
1992 
1993 		/* Reinitialize WaveLAN. */
1994 		wi_init(sc);
1995 
1996 	break;
1997 	case SIOCHOSTAP_ADD:
1998 	case SIOCHOSTAP_DEL:
1999 	case SIOCHOSTAP_GET:
2000 	case SIOCHOSTAP_GETALL:
2001 	case SIOCHOSTAP_GFLAGS:
2002 	case SIOCHOSTAP_SFLAGS:
2003 		/* Send all Host AP specific ioctl's to Host AP code. */
2004 		error = wihap_ioctl(sc, command, data);
2005 		break;
2006 	default:
2007 		error = EINVAL;
2008 		break;
2009 	}
2010 out:
2011 	WI_UNLOCK(sc, s);
2012 
2013 	return(error);
2014 }
2015 
2016 static void
2017 wi_init(xsc)
2018 	void			*xsc;
2019 {
2020 	struct wi_softc		*sc = xsc;
2021 	struct ifnet		*ifp = &sc->arpcom.ac_if;
2022 	struct wi_ltv_macaddr	mac;
2023 	int			id = 0;
2024 	int			s;
2025 
2026 	WI_LOCK(sc, s);
2027 
2028 	if (sc->wi_gone) {
2029 		WI_UNLOCK(sc, s);
2030 		return;
2031 	}
2032 
2033 	if (ifp->if_flags & IFF_RUNNING)
2034 		wi_stop(sc);
2035 
2036 	wi_reset(sc);
2037 
2038 	/* Program max data length. */
2039 	WI_SETVAL(WI_RID_MAX_DATALEN, sc->wi_max_data_len);
2040 
2041 	/* Set the port type. */
2042 	WI_SETVAL(WI_RID_PORTTYPE, sc->wi_ptype);
2043 
2044 	/* Enable/disable IBSS creation. */
2045 	WI_SETVAL(WI_RID_CREATE_IBSS, sc->wi_create_ibss);
2046 
2047 	/* Program the RTS/CTS threshold. */
2048 	WI_SETVAL(WI_RID_RTS_THRESH, sc->wi_rts_thresh);
2049 
2050 	/* Program the TX rate */
2051 	WI_SETVAL(WI_RID_TX_RATE, sc->wi_tx_rate);
2052 
2053 	/* Access point density */
2054 	WI_SETVAL(WI_RID_SYSTEM_SCALE, sc->wi_ap_density);
2055 
2056 	/* Power Management Enabled */
2057 	WI_SETVAL(WI_RID_PM_ENABLED, sc->wi_pm_enabled);
2058 
2059 	/* Power Managment Max Sleep */
2060 	WI_SETVAL(WI_RID_MAX_SLEEP, sc->wi_max_sleep);
2061 
2062 	/* Roaming type */
2063 	WI_SETVAL(WI_RID_ROAMING_MODE, sc->wi_roaming);
2064 
2065 	/* Specify the IBSS name */
2066 	WI_SETSTR(WI_RID_OWN_SSID, sc->wi_ibss_name);
2067 
2068 	/* Specify the network name */
2069 	WI_SETSTR(WI_RID_DESIRED_SSID, sc->wi_net_name);
2070 
2071 	/* Specify the frequency to use */
2072 	WI_SETVAL(WI_RID_OWN_CHNL, sc->wi_channel);
2073 
2074 	/* Program the nodename. */
2075 	WI_SETSTR(WI_RID_NODENAME, sc->wi_node_name);
2076 
2077 	/* Specify the authentication mode. */
2078 	WI_SETVAL(WI_RID_CNFAUTHMODE, sc->wi_authmode);
2079 
2080 	/* Set our MAC address. */
2081 	mac.wi_len = 4;
2082 	mac.wi_type = WI_RID_MAC_NODE;
2083 	bcopy((char *)&sc->arpcom.ac_enaddr,
2084 	   (char *)&mac.wi_mac_addr, ETHER_ADDR_LEN);
2085 	wi_write_record(sc, (struct wi_ltv_gen *)&mac);
2086 
2087 	/*
2088 	 * Initialize promisc mode.
2089 	 *      Being in the Host-AP mode causes
2090 	 *      great deal of pain if promisc mode is set.
2091 	 *      Therefore we avoid confusing the firmware
2092 	 *      and always reset promisc mode in Host-AP regime,
2093 	 *      it shows us all the packets anyway.
2094 	 */
2095 	if (sc->wi_ptype != WI_PORTTYPE_AP && ifp->if_flags & IFF_PROMISC)
2096 		WI_SETVAL(WI_RID_PROMISC, 1);
2097 	else
2098 		WI_SETVAL(WI_RID_PROMISC, 0);
2099 
2100 	/* Configure WEP. */
2101 	if (sc->wi_has_wep) {
2102 		WI_SETVAL(WI_RID_ENCRYPTION, sc->wi_use_wep);
2103 		WI_SETVAL(WI_RID_TX_CRYPT_KEY, sc->wi_tx_key);
2104 		sc->wi_keys.wi_len = (sizeof(struct wi_ltv_keys) / 2) + 1;
2105 		sc->wi_keys.wi_type = WI_RID_DEFLT_CRYPT_KEYS;
2106 		wi_write_record(sc, (struct wi_ltv_gen *)&sc->wi_keys);
2107 		if (sc->sc_firmware_type != WI_LUCENT && sc->wi_use_wep) {
2108 			/*
2109 			 * ONLY HWB3163 EVAL-CARD Firmware version
2110 			 * less than 0.8 variant2
2111 			 *
2112 			 * If promiscuous mode disable, Prism2 chip
2113 			 * does not work with WEP.
2114 			 * It is under investigation for details.
2115 			 * (ichiro@netbsd.org)
2116 			 *
2117 			 * And make sure that we don't need to do it
2118 			 * in hostap mode, since it interferes with
2119 			 * the above hostap workaround.
2120 			 */
2121 			if (sc->wi_ptype != WI_PORTTYPE_AP &&
2122 			    sc->sc_firmware_type == WI_INTERSIL &&
2123 			    sc->sc_sta_firmware_ver < 802 ) {
2124 				/* firm ver < 0.8 variant 2 */
2125 				WI_SETVAL(WI_RID_PROMISC, 1);
2126 			}
2127 			WI_SETVAL(WI_RID_CNFAUTHMODE, sc->wi_authtype);
2128 		}
2129 	}
2130 
2131 	/* Set multicast filter. */
2132 	wi_setmulti(sc);
2133 
2134 	/* Enable desired port */
2135 	wi_cmd(sc, WI_CMD_ENABLE | sc->wi_portnum, 0, 0, 0);
2136 
2137 	if (wi_alloc_nicmem(sc, ETHER_MAX_LEN + sizeof(struct wi_frame) + 8, &id))
2138 		device_printf(sc->dev, "tx buffer allocation failed\n");
2139 	sc->wi_tx_data_id = id;
2140 
2141 	if (wi_alloc_nicmem(sc, ETHER_MAX_LEN + sizeof(struct wi_frame) + 8, &id))
2142 		device_printf(sc->dev, "mgmt. buffer allocation failed\n");
2143 	sc->wi_tx_mgmt_id = id;
2144 
2145 	/* enable interrupts */
2146 	CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
2147 
2148 	wihap_init(sc);
2149 
2150 	ifp->if_flags |= IFF_RUNNING;
2151 	ifp->if_flags &= ~IFF_OACTIVE;
2152 
2153 	sc->wi_stat_ch = timeout(wi_inquire, sc, hz * 60);
2154 	WI_UNLOCK(sc, s);
2155 
2156 	return;
2157 }
2158 
2159 #define RC4STATE 256
2160 #define RC4KEYLEN 16
2161 #define RC4SWAP(x,y) \
2162     do { u_int8_t t = state[x]; state[x] = state[y]; state[y] = t; } while(0)
2163 
2164 static void
2165 wi_do_hostencrypt(struct wi_softc *sc, caddr_t buf, int len)
2166 {
2167 	u_int32_t i, crc, klen;
2168 	u_int8_t state[RC4STATE], key[RC4KEYLEN];
2169 	u_int8_t x, y, *dat;
2170 
2171 	if (!sc->wi_icv_flag) {
2172 		sc->wi_icv = arc4random();
2173 		sc->wi_icv_flag++;
2174         } else
2175 		sc->wi_icv++;
2176 	/*
2177 	 * Skip 'bad' IVs from Fluhrer/Mantin/Shamir:
2178 	 * (B, 255, N) with 3 <= B < 8
2179 	 */
2180 	if (sc->wi_icv >= 0x03ff00 &&
2181             (sc->wi_icv & 0xf8ff00) == 0x00ff00)
2182                 sc->wi_icv += 0x000100;
2183 
2184 	/* prepend 24bit IV to tx key, byte order does not matter */
2185 	key[0] = sc->wi_icv >> 16;
2186 	key[1] = sc->wi_icv >> 8;
2187 	key[2] = sc->wi_icv;
2188 
2189 	klen = sc->wi_keys.wi_keys[sc->wi_tx_key].wi_keylen +
2190 	    IEEE80211_WEP_IVLEN;
2191 	klen = (klen >= RC4KEYLEN) ? RC4KEYLEN : RC4KEYLEN/2;
2192 	bcopy((char *)&sc->wi_keys.wi_keys[sc->wi_tx_key].wi_keydat,
2193 	    (char *)key + IEEE80211_WEP_IVLEN, klen - IEEE80211_WEP_IVLEN);
2194 
2195 	/* rc4 keysetup */
2196 	x = y = 0;
2197 	for (i = 0; i < RC4STATE; i++)
2198 		state[i] = i;
2199 	for (i = 0; i < RC4STATE; i++) {
2200 		y = (key[x] + state[i] + y) % RC4STATE;
2201 		RC4SWAP(i, y);
2202 		x = (x + 1) % klen;
2203 	}
2204 
2205 	/* output: IV, tx keyid, rc4(data), rc4(crc32(data)) */
2206 	dat = buf;
2207 	dat[0] = key[0];
2208 	dat[1] = key[1];
2209 	dat[2] = key[2];
2210 	dat[3] = sc->wi_tx_key << 6;		/* pad and keyid */
2211 	dat += 4;
2212 
2213 	/* compute rc4 over data, crc32 over data */
2214 	crc = ~0;
2215 	x = y = 0;
2216 	for (i = 0; i < len; i++) {
2217 		x = (x + 1) % RC4STATE;
2218 		y = (state[x] + y) % RC4STATE;
2219 		RC4SWAP(x, y);
2220 		crc = crc32_tab[(crc ^ dat[i]) & 0xff] ^ (crc >> 8);
2221 		dat[i] ^= state[(state[x] + state[y]) % RC4STATE];
2222 	}
2223 	crc = ~crc;
2224 	dat += len;
2225 
2226 	/* append little-endian crc32 and encrypt */
2227 	dat[0] = crc;
2228 	dat[1] = crc >> 8;
2229 	dat[2] = crc >> 16;
2230 	dat[3] = crc >> 24;
2231 	for (i = 0; i < IEEE80211_WEP_CRCLEN; i++) {
2232 		x = (x + 1) % RC4STATE;
2233 		y = (state[x] + y) % RC4STATE;
2234 		RC4SWAP(x, y);
2235 		dat[i] ^= state[(state[x] + state[y]) % RC4STATE];
2236 	}
2237 }
2238 
2239 static void
2240 wi_start(ifp)
2241 	struct ifnet		*ifp;
2242 {
2243 	struct wi_softc		*sc;
2244 	struct mbuf		*m0;
2245 	struct wi_frame		tx_frame;
2246 	struct ether_header	*eh;
2247 	int			id;
2248 	int			s;
2249 
2250 	sc = ifp->if_softc;
2251 	WI_LOCK(sc, s);
2252 
2253 	if (sc->wi_gone) {
2254 		WI_UNLOCK(sc, s);
2255 		return;
2256 	}
2257 
2258 	if (ifp->if_flags & IFF_OACTIVE) {
2259 		WI_UNLOCK(sc, s);
2260 		return;
2261 	}
2262 
2263 nextpkt:
2264 	IF_DEQUEUE(&ifp->if_snd, m0);
2265 	if (m0 == NULL) {
2266 		WI_UNLOCK(sc, s);
2267 		return;
2268 	}
2269 
2270 	bzero((char *)&tx_frame, sizeof(tx_frame));
2271 	tx_frame.wi_frame_ctl = htole16(WI_FTYPE_DATA);
2272 	id = sc->wi_tx_data_id;
2273 	eh = mtod(m0, struct ether_header *);
2274 
2275 	if (sc->wi_ptype == WI_PORTTYPE_AP) {
2276 		if (!wihap_check_tx(&sc->wi_hostap_info,
2277 		    eh->ether_dhost, &tx_frame.wi_tx_rate)) {
2278 			if (ifp->if_flags & IFF_DEBUG)
2279 				printf("wi_start: dropping unassoc "
2280 				       "dst %6D\n", eh->ether_dhost, ":");
2281 			m_freem(m0);
2282 			goto nextpkt;
2283 		}
2284 	}
2285 	/*
2286 	 * Use RFC1042 encoding for IP and ARP datagrams,
2287 	 * 802.3 for anything else.
2288 	 */
2289 	if (ntohs(eh->ether_type) > ETHER_MAX_LEN) {
2290 		bcopy((char *)&eh->ether_dhost,
2291 		    (char *)&tx_frame.wi_addr1, ETHER_ADDR_LEN);
2292 		if (sc->wi_ptype == WI_PORTTYPE_AP) {
2293 			tx_frame.wi_tx_ctl = WI_ENC_TX_MGMT; /* XXX */
2294 			tx_frame.wi_frame_ctl |= WI_FCTL_FROMDS;
2295 			if (sc->wi_use_wep)
2296 				tx_frame.wi_frame_ctl |= WI_FCTL_WEP;
2297 			bcopy((char *)&sc->arpcom.ac_enaddr,
2298 			      (char *)&tx_frame.wi_addr2, ETHER_ADDR_LEN);
2299 			bcopy((char *)&eh->ether_shost,
2300 			      (char *)&tx_frame.wi_addr3, ETHER_ADDR_LEN);
2301 		}
2302 		else
2303 			bcopy((char *)&eh->ether_shost,
2304 			    (char *)&tx_frame.wi_addr2, ETHER_ADDR_LEN);
2305 		bcopy((char *)&eh->ether_dhost,
2306 		    (char *)&tx_frame.wi_dst_addr, ETHER_ADDR_LEN);
2307 		bcopy((char *)&eh->ether_shost,
2308 		    (char *)&tx_frame.wi_src_addr, ETHER_ADDR_LEN);
2309 
2310 		tx_frame.wi_dat_len = m0->m_pkthdr.len - WI_SNAPHDR_LEN;
2311 		tx_frame.wi_dat[0] = htons(WI_SNAP_WORD0);
2312 		tx_frame.wi_dat[1] = htons(WI_SNAP_WORD1);
2313 		tx_frame.wi_len = htons(m0->m_pkthdr.len - WI_SNAPHDR_LEN);
2314 		tx_frame.wi_type = eh->ether_type;
2315 
2316 		if (sc->wi_ptype == WI_PORTTYPE_AP && sc->wi_use_wep) {
2317 			/* Do host encryption. */
2318 			bcopy(&tx_frame.wi_dat[0], &sc->wi_txbuf[4], 8);
2319 			m_copydata(m0, sizeof(struct ether_header),
2320 			    m0->m_pkthdr.len - sizeof(struct ether_header),
2321 			    (caddr_t)&sc->wi_txbuf[12]);
2322 			wi_do_hostencrypt(sc, &sc->wi_txbuf[0],
2323 			    tx_frame.wi_dat_len);
2324 			tx_frame.wi_dat_len += IEEE80211_WEP_IVLEN +
2325 			    IEEE80211_WEP_KIDLEN + IEEE80211_WEP_CRCLEN;
2326 			wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
2327 			    sizeof(struct wi_frame));
2328 			wi_write_data(sc, id, WI_802_11_OFFSET_RAW,
2329 			    (caddr_t)&sc->wi_txbuf, (m0->m_pkthdr.len -
2330 			    sizeof(struct ether_header)) + 18);
2331 		} else {
2332 			m_copydata(m0, sizeof(struct ether_header),
2333 			    m0->m_pkthdr.len - sizeof(struct ether_header),
2334 			    (caddr_t)&sc->wi_txbuf);
2335 			wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
2336 			    sizeof(struct wi_frame));
2337 			wi_write_data(sc, id, WI_802_11_OFFSET,
2338 			    (caddr_t)&sc->wi_txbuf, (m0->m_pkthdr.len -
2339 			    sizeof(struct ether_header)) + 2);
2340 		}
2341 	} else {
2342 		tx_frame.wi_dat_len = m0->m_pkthdr.len;
2343 
2344 		if (sc->wi_ptype == WI_PORTTYPE_AP && sc->wi_use_wep) {
2345 			/* Do host encryption. */
2346 			printf( "XXX: host encrypt not implemented for 802.3\n" );
2347 		} else {
2348 			eh->ether_type = htons(m0->m_pkthdr.len -
2349 			    WI_SNAPHDR_LEN);
2350 			m_copydata(m0, 0, m0->m_pkthdr.len,
2351 			    (caddr_t)&sc->wi_txbuf);
2352 
2353 			wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
2354 			    sizeof(struct wi_frame));
2355 			wi_write_data(sc, id, WI_802_3_OFFSET,
2356 			    (caddr_t)&sc->wi_txbuf, m0->m_pkthdr.len + 2);
2357 		}
2358 	}
2359 
2360 	/*
2361 	 * If there's a BPF listner, bounce a copy of
2362  	 * this frame to him. Also, don't send this to the bpf sniffer
2363  	 * if we're in procframe or monitor sniffing mode.
2364 	 */
2365  	if (!(sc->wi_procframe || sc->wi_debug.wi_monitor) && ifp->if_bpf)
2366 		bpf_mtap(ifp, m0);
2367 
2368 	m_freem(m0);
2369 
2370 	if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id, 0, 0))
2371 		device_printf(sc->dev, "xmit failed\n");
2372 
2373 	ifp->if_flags |= IFF_OACTIVE;
2374 
2375 	/*
2376 	 * Set a timeout in case the chip goes out to lunch.
2377 	 */
2378 	ifp->if_timer = 5;
2379 
2380 	WI_UNLOCK(sc, s);
2381 	return;
2382 }
2383 
2384 int
2385 wi_mgmt_xmit(sc, data, len)
2386 	struct wi_softc		*sc;
2387 	caddr_t			data;
2388 	int			len;
2389 {
2390 	struct wi_frame		tx_frame;
2391 	int			id;
2392 	struct wi_80211_hdr	*hdr;
2393 	caddr_t			dptr;
2394 
2395 	if (sc->wi_gone)
2396 		return(ENODEV);
2397 
2398 	hdr = (struct wi_80211_hdr *)data;
2399 	dptr = data + sizeof(struct wi_80211_hdr);
2400 
2401 	bzero((char *)&tx_frame, sizeof(tx_frame));
2402 	id = sc->wi_tx_mgmt_id;
2403 
2404 	bcopy((char *)hdr, (char *)&tx_frame.wi_frame_ctl,
2405 	   sizeof(struct wi_80211_hdr));
2406 
2407 	tx_frame.wi_tx_ctl = WI_ENC_TX_MGMT;
2408 	tx_frame.wi_dat_len = len - sizeof(struct wi_80211_hdr);
2409 	tx_frame.wi_len = htons(tx_frame.wi_dat_len);
2410 
2411 	wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame));
2412 	wi_write_data(sc, id, WI_802_11_OFFSET_RAW, dptr,
2413 	    len - sizeof(struct wi_80211_hdr) + 2);
2414 
2415 	if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id, 0, 0)) {
2416 		device_printf(sc->dev, "xmit failed\n");
2417 		return(EIO);
2418 	}
2419 
2420 	return(0);
2421 }
2422 
2423 static void
2424 wi_stop(sc)
2425 	struct wi_softc		*sc;
2426 {
2427 	struct ifnet		*ifp;
2428 	int			s;
2429 
2430 	WI_LOCK(sc, s);
2431 
2432 	if (sc->wi_gone) {
2433 		WI_UNLOCK(sc, s);
2434 		return;
2435 	}
2436 
2437 	wihap_shutdown(sc);
2438 
2439 	ifp = &sc->arpcom.ac_if;
2440 
2441 	/*
2442 	 * If the card is gone and the memory port isn't mapped, we will
2443 	 * (hopefully) get 0xffff back from the status read, which is not
2444 	 * a valid status value.
2445 	 */
2446 	if (CSR_READ_2(sc, WI_STATUS) != 0xffff) {
2447 		CSR_WRITE_2(sc, WI_INT_EN, 0);
2448 		wi_cmd(sc, WI_CMD_DISABLE|sc->wi_portnum, 0, 0, 0);
2449 	}
2450 
2451 	untimeout(wi_inquire, sc, sc->wi_stat_ch);
2452 
2453 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2454 
2455 	WI_UNLOCK(sc, s);
2456 	return;
2457 }
2458 
2459 static void
2460 wi_watchdog(ifp)
2461 	struct ifnet		*ifp;
2462 {
2463 	struct wi_softc		*sc;
2464 
2465 	sc = ifp->if_softc;
2466 
2467 	device_printf(sc->dev, "watchdog timeout\n");
2468 
2469 	wi_init(sc);
2470 
2471 	ifp->if_oerrors++;
2472 
2473 	return;
2474 }
2475 
2476 int
2477 wi_alloc(dev, rid)
2478 	device_t		dev;
2479 	int			rid;
2480 {
2481 	struct wi_softc		*sc = device_get_softc(dev);
2482 
2483 	if (sc->wi_bus_type != WI_BUS_PCI_NATIVE) {
2484 		sc->iobase_rid = rid;
2485 		sc->iobase = bus_alloc_resource(dev, SYS_RES_IOPORT,
2486 		    &sc->iobase_rid, 0, ~0, (1 << 6),
2487 		    rman_make_alignment_flags(1 << 6) | RF_ACTIVE);
2488 		if (!sc->iobase) {
2489 			device_printf(dev, "No I/O space?!\n");
2490 			return (ENXIO);
2491 		}
2492 
2493 		sc->wi_io_addr = rman_get_start(sc->iobase);
2494 		sc->wi_btag = rman_get_bustag(sc->iobase);
2495 		sc->wi_bhandle = rman_get_bushandle(sc->iobase);
2496 	} else {
2497 		sc->mem_rid = rid;
2498 		sc->mem = bus_alloc_resource(dev, SYS_RES_MEMORY,
2499 		    &sc->mem_rid, 0, ~0, 1, RF_ACTIVE);
2500 
2501 		if (!sc->mem) {
2502 			device_printf(dev, "No Mem space on prism2.5?\n");
2503 			return (ENXIO);
2504 		}
2505 
2506 		sc->wi_btag = rman_get_bustag(sc->mem);
2507 		sc->wi_bhandle = rman_get_bushandle(sc->mem);
2508 	}
2509 
2510 
2511 	sc->irq_rid = 0;
2512 	sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &sc->irq_rid,
2513 	    0, ~0, 1, RF_ACTIVE |
2514 	    ((sc->wi_bus_type == WI_BUS_PCCARD) ? 0 : RF_SHAREABLE));
2515 
2516 	if (!sc->irq) {
2517 		wi_free(dev);
2518 		device_printf(dev, "No irq?!\n");
2519 		return (ENXIO);
2520 	}
2521 
2522 	sc->dev = dev;
2523 	sc->wi_unit = device_get_unit(dev);
2524 
2525 	return (0);
2526 }
2527 
2528 void
2529 wi_free(dev)
2530 	device_t		dev;
2531 {
2532 	struct wi_softc		*sc = device_get_softc(dev);
2533 
2534 	if (sc->iobase != NULL) {
2535 		bus_release_resource(dev, SYS_RES_IOPORT, sc->iobase_rid, sc->iobase);
2536 		sc->iobase = NULL;
2537 	}
2538 	if (sc->irq != NULL) {
2539 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
2540 		sc->irq = NULL;
2541 	}
2542 	if (sc->mem != NULL) {
2543 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
2544 		sc->mem = NULL;
2545 	}
2546 
2547 	return;
2548 }
2549 
2550 void
2551 wi_shutdown(dev)
2552 	device_t		dev;
2553 {
2554 	struct wi_softc		*sc;
2555 
2556 	sc = device_get_softc(dev);
2557 	wi_stop(sc);
2558 
2559 	return;
2560 }
2561 
2562 #ifdef WICACHE
2563 /* wavelan signal strength cache code.
2564  * store signal/noise/quality on per MAC src basis in
2565  * a small fixed cache.  The cache wraps if > MAX slots
2566  * used.  The cache may be zeroed out to start over.
2567  * Two simple filters exist to reduce computation:
2568  * 1. ip only (literally 0x800) which may be used
2569  * to ignore some packets.  It defaults to ip only.
2570  * it could be used to focus on broadcast, non-IP 802.11 beacons.
2571  * 2. multicast/broadcast only.  This may be used to
2572  * ignore unicast packets and only cache signal strength
2573  * for multicast/broadcast packets (beacons); e.g., Mobile-IP
2574  * beacons and not unicast traffic.
2575  *
2576  * The cache stores (MAC src(index), IP src (major clue), signal,
2577  *	quality, noise)
2578  *
2579  * No apologies for storing IP src here.  It's easy and saves much
2580  * trouble elsewhere.  The cache is assumed to be INET dependent,
2581  * although it need not be.
2582  */
2583 
2584 #ifdef documentation
2585 
2586 int wi_sigitems;                                /* number of cached entries */
2587 struct wi_sigcache wi_sigcache[MAXWICACHE];  /*  array of cache entries */
2588 int wi_nextitem;                                /*  index/# of entries */
2589 
2590 
2591 #endif
2592 
2593 /* control variables for cache filtering.  Basic idea is
2594  * to reduce cost (e.g., to only Mobile-IP agent beacons
2595  * which are broadcast or multicast).  Still you might
2596  * want to measure signal strength with unicast ping packets
2597  * on a pt. to pt. ant. setup.
2598  */
2599 /* set true if you want to limit cache items to broadcast/mcast
2600  * only packets (not unicast).  Useful for mobile-ip beacons which
2601  * are broadcast/multicast at network layer.  Default is all packets
2602  * so ping/unicast will work say with pt. to pt. antennae setup.
2603  */
2604 static int wi_cache_mcastonly = 0;
2605 SYSCTL_INT(_machdep, OID_AUTO, wi_cache_mcastonly, CTLFLAG_RW,
2606 	&wi_cache_mcastonly, 0, "");
2607 
2608 /* set true if you want to limit cache items to IP packets only
2609 */
2610 static int wi_cache_iponly = 1;
2611 SYSCTL_INT(_machdep, OID_AUTO, wi_cache_iponly, CTLFLAG_RW,
2612 	&wi_cache_iponly, 0, "");
2613 
2614 /*
2615  * Original comments:
2616  * -----------------
2617  * wi_cache_store, per rx packet store signal
2618  * strength in MAC (src) indexed cache.
2619  *
2620  * follows linux driver in how signal strength is computed.
2621  * In ad hoc mode, we use the rx_quality field.
2622  * signal and noise are trimmed to fit in the range from 47..138.
2623  * rx_quality field MSB is signal strength.
2624  * rx_quality field LSB is noise.
2625  * "quality" is (signal - noise) as is log value.
2626  * note: quality CAN be negative.
2627  *
2628  * In BSS mode, we use the RID for communication quality.
2629  * TBD:  BSS mode is currently untested.
2630  *
2631  * Bill's comments:
2632  * ---------------
2633  * Actually, we use the rx_quality field all the time for both "ad-hoc"
2634  * and BSS modes. Why? Because reading an RID is really, really expensive:
2635  * there's a bunch of PIO operations that have to be done to read a record
2636  * from the NIC, and reading the comms quality RID each time a packet is
2637  * received can really hurt performance. We don't have to do this anyway:
2638  * the comms quality field only reflects the values in the rx_quality field
2639  * anyway. The comms quality RID is only meaningful in infrastructure mode,
2640  * but the values it contains are updated based on the rx_quality from
2641  * frames received from the access point.
2642  *
2643  * Also, according to Lucent, the signal strength and noise level values
2644  * can be converted to dBms by subtracting 149, so I've modified the code
2645  * to do that instead of the scaling it did originally.
2646  */
2647 static void
2648 wi_cache_store(struct wi_softc *sc, struct ether_header *eh,
2649                      struct mbuf *m, unsigned short rx_quality)
2650 {
2651 	struct ip *ip = 0;
2652 	int i;
2653 	static int cache_slot = 0; 	/* use this cache entry */
2654 	static int wrapindex = 0;       /* next "free" cache entry */
2655 	int sig, noise;
2656 	int sawip=0;
2657 
2658 	/*
2659 	 * filters:
2660 	 * 1. ip only
2661 	 * 2. configurable filter to throw out unicast packets,
2662 	 * keep multicast only.
2663 	 */
2664 
2665 	if ((ntohs(eh->ether_type) == ETHERTYPE_IP)) {
2666 		sawip = 1;
2667 	}
2668 
2669 	/*
2670 	 * filter for ip packets only
2671 	*/
2672 	if (wi_cache_iponly && !sawip) {
2673 		return;
2674 	}
2675 
2676 	/*
2677 	 *  filter for broadcast/multicast only
2678 	 */
2679 	if (wi_cache_mcastonly && ((eh->ether_dhost[0] & 1) == 0)) {
2680 		return;
2681 	}
2682 
2683 #ifdef SIGDEBUG
2684 	printf("wi%d: q value %x (MSB=0x%x, LSB=0x%x) \n", sc->wi_unit,
2685 	    rx_quality & 0xffff, rx_quality >> 8, rx_quality & 0xff);
2686 #endif
2687 
2688 	/*
2689 	 *  find the ip header.  we want to store the ip_src
2690 	 * address.
2691 	 */
2692 	if (sawip)
2693 		ip = mtod(m, struct ip *);
2694 
2695 	/*
2696 	 * do a linear search for a matching MAC address
2697 	 * in the cache table
2698 	 * . MAC address is 6 bytes,
2699 	 * . var w_nextitem holds total number of entries already cached
2700 	 */
2701 	for(i = 0; i < sc->wi_nextitem; i++) {
2702 		if (! bcmp(eh->ether_shost , sc->wi_sigcache[i].macsrc,  6 )) {
2703 			/*
2704 			 * Match!,
2705 			 * so we already have this entry,
2706 			 * update the data
2707 			 */
2708 			break;
2709 		}
2710 	}
2711 
2712 	/*
2713 	 *  did we find a matching mac address?
2714 	 * if yes, then overwrite a previously existing cache entry
2715 	 */
2716 	if (i < sc->wi_nextitem )   {
2717 		cache_slot = i;
2718 	}
2719 	/*
2720 	 * else, have a new address entry,so
2721 	 * add this new entry,
2722 	 * if table full, then we need to replace LRU entry
2723 	 */
2724 	else    {
2725 
2726 		/*
2727 		 * check for space in cache table
2728 		 * note: wi_nextitem also holds number of entries
2729 		 * added in the cache table
2730 		 */
2731 		if ( sc->wi_nextitem < MAXWICACHE ) {
2732 			cache_slot = sc->wi_nextitem;
2733 			sc->wi_nextitem++;
2734 			sc->wi_sigitems = sc->wi_nextitem;
2735 		}
2736         	/* no space found, so simply wrap with wrap index
2737 		 * and "zap" the next entry
2738 		 */
2739 		else {
2740 			if (wrapindex == MAXWICACHE) {
2741 				wrapindex = 0;
2742 			}
2743 			cache_slot = wrapindex++;
2744 		}
2745 	}
2746 
2747 	/*
2748 	 * invariant: cache_slot now points at some slot
2749 	 * in cache.
2750 	 */
2751 	if (cache_slot < 0 || cache_slot >= MAXWICACHE) {
2752 		log(LOG_ERR, "wi_cache_store, bad index: %d of "
2753 		    "[0..%d], gross cache error\n",
2754 		    cache_slot, MAXWICACHE);
2755 		return;
2756 	}
2757 
2758 	/*
2759 	 *  store items in cache
2760 	 *  .ip source address
2761 	 *  .mac src
2762 	 *  .signal, etc.
2763 	 */
2764 	if (sawip)
2765 		sc->wi_sigcache[cache_slot].ipsrc = ip->ip_src.s_addr;
2766 	bcopy( eh->ether_shost, sc->wi_sigcache[cache_slot].macsrc,  6);
2767 
2768 	sig = (rx_quality >> 8) & 0xFF;
2769 	noise = rx_quality & 0xFF;
2770 	sc->wi_sigcache[cache_slot].signal = sig - 149;
2771 	sc->wi_sigcache[cache_slot].noise = noise - 149;
2772 	sc->wi_sigcache[cache_slot].quality = sig - noise;
2773 
2774 	return;
2775 }
2776 #endif
2777 
2778 static int
2779 wi_get_cur_ssid(sc, ssid, len)
2780 	struct wi_softc		*sc;
2781 	char			*ssid;
2782 	int			*len;
2783 {
2784 	int			error = 0;
2785 	struct wi_req		wreq;
2786 
2787 	wreq.wi_len = WI_MAX_DATALEN;
2788 	switch (sc->wi_ptype) {
2789 	case WI_PORTTYPE_AP:
2790 		*len = IEEE80211_NWID_LEN;
2791 		bcopy(sc->wi_net_name, ssid, IEEE80211_NWID_LEN);
2792 		break;
2793 	case WI_PORTTYPE_ADHOC:
2794 		wreq.wi_type = WI_RID_CURRENT_SSID;
2795 		error = wi_read_record(sc, (struct wi_ltv_gen *)&wreq);
2796 		if (error != 0)
2797 			break;
2798 		if (wreq.wi_val[0] > IEEE80211_NWID_LEN) {
2799 			error = EINVAL;
2800 			break;
2801 		}
2802 		*len = wreq.wi_val[0];
2803 		bcopy(&wreq.wi_val[1], ssid, IEEE80211_NWID_LEN);
2804 		break;
2805 	case WI_PORTTYPE_BSS:
2806 		wreq.wi_type = WI_RID_COMMQUAL;
2807 		error = wi_read_record(sc, (struct wi_ltv_gen *)&wreq);
2808 		if (error != 0)
2809 			break;
2810 		if (wreq.wi_val[0] != 0) /* associated */ {
2811 			wreq.wi_type = WI_RID_CURRENT_SSID;
2812 			wreq.wi_len = WI_MAX_DATALEN;
2813 			error = wi_read_record(sc, (struct wi_ltv_gen *)&wreq);
2814 			if (error != 0)
2815 				break;
2816 			if (wreq.wi_val[0] > IEEE80211_NWID_LEN) {
2817 				error = EINVAL;
2818 				break;
2819 			}
2820 			*len = wreq.wi_val[0];
2821 			bcopy(&wreq.wi_val[1], ssid, IEEE80211_NWID_LEN);
2822 		} else {
2823 			*len = IEEE80211_NWID_LEN;
2824 			bcopy(sc->wi_net_name, ssid, IEEE80211_NWID_LEN);
2825 		}
2826 		break;
2827 	default:
2828 		error = EINVAL;
2829 		break;
2830 	}
2831 
2832 	return error;
2833 }
2834 
2835 static int
2836 wi_media_change(ifp)
2837 	struct ifnet		*ifp;
2838 {
2839 	struct wi_softc		*sc = ifp->if_softc;
2840 	int			otype = sc->wi_ptype;
2841 	int			orate = sc->wi_tx_rate;
2842 	int			ocreate_ibss = sc->wi_create_ibss;
2843 
2844 	if ((sc->ifmedia.ifm_cur->ifm_media & IFM_IEEE80211_HOSTAP) &&
2845 	    sc->sc_firmware_type != WI_INTERSIL)
2846 		return (EINVAL);
2847 
2848 	sc->wi_create_ibss = 0;
2849 
2850 	switch (sc->ifmedia.ifm_cur->ifm_media & IFM_OMASK) {
2851 	case 0:
2852 		sc->wi_ptype = WI_PORTTYPE_BSS;
2853 		break;
2854 	case IFM_IEEE80211_ADHOC:
2855 		sc->wi_ptype = WI_PORTTYPE_ADHOC;
2856 		break;
2857 	case IFM_IEEE80211_HOSTAP:
2858 		sc->wi_ptype = WI_PORTTYPE_AP;
2859 		break;
2860 	case IFM_IEEE80211_IBSSMASTER:
2861 	case IFM_IEEE80211_IBSSMASTER|IFM_IEEE80211_IBSS:
2862 		if (!(sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS))
2863 			return (EINVAL);
2864 		sc->wi_create_ibss = 1;
2865 		/* FALLTHROUGH */
2866 	case IFM_IEEE80211_IBSS:
2867 		sc->wi_ptype = WI_PORTTYPE_IBSS;
2868 		break;
2869 	default:
2870 		/* Invalid combination. */
2871 		return (EINVAL);
2872 	}
2873 
2874 	switch (IFM_SUBTYPE(sc->ifmedia.ifm_cur->ifm_media)) {
2875 	case IFM_IEEE80211_DS1:
2876 		sc->wi_tx_rate = 1;
2877 		break;
2878 	case IFM_IEEE80211_DS2:
2879 		sc->wi_tx_rate = 2;
2880 		break;
2881 	case IFM_IEEE80211_DS5:
2882 		sc->wi_tx_rate = 5;
2883 		break;
2884 	case IFM_IEEE80211_DS11:
2885 		sc->wi_tx_rate = 11;
2886 		break;
2887 	case IFM_AUTO:
2888 		sc->wi_tx_rate = 3;
2889 		break;
2890 	}
2891 
2892 	if (ocreate_ibss != sc->wi_create_ibss || otype != sc->wi_ptype ||
2893 	    orate != sc->wi_tx_rate)
2894 		wi_init(sc);
2895 
2896 	return(0);
2897 }
2898 
2899 static void
2900 wi_media_status(ifp, imr)
2901 	struct ifnet		*ifp;
2902 	struct ifmediareq	*imr;
2903 {
2904 	struct wi_req		wreq;
2905 	struct wi_softc		*sc = ifp->if_softc;
2906 
2907 	if (sc->wi_tx_rate == 3) {
2908 		imr->ifm_active = IFM_IEEE80211|IFM_AUTO;
2909 		if (sc->wi_ptype == WI_PORTTYPE_ADHOC)
2910 			imr->ifm_active |= IFM_IEEE80211_ADHOC;
2911 		else if (sc->wi_ptype == WI_PORTTYPE_AP)
2912 			imr->ifm_active |= IFM_IEEE80211_HOSTAP;
2913 		else if (sc->wi_ptype == WI_PORTTYPE_IBSS) {
2914 			if (sc->wi_create_ibss)
2915 				imr->ifm_active |= IFM_IEEE80211_IBSSMASTER;
2916 			else
2917 				imr->ifm_active |= IFM_IEEE80211_IBSS;
2918 		}
2919 		wreq.wi_type = WI_RID_CUR_TX_RATE;
2920 		wreq.wi_len = WI_MAX_DATALEN;
2921 		if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq) == 0) {
2922 			switch(wreq.wi_val[0]) {
2923 			case 1:
2924 				imr->ifm_active |= IFM_IEEE80211_DS1;
2925 				break;
2926 			case 2:
2927 				imr->ifm_active |= IFM_IEEE80211_DS2;
2928 				break;
2929 			case 6:
2930 				imr->ifm_active |= IFM_IEEE80211_DS5;
2931 				break;
2932 			case 11:
2933 				imr->ifm_active |= IFM_IEEE80211_DS11;
2934 				break;
2935 				}
2936 		}
2937 	} else {
2938 		imr->ifm_active = sc->ifmedia.ifm_cur->ifm_media;
2939 	}
2940 
2941 	imr->ifm_status = IFM_AVALID;
2942 	if (sc->wi_ptype == WI_PORTTYPE_ADHOC ||
2943 	    sc->wi_ptype == WI_PORTTYPE_IBSS)
2944 		/*
2945 		 * XXX: It would be nice if we could give some actually
2946 		 * useful status like whether we joined another IBSS or
2947 		 * created one ourselves.
2948 		 */
2949 		imr->ifm_status |= IFM_ACTIVE;
2950 	else if (sc->wi_ptype == WI_PORTTYPE_AP)
2951 		imr->ifm_status |= IFM_ACTIVE;
2952 	else {
2953 		wreq.wi_type = WI_RID_COMMQUAL;
2954 		wreq.wi_len = WI_MAX_DATALEN;
2955 		if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq) == 0 &&
2956 		    wreq.wi_val[0] != 0)
2957 			imr->ifm_status |= IFM_ACTIVE;
2958 	}
2959 }
2960 
2961 static int
2962 wi_get_debug(sc, wreq)
2963 	struct wi_softc		*sc;
2964 	struct wi_req		*wreq;
2965 {
2966 	int			error = 0;
2967 
2968 	wreq->wi_len = 1;
2969 
2970 	switch (wreq->wi_type) {
2971 	case WI_DEBUG_SLEEP:
2972 		wreq->wi_len++;
2973 		wreq->wi_val[0] = sc->wi_debug.wi_sleep;
2974 		break;
2975 	case WI_DEBUG_DELAYSUPP:
2976 		wreq->wi_len++;
2977 		wreq->wi_val[0] = sc->wi_debug.wi_delaysupp;
2978 		break;
2979 	case WI_DEBUG_TXSUPP:
2980 		wreq->wi_len++;
2981 		wreq->wi_val[0] = sc->wi_debug.wi_txsupp;
2982 		break;
2983 	case WI_DEBUG_MONITOR:
2984 		wreq->wi_len++;
2985 		wreq->wi_val[0] = sc->wi_debug.wi_monitor;
2986 		break;
2987 	case WI_DEBUG_LEDTEST:
2988 		wreq->wi_len += 3;
2989 		wreq->wi_val[0] = sc->wi_debug.wi_ledtest;
2990 		wreq->wi_val[1] = sc->wi_debug.wi_ledtest_param0;
2991 		wreq->wi_val[2] = sc->wi_debug.wi_ledtest_param1;
2992 		break;
2993 	case WI_DEBUG_CONTTX:
2994 		wreq->wi_len += 2;
2995 		wreq->wi_val[0] = sc->wi_debug.wi_conttx;
2996 		wreq->wi_val[1] = sc->wi_debug.wi_conttx_param0;
2997 		break;
2998 	case WI_DEBUG_CONTRX:
2999 		wreq->wi_len++;
3000 		wreq->wi_val[0] = sc->wi_debug.wi_contrx;
3001 		break;
3002 	case WI_DEBUG_SIGSTATE:
3003 		wreq->wi_len += 2;
3004 		wreq->wi_val[0] = sc->wi_debug.wi_sigstate;
3005 		wreq->wi_val[1] = sc->wi_debug.wi_sigstate_param0;
3006 		break;
3007 	case WI_DEBUG_CONFBITS:
3008 		wreq->wi_len += 2;
3009 		wreq->wi_val[0] = sc->wi_debug.wi_confbits;
3010 		wreq->wi_val[1] = sc->wi_debug.wi_confbits_param0;
3011 		break;
3012 	default:
3013 		error = EIO;
3014 		break;
3015 	}
3016 
3017 	return (error);
3018 }
3019 
3020 static int
3021 wi_set_debug(sc, wreq)
3022 	struct wi_softc		*sc;
3023 	struct wi_req		*wreq;
3024 {
3025 	int			error = 0;
3026 	u_int16_t		cmd, param0 = 0, param1 = 0;
3027 
3028 	switch (wreq->wi_type) {
3029 	case WI_DEBUG_RESET:
3030 	case WI_DEBUG_INIT:
3031 	case WI_DEBUG_CALENABLE:
3032 		break;
3033 	case WI_DEBUG_SLEEP:
3034 		sc->wi_debug.wi_sleep = 1;
3035 		break;
3036 	case WI_DEBUG_WAKE:
3037 		sc->wi_debug.wi_sleep = 0;
3038 		break;
3039 	case WI_DEBUG_CHAN:
3040 		param0 = wreq->wi_val[0];
3041 		break;
3042 	case WI_DEBUG_DELAYSUPP:
3043 		sc->wi_debug.wi_delaysupp = 1;
3044 		break;
3045 	case WI_DEBUG_TXSUPP:
3046 		sc->wi_debug.wi_txsupp = 1;
3047 		break;
3048 	case WI_DEBUG_MONITOR:
3049 		sc->wi_debug.wi_monitor = 1;
3050 		break;
3051 	case WI_DEBUG_LEDTEST:
3052 		param0 = wreq->wi_val[0];
3053 		param1 = wreq->wi_val[1];
3054 		sc->wi_debug.wi_ledtest = 1;
3055 		sc->wi_debug.wi_ledtest_param0 = param0;
3056 		sc->wi_debug.wi_ledtest_param1 = param1;
3057 		break;
3058 	case WI_DEBUG_CONTTX:
3059 		param0 = wreq->wi_val[0];
3060 		sc->wi_debug.wi_conttx = 1;
3061 		sc->wi_debug.wi_conttx_param0 = param0;
3062 		break;
3063 	case WI_DEBUG_STOPTEST:
3064 		sc->wi_debug.wi_delaysupp = 0;
3065 		sc->wi_debug.wi_txsupp = 0;
3066 		sc->wi_debug.wi_monitor = 0;
3067 		sc->wi_debug.wi_ledtest = 0;
3068 		sc->wi_debug.wi_ledtest_param0 = 0;
3069 		sc->wi_debug.wi_ledtest_param1 = 0;
3070 		sc->wi_debug.wi_conttx = 0;
3071 		sc->wi_debug.wi_conttx_param0 = 0;
3072 		sc->wi_debug.wi_contrx = 0;
3073 		sc->wi_debug.wi_sigstate = 0;
3074 		sc->wi_debug.wi_sigstate_param0 = 0;
3075 		break;
3076 	case WI_DEBUG_CONTRX:
3077 		sc->wi_debug.wi_contrx = 1;
3078 		break;
3079 	case WI_DEBUG_SIGSTATE:
3080 		param0 = wreq->wi_val[0];
3081 		sc->wi_debug.wi_sigstate = 1;
3082 		sc->wi_debug.wi_sigstate_param0 = param0;
3083 		break;
3084 	case WI_DEBUG_CONFBITS:
3085 		param0 = wreq->wi_val[0];
3086 		param1 = wreq->wi_val[1];
3087 		sc->wi_debug.wi_confbits = param0;
3088 		sc->wi_debug.wi_confbits_param0 = param1;
3089 		break;
3090 	default:
3091 		error = EIO;
3092 		break;
3093 	}
3094 
3095 	if (error)
3096 		return (error);
3097 
3098 	cmd = WI_CMD_DEBUG | (wreq->wi_type << 8);
3099 	error = wi_cmd(sc, cmd, param0, param1, 0);
3100 
3101 	return (error);
3102 }
3103