xref: /dragonfly/sys/dev/netif/wpi/if_wpi.c (revision bcb3e04d)
1 /*-
2  * Copyright (c) 2006,2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *	Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  *
18  * $FreeBSD: src/sys/dev/wpi/if_wpi.c,v 1.27.2.2 2010/02/14 09:34:27 gavin Exp $
19  */
20 
21 #define VERSION "20071127"
22 
23 /*
24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25  *
26  * The 3945ABG network adapter doesn't use traditional hardware as
27  * many other adaptors do. Instead at run time the eeprom is set into a known
28  * state and told to load boot firmware. The boot firmware loads an init and a
29  * main  binary firmware image into SRAM on the card via DMA.
30  * Once the firmware is loaded, the driver/hw then
31  * communicate by way of circular dma rings via the the SRAM to the firmware.
32  *
33  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
34  * The 4 tx data rings allow for prioritization QoS.
35  *
36  * The rx data ring consists of 32 dma buffers. Two registers are used to
37  * indicate where in the ring the driver and the firmware are up to. The
38  * driver sets the initial read index (reg1) and the initial write index (reg2),
39  * the firmware updates the read index (reg1) on rx of a packet and fires an
40  * interrupt. The driver then processes the buffers starting at reg1 indicating
41  * to the firmware which buffers have been accessed by updating reg2. At the
42  * same time allocating new memory for the processed buffer.
43  *
44  * A similar thing happens with the tx rings. The difference is the firmware
45  * stop processing buffers once the queue is full and until confirmation
46  * of a successful transmition (tx_intr) has occurred.
47  *
48  * The command ring operates in the same manner as the tx queues.
49  *
50  * All communication direct to the card (ie eeprom) is classed as Stage1
51  * communication
52  *
53  * All communication via the firmware to the card is classed as State2.
54  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
55  * firmware. The bootstrap firmware and runtime firmware are loaded
56  * from host memory via dma to the card then told to execute. From this point
57  * on the majority of communications between the driver and the card goes
58  * via the firmware.
59  */
60 
61 #include <sys/param.h>
62 #include <sys/sysctl.h>
63 #include <sys/sockio.h>
64 #include <sys/mbuf.h>
65 #include <sys/kernel.h>
66 #include <sys/socket.h>
67 #include <sys/systm.h>
68 #include <sys/malloc.h>
69 #include <sys/queue.h>
70 #include <sys/taskqueue.h>
71 #include <sys/module.h>
72 #include <sys/bus.h>
73 #include <sys/endian.h>
74 #include <sys/linker.h>
75 #include <sys/firmware.h>
76 
77 #include <sys/bus.h>
78 #include <sys/resource.h>
79 #include <sys/rman.h>
80 
81 #include <bus/pci/pcireg.h>
82 #include <bus/pci/pcivar.h>
83 
84 #include <net/bpf.h>
85 #include <net/if.h>
86 #include <net/if_arp.h>
87 #include <net/ifq_var.h>
88 #include <net/ethernet.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 #include <net/if_types.h>
92 
93 #include <netproto/802_11/ieee80211_var.h>
94 #include <netproto/802_11/ieee80211_radiotap.h>
95 #include <netproto/802_11/ieee80211_regdomain.h>
96 #include <netproto/802_11/ieee80211_ratectl.h>
97 
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #include <netinet/in_var.h>
101 #include <netinet/ip.h>
102 #include <netinet/if_ether.h>
103 
104 /* XXX: move elsewhere */
105 #define abs(x) (((x) < 0) ? -(x) : (x))
106 
107 #include "if_wpireg.h"
108 #include "if_wpivar.h"
109 
110 #define WPI_DEBUG
111 
112 #ifdef WPI_DEBUG
113 #define DPRINTF(x)	do { if (wpi_debug != 0) kprintf x; } while (0)
114 #define DPRINTFN(n, x)	do { if (wpi_debug & n) kprintf x; } while (0)
115 #define	WPI_DEBUG_SET	(wpi_debug != 0)
116 
117 enum {
118 	WPI_DEBUG_UNUSED	= 0x00000001,   /* Unused */
119 	WPI_DEBUG_HW		= 0x00000002,   /* Stage 1 (eeprom) debugging */
120 	WPI_DEBUG_TX		= 0x00000004,   /* Stage 2 TX intrp debugging*/
121 	WPI_DEBUG_RX		= 0x00000008,   /* Stage 2 RX intrp debugging */
122 	WPI_DEBUG_CMD		= 0x00000010,   /* Stage 2 CMD intrp debugging*/
123 	WPI_DEBUG_FIRMWARE	= 0x00000020,   /* firmware(9) loading debug  */
124 	WPI_DEBUG_DMA		= 0x00000040,   /* DMA (de)allocations/syncs  */
125 	WPI_DEBUG_SCANNING	= 0x00000080,   /* Stage 2 Scanning debugging */
126 	WPI_DEBUG_NOTIFY	= 0x00000100,   /* State 2 Noftif intr debug */
127 	WPI_DEBUG_TEMP		= 0x00000200,   /* TXPower/Temp Calibration */
128 	WPI_DEBUG_OPS		= 0x00000400,   /* wpi_ops taskq debug */
129 	WPI_DEBUG_WATCHDOG	= 0x00000800,   /* Watch dog debug */
130 	WPI_DEBUG_ANY		= 0xffffffff
131 };
132 
133 static int wpi_debug = 1;
134 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
135 TUNABLE_INT("debug.wpi", &wpi_debug);
136 
137 #else
138 #define DPRINTF(x)
139 #define DPRINTFN(n, x)
140 #define WPI_DEBUG_SET	0
141 #endif
142 
143 struct wpi_ident {
144 	uint16_t	vendor;
145 	uint16_t	device;
146 	uint16_t	subdevice;
147 	const char	*name;
148 };
149 
150 static const struct wpi_ident wpi_ident_table[] = {
151 	/* The below entries support ABG regardless of the subid */
152 	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
153 	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
154 	/* The below entries only support BG */
155 	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
156 	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
157 	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
158 	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
159 	{ 0, 0, 0, NULL }
160 };
161 
162 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
163 		    const char name[IFNAMSIZ], int unit, int opmode,
164 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
165 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
166 static void	wpi_vap_delete(struct ieee80211vap *);
167 static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
168 		    void **, bus_size_t, bus_size_t, int);
169 static void	wpi_dma_contig_free(struct wpi_dma_info *);
170 static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
171 static int	wpi_alloc_shared(struct wpi_softc *);
172 static void	wpi_free_shared(struct wpi_softc *);
173 static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
174 static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
175 static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
176 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
177 		    int, int);
178 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
179 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
180 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
181 			    const uint8_t mac[IEEE80211_ADDR_LEN]);
182 static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
183 static void	wpi_mem_lock(struct wpi_softc *);
184 static void	wpi_mem_unlock(struct wpi_softc *);
185 static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
186 static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
187 static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
188 		    const uint32_t *, int);
189 static uint16_t	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
190 static int	wpi_alloc_fwmem(struct wpi_softc *);
191 static void	wpi_free_fwmem(struct wpi_softc *);
192 static int	wpi_load_firmware(struct wpi_softc *);
193 static void	wpi_unload_firmware(struct wpi_softc *);
194 static int	wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
195 static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
196 		    struct wpi_rx_data *);
197 static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
198 static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
199 static void	wpi_notif_intr(struct wpi_softc *);
200 static void	wpi_intr(void *);
201 static uint8_t	wpi_plcp_signal(int);
202 static void	wpi_watchdog_callout(void *);
203 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
204 		    struct ieee80211_node *, int);
205 static void	wpi_start(struct ifnet *);
206 static void	wpi_start_locked(struct ifnet *);
207 static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
208 		    const struct ieee80211_bpf_params *);
209 static void	wpi_scan_start(struct ieee80211com *);
210 static void	wpi_scan_end(struct ieee80211com *);
211 static void	wpi_set_channel(struct ieee80211com *);
212 static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
213 static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
214 static int	wpi_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
215 static void	wpi_read_eeprom(struct wpi_softc *,
216 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
217 static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
218 static void	wpi_read_eeprom_group(struct wpi_softc *, int);
219 static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
220 static int	wpi_wme_update(struct ieee80211com *);
221 static int	wpi_mrr_setup(struct wpi_softc *);
222 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
223 static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
224 #if 0
225 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
226 #endif
227 static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
228 static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
229 static int	wpi_scan(struct wpi_softc *);
230 static int	wpi_config(struct wpi_softc *);
231 static void	wpi_stop_master(struct wpi_softc *);
232 static int	wpi_power_up(struct wpi_softc *);
233 static int	wpi_reset(struct wpi_softc *);
234 static void	wpi_hwreset_task(void *, int);
235 static void	wpi_rfreset_task(void *, int);
236 static void	wpi_hw_config(struct wpi_softc *);
237 static void	wpi_init(void *);
238 static void	wpi_init_locked(struct wpi_softc *, int);
239 static void	wpi_stop(struct wpi_softc *);
240 static void	wpi_stop_locked(struct wpi_softc *);
241 
242 static void	wpi_newassoc(struct ieee80211_node *, int);
243 static int	wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
244 		    int);
245 static void	wpi_calib_timeout_callout(void *);
246 static void	wpi_power_calibration(struct wpi_softc *, int);
247 static int	wpi_get_power_index(struct wpi_softc *,
248 		    struct wpi_power_group *, struct ieee80211_channel *, int);
249 #ifdef WPI_DEBUG
250 static const char *wpi_cmd_str(int);
251 #endif
252 static int wpi_probe(device_t);
253 static int wpi_attach(device_t);
254 static int wpi_detach(device_t);
255 static int wpi_shutdown(device_t);
256 static int wpi_suspend(device_t);
257 static int wpi_resume(device_t);
258 
259 
260 static device_method_t wpi_methods[] = {
261 	/* Device interface */
262 	DEVMETHOD(device_probe,		wpi_probe),
263 	DEVMETHOD(device_attach,	wpi_attach),
264 	DEVMETHOD(device_detach,	wpi_detach),
265 	DEVMETHOD(device_shutdown,	wpi_shutdown),
266 	DEVMETHOD(device_suspend,	wpi_suspend),
267 	DEVMETHOD(device_resume,	wpi_resume),
268 
269 	{ 0, 0 }
270 };
271 
272 static driver_t wpi_driver = {
273 	"wpi",
274 	wpi_methods,
275 	sizeof (struct wpi_softc)
276 };
277 
278 static devclass_t wpi_devclass;
279 
280 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
281 
282 static const uint8_t wpi_ridx_to_plcp[] = {
283 	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
284 	/* R1-R4 (ral/ural is R4-R1) */
285 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
286 	/* CCK: device-dependent */
287 	10, 20, 55, 110
288 };
289 static const uint8_t wpi_ridx_to_rate[] = {
290 	12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
291 	2, 4, 11, 22 /*CCK */
292 };
293 
294 
295 static int
296 wpi_probe(device_t dev)
297 {
298 	const struct wpi_ident *ident;
299 
300 	wlan_serialize_enter();
301 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
302 		if (pci_get_vendor(dev) == ident->vendor &&
303 		    pci_get_device(dev) == ident->device) {
304 			device_set_desc(dev, ident->name);
305 			wlan_serialize_exit();
306 			return 0;
307 		}
308 	}
309 	wlan_serialize_exit();
310 	return ENXIO;
311 }
312 
313 /**
314  * Load the firmare image from disk to the allocated dma buffer.
315  * we also maintain the reference to the firmware pointer as there
316  * is times where we may need to reload the firmware but we are not
317  * in a context that can access the filesystem (ie taskq cause by restart)
318  *
319  * @return 0 on success, an errno on failure
320  */
321 static int
322 wpi_load_firmware(struct wpi_softc *sc)
323 {
324 	const struct firmware *fp;
325 	struct wpi_dma_info *dma = &sc->fw_dma;
326 	const struct wpi_firmware_hdr *hdr;
327 	const uint8_t *itext, *idata, *rtext, *rdata, *btext;
328 	uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
329 	int error;
330 
331 	DPRINTFN(WPI_DEBUG_FIRMWARE,
332 	    ("Attempting Loading Firmware from wpi_fw module\n"));
333 
334 	wlan_assert_serialized();
335 	wlan_serialize_exit();
336 	if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
337 		device_printf(sc->sc_dev,
338 		    "could not load firmware image 'wpifw_fw'\n");
339 		error = ENOENT;
340 		wlan_serialize_enter();
341 		goto fail;
342 	}
343 	wlan_serialize_enter();
344 
345 	fp = sc->fw_fp;
346 
347 	/* Validate the firmware is minimum a particular version */
348 	if (fp->version < WPI_FW_MINVERSION) {
349 	    device_printf(sc->sc_dev,
350 			   "firmware version is too old. Need %d, got %d\n",
351 			   WPI_FW_MINVERSION,
352 			   fp->version);
353 	    error = ENXIO;
354 	    goto fail;
355 	}
356 
357 	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
358 		device_printf(sc->sc_dev,
359 		    "firmware file too short: %zu bytes\n", fp->datasize);
360 		error = ENXIO;
361 		goto fail;
362 	}
363 
364 	hdr = (const struct wpi_firmware_hdr *)fp->data;
365 
366 	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
367 	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
368 
369 	rtextsz = le32toh(hdr->rtextsz);
370 	rdatasz = le32toh(hdr->rdatasz);
371 	itextsz = le32toh(hdr->itextsz);
372 	idatasz = le32toh(hdr->idatasz);
373 	btextsz = le32toh(hdr->btextsz);
374 
375 	/* check that all firmware segments are present */
376 	if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
377 		rtextsz + rdatasz + itextsz + idatasz + btextsz) {
378 		device_printf(sc->sc_dev,
379 		    "firmware file too short: %zu bytes\n", fp->datasize);
380 		error = ENXIO; /* XXX appropriate error code? */
381 		goto fail;
382 	}
383 
384 	/* get pointers to firmware segments */
385 	rtext = (const uint8_t *)(hdr + 1);
386 	rdata = rtext + rtextsz;
387 	itext = rdata + rdatasz;
388 	idata = itext + itextsz;
389 	btext = idata + idatasz;
390 
391 	DPRINTFN(WPI_DEBUG_FIRMWARE,
392 	    ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
393 	     "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
394 	     (le32toh(hdr->version) & 0xff000000) >> 24,
395 	     (le32toh(hdr->version) & 0x00ff0000) >> 16,
396 	     (le32toh(hdr->version) & 0x0000ffff),
397 	     rtextsz, rdatasz,
398 	     itextsz, idatasz, btextsz));
399 
400 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
401 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
402 	DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
403 	DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
404 	DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
405 
406 	/* sanity checks */
407 	if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
408 	    rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
409 	    itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
410 	    idatasz > WPI_FW_INIT_DATA_MAXSZ ||
411 	    btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
412 	    (btextsz & 3) != 0) {
413 		device_printf(sc->sc_dev, "firmware invalid\n");
414 		error = EINVAL;
415 		goto fail;
416 	}
417 
418 	/* copy initialization images into pre-allocated DMA-safe memory */
419 	memcpy(dma->vaddr, idata, idatasz);
420 	memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
421 
422 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
423 
424 	/* tell adapter where to find initialization images */
425 	wpi_mem_lock(sc);
426 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
427 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
428 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
429 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
430 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
431 	wpi_mem_unlock(sc);
432 
433 	/* load firmware boot code */
434 	if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
435 	    device_printf(sc->sc_dev, "Failed to load microcode\n");
436 	    goto fail;
437 	}
438 
439 	/* now press "execute" */
440 	WPI_WRITE(sc, WPI_RESET, 0);
441 
442 	/* wait at most one second for the first alive notification */
443 	if ((error = zsleep(sc, &wlan_global_serializer, 0, "wpiinit", hz)) != 0) {
444 		device_printf(sc->sc_dev,
445 		    "timeout waiting for adapter to initialize\n");
446 		goto fail;
447 	}
448 
449 	/* copy runtime images into pre-allocated DMA-sage memory */
450 	memcpy(dma->vaddr, rdata, rdatasz);
451 	memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
452 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
453 
454 	/* tell adapter where to find runtime images */
455 	wpi_mem_lock(sc);
456 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
457 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
458 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
459 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
460 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
461 	wpi_mem_unlock(sc);
462 
463 	/* wait at most one second for the first alive notification */
464 	if ((error = zsleep(sc, &wlan_global_serializer, 0, "wpiinit", hz)) != 0) {
465 		device_printf(sc->sc_dev,
466 		    "timeout waiting for adapter to initialize2\n");
467 		goto fail;
468 	}
469 
470 	DPRINTFN(WPI_DEBUG_FIRMWARE,
471 	    ("Firmware loaded to driver successfully\n"));
472 	return error;
473 fail:
474 	wpi_unload_firmware(sc);
475 	return error;
476 }
477 
478 /**
479  * Free the referenced firmware image
480  */
481 static void
482 wpi_unload_firmware(struct wpi_softc *sc)
483 {
484 	struct ifnet *ifp;
485 	ifp = sc->sc_ifp;
486 
487 	if (sc->fw_fp) {
488 		wlan_assert_serialized();
489 		wlan_serialize_exit();
490 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
491 		wlan_serialize_enter();
492 		sc->fw_fp = NULL;
493 	}
494 }
495 
496 static int
497 wpi_attach(device_t dev)
498 {
499 	struct wpi_softc *sc;
500 	struct ifnet *ifp;
501 	struct ieee80211com *ic;
502 	int ac, error, supportsa = 1;
503 	uint32_t tmp;
504 	const struct wpi_ident *ident;
505 	uint8_t macaddr[IEEE80211_ADDR_LEN];
506 
507 	wlan_serialize_enter();
508 	sc = device_get_softc(dev);
509 	sc->sc_dev = dev;
510 
511 	if (bootverbose || WPI_DEBUG_SET)
512 	    device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
513 
514 	/*
515 	 * Some card's only support 802.11b/g not a, check to see if
516 	 * this is one such card. A 0x0 in the subdevice table indicates
517 	 * the entire subdevice range is to be ignored.
518 	 */
519 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
520 		if (ident->subdevice &&
521 		    pci_get_subdevice(dev) == ident->subdevice) {
522 		    supportsa = 0;
523 		    break;
524 		}
525 	}
526 
527 	/* Create the tasks that can be queued */
528 	TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset_task, sc);
529 	TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset_task, sc);
530 
531 	callout_init(&sc->calib_to_callout);
532 	callout_init(&sc->watchdog_to_callout);
533 
534 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
535 		device_printf(dev, "chip is in D%d power mode "
536 		    "-- setting to D0\n", pci_get_powerstate(dev));
537 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
538 	}
539 
540 	/* disable the retry timeout register */
541 	pci_write_config(dev, 0x41, 0, 1);
542 
543 	/* enable bus-mastering */
544 	pci_enable_busmaster(dev);
545 
546 	sc->mem_rid = PCIR_BAR(0);
547 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
548 	    RF_ACTIVE);
549 	if (sc->mem == NULL) {
550 		device_printf(dev, "could not allocate memory resource\n");
551 		error = ENOMEM;
552 		goto fail;
553 	}
554 
555 	sc->sc_st = rman_get_bustag(sc->mem);
556 	sc->sc_sh = rman_get_bushandle(sc->mem);
557 
558 	sc->irq_rid = 0;
559 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
560 	    RF_ACTIVE | RF_SHAREABLE);
561 	if (sc->irq == NULL) {
562 		device_printf(dev, "could not allocate interrupt resource\n");
563 		error = ENOMEM;
564 		goto fail;
565 	}
566 
567 	/*
568 	 * Allocate DMA memory for firmware transfers.
569 	 */
570 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
571 		kprintf(": could not allocate firmware memory\n");
572 		error = ENOMEM;
573 		goto fail;
574 	}
575 
576 	/*
577 	 * Put adapter into a known state.
578 	 */
579 	if ((error = wpi_reset(sc)) != 0) {
580 		device_printf(dev, "could not reset adapter\n");
581 		goto fail;
582 	}
583 
584 	wpi_mem_lock(sc);
585 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
586 	if (bootverbose || WPI_DEBUG_SET)
587 	    device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
588 
589 	wpi_mem_unlock(sc);
590 
591 	/* Allocate shared page */
592 	if ((error = wpi_alloc_shared(sc)) != 0) {
593 		device_printf(dev, "could not allocate shared page\n");
594 		goto fail;
595 	}
596 
597 	/* tx data queues  - 4 for QoS purposes */
598 	for (ac = 0; ac < WME_NUM_AC; ac++) {
599 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
600 		if (error != 0) {
601 		    device_printf(dev, "could not allocate Tx ring %d\n",ac);
602 		    goto fail;
603 		}
604 	}
605 
606 	/* command queue to talk to the card's firmware */
607 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
608 	if (error != 0) {
609 		device_printf(dev, "could not allocate command ring\n");
610 		goto fail;
611 	}
612 
613 	/* receive data queue */
614 	error = wpi_alloc_rx_ring(sc, &sc->rxq);
615 	if (error != 0) {
616 		device_printf(dev, "could not allocate Rx ring\n");
617 		goto fail;
618 	}
619 
620 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
621 	if (ifp == NULL) {
622 		device_printf(dev, "can not if_alloc()\n");
623 		error = ENOMEM;
624 		goto fail;
625 	}
626 	ic = ifp->if_l2com;
627 
628 	ic->ic_ifp = ifp;
629 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
630 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
631 
632 	/* set device capabilities */
633 	ic->ic_caps =
634 		  IEEE80211_C_STA		/* station mode supported */
635 		| IEEE80211_C_MONITOR		/* monitor mode supported */
636 		| IEEE80211_C_TXPMGT		/* tx power management */
637 		| IEEE80211_C_SHSLOT		/* short slot time supported */
638 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
639 		| IEEE80211_C_WPA		/* 802.11i */
640 /* XXX looks like WME is partly supported? */
641 #if 0
642 		| IEEE80211_C_IBSS		/* IBSS mode support */
643 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
644 		| IEEE80211_C_WME		/* 802.11e */
645 		| IEEE80211_C_HOSTAP		/* Host access point mode */
646 #endif
647 		;
648 
649 	/*
650 	 * Read in the eeprom and also setup the channels for
651 	 * net80211. We don't set the rates as net80211 does this for us
652 	 */
653 	wpi_read_eeprom(sc, macaddr);
654 
655 	if (bootverbose || WPI_DEBUG_SET) {
656 	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
657 	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
658 			  sc->type > 1 ? 'B': '?');
659 	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
660 			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
661 	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
662 			  supportsa ? "does" : "does not");
663 
664 	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
665 	       what sc->rev really represents - benjsc 20070615 */
666 	}
667 
668 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
669 	ifp->if_softc = sc;
670 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
671 	ifp->if_init = wpi_init;
672 	ifp->if_ioctl = wpi_ioctl;
673 	ifp->if_start = wpi_start;
674 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
675 	ifq_set_ready(&ifp->if_snd);
676 
677 	ieee80211_ifattach(ic, macaddr);
678 	/* override default methods */
679 	ic->ic_node_alloc = wpi_node_alloc;
680 	ic->ic_newassoc = wpi_newassoc;
681 	ic->ic_raw_xmit = wpi_raw_xmit;
682 	ic->ic_wme.wme_update = wpi_wme_update;
683 	ic->ic_scan_start = wpi_scan_start;
684 	ic->ic_scan_end = wpi_scan_end;
685 	ic->ic_set_channel = wpi_set_channel;
686 	ic->ic_scan_curchan = wpi_scan_curchan;
687 	ic->ic_scan_mindwell = wpi_scan_mindwell;
688 
689 	ic->ic_vap_create = wpi_vap_create;
690 	ic->ic_vap_delete = wpi_vap_delete;
691 
692 	ieee80211_radiotap_attach(ic,
693 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
694 		WPI_TX_RADIOTAP_PRESENT,
695 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
696 		WPI_RX_RADIOTAP_PRESENT);
697 
698 	/*
699 	 * Hook our interrupt after all initialization is complete.
700 	 */
701 	error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE,
702 	    wpi_intr, sc, &sc->sc_ih, &wlan_global_serializer);
703 	if (error != 0) {
704 		device_printf(dev, "could not set up interrupt\n");
705 		goto fail;
706 	}
707 
708 	if (bootverbose)
709 		ieee80211_announce(ic);
710 #ifdef XXX_DEBUG
711 	ieee80211_announce_channels(ic);
712 #endif
713 	wlan_serialize_exit();
714 	return 0;
715 
716 fail:
717 	wlan_serialize_exit();
718 	wpi_detach(dev);
719 	return ENXIO;
720 }
721 
722 static int
723 wpi_detach(device_t dev)
724 {
725 	struct wpi_softc *sc;
726 	struct ifnet *ifp;
727 	struct ieee80211com *ic;
728 	int ac;
729 
730 	wlan_serialize_enter();
731 	sc = device_get_softc(dev);
732 	ifp = sc->sc_ifp;
733 	if (ifp != NULL) {
734 		ic = ifp->if_l2com;
735 
736 		ieee80211_draintask(ic, &sc->sc_restarttask);
737 		ieee80211_draintask(ic, &sc->sc_radiotask);
738 		wpi_stop(sc);
739 		callout_stop(&sc->watchdog_to_callout);
740 		callout_stop(&sc->calib_to_callout);
741 		ieee80211_ifdetach(ic);
742 	}
743 
744 	if (sc->txq[0].data_dmat) {
745 		for (ac = 0; ac < WME_NUM_AC; ac++)
746 			wpi_free_tx_ring(sc, &sc->txq[ac]);
747 
748 		wpi_free_tx_ring(sc, &sc->cmdq);
749 		wpi_free_rx_ring(sc, &sc->rxq);
750 		wpi_free_shared(sc);
751 	}
752 
753 	if (sc->fw_fp != NULL) {
754 		wpi_unload_firmware(sc);
755 	}
756 
757 	if (sc->fw_dma.tag)
758 		wpi_free_fwmem(sc);
759 
760 	if (sc->irq != NULL) {
761 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
762 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
763 	}
764 
765 	if (sc->mem != NULL)
766 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
767 
768 	if (ifp != NULL)
769 		if_free(ifp);
770 
771 	wlan_serialize_exit();
772 	return 0;
773 }
774 
775 static struct ieee80211vap *
776 wpi_vap_create(struct ieee80211com *ic,
777 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
778 	const uint8_t bssid[IEEE80211_ADDR_LEN],
779 	const uint8_t mac[IEEE80211_ADDR_LEN])
780 {
781 	struct wpi_vap *wvp;
782 	struct ieee80211vap *vap;
783 
784 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
785 		return NULL;
786 	wvp = (struct wpi_vap *) kmalloc(sizeof(struct wpi_vap),
787 	    M_80211_VAP, M_INTWAIT | M_ZERO);
788 	if (wvp == NULL)
789 		return NULL;
790 	vap = &wvp->vap;
791 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
792 	/* override with driver methods */
793 	wvp->newstate = vap->iv_newstate;
794 	vap->iv_newstate = wpi_newstate;
795 
796 	ieee80211_ratectl_init(vap);
797 
798 	/* complete setup */
799 	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
800 	ic->ic_opmode = opmode;
801 	return vap;
802 }
803 
804 static void
805 wpi_vap_delete(struct ieee80211vap *vap)
806 {
807 	struct wpi_vap *wvp = WPI_VAP(vap);
808 
809 	ieee80211_ratectl_deinit(vap);
810 	ieee80211_vap_detach(vap);
811 	kfree(wvp, M_80211_VAP);
812 }
813 
814 static void
815 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
816 {
817 	if (error != 0)
818 		return;
819 
820 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
821 
822 	*(bus_addr_t *)arg = segs[0].ds_addr;
823 }
824 
825 /*
826  * Allocates a contiguous block of dma memory of the requested size and
827  * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
828  * allocations greater than 4096 may fail. Hence if the requested alignment is
829  * greater we allocate 'alignment' size extra memory and shift the vaddr and
830  * paddr after the dma load. This bypasses the problem at the cost of a little
831  * more memory.
832  */
833 static int
834 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
835     void **kvap, bus_size_t size, bus_size_t alignment, int flags)
836 {
837 	int error;
838 	bus_size_t align;
839 	bus_size_t reqsize;
840 
841 	DPRINTFN(WPI_DEBUG_DMA,
842 	    ("Size: %zd - alignment %zd\n", size, alignment));
843 
844 	dma->size = size;
845 	dma->tag = NULL;
846 
847 	if (alignment > 4096) {
848 		align = PAGE_SIZE;
849 		reqsize = size + alignment;
850 	} else {
851 		align = alignment;
852 		reqsize = size;
853 	}
854 	error = bus_dma_tag_create(dma->tag, align,
855 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
856 	    NULL, NULL, reqsize,
857 	    1, reqsize, flags,
858 	    &dma->tag);
859 	if (error != 0) {
860 		device_printf(sc->sc_dev,
861 		    "could not create shared page DMA tag\n");
862 		goto fail;
863 	}
864 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
865 	    flags | BUS_DMA_ZERO, &dma->map);
866 	if (error != 0) {
867 		device_printf(sc->sc_dev,
868 		    "could not allocate shared page DMA memory\n");
869 		goto fail;
870 	}
871 
872 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
873 	    reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
874 
875 	/* Save the original pointers so we can free all the memory */
876 	dma->paddr = dma->paddr_start;
877 	dma->vaddr = dma->vaddr_start;
878 
879 	/*
880 	 * Check the alignment and increment by 4096 until we get the
881 	 * requested alignment. Fail if can't obtain the alignment
882 	 * we requested.
883 	 */
884 	if ((dma->paddr & (alignment -1 )) != 0) {
885 		int i;
886 
887 		for (i = 0; i < alignment / 4096; i++) {
888 			if ((dma->paddr & (alignment - 1 )) == 0)
889 				break;
890 			dma->paddr += 4096;
891 			dma->vaddr += 4096;
892 		}
893 		if (i == alignment / 4096) {
894 			device_printf(sc->sc_dev,
895 			    "alignment requirement was not satisfied\n");
896 			goto fail;
897 		}
898 	}
899 
900 	if (error != 0) {
901 		device_printf(sc->sc_dev,
902 		    "could not load shared page DMA map\n");
903 		goto fail;
904 	}
905 
906 	if (kvap != NULL)
907 		*kvap = dma->vaddr;
908 
909 	return 0;
910 
911 fail:
912 	wpi_dma_contig_free(dma);
913 	return error;
914 }
915 
916 static void
917 wpi_dma_contig_free(struct wpi_dma_info *dma)
918 {
919 	if (dma->tag) {
920 		if (dma->map != NULL) {
921 			if (dma->paddr_start != 0) {
922 				bus_dmamap_sync(dma->tag, dma->map,
923 				    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
924 				bus_dmamap_unload(dma->tag, dma->map);
925 			}
926 			bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
927 		}
928 		bus_dma_tag_destroy(dma->tag);
929 	}
930 }
931 
932 /*
933  * Allocate a shared page between host and NIC.
934  */
935 static int
936 wpi_alloc_shared(struct wpi_softc *sc)
937 {
938 	int error;
939 
940 	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
941 	    (void **)&sc->shared, sizeof (struct wpi_shared),
942 	    PAGE_SIZE,
943 	    BUS_DMA_NOWAIT);
944 
945 	if (error != 0) {
946 		device_printf(sc->sc_dev,
947 		    "could not allocate shared area DMA memory\n");
948 	}
949 
950 	return error;
951 }
952 
953 static void
954 wpi_free_shared(struct wpi_softc *sc)
955 {
956 	wpi_dma_contig_free(&sc->shared_dma);
957 }
958 
959 static int
960 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
961 {
962 
963 	int i, error;
964 
965 	ring->cur = 0;
966 
967 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
968 	    (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
969 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
970 
971 	if (error != 0) {
972 		device_printf(sc->sc_dev,
973 		    "%s: could not allocate rx ring DMA memory, error %d\n",
974 		    __func__, error);
975 		goto fail;
976 	}
977 
978         error = bus_dma_tag_create(ring->data_dmat, 1, 0,
979 	    BUS_SPACE_MAXADDR_32BIT,
980             BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
981             MCLBYTES, BUS_DMA_NOWAIT, &ring->data_dmat);
982         if (error != 0) {
983                 device_printf(sc->sc_dev,
984 		    "%s: bus_dma_tag_create_failed, error %d\n",
985 		    __func__, error);
986                 goto fail;
987         }
988 
989 	/*
990 	 * Setup Rx buffers.
991 	 */
992 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
993 		struct wpi_rx_data *data = &ring->data[i];
994 		struct mbuf *m;
995 		bus_addr_t paddr;
996 
997 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
998 		if (error != 0) {
999 			device_printf(sc->sc_dev,
1000 			    "%s: bus_dmamap_create failed, error %d\n",
1001 			    __func__, error);
1002 			goto fail;
1003 		}
1004 		m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1005 		if (m == NULL) {
1006 			device_printf(sc->sc_dev,
1007 			   "%s: could not allocate rx mbuf\n", __func__);
1008 			error = ENOMEM;
1009 			goto fail;
1010 		}
1011 		/* map page */
1012 		error = bus_dmamap_load(ring->data_dmat, data->map,
1013 		    mtod(m, caddr_t), MCLBYTES,
1014 		    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1015 		if (error != 0 && error != EFBIG) {
1016 			device_printf(sc->sc_dev,
1017 			    "%s: bus_dmamap_load failed, error %d\n",
1018 			    __func__, error);
1019 			m_freem(m);
1020 			error = ENOMEM;	/* XXX unique code */
1021 			goto fail;
1022 		}
1023 		bus_dmamap_sync(ring->data_dmat, data->map,
1024 		    BUS_DMASYNC_PREWRITE);
1025 
1026 		data->m = m;
1027 		ring->desc[i] = htole32(paddr);
1028 	}
1029 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1030 	    BUS_DMASYNC_PREWRITE);
1031 	return 0;
1032 fail:
1033 	wpi_free_rx_ring(sc, ring);
1034 	return error;
1035 }
1036 
1037 static void
1038 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1039 {
1040 	int ntries;
1041 
1042 	wpi_mem_lock(sc);
1043 
1044 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1045 
1046 	for (ntries = 0; ntries < 100; ntries++) {
1047 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1048 			break;
1049 		DELAY(10);
1050 	}
1051 
1052 	wpi_mem_unlock(sc);
1053 
1054 #ifdef WPI_DEBUG
1055 	if (ntries == 100 && wpi_debug > 0)
1056 		device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1057 #endif
1058 
1059 	ring->cur = 0;
1060 }
1061 
1062 static void
1063 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1064 {
1065 	int i;
1066 
1067 	wpi_dma_contig_free(&ring->desc_dma);
1068 
1069 	for (i = 0; i < WPI_RX_RING_COUNT; i++)
1070 		if (ring->data[i].m != NULL)
1071 			m_freem(ring->data[i].m);
1072 }
1073 
1074 static int
1075 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1076 	int qid)
1077 {
1078 	struct wpi_tx_data *data;
1079 	int i, error;
1080 
1081 	ring->qid = qid;
1082 	ring->count = count;
1083 	ring->queued = 0;
1084 	ring->cur = 0;
1085 	ring->data = NULL;
1086 
1087 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1088 		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1089 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1090 
1091 	if (error != 0) {
1092 	    device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1093 	    goto fail;
1094 	}
1095 
1096 	/* update shared page with ring's base address */
1097 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1098 
1099 	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1100 		count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1101 		BUS_DMA_NOWAIT);
1102 
1103 	if (error != 0) {
1104 		device_printf(sc->sc_dev,
1105 		    "could not allocate tx command DMA memory\n");
1106 		goto fail;
1107 	}
1108 
1109 	ring->data = kmalloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1110 	    M_INTWAIT | M_ZERO);
1111 	if (ring->data == NULL) {
1112 		device_printf(sc->sc_dev,
1113 		    "could not allocate tx data slots\n");
1114 		goto fail;
1115 	}
1116 
1117 	error = bus_dma_tag_create(ring->data_dmat, 1, 0,
1118 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1119 	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT,
1120 	    &ring->data_dmat);
1121 	if (error != 0) {
1122 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
1123 		goto fail;
1124 	}
1125 
1126 	for (i = 0; i < count; i++) {
1127 		data = &ring->data[i];
1128 
1129 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1130 		if (error != 0) {
1131 			device_printf(sc->sc_dev,
1132 			    "could not create tx buf DMA map\n");
1133 			goto fail;
1134 		}
1135 		bus_dmamap_sync(ring->data_dmat, data->map,
1136 		    BUS_DMASYNC_PREWRITE);
1137 	}
1138 
1139 	return 0;
1140 
1141 fail:
1142 	wpi_free_tx_ring(sc, ring);
1143 	return error;
1144 }
1145 
1146 static void
1147 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1148 {
1149 	struct wpi_tx_data *data;
1150 	int i, ntries;
1151 
1152 	wpi_mem_lock(sc);
1153 
1154 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1155 	for (ntries = 0; ntries < 100; ntries++) {
1156 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1157 			break;
1158 		DELAY(10);
1159 	}
1160 #ifdef WPI_DEBUG
1161 	if (ntries == 100 && wpi_debug > 0)
1162 		device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1163 		    ring->qid);
1164 #endif
1165 	wpi_mem_unlock(sc);
1166 
1167 	for (i = 0; i < ring->count; i++) {
1168 		data = &ring->data[i];
1169 
1170 		if (data->m != NULL) {
1171 			bus_dmamap_unload(ring->data_dmat, data->map);
1172 			m_freem(data->m);
1173 			data->m = NULL;
1174 		}
1175 	}
1176 
1177 	ring->queued = 0;
1178 	ring->cur = 0;
1179 }
1180 
1181 static void
1182 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1183 {
1184 	struct wpi_tx_data *data;
1185 	int i;
1186 
1187 	wpi_dma_contig_free(&ring->desc_dma);
1188 	wpi_dma_contig_free(&ring->cmd_dma);
1189 
1190 	if (ring->data != NULL) {
1191 		for (i = 0; i < ring->count; i++) {
1192 			data = &ring->data[i];
1193 
1194 			if (data->m != NULL) {
1195 				bus_dmamap_sync(ring->data_dmat, data->map,
1196 				    BUS_DMASYNC_POSTWRITE);
1197 				bus_dmamap_unload(ring->data_dmat, data->map);
1198 				m_freem(data->m);
1199 				data->m = NULL;
1200 			}
1201 		}
1202 		kfree(ring->data, M_DEVBUF);
1203 	}
1204 
1205 	if (ring->data_dmat != NULL)
1206 		bus_dma_tag_destroy(ring->data_dmat);
1207 }
1208 
1209 static int
1210 wpi_shutdown(device_t dev)
1211 {
1212 	struct wpi_softc *sc;
1213 
1214 	wlan_serialize_enter();
1215 	sc = device_get_softc(dev);
1216 	wpi_stop_locked(sc);
1217 	wpi_unload_firmware(sc);
1218 	wlan_serialize_exit();
1219 
1220 	return 0;
1221 }
1222 
1223 static int
1224 wpi_suspend(device_t dev)
1225 {
1226 	struct wpi_softc *sc;
1227 
1228 	wlan_serialize_enter();
1229 	sc = device_get_softc(dev);
1230 	wpi_stop(sc);
1231 	wlan_serialize_exit();
1232 	return 0;
1233 }
1234 
1235 static int
1236 wpi_resume(device_t dev)
1237 {
1238 	struct wpi_softc *sc;
1239 	struct ifnet *ifp;
1240 
1241 	wlan_serialize_enter();
1242 	sc = device_get_softc(dev);
1243 	ifp = sc->sc_ifp;
1244 	pci_write_config(dev, 0x41, 0, 1);
1245 
1246 	if (ifp->if_flags & IFF_UP) {
1247 		wpi_init(ifp->if_softc);
1248 		if (ifp->if_flags & IFF_RUNNING)
1249 			wpi_start(ifp);
1250 	}
1251 	wlan_serialize_exit();
1252 	return 0;
1253 }
1254 
1255 /* ARGSUSED */
1256 static struct ieee80211_node *
1257 wpi_node_alloc(struct ieee80211vap *vap __unused,
1258 	const uint8_t mac[IEEE80211_ADDR_LEN] __unused)
1259 {
1260 	struct wpi_node *wn;
1261 
1262 	wn = kmalloc(sizeof (struct wpi_node), M_80211_NODE, M_INTWAIT | M_ZERO);
1263 
1264 	return &wn->ni;
1265 }
1266 
1267 /**
1268  * Called by net80211 when ever there is a change to 80211 state machine
1269  */
1270 static int
1271 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1272 {
1273 	struct wpi_vap *wvp = WPI_VAP(vap);
1274 	struct ieee80211com *ic = vap->iv_ic;
1275 	struct ifnet *ifp = ic->ic_ifp;
1276 	struct wpi_softc *sc = ifp->if_softc;
1277 	int error;
1278 
1279 	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1280 		ieee80211_state_name[vap->iv_state],
1281 		ieee80211_state_name[nstate], sc->flags));
1282 
1283 	if (nstate == IEEE80211_S_AUTH) {
1284 		/* The node must be registered in the firmware before auth */
1285 		error = wpi_auth(sc, vap);
1286 		if (error != 0) {
1287 			device_printf(sc->sc_dev,
1288 			    "%s: could not move to auth state, error %d\n",
1289 			    __func__, error);
1290 		}
1291 	}
1292 	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1293 		error = wpi_run(sc, vap);
1294 		if (error != 0) {
1295 			device_printf(sc->sc_dev,
1296 			    "%s: could not move to run state, error %d\n",
1297 			    __func__, error);
1298 		}
1299 	}
1300 	if (nstate == IEEE80211_S_RUN) {
1301 		/* RUN -> RUN transition; just restart the timers */
1302 		wpi_calib_timeout_callout(sc);
1303 		/* XXX split out rate control timer */
1304 	}
1305 	return wvp->newstate(vap, nstate, arg);
1306 }
1307 
1308 /*
1309  * Grab exclusive access to NIC memory.
1310  */
1311 static void
1312 wpi_mem_lock(struct wpi_softc *sc)
1313 {
1314 	int ntries;
1315 	uint32_t tmp;
1316 
1317 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1318 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1319 
1320 	/* spin until we actually get the lock */
1321 	for (ntries = 0; ntries < 100; ntries++) {
1322 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1323 			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1324 			break;
1325 		DELAY(10);
1326 	}
1327 	if (ntries == 100)
1328 		device_printf(sc->sc_dev, "could not lock memory\n");
1329 }
1330 
1331 /*
1332  * Release lock on NIC memory.
1333  */
1334 static void
1335 wpi_mem_unlock(struct wpi_softc *sc)
1336 {
1337 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1338 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1339 }
1340 
1341 static uint32_t
1342 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1343 {
1344 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1345 	return WPI_READ(sc, WPI_READ_MEM_DATA);
1346 }
1347 
1348 static void
1349 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1350 {
1351 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1352 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1353 }
1354 
1355 static void
1356 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1357     const uint32_t *data, int wlen)
1358 {
1359 	for (; wlen > 0; wlen--, data++, addr+=4)
1360 		wpi_mem_write(sc, addr, *data);
1361 }
1362 
1363 /*
1364  * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1365  * using the traditional bit-bang method. Data is read up until len bytes have
1366  * been obtained.
1367  */
1368 static uint16_t
1369 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1370 {
1371 	int ntries;
1372 	uint32_t val;
1373 	uint8_t *out = data;
1374 
1375 	wpi_mem_lock(sc);
1376 
1377 	for (; len > 0; len -= 2, addr++) {
1378 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1379 
1380 		for (ntries = 0; ntries < 10; ntries++) {
1381 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1382 				break;
1383 			DELAY(5);
1384 		}
1385 
1386 		if (ntries == 10) {
1387 			device_printf(sc->sc_dev, "could not read EEPROM\n");
1388 			return ETIMEDOUT;
1389 		}
1390 
1391 		*out++= val >> 16;
1392 		if (len > 1)
1393 			*out ++= val >> 24;
1394 	}
1395 
1396 	wpi_mem_unlock(sc);
1397 
1398 	return 0;
1399 }
1400 
1401 /*
1402  * The firmware text and data segments are transferred to the NIC using DMA.
1403  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1404  * where to find it.  Once the NIC has copied the firmware into its internal
1405  * memory, we can free our local copy in the driver.
1406  */
1407 static int
1408 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1409 {
1410 	int error, ntries;
1411 
1412 	DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1413 
1414 	size /= sizeof(uint32_t);
1415 
1416 	wpi_mem_lock(sc);
1417 
1418 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1419 	    (const uint32_t *)fw, size);
1420 
1421 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1422 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1423 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1424 
1425 	/* run microcode */
1426 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1427 
1428 	/* wait while the adapter is busy copying the firmware */
1429 	for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1430 		uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1431 		DPRINTFN(WPI_DEBUG_HW,
1432 		    ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1433 		     WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1434 		if (status & WPI_TX_IDLE(6)) {
1435 			DPRINTFN(WPI_DEBUG_HW,
1436 			    ("Status Match! - ntries = %d\n", ntries));
1437 			break;
1438 		}
1439 		DELAY(10);
1440 	}
1441 	if (ntries == 1000) {
1442 		device_printf(sc->sc_dev, "timeout transferring firmware\n");
1443 		error = ETIMEDOUT;
1444 	}
1445 
1446 	/* start the microcode executing */
1447 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1448 
1449 	wpi_mem_unlock(sc);
1450 
1451 	return (error);
1452 }
1453 
1454 static void
1455 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1456 	struct wpi_rx_data *data)
1457 {
1458 	struct ifnet *ifp = sc->sc_ifp;
1459 	struct ieee80211com *ic = ifp->if_l2com;
1460 	struct wpi_rx_ring *ring = &sc->rxq;
1461 	struct wpi_rx_stat *stat;
1462 	struct wpi_rx_head *head;
1463 	struct wpi_rx_tail *tail;
1464 	struct ieee80211_node *ni;
1465 	struct mbuf *m, *mnew;
1466 	bus_addr_t paddr;
1467 	int error;
1468 
1469 	stat = (struct wpi_rx_stat *)(desc + 1);
1470 
1471 	if (stat->len > WPI_STAT_MAXLEN) {
1472 		device_printf(sc->sc_dev, "invalid rx statistic header\n");
1473 		ifp->if_ierrors++;
1474 		return;
1475 	}
1476 
1477 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1478 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1479 
1480 	DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1481 	    "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1482 	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1483 	    (uintmax_t)le64toh(tail->tstamp)));
1484 
1485 	/* discard Rx frames with bad CRC early */
1486 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1487 		DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1488 		    le32toh(tail->flags)));
1489 		ifp->if_ierrors++;
1490 		return;
1491 	}
1492 	if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1493 		DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1494 		    le16toh(head->len)));
1495 		ifp->if_ierrors++;
1496 		return;
1497 	}
1498 
1499 	/* XXX don't need mbuf, just dma buffer */
1500 	mnew = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1501 	if (mnew == NULL) {
1502 		DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1503 		    __func__));
1504 		ifp->if_ierrors++;
1505 		return;
1506 	}
1507 	error = bus_dmamap_load(ring->data_dmat, data->map,
1508 	    mtod(mnew, caddr_t), MCLBYTES,
1509 	    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1510 	if (error != 0 && error != EFBIG) {
1511 		device_printf(sc->sc_dev,
1512 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1513 		m_freem(mnew);
1514 		ifp->if_ierrors++;
1515 		return;
1516 	}
1517 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1518 
1519 	/* finalize mbuf and swap in new one */
1520 	m = data->m;
1521 	m->m_pkthdr.rcvif = ifp;
1522 	m->m_data = (caddr_t)(head + 1);
1523 	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1524 
1525 	data->m = mnew;
1526 	/* update Rx descriptor */
1527 	ring->desc[ring->cur] = htole32(paddr);
1528 
1529 	if (ieee80211_radiotap_active(ic)) {
1530 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1531 
1532 		tap->wr_flags = 0;
1533 		tap->wr_chan_freq =
1534 			htole16(ic->ic_channels[head->chan].ic_freq);
1535 		tap->wr_chan_flags =
1536 			htole16(ic->ic_channels[head->chan].ic_flags);
1537 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1538 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1539 		tap->wr_tsft = tail->tstamp;
1540 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1541 		switch (head->rate) {
1542 		/* CCK rates */
1543 		case  10: tap->wr_rate =   2; break;
1544 		case  20: tap->wr_rate =   4; break;
1545 		case  55: tap->wr_rate =  11; break;
1546 		case 110: tap->wr_rate =  22; break;
1547 		/* OFDM rates */
1548 		case 0xd: tap->wr_rate =  12; break;
1549 		case 0xf: tap->wr_rate =  18; break;
1550 		case 0x5: tap->wr_rate =  24; break;
1551 		case 0x7: tap->wr_rate =  36; break;
1552 		case 0x9: tap->wr_rate =  48; break;
1553 		case 0xb: tap->wr_rate =  72; break;
1554 		case 0x1: tap->wr_rate =  96; break;
1555 		case 0x3: tap->wr_rate = 108; break;
1556 		/* unknown rate: should not happen */
1557 		default:  tap->wr_rate =   0;
1558 		}
1559 		if (le16toh(head->flags) & 0x4)
1560 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1561 	}
1562 
1563 	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1564 	if (ni != NULL) {
1565 		(void) ieee80211_input(ni, m, stat->rssi, 0);
1566 		ieee80211_free_node(ni);
1567 	} else
1568 		(void) ieee80211_input_all(ic, m, stat->rssi, 0);
1569 }
1570 
1571 static void
1572 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1573 {
1574 	struct ifnet *ifp = sc->sc_ifp;
1575 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1576 	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1577 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1578 	struct ieee80211_node *ni = txdata->ni;
1579 	struct ieee80211vap *vap = ni->ni_vap;
1580 	int retrycnt = 0;
1581 
1582 	DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1583 	    "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1584 	    stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1585 	    le32toh(stat->status)));
1586 
1587 	/*
1588 	 * Update rate control statistics for the node.
1589 	 * XXX we should not count mgmt frames since they're always sent at
1590 	 * the lowest available bit-rate.
1591 	 * XXX frames w/o ACK shouldn't be used either
1592 	 */
1593 	if (stat->ntries > 0) {
1594 		DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1595 		retrycnt = 1;
1596 	}
1597 	ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
1598 		&retrycnt, NULL);
1599 
1600 	/* XXX oerrors should only count errors !maxtries */
1601 	if ((le32toh(stat->status) & 0xff) != 1)
1602 		ifp->if_oerrors++;
1603 	else
1604 		ifp->if_opackets++;
1605 
1606 	bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1607 	bus_dmamap_unload(ring->data_dmat, txdata->map);
1608 	/* XXX handle M_TXCB? */
1609 	m_freem(txdata->m);
1610 	txdata->m = NULL;
1611 	ieee80211_free_node(txdata->ni);
1612 	txdata->ni = NULL;
1613 
1614 	ring->queued--;
1615 
1616 	sc->sc_tx_timer = 0;
1617 	ifp->if_flags &= ~IFF_OACTIVE;
1618 	wpi_start_locked(ifp);
1619 }
1620 
1621 static void
1622 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1623 {
1624 	struct wpi_tx_ring *ring = &sc->cmdq;
1625 	struct wpi_tx_data *data;
1626 
1627 	DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1628 				 "type=%s len=%d\n", desc->qid, desc->idx,
1629 				 desc->flags, wpi_cmd_str(desc->type),
1630 				 le32toh(desc->len)));
1631 
1632 	if ((desc->qid & 7) != 4)
1633 		return;	/* not a command ack */
1634 
1635 	data = &ring->data[desc->idx];
1636 
1637 	/* if the command was mapped in a mbuf, free it */
1638 	if (data->m != NULL) {
1639 		bus_dmamap_unload(ring->data_dmat, data->map);
1640 		m_freem(data->m);
1641 		data->m = NULL;
1642 	}
1643 
1644 	sc->flags &= ~WPI_FLAG_BUSY;
1645 	wakeup(&ring->cmd[desc->idx]);
1646 }
1647 
1648 static void
1649 wpi_notif_intr(struct wpi_softc *sc)
1650 {
1651 	struct ifnet *ifp = sc->sc_ifp;
1652 	struct ieee80211com *ic = ifp->if_l2com;
1653 	struct wpi_rx_desc *desc;
1654 	struct wpi_rx_data *data;
1655 	uint32_t hw;
1656 
1657 	hw = le32toh(sc->shared->next);
1658 	while (sc->rxq.cur != hw) {
1659 		data = &sc->rxq.data[sc->rxq.cur];
1660 		desc = (void *)data->m->m_ext.ext_buf;
1661 
1662 		DPRINTFN(WPI_DEBUG_NOTIFY,
1663 			 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1664 			  desc->qid,
1665 			  desc->idx,
1666 			  desc->flags,
1667 			  desc->type,
1668 			  le32toh(desc->len)));
1669 
1670 		if (!(desc->qid & 0x80))	/* reply to a command */
1671 			wpi_cmd_intr(sc, desc);
1672 
1673 		switch (desc->type) {
1674 		case WPI_RX_DONE:
1675 			/* a 802.11 frame was received */
1676 			wpi_rx_intr(sc, desc, data);
1677 			break;
1678 
1679 		case WPI_TX_DONE:
1680 			/* a 802.11 frame has been transmitted */
1681 			wpi_tx_intr(sc, desc);
1682 			break;
1683 
1684 		case WPI_UC_READY:
1685 		{
1686 			struct wpi_ucode_info *uc =
1687 				(struct wpi_ucode_info *)(desc + 1);
1688 
1689 			/* the microcontroller is ready */
1690 			DPRINTF(("microcode alive notification version %x "
1691 				"alive %x\n", le32toh(uc->version),
1692 				le32toh(uc->valid)));
1693 
1694 			if (le32toh(uc->valid) != 1) {
1695 				device_printf(sc->sc_dev,
1696 				    "microcontroller initialization failed\n");
1697 				wpi_stop_locked(sc);
1698 			}
1699 			break;
1700 		}
1701 		case WPI_STATE_CHANGED:
1702 		{
1703 			uint32_t *status = (uint32_t *)(desc + 1);
1704 
1705 			/* enabled/disabled notification */
1706 			DPRINTF(("state changed to %x\n", le32toh(*status)));
1707 
1708 			if (le32toh(*status) & 1) {
1709 				device_printf(sc->sc_dev,
1710 				    "Radio transmitter is switched off\n");
1711 				sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1712 				ifp->if_flags &= ~IFF_RUNNING;
1713 				/* Disable firmware commands */
1714 				WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1715 			}
1716 			break;
1717 		}
1718 		case WPI_START_SCAN:
1719 		{
1720 #ifdef WPI_DEBUG
1721 			struct wpi_start_scan *scan =
1722 				(struct wpi_start_scan *)(desc + 1);
1723 #endif
1724 
1725 			DPRINTFN(WPI_DEBUG_SCANNING,
1726 				 ("scanning channel %d status %x\n",
1727 			    scan->chan, le32toh(scan->status)));
1728 			break;
1729 		}
1730 		case WPI_STOP_SCAN:
1731 		{
1732 #ifdef WPI_DEBUG
1733 			struct wpi_stop_scan *scan =
1734 				(struct wpi_stop_scan *)(desc + 1);
1735 #endif
1736 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1737 
1738 			DPRINTFN(WPI_DEBUG_SCANNING,
1739 			    ("scan finished nchan=%d status=%d chan=%d\n",
1740 			     scan->nchan, scan->status, scan->chan));
1741 
1742 			sc->sc_scan_timer = 0;
1743 			ieee80211_scan_next(vap);
1744 			break;
1745 		}
1746 		case WPI_MISSED_BEACON:
1747 		{
1748 			struct wpi_missed_beacon *beacon =
1749 				(struct wpi_missed_beacon *)(desc + 1);
1750 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1751 
1752 			if (le32toh(beacon->consecutive) >=
1753 			    vap->iv_bmissthreshold) {
1754 				DPRINTF(("Beacon miss: %u >= %u\n",
1755 					 le32toh(beacon->consecutive),
1756 					 vap->iv_bmissthreshold));
1757 				ieee80211_beacon_miss(ic);
1758 			}
1759 			break;
1760 		}
1761 		}
1762 
1763 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1764 	}
1765 
1766 	/* tell the firmware what we have processed */
1767 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1768 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1769 }
1770 
1771 static void
1772 wpi_intr(void *arg)
1773 {
1774 	struct wpi_softc *sc = arg;
1775 	uint32_t r;
1776 
1777 	r = WPI_READ(sc, WPI_INTR);
1778 	if (r == 0 || r == 0xffffffff) {
1779 		return;
1780 	}
1781 
1782 	/* disable interrupts */
1783 	WPI_WRITE(sc, WPI_MASK, 0);
1784 	/* ack interrupts */
1785 	WPI_WRITE(sc, WPI_INTR, r);
1786 
1787 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1788 		struct ifnet *ifp = sc->sc_ifp;
1789 		struct ieee80211com *ic = ifp->if_l2com;
1790 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1791 
1792 		device_printf(sc->sc_dev, "fatal firmware error\n");
1793 		DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1794 				"(Hardware Error)"));
1795 		if (vap != NULL)
1796 			ieee80211_cancel_scan(vap);
1797 		ieee80211_runtask(ic, &sc->sc_restarttask);
1798 		sc->flags &= ~WPI_FLAG_BUSY;
1799 		return;
1800 	}
1801 
1802 	if (r & WPI_RX_INTR)
1803 		wpi_notif_intr(sc);
1804 
1805 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1806 		wakeup(sc);
1807 
1808 	/* re-enable interrupts */
1809 	if (sc->sc_ifp->if_flags & IFF_UP)
1810 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1811 
1812 }
1813 
1814 static uint8_t
1815 wpi_plcp_signal(int rate)
1816 {
1817 	switch (rate) {
1818 	/* CCK rates (returned values are device-dependent) */
1819 	case 2:		return 10;
1820 	case 4:		return 20;
1821 	case 11:	return 55;
1822 	case 22:	return 110;
1823 
1824 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1825 	/* R1-R4 (ral/ural is R4-R1) */
1826 	case 12:	return 0xd;
1827 	case 18:	return 0xf;
1828 	case 24:	return 0x5;
1829 	case 36:	return 0x7;
1830 	case 48:	return 0x9;
1831 	case 72:	return 0xb;
1832 	case 96:	return 0x1;
1833 	case 108:	return 0x3;
1834 
1835 	/* unsupported rates (should not get there) */
1836 	default:	return 0;
1837 	}
1838 }
1839 
1840 /* quickly determine if a given rate is CCK or OFDM */
1841 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1842 
1843 /*
1844  * Construct the data packet for a transmit buffer and acutally put
1845  * the buffer onto the transmit ring, kicking the card to process the
1846  * the buffer.
1847  */
1848 static int
1849 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1850 	int ac)
1851 {
1852 	struct ieee80211vap *vap = ni->ni_vap;
1853 	struct ifnet *ifp = sc->sc_ifp;
1854 	struct ieee80211com *ic = ifp->if_l2com;
1855 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1856 	struct wpi_tx_ring *ring = &sc->txq[ac];
1857 	struct wpi_tx_desc *desc;
1858 	struct wpi_tx_data *data;
1859 	struct wpi_tx_cmd *cmd;
1860 	struct wpi_cmd_data *tx;
1861 	struct ieee80211_frame *wh;
1862 	const struct ieee80211_txparam *tp;
1863 	struct ieee80211_key *k;
1864 	struct mbuf *mnew;
1865 	int i, error, nsegs, rate, hdrlen, ismcast;
1866 	bus_dma_segment_t segs[WPI_MAX_SCATTER];
1867 
1868 	desc = &ring->desc[ring->cur];
1869 	data = &ring->data[ring->cur];
1870 
1871 	wh = mtod(m0, struct ieee80211_frame *);
1872 
1873 	hdrlen = ieee80211_hdrsize(wh);
1874 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1875 
1876 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1877 		k = ieee80211_crypto_encap(ni, m0);
1878 		if (k == NULL) {
1879 			m_freem(m0);
1880 			return ENOBUFS;
1881 		}
1882 		/* packet header may have moved, reset our local pointer */
1883 		wh = mtod(m0, struct ieee80211_frame *);
1884 	}
1885 
1886 	cmd = &ring->cmd[ring->cur];
1887 	cmd->code = WPI_CMD_TX_DATA;
1888 	cmd->flags = 0;
1889 	cmd->qid = ring->qid;
1890 	cmd->idx = ring->cur;
1891 
1892 	tx = (struct wpi_cmd_data *)cmd->data;
1893 	tx->flags = htole32(WPI_TX_AUTO_SEQ);
1894 	tx->timeout = htole16(0);
1895 	tx->ofdm_mask = 0xff;
1896 	tx->cck_mask = 0x0f;
1897 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1898 	tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1899 	tx->len = htole16(m0->m_pkthdr.len);
1900 
1901 	if (!ismcast) {
1902 		if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1903 		    !cap->cap_wmeParams[ac].wmep_noackPolicy)
1904 			tx->flags |= htole32(WPI_TX_NEED_ACK);
1905 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1906 			tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1907 			tx->rts_ntries = 7;
1908 		}
1909 	}
1910 	/* pick a rate */
1911 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1912 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1913 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1914 		/* tell h/w to set timestamp in probe responses */
1915 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1916 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1917 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1918 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1919 			tx->timeout = htole16(3);
1920 		else
1921 			tx->timeout = htole16(2);
1922 		rate = tp->mgmtrate;
1923 	} else if (ismcast) {
1924 		rate = tp->mcastrate;
1925 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1926 		rate = tp->ucastrate;
1927 	} else {
1928 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
1929 		rate = ni->ni_txrate;
1930 	}
1931 	tx->rate = wpi_plcp_signal(rate);
1932 
1933 	/* be very persistant at sending frames out */
1934 #if 0
1935 	tx->data_ntries = tp->maxretry;
1936 #else
1937 	tx->data_ntries = 30;		/* XXX way too high */
1938 #endif
1939 
1940 	if (ieee80211_radiotap_active_vap(vap)) {
1941 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1942 		tap->wt_flags = 0;
1943 		tap->wt_rate = rate;
1944 		tap->wt_hwqueue = ac;
1945 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1946 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1947 
1948 		ieee80211_radiotap_tx(vap, m0);
1949 	}
1950 
1951 	/* save and trim IEEE802.11 header */
1952 	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1953 	m_adj(m0, hdrlen);
1954 
1955 	error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map, m0, segs,
1956 	    1, &nsegs, BUS_DMA_NOWAIT);
1957 	if (error != 0 && error != EFBIG) {
1958 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1959 		    error);
1960 		m_freem(m0);
1961 		return error;
1962 	}
1963 	if (error != 0) {
1964 		/* XXX use m_collapse */
1965 		mnew = m_defrag(m0, MB_DONTWAIT);
1966 		if (mnew == NULL) {
1967 			device_printf(sc->sc_dev,
1968 			    "could not defragment mbuf\n");
1969 			m_freem(m0);
1970 			return ENOBUFS;
1971 		}
1972 		m0 = mnew;
1973 
1974 		error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map,
1975 		    m0, segs, 1, &nsegs, BUS_DMA_NOWAIT);
1976 		if (error != 0) {
1977 			device_printf(sc->sc_dev,
1978 			    "could not map mbuf (error %d)\n", error);
1979 			m_freem(m0);
1980 			return error;
1981 		}
1982 	}
1983 
1984 	data->m = m0;
1985 	data->ni = ni;
1986 
1987 	DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1988 	    ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
1989 
1990 	/* first scatter/gather segment is used by the tx data command */
1991 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1992 	    (1 + nsegs) << 24);
1993 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1994 	    ring->cur * sizeof (struct wpi_tx_cmd));
1995 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
1996 	for (i = 1; i <= nsegs; i++) {
1997 		desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
1998 		desc->segs[i].len  = htole32(segs[i - 1].ds_len);
1999 	}
2000 
2001 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2002 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2003 	    BUS_DMASYNC_PREWRITE);
2004 
2005 	ring->queued++;
2006 
2007 	/* kick ring */
2008 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2009 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2010 
2011 	return 0;
2012 }
2013 
2014 /**
2015  * Process data waiting to be sent on the IFNET output queue
2016  */
2017 static void
2018 wpi_start(struct ifnet *ifp)
2019 {
2020 	wpi_start_locked(ifp);
2021 }
2022 
2023 static void
2024 wpi_start_locked(struct ifnet *ifp)
2025 {
2026 	struct wpi_softc *sc = ifp->if_softc;
2027 	struct ieee80211_node *ni;
2028 	struct mbuf *m;
2029 	int ac;
2030 
2031 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
2032 		ifq_purge(&ifp->if_snd);
2033 		return;
2034 	}
2035 
2036 	for (;;) {
2037 		m = ifq_dequeue(&ifp->if_snd, NULL);
2038 		if (m == NULL)
2039 			break;
2040 		ac = M_WME_GETAC(m);
2041 		if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2042 			/* there is no place left in this ring */
2043 			/*
2044 			 * XXX: we CANNOT do it this way. If something
2045 			 * is prepended already, this is going to blow.
2046 			 */
2047 			ifp->if_flags |= IFF_OACTIVE;
2048 			ifq_prepend(&ifp->if_snd, m);
2049 			break;
2050 		}
2051 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2052 		if (wpi_tx_data(sc, m, ni, ac) != 0) {
2053 			ieee80211_free_node(ni);
2054 			ifp->if_oerrors++;
2055 			break;
2056 		}
2057 		sc->sc_tx_timer = 5;
2058 	}
2059 }
2060 
2061 static int
2062 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2063 	const struct ieee80211_bpf_params *params)
2064 {
2065 	struct ieee80211com *ic = ni->ni_ic;
2066 	struct ifnet *ifp = ic->ic_ifp;
2067 	struct wpi_softc *sc = ifp->if_softc;
2068 
2069 	/* prevent management frames from being sent if we're not ready */
2070 	if (!(ifp->if_flags & IFF_RUNNING)) {
2071 		m_freem(m);
2072 		ieee80211_free_node(ni);
2073 		return ENETDOWN;
2074 	}
2075 
2076 	/* management frames go into ring 0 */
2077 	if (sc->txq[0].queued > sc->txq[0].count - 8) {
2078 		ifp->if_flags |= IFF_OACTIVE;
2079 		m_freem(m);
2080 		ieee80211_free_node(ni);
2081 		return ENOBUFS;		/* XXX */
2082 	}
2083 
2084 	ifp->if_opackets++;
2085 	if (wpi_tx_data(sc, m, ni, 0) != 0)
2086 		goto bad;
2087 	sc->sc_tx_timer = 5;
2088 	callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
2089 
2090 	return 0;
2091 bad:
2092 	ifp->if_oerrors++;
2093 	ieee80211_free_node(ni);
2094 	return EIO;		/* XXX */
2095 }
2096 
2097 static int
2098 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cred)
2099 {
2100 	struct wpi_softc *sc = ifp->if_softc;
2101 	struct ieee80211com *ic = ifp->if_l2com;
2102 	struct ifreq *ifr = (struct ifreq *) data;
2103 	int error = 0, startall = 0;
2104 
2105 	switch (cmd) {
2106 	case SIOCSIFFLAGS:
2107 		if ((ifp->if_flags & IFF_UP)) {
2108 			if (!(ifp->if_flags & IFF_RUNNING)) {
2109 				wpi_init_locked(sc, 0);
2110 				startall = 1;
2111 			}
2112 		} else if ((ifp->if_flags & IFF_RUNNING) ||
2113 			   (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2114 			wpi_stop_locked(sc);
2115 		if (startall)
2116 			ieee80211_start_all(ic);
2117 		break;
2118 	case SIOCGIFMEDIA:
2119 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2120 		break;
2121 	case SIOCGIFADDR:
2122 		error = ether_ioctl(ifp, cmd, data);
2123 		break;
2124 	default:
2125 		error = EINVAL;
2126 		break;
2127 	}
2128 	return error;
2129 }
2130 
2131 /*
2132  * Extract various information from EEPROM.
2133  */
2134 static void
2135 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2136 {
2137 	int i;
2138 
2139 	/* read the hardware capabilities, revision and SKU type */
2140 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2141 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2142 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2143 
2144 	/* read the regulatory domain */
2145 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2146 
2147 	/* read in the hw MAC address */
2148 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2149 
2150 	/* read the list of authorized channels */
2151 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2152 		wpi_read_eeprom_channels(sc,i);
2153 
2154 	/* read the power level calibration info for each group */
2155 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2156 		wpi_read_eeprom_group(sc,i);
2157 }
2158 
2159 /*
2160  * Send a command to the firmware.
2161  */
2162 static int
2163 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2164 {
2165 	struct wpi_tx_ring *ring = &sc->cmdq;
2166 	struct wpi_tx_desc *desc;
2167 	struct wpi_tx_cmd *cmd;
2168 
2169 #ifdef WPI_DEBUG
2170 	if (!async) {
2171 		wlan_assert_serialized();
2172 	}
2173 #endif
2174 
2175 	DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2176 		    async));
2177 
2178 	if (sc->flags & WPI_FLAG_BUSY) {
2179 		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2180 		    __func__, code);
2181 		return EAGAIN;
2182 	}
2183 	sc->flags|= WPI_FLAG_BUSY;
2184 
2185 	KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2186 	    code, size));
2187 
2188 	desc = &ring->desc[ring->cur];
2189 	cmd = &ring->cmd[ring->cur];
2190 
2191 	cmd->code = code;
2192 	cmd->flags = 0;
2193 	cmd->qid = ring->qid;
2194 	cmd->idx = ring->cur;
2195 	memcpy(cmd->data, buf, size);
2196 
2197 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2198 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2199 		ring->cur * sizeof (struct wpi_tx_cmd));
2200 	desc->segs[0].len  = htole32(4 + size);
2201 
2202 	/* kick cmd ring */
2203 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2204 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2205 
2206 	if (async) {
2207 		sc->flags &= ~ WPI_FLAG_BUSY;
2208 		return 0;
2209 	}
2210 
2211 	return zsleep(cmd, &wlan_global_serializer, 0, "wpicmd", hz);
2212 }
2213 
2214 static int
2215 wpi_wme_update(struct ieee80211com *ic)
2216 {
2217 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2218 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2219 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2220 	const struct wmeParams *wmep;
2221 	struct wpi_wme_setup wme;
2222 	int ac;
2223 
2224 	/* don't override default WME values if WME is not actually enabled */
2225 	if (!(ic->ic_flags & IEEE80211_F_WME))
2226 		return 0;
2227 
2228 	wme.flags = 0;
2229 	for (ac = 0; ac < WME_NUM_AC; ac++) {
2230 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2231 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2232 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2233 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2234 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2235 
2236 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2237 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2238 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2239 	}
2240 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2241 #undef WPI_USEC
2242 #undef WPI_EXP2
2243 }
2244 
2245 /*
2246  * Configure h/w multi-rate retries.
2247  */
2248 static int
2249 wpi_mrr_setup(struct wpi_softc *sc)
2250 {
2251 	struct ifnet *ifp = sc->sc_ifp;
2252 	struct ieee80211com *ic = ifp->if_l2com;
2253 	struct wpi_mrr_setup mrr;
2254 	int i, error;
2255 
2256 	memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2257 
2258 	/* CCK rates (not used with 802.11a) */
2259 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2260 		mrr.rates[i].flags = 0;
2261 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2262 		/* fallback to the immediate lower CCK rate (if any) */
2263 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2264 		/* try one time at this rate before falling back to "next" */
2265 		mrr.rates[i].ntries = 1;
2266 	}
2267 
2268 	/* OFDM rates (not used with 802.11b) */
2269 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2270 		mrr.rates[i].flags = 0;
2271 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2272 		/* fallback to the immediate lower OFDM rate (if any) */
2273 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2274 		mrr.rates[i].next = (i == WPI_OFDM6) ?
2275 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2276 			WPI_OFDM6 : WPI_CCK2) :
2277 		    i - 1;
2278 		/* try one time at this rate before falling back to "next" */
2279 		mrr.rates[i].ntries = 1;
2280 	}
2281 
2282 	/* setup MRR for control frames */
2283 	mrr.which = htole32(WPI_MRR_CTL);
2284 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2285 	if (error != 0) {
2286 		device_printf(sc->sc_dev,
2287 		    "could not setup MRR for control frames\n");
2288 		return error;
2289 	}
2290 
2291 	/* setup MRR for data frames */
2292 	mrr.which = htole32(WPI_MRR_DATA);
2293 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2294 	if (error != 0) {
2295 		device_printf(sc->sc_dev,
2296 		    "could not setup MRR for data frames\n");
2297 		return error;
2298 	}
2299 
2300 	return 0;
2301 }
2302 
2303 static void
2304 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2305 {
2306 	struct wpi_cmd_led led;
2307 
2308 	led.which = which;
2309 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2310 	led.off = off;
2311 	led.on = on;
2312 
2313 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2314 }
2315 
2316 static void
2317 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2318 {
2319 	struct wpi_cmd_tsf tsf;
2320 	uint64_t val, mod;
2321 
2322 	memset(&tsf, 0, sizeof tsf);
2323 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2324 	tsf.bintval = htole16(ni->ni_intval);
2325 	tsf.lintval = htole16(10);
2326 
2327 	/* compute remaining time until next beacon */
2328 	val = (uint64_t)ni->ni_intval  * 1024;	/* msec -> usec */
2329 	mod = le64toh(tsf.tstamp) % val;
2330 	tsf.binitval = htole32((uint32_t)(val - mod));
2331 
2332 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2333 		device_printf(sc->sc_dev, "could not enable TSF\n");
2334 }
2335 
2336 #if 0
2337 /*
2338  * Build a beacon frame that the firmware will broadcast periodically in
2339  * IBSS or HostAP modes.
2340  */
2341 static int
2342 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2343 {
2344 	struct ifnet *ifp = sc->sc_ifp;
2345 	struct ieee80211com *ic = ifp->if_l2com;
2346 	struct wpi_tx_ring *ring = &sc->cmdq;
2347 	struct wpi_tx_desc *desc;
2348 	struct wpi_tx_data *data;
2349 	struct wpi_tx_cmd *cmd;
2350 	struct wpi_cmd_beacon *bcn;
2351 	struct ieee80211_beacon_offsets bo;
2352 	struct mbuf *m0;
2353 	bus_addr_t physaddr;
2354 	int error;
2355 
2356 	desc = &ring->desc[ring->cur];
2357 	data = &ring->data[ring->cur];
2358 
2359 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2360 	if (m0 == NULL) {
2361 		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2362 		return ENOMEM;
2363 	}
2364 
2365 	cmd = &ring->cmd[ring->cur];
2366 	cmd->code = WPI_CMD_SET_BEACON;
2367 	cmd->flags = 0;
2368 	cmd->qid = ring->qid;
2369 	cmd->idx = ring->cur;
2370 
2371 	bcn = (struct wpi_cmd_beacon *)cmd->data;
2372 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2373 	bcn->id = WPI_ID_BROADCAST;
2374 	bcn->ofdm_mask = 0xff;
2375 	bcn->cck_mask = 0x0f;
2376 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2377 	bcn->len = htole16(m0->m_pkthdr.len);
2378 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2379 		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2380 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2381 
2382 	/* save and trim IEEE802.11 header */
2383 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2384 	m_adj(m0, sizeof (struct ieee80211_frame));
2385 
2386 	/* assume beacon frame is contiguous */
2387 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2388 	    m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2389 	if (error != 0) {
2390 		device_printf(sc->sc_dev, "could not map beacon\n");
2391 		m_freem(m0);
2392 		return error;
2393 	}
2394 
2395 	data->m = m0;
2396 
2397 	/* first scatter/gather segment is used by the beacon command */
2398 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2399 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2400 		ring->cur * sizeof (struct wpi_tx_cmd));
2401 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2402 	desc->segs[1].addr = htole32(physaddr);
2403 	desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2404 
2405 	/* kick cmd ring */
2406 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2407 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2408 
2409 	return 0;
2410 }
2411 #endif
2412 
2413 static int
2414 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2415 {
2416 	struct ieee80211com *ic = vap->iv_ic;
2417 	struct ieee80211_node *ni;
2418 	struct wpi_node_info node;
2419 	int error;
2420 
2421 
2422 	/* update adapter's configuration */
2423 	sc->config.associd = 0;
2424 	sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2425 	ni = ieee80211_ref_node(vap->iv_bss);
2426 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2427 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2428 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2429 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2430 		    WPI_CONFIG_24GHZ);
2431 	}
2432 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2433 		sc->config.cck_mask  = 0;
2434 		sc->config.ofdm_mask = 0x15;
2435 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2436 		sc->config.cck_mask  = 0x03;
2437 		sc->config.ofdm_mask = 0;
2438 	} else {
2439 		/* XXX assume 802.11b/g */
2440 		sc->config.cck_mask  = 0x0f;
2441 		sc->config.ofdm_mask = 0x15;
2442 	}
2443 
2444 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2445 		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2446 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2447 		sizeof (struct wpi_config), 1);
2448 	if (error != 0) {
2449 		device_printf(sc->sc_dev, "could not configure\n");
2450 		ieee80211_free_node(ni);
2451 		return error;
2452 	}
2453 
2454 	/* configuration has changed, set Tx power accordingly */
2455 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2456 		device_printf(sc->sc_dev, "could not set Tx power\n");
2457 		ieee80211_free_node(ni);
2458 		return error;
2459 	}
2460 
2461 	/* add default node */
2462 	memset(&node, 0, sizeof node);
2463 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2464 	ieee80211_free_node(ni);
2465 	node.id = WPI_ID_BSS;
2466 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2467 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2468 	node.action = htole32(WPI_ACTION_SET_RATE);
2469 	node.antenna = WPI_ANTENNA_BOTH;
2470 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2471 	if (error != 0)
2472 		device_printf(sc->sc_dev, "could not add BSS node\n");
2473 
2474 	return (error);
2475 }
2476 
2477 static int
2478 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2479 {
2480 	struct ieee80211com *ic = vap->iv_ic;
2481 	struct ieee80211_node *ni;
2482 	int error;
2483 
2484 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2485 		/* link LED blinks while monitoring */
2486 		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2487 		return 0;
2488 	}
2489 
2490 	ni = ieee80211_ref_node(vap->iv_bss);
2491 	wpi_enable_tsf(sc, ni);
2492 
2493 	/* update adapter's configuration */
2494 	sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2495 	/* short preamble/slot time are negotiated when associating */
2496 	sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2497 	    WPI_CONFIG_SHSLOT);
2498 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2499 		sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2500 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2501 		sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2502 	sc->config.filter |= htole32(WPI_FILTER_BSS);
2503 
2504 	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2505 
2506 	DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2507 		    sc->config.flags));
2508 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2509 		    wpi_config), 1);
2510 	if (error != 0) {
2511 		device_printf(sc->sc_dev, "could not update configuration\n");
2512 		ieee80211_free_node(ni);
2513 		return error;
2514 	}
2515 
2516 	error = wpi_set_txpower(sc, ni->ni_chan, 1);
2517 	ieee80211_free_node(ni);
2518 	if (error != 0) {
2519 		device_printf(sc->sc_dev, "could set txpower\n");
2520 		return error;
2521 	}
2522 
2523 	/* link LED always on while associated */
2524 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2525 
2526 	/* start automatic rate control timer */
2527 	callout_reset(&sc->calib_to_callout, 60*hz, wpi_calib_timeout_callout, sc);
2528 
2529 	return (error);
2530 }
2531 
2532 /*
2533  * Send a scan request to the firmware.  Since this command is huge, we map it
2534  * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2535  * much of this code is similar to that in wpi_cmd but because we must manually
2536  * construct the probe & channels, we duplicate what's needed here. XXX In the
2537  * future, this function should be modified to use wpi_cmd to help cleanup the
2538  * code base.
2539  */
2540 static int
2541 wpi_scan(struct wpi_softc *sc)
2542 {
2543 	struct ifnet *ifp = sc->sc_ifp;
2544 	struct ieee80211com *ic = ifp->if_l2com;
2545 	struct ieee80211_scan_state *ss = ic->ic_scan;
2546 	struct wpi_tx_ring *ring = &sc->cmdq;
2547 	struct wpi_tx_desc *desc;
2548 	struct wpi_tx_data *data;
2549 	struct wpi_tx_cmd *cmd;
2550 	struct wpi_scan_hdr *hdr;
2551 	struct wpi_scan_chan *chan;
2552 	struct ieee80211_frame *wh;
2553 	struct ieee80211_rateset *rs;
2554 	struct ieee80211_channel *c;
2555 	enum ieee80211_phymode mode;
2556 	uint8_t *frm;
2557 	int nrates, pktlen, error, i, nssid;
2558 	bus_addr_t physaddr;
2559 
2560 	desc = &ring->desc[ring->cur];
2561 	data = &ring->data[ring->cur];
2562 
2563 	data->m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
2564 	if (data->m == NULL) {
2565 		device_printf(sc->sc_dev,
2566 		    "could not allocate mbuf for scan command\n");
2567 		return ENOMEM;
2568 	}
2569 
2570 	cmd = mtod(data->m, struct wpi_tx_cmd *);
2571 	cmd->code = WPI_CMD_SCAN;
2572 	cmd->flags = 0;
2573 	cmd->qid = ring->qid;
2574 	cmd->idx = ring->cur;
2575 
2576 	hdr = (struct wpi_scan_hdr *)cmd->data;
2577 	memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2578 
2579 	/*
2580 	 * Move to the next channel if no packets are received within 5 msecs
2581 	 * after sending the probe request (this helps to reduce the duration
2582 	 * of active scans).
2583 	 */
2584 	hdr->quiet = htole16(5);
2585 	hdr->threshold = htole16(1);
2586 
2587 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2588 		/* send probe requests at 6Mbps */
2589 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2590 
2591 		/* Enable crc checking */
2592 		hdr->promotion = htole16(1);
2593 	} else {
2594 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2595 		/* send probe requests at 1Mbps */
2596 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2597 	}
2598 	hdr->tx.id = WPI_ID_BROADCAST;
2599 	hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2600 	hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2601 
2602 	memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2603 	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2604 	for (i = 0; i < nssid; i++) {
2605 		hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2606 		hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2607 		memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2608 		    hdr->scan_essids[i].esslen);
2609 #ifdef WPI_DEBUG
2610 		if (wpi_debug & WPI_DEBUG_SCANNING) {
2611 			kprintf("Scanning Essid: ");
2612 			ieee80211_print_essid(hdr->scan_essids[i].essid,
2613 			    hdr->scan_essids[i].esslen);
2614 			kprintf("\n");
2615 		}
2616 #endif
2617 	}
2618 
2619 	/*
2620 	 * Build a probe request frame.  Most of the following code is a
2621 	 * copy & paste of what is done in net80211.
2622 	 */
2623 	wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2624 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2625 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2626 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2627 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2628 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2629 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2630 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2631 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2632 
2633 	frm = (uint8_t *)(wh + 1);
2634 
2635 	/* add essid IE, the hardware will fill this in for us */
2636 	*frm++ = IEEE80211_ELEMID_SSID;
2637 	*frm++ = 0;
2638 
2639 	mode = ieee80211_chan2mode(ic->ic_curchan);
2640 	rs = &ic->ic_sup_rates[mode];
2641 
2642 	/* add supported rates IE */
2643 	*frm++ = IEEE80211_ELEMID_RATES;
2644 	nrates = rs->rs_nrates;
2645 	if (nrates > IEEE80211_RATE_SIZE)
2646 		nrates = IEEE80211_RATE_SIZE;
2647 	*frm++ = nrates;
2648 	memcpy(frm, rs->rs_rates, nrates);
2649 	frm += nrates;
2650 
2651 	/* add supported xrates IE */
2652 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2653 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2654 		*frm++ = IEEE80211_ELEMID_XRATES;
2655 		*frm++ = nrates;
2656 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2657 		frm += nrates;
2658 	}
2659 
2660 	/* setup length of probe request */
2661 	hdr->tx.len = htole16(frm - (uint8_t *)wh);
2662 
2663 	/*
2664 	 * Construct information about the channel that we
2665 	 * want to scan. The firmware expects this to be directly
2666 	 * after the scan probe request
2667 	 */
2668 	c = ic->ic_curchan;
2669 	chan = (struct wpi_scan_chan *)frm;
2670 	chan->chan = ieee80211_chan2ieee(ic, c);
2671 	chan->flags = 0;
2672 	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2673 		chan->flags |= WPI_CHAN_ACTIVE;
2674 		if (nssid != 0)
2675 			chan->flags |= WPI_CHAN_DIRECT;
2676 	}
2677 	chan->gain_dsp = 0x6e; /* Default level */
2678 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2679 		chan->active = htole16(10);
2680 		chan->passive = htole16(ss->ss_maxdwell);
2681 		chan->gain_radio = 0x3b;
2682 	} else {
2683 		chan->active = htole16(20);
2684 		chan->passive = htole16(ss->ss_maxdwell);
2685 		chan->gain_radio = 0x28;
2686 	}
2687 
2688 	DPRINTFN(WPI_DEBUG_SCANNING,
2689 	    ("Scanning %u Passive: %d\n",
2690 	     chan->chan,
2691 	     c->ic_flags & IEEE80211_CHAN_PASSIVE));
2692 
2693 	hdr->nchan++;
2694 	chan++;
2695 
2696 	frm += sizeof (struct wpi_scan_chan);
2697 #if 0
2698 	// XXX All Channels....
2699 	for (c  = &ic->ic_channels[1];
2700 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2701 		if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2702 			continue;
2703 
2704 		chan->chan = ieee80211_chan2ieee(ic, c);
2705 		chan->flags = 0;
2706 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2707 		    chan->flags |= WPI_CHAN_ACTIVE;
2708 		    if (ic->ic_des_ssid[0].len != 0)
2709 			chan->flags |= WPI_CHAN_DIRECT;
2710 		}
2711 		chan->gain_dsp = 0x6e; /* Default level */
2712 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2713 			chan->active = htole16(10);
2714 			chan->passive = htole16(110);
2715 			chan->gain_radio = 0x3b;
2716 		} else {
2717 			chan->active = htole16(20);
2718 			chan->passive = htole16(120);
2719 			chan->gain_radio = 0x28;
2720 		}
2721 
2722 		DPRINTFN(WPI_DEBUG_SCANNING,
2723 			 ("Scanning %u Passive: %d\n",
2724 			  chan->chan,
2725 			  c->ic_flags & IEEE80211_CHAN_PASSIVE));
2726 
2727 		hdr->nchan++;
2728 		chan++;
2729 
2730 		frm += sizeof (struct wpi_scan_chan);
2731 	}
2732 #endif
2733 
2734 	hdr->len = htole16(frm - (uint8_t *)hdr);
2735 	pktlen = frm - (uint8_t *)cmd;
2736 
2737 	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2738 	    wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2739 	if (error != 0) {
2740 		device_printf(sc->sc_dev, "could not map scan command\n");
2741 		m_freem(data->m);
2742 		data->m = NULL;
2743 		return error;
2744 	}
2745 
2746 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2747 	desc->segs[0].addr = htole32(physaddr);
2748 	desc->segs[0].len  = htole32(pktlen);
2749 
2750 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2751 	    BUS_DMASYNC_PREWRITE);
2752 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2753 
2754 	/* kick cmd ring */
2755 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2756 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2757 
2758 	sc->sc_scan_timer = 5;
2759 	return 0;	/* will be notified async. of failure/success */
2760 }
2761 
2762 /**
2763  * Configure the card to listen to a particular channel, this transisions the
2764  * card in to being able to receive frames from remote devices.
2765  */
2766 static int
2767 wpi_config(struct wpi_softc *sc)
2768 {
2769 	struct ifnet *ifp = sc->sc_ifp;
2770 	struct ieee80211com *ic = ifp->if_l2com;
2771 	struct wpi_power power;
2772 	struct wpi_bluetooth bluetooth;
2773 	struct wpi_node_info node;
2774 	int error;
2775 
2776 	/* set power mode */
2777 	memset(&power, 0, sizeof power);
2778 	power.flags = htole32(WPI_POWER_CAM|0x8);
2779 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2780 	if (error != 0) {
2781 		device_printf(sc->sc_dev, "could not set power mode\n");
2782 		return error;
2783 	}
2784 
2785 	/* configure bluetooth coexistence */
2786 	memset(&bluetooth, 0, sizeof bluetooth);
2787 	bluetooth.flags = 3;
2788 	bluetooth.lead = 0xaa;
2789 	bluetooth.kill = 1;
2790 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2791 	    0);
2792 	if (error != 0) {
2793 		device_printf(sc->sc_dev,
2794 		    "could not configure bluetooth coexistence\n");
2795 		return error;
2796 	}
2797 
2798 	/* configure adapter */
2799 	memset(&sc->config, 0, sizeof (struct wpi_config));
2800 	IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2801 	/*set default channel*/
2802 	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2803 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2804 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2805 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2806 		    WPI_CONFIG_24GHZ);
2807 	}
2808 	sc->config.filter = 0;
2809 	switch (ic->ic_opmode) {
2810 	case IEEE80211_M_STA:
2811 	case IEEE80211_M_WDS:	/* No know setup, use STA for now */
2812 		sc->config.mode = WPI_MODE_STA;
2813 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2814 		break;
2815 	case IEEE80211_M_IBSS:
2816 	case IEEE80211_M_AHDEMO:
2817 		sc->config.mode = WPI_MODE_IBSS;
2818 		sc->config.filter |= htole32(WPI_FILTER_BEACON |
2819 					     WPI_FILTER_MULTICAST);
2820 		break;
2821 	case IEEE80211_M_HOSTAP:
2822 		sc->config.mode = WPI_MODE_HOSTAP;
2823 		break;
2824 	case IEEE80211_M_MONITOR:
2825 		sc->config.mode = WPI_MODE_MONITOR;
2826 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2827 			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2828 		break;
2829 	default:
2830 		device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
2831 		return EINVAL;
2832 	}
2833 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2834 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2835 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2836 		sizeof (struct wpi_config), 0);
2837 	if (error != 0) {
2838 		device_printf(sc->sc_dev, "configure command failed\n");
2839 		return error;
2840 	}
2841 
2842 	/* configuration has changed, set Tx power accordingly */
2843 	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2844 	    device_printf(sc->sc_dev, "could not set Tx power\n");
2845 	    return error;
2846 	}
2847 
2848 	/* add broadcast node */
2849 	memset(&node, 0, sizeof node);
2850 	IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2851 	node.id = WPI_ID_BROADCAST;
2852 	node.rate = wpi_plcp_signal(2);
2853 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2854 	if (error != 0) {
2855 		device_printf(sc->sc_dev, "could not add broadcast node\n");
2856 		return error;
2857 	}
2858 
2859 	/* Setup rate scalling */
2860 	error = wpi_mrr_setup(sc);
2861 	if (error != 0) {
2862 		device_printf(sc->sc_dev, "could not setup MRR\n");
2863 		return error;
2864 	}
2865 
2866 	return 0;
2867 }
2868 
2869 static void
2870 wpi_stop_master(struct wpi_softc *sc)
2871 {
2872 	uint32_t tmp;
2873 	int ntries;
2874 
2875 	DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2876 
2877 	tmp = WPI_READ(sc, WPI_RESET);
2878 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2879 
2880 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2881 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2882 		return;	/* already asleep */
2883 
2884 	for (ntries = 0; ntries < 100; ntries++) {
2885 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2886 			break;
2887 		DELAY(10);
2888 	}
2889 	if (ntries == 100) {
2890 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2891 	}
2892 }
2893 
2894 static int
2895 wpi_power_up(struct wpi_softc *sc)
2896 {
2897 	uint32_t tmp;
2898 	int ntries;
2899 
2900 	wpi_mem_lock(sc);
2901 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2902 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2903 	wpi_mem_unlock(sc);
2904 
2905 	for (ntries = 0; ntries < 5000; ntries++) {
2906 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2907 			break;
2908 		DELAY(10);
2909 	}
2910 	if (ntries == 5000) {
2911 		device_printf(sc->sc_dev,
2912 		    "timeout waiting for NIC to power up\n");
2913 		return ETIMEDOUT;
2914 	}
2915 	return 0;
2916 }
2917 
2918 static int
2919 wpi_reset(struct wpi_softc *sc)
2920 {
2921 	uint32_t tmp;
2922 	int ntries;
2923 
2924 	DPRINTFN(WPI_DEBUG_HW,
2925 	    ("Resetting the card - clearing any uploaded firmware\n"));
2926 
2927 	/* clear any pending interrupts */
2928 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2929 
2930 	tmp = WPI_READ(sc, WPI_PLL_CTL);
2931 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2932 
2933 	tmp = WPI_READ(sc, WPI_CHICKEN);
2934 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2935 
2936 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2937 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2938 
2939 	/* wait for clock stabilization */
2940 	for (ntries = 0; ntries < 25000; ntries++) {
2941 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2942 			break;
2943 		DELAY(10);
2944 	}
2945 	if (ntries == 25000) {
2946 		device_printf(sc->sc_dev,
2947 		    "timeout waiting for clock stabilization\n");
2948 		return ETIMEDOUT;
2949 	}
2950 
2951 	/* initialize EEPROM */
2952 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2953 
2954 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2955 		device_printf(sc->sc_dev, "EEPROM not found\n");
2956 		return EIO;
2957 	}
2958 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2959 
2960 	return 0;
2961 }
2962 
2963 static void
2964 wpi_hw_config(struct wpi_softc *sc)
2965 {
2966 	uint32_t rev, hw;
2967 
2968 	/* voodoo from the Linux "driver".. */
2969 	hw = WPI_READ(sc, WPI_HWCONFIG);
2970 
2971 	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2972 	if ((rev & 0xc0) == 0x40)
2973 		hw |= WPI_HW_ALM_MB;
2974 	else if (!(rev & 0x80))
2975 		hw |= WPI_HW_ALM_MM;
2976 
2977 	if (sc->cap == 0x80)
2978 		hw |= WPI_HW_SKU_MRC;
2979 
2980 	hw &= ~WPI_HW_REV_D;
2981 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2982 		hw |= WPI_HW_REV_D;
2983 
2984 	if (sc->type > 1)
2985 		hw |= WPI_HW_TYPE_B;
2986 
2987 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
2988 }
2989 
2990 static void
2991 wpi_rfkill_resume(struct wpi_softc *sc)
2992 {
2993 	struct ifnet *ifp = sc->sc_ifp;
2994 	struct ieee80211com *ic = ifp->if_l2com;
2995 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2996 	int ntries;
2997 
2998 	/* enable firmware again */
2999 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3000 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3001 
3002 	/* wait for thermal sensors to calibrate */
3003 	for (ntries = 0; ntries < 1000; ntries++) {
3004 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3005 			break;
3006 		DELAY(10);
3007 	}
3008 
3009 	if (ntries == 1000) {
3010 		device_printf(sc->sc_dev,
3011 		    "timeout waiting for thermal calibration\n");
3012 		return;
3013 	}
3014 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3015 
3016 	if (wpi_config(sc) != 0) {
3017 		device_printf(sc->sc_dev, "device config failed\n");
3018 		return;
3019 	}
3020 
3021 	ifp->if_flags &= ~IFF_OACTIVE;
3022 	ifp->if_flags |= IFF_RUNNING;
3023 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3024 
3025 	if (vap != NULL) {
3026 		if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3027 			if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3028 				ieee80211_beacon_miss(ic);
3029 				wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3030 			} else
3031 				wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3032 		} else {
3033 			ieee80211_scan_next(vap);
3034 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3035 		}
3036 	}
3037 
3038 	callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
3039 }
3040 
3041 static void
3042 wpi_init_locked(struct wpi_softc *sc, int force)
3043 {
3044 	struct ifnet *ifp = sc->sc_ifp;
3045 	uint32_t tmp;
3046 	int ntries, qid;
3047 
3048 	wpi_stop_locked(sc);
3049 	(void)wpi_reset(sc);
3050 
3051 	wpi_mem_lock(sc);
3052 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3053 	DELAY(20);
3054 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3055 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3056 	wpi_mem_unlock(sc);
3057 
3058 	(void)wpi_power_up(sc);
3059 	wpi_hw_config(sc);
3060 
3061 	/* init Rx ring */
3062 	wpi_mem_lock(sc);
3063 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3064 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3065 	    offsetof(struct wpi_shared, next));
3066 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3067 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3068 	wpi_mem_unlock(sc);
3069 
3070 	/* init Tx rings */
3071 	wpi_mem_lock(sc);
3072 	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3073 	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3074 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3075 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3076 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3077 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3078 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3079 
3080 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3081 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3082 
3083 	for (qid = 0; qid < 6; qid++) {
3084 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3085 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3086 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3087 	}
3088 	wpi_mem_unlock(sc);
3089 
3090 	/* clear "radio off" and "disable command" bits (reversed logic) */
3091 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3092 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3093 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3094 
3095 	/* clear any pending interrupts */
3096 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3097 
3098 	/* enable interrupts */
3099 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3100 
3101 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3102 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3103 
3104 	if ((wpi_load_firmware(sc)) != 0) {
3105 	    device_printf(sc->sc_dev,
3106 		"A problem occurred loading the firmware to the driver\n");
3107 	    return;
3108 	}
3109 
3110 	/* At this point the firmware is up and running. If the hardware
3111 	 * RF switch is turned off thermal calibration will fail, though
3112 	 * the card is still happy to continue to accept commands, catch
3113 	 * this case and schedule a task to watch for it to be turned on.
3114 	 */
3115 	wpi_mem_lock(sc);
3116 	tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3117 	wpi_mem_unlock(sc);
3118 
3119 	if (!(tmp & 0x1)) {
3120 		sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3121 		device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3122 		goto out;
3123 	}
3124 
3125 	/* wait for thermal sensors to calibrate */
3126 	for (ntries = 0; ntries < 1000; ntries++) {
3127 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3128 			break;
3129 		DELAY(10);
3130 	}
3131 
3132 	if (ntries == 1000) {
3133 		device_printf(sc->sc_dev,
3134 		    "timeout waiting for thermal sensors calibration\n");
3135 		return;
3136 	}
3137 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3138 
3139 	if (wpi_config(sc) != 0) {
3140 		device_printf(sc->sc_dev, "device config failed\n");
3141 		return;
3142 	}
3143 
3144 	ifp->if_flags &= ~IFF_OACTIVE;
3145 	ifp->if_flags |= IFF_RUNNING;
3146 out:
3147 	callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
3148 }
3149 
3150 static void
3151 wpi_init(void *arg)
3152 {
3153 	struct wpi_softc *sc = arg;
3154 	struct ifnet *ifp = sc->sc_ifp;
3155 	struct ieee80211com *ic = ifp->if_l2com;
3156 
3157 	wpi_init_locked(sc, 0);
3158 
3159 	if (ifp->if_flags & IFF_RUNNING)
3160 		ieee80211_start_all(ic);		/* start all vaps */
3161 }
3162 
3163 static void
3164 wpi_stop_locked(struct wpi_softc *sc)
3165 {
3166 	struct ifnet *ifp = sc->sc_ifp;
3167 	uint32_t tmp;
3168 	int ac;
3169 
3170 	sc->sc_tx_timer = 0;
3171 	sc->sc_scan_timer = 0;
3172 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3173 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3174 	callout_stop(&sc->watchdog_to_callout);
3175 	callout_stop(&sc->calib_to_callout);
3176 
3177 
3178 	/* disable interrupts */
3179 	WPI_WRITE(sc, WPI_MASK, 0);
3180 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3181 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3182 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3183 
3184 	wpi_mem_lock(sc);
3185 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3186 	wpi_mem_unlock(sc);
3187 
3188 	/* reset all Tx rings */
3189 	for (ac = 0; ac < 4; ac++)
3190 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3191 	wpi_reset_tx_ring(sc, &sc->cmdq);
3192 
3193 	/* reset Rx ring */
3194 	wpi_reset_rx_ring(sc, &sc->rxq);
3195 
3196 	wpi_mem_lock(sc);
3197 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3198 	wpi_mem_unlock(sc);
3199 
3200 	DELAY(5);
3201 
3202 	wpi_stop_master(sc);
3203 
3204 	tmp = WPI_READ(sc, WPI_RESET);
3205 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3206 	sc->flags &= ~WPI_FLAG_BUSY;
3207 }
3208 
3209 static void
3210 wpi_stop(struct wpi_softc *sc)
3211 {
3212 	wpi_stop_locked(sc);
3213 }
3214 
3215 static void
3216 wpi_newassoc(struct ieee80211_node *ni, int isnew)
3217 {
3218 	/* XXX move */
3219 	ieee80211_ratectl_node_init(ni);
3220 }
3221 
3222 static void
3223 wpi_calib_timeout_callout(void *arg)
3224 {
3225 	struct wpi_softc *sc = arg;
3226 	struct ifnet *ifp = sc->sc_ifp;
3227 	struct ieee80211com *ic = ifp->if_l2com;
3228 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3229 	int temp;
3230 
3231 	if (vap->iv_state != IEEE80211_S_RUN)
3232 		return;
3233 
3234 	/* update sensor data */
3235 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3236 	DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3237 
3238 	wpi_power_calibration(sc, temp);
3239 
3240 	callout_reset(&sc->calib_to_callout, 60*hz, wpi_calib_timeout_callout, sc);
3241 }
3242 
3243 /*
3244  * This function is called periodically (every 60 seconds) to adjust output
3245  * power to temperature changes.
3246  */
3247 static void
3248 wpi_power_calibration(struct wpi_softc *sc, int temp)
3249 {
3250 	struct ifnet *ifp = sc->sc_ifp;
3251 	struct ieee80211com *ic = ifp->if_l2com;
3252 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3253 
3254 	/* sanity-check read value */
3255 	if (temp < -260 || temp > 25) {
3256 		/* this can't be correct, ignore */
3257 		DPRINTFN(WPI_DEBUG_TEMP,
3258 		    ("out-of-range temperature reported: %d\n", temp));
3259 		return;
3260 	}
3261 
3262 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3263 
3264 	/* adjust Tx power if need be */
3265 	if (abs(temp - sc->temp) <= 6)
3266 		return;
3267 
3268 	sc->temp = temp;
3269 
3270 	if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3271 		/* just warn, too bad for the automatic calibration... */
3272 		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3273 	}
3274 }
3275 
3276 /**
3277  * Read the eeprom to find out what channels are valid for the given
3278  * band and update net80211 with what we find.
3279  */
3280 static void
3281 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3282 {
3283 	struct ifnet *ifp = sc->sc_ifp;
3284 	struct ieee80211com *ic = ifp->if_l2com;
3285 	const struct wpi_chan_band *band = &wpi_bands[n];
3286 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3287 	struct ieee80211_channel *c;
3288 	int chan, i, passive;
3289 
3290 	wpi_read_prom_data(sc, band->addr, channels,
3291 	    band->nchan * sizeof (struct wpi_eeprom_chan));
3292 
3293 	for (i = 0; i < band->nchan; i++) {
3294 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3295 			DPRINTFN(WPI_DEBUG_HW,
3296 			    ("Channel Not Valid: %d, band %d\n",
3297 			     band->chan[i],n));
3298 			continue;
3299 		}
3300 
3301 		passive = 0;
3302 		chan = band->chan[i];
3303 		c = &ic->ic_channels[ic->ic_nchans++];
3304 
3305 		/* is active scan allowed on this channel? */
3306 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3307 			passive = IEEE80211_CHAN_PASSIVE;
3308 		}
3309 
3310 		if (n == 0) {	/* 2GHz band */
3311 			c->ic_ieee = chan;
3312 			c->ic_freq = ieee80211_ieee2mhz(chan,
3313 			    IEEE80211_CHAN_2GHZ);
3314 			c->ic_flags = IEEE80211_CHAN_B | passive;
3315 
3316 			c = &ic->ic_channels[ic->ic_nchans++];
3317 			c->ic_ieee = chan;
3318 			c->ic_freq = ieee80211_ieee2mhz(chan,
3319 			    IEEE80211_CHAN_2GHZ);
3320 			c->ic_flags = IEEE80211_CHAN_G | passive;
3321 
3322 		} else {	/* 5GHz band */
3323 			/*
3324 			 * Some 3945ABG adapters support channels 7, 8, 11
3325 			 * and 12 in the 2GHz *and* 5GHz bands.
3326 			 * Because of limitations in our net80211(9) stack,
3327 			 * we can't support these channels in 5GHz band.
3328 			 * XXX not true; just need to map to proper frequency
3329 			 */
3330 			if (chan <= 14)
3331 				continue;
3332 
3333 			c->ic_ieee = chan;
3334 			c->ic_freq = ieee80211_ieee2mhz(chan,
3335 			    IEEE80211_CHAN_5GHZ);
3336 			c->ic_flags = IEEE80211_CHAN_A | passive;
3337 		}
3338 
3339 		/* save maximum allowed power for this channel */
3340 		sc->maxpwr[chan] = channels[i].maxpwr;
3341 
3342 #if 0
3343 		// XXX We can probably use this an get rid of maxpwr - ben 20070617
3344 		ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3345 		//ic->ic_channels[chan].ic_minpower...
3346 		//ic->ic_channels[chan].ic_maxregtxpower...
3347 #endif
3348 
3349 		DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3350 		    " passive=%d, offset %d\n", chan, c->ic_freq,
3351 		    channels[i].flags, sc->maxpwr[chan],
3352 		    (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3353 		    ic->ic_nchans));
3354 	}
3355 }
3356 
3357 static void
3358 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3359 {
3360 	struct wpi_power_group *group = &sc->groups[n];
3361 	struct wpi_eeprom_group rgroup;
3362 	int i;
3363 
3364 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3365 	    sizeof rgroup);
3366 
3367 	/* save power group information */
3368 	group->chan   = rgroup.chan;
3369 	group->maxpwr = rgroup.maxpwr;
3370 	/* temperature at which the samples were taken */
3371 	group->temp   = (int16_t)le16toh(rgroup.temp);
3372 
3373 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3374 		    group->chan, group->maxpwr, group->temp));
3375 
3376 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3377 		group->samples[i].index = rgroup.samples[i].index;
3378 		group->samples[i].power = rgroup.samples[i].power;
3379 
3380 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3381 			    group->samples[i].index, group->samples[i].power));
3382 	}
3383 }
3384 
3385 /*
3386  * Update Tx power to match what is defined for channel `c'.
3387  */
3388 static int
3389 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3390 {
3391 	struct ifnet *ifp = sc->sc_ifp;
3392 	struct ieee80211com *ic = ifp->if_l2com;
3393 	struct wpi_power_group *group;
3394 	struct wpi_cmd_txpower txpower;
3395 	u_int chan;
3396 	int i;
3397 
3398 	/* get channel number */
3399 	chan = ieee80211_chan2ieee(ic, c);
3400 
3401 	/* find the power group to which this channel belongs */
3402 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3403 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3404 			if (chan <= group->chan)
3405 				break;
3406 	} else
3407 		group = &sc->groups[0];
3408 
3409 	memset(&txpower, 0, sizeof txpower);
3410 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3411 	txpower.channel = htole16(chan);
3412 
3413 	/* set Tx power for all OFDM and CCK rates */
3414 	for (i = 0; i <= 11 ; i++) {
3415 		/* retrieve Tx power for this channel/rate combination */
3416 		int idx = wpi_get_power_index(sc, group, c,
3417 		    wpi_ridx_to_rate[i]);
3418 
3419 		txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3420 
3421 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3422 			txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3423 			txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3424 		} else {
3425 			txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3426 			txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3427 		}
3428 		DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3429 			    chan, wpi_ridx_to_rate[i], idx));
3430 	}
3431 
3432 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3433 }
3434 
3435 /*
3436  * Determine Tx power index for a given channel/rate combination.
3437  * This takes into account the regulatory information from EEPROM and the
3438  * current temperature.
3439  */
3440 static int
3441 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3442     struct ieee80211_channel *c, int rate)
3443 {
3444 /* fixed-point arithmetic division using a n-bit fractional part */
3445 #define fdivround(a, b, n)      \
3446 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3447 
3448 /* linear interpolation */
3449 #define interpolate(x, x1, y1, x2, y2, n)       \
3450 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3451 
3452 	struct ifnet *ifp = sc->sc_ifp;
3453 	struct ieee80211com *ic = ifp->if_l2com;
3454 	struct wpi_power_sample *sample;
3455 	int pwr, idx;
3456 	u_int chan;
3457 
3458 	/* get channel number */
3459 	chan = ieee80211_chan2ieee(ic, c);
3460 
3461 	/* default power is group's maximum power - 3dB */
3462 	pwr = group->maxpwr / 2;
3463 
3464 	/* decrease power for highest OFDM rates to reduce distortion */
3465 	switch (rate) {
3466 		case 72:	/* 36Mb/s */
3467 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3468 			break;
3469 		case 96:	/* 48Mb/s */
3470 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3471 			break;
3472 		case 108:	/* 54Mb/s */
3473 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3474 			break;
3475 	}
3476 
3477 	/* never exceed channel's maximum allowed Tx power */
3478 	pwr = min(pwr, sc->maxpwr[chan]);
3479 
3480 	/* retrieve power index into gain tables from samples */
3481 	for (sample = group->samples; sample < &group->samples[3]; sample++)
3482 		if (pwr > sample[1].power)
3483 			break;
3484 	/* fixed-point linear interpolation using a 19-bit fractional part */
3485 	idx = interpolate(pwr, sample[0].power, sample[0].index,
3486 	    sample[1].power, sample[1].index, 19);
3487 
3488 	/*
3489 	 *  Adjust power index based on current temperature
3490 	 *	- if colder than factory-calibrated: decreate output power
3491 	 *	- if warmer than factory-calibrated: increase output power
3492 	 */
3493 	idx -= (sc->temp - group->temp) * 11 / 100;
3494 
3495 	/* decrease power for CCK rates (-5dB) */
3496 	if (!WPI_RATE_IS_OFDM(rate))
3497 		idx += 10;
3498 
3499 	/* keep power index in a valid range */
3500 	if (idx < 0)
3501 		return 0;
3502 	if (idx > WPI_MAX_PWR_INDEX)
3503 		return WPI_MAX_PWR_INDEX;
3504 	return idx;
3505 
3506 #undef interpolate
3507 #undef fdivround
3508 }
3509 
3510 /**
3511  * Called by net80211 framework to indicate that a scan
3512  * is starting. This function doesn't actually do the scan,
3513  * wpi_scan_curchan starts things off. This function is more
3514  * of an early warning from the framework we should get ready
3515  * for the scan.
3516  */
3517 static void
3518 wpi_scan_start(struct ieee80211com *ic)
3519 {
3520 	struct ifnet *ifp = ic->ic_ifp;
3521 	struct wpi_softc *sc = ifp->if_softc;
3522 
3523 	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3524 }
3525 
3526 /**
3527  * Called by the net80211 framework, indicates that the
3528  * scan has ended. If there is a scan in progress on the card
3529  * then it should be aborted.
3530  */
3531 static void
3532 wpi_scan_end(struct ieee80211com *ic)
3533 {
3534 	/* XXX ignore */
3535 }
3536 
3537 /**
3538  * Called by the net80211 framework to indicate to the driver
3539  * that the channel should be changed
3540  */
3541 static void
3542 wpi_set_channel(struct ieee80211com *ic)
3543 {
3544 	struct ifnet *ifp = ic->ic_ifp;
3545 	struct wpi_softc *sc = ifp->if_softc;
3546 	int error;
3547 
3548 	/*
3549 	 * Only need to set the channel in Monitor mode. AP scanning and auth
3550 	 * are already taken care of by their respective firmware commands.
3551 	 */
3552 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3553 		error = wpi_config(sc);
3554 		if (error != 0)
3555 			device_printf(sc->sc_dev,
3556 			    "error %d settting channel\n", error);
3557 	}
3558 }
3559 
3560 /**
3561  * Called by net80211 to indicate that we need to scan the current
3562  * channel. The channel is previously be set via the wpi_set_channel
3563  * callback.
3564  */
3565 static void
3566 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3567 {
3568 	struct ieee80211vap *vap = ss->ss_vap;
3569 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3570 	struct wpi_softc *sc = ifp->if_softc;
3571 
3572 	if (wpi_scan(sc))
3573 		ieee80211_cancel_scan(vap);
3574 }
3575 
3576 /**
3577  * Called by the net80211 framework to indicate
3578  * the minimum dwell time has been met, terminate the scan.
3579  * We don't actually terminate the scan as the firmware will notify
3580  * us when it's finished and we have no way to interrupt it.
3581  */
3582 static void
3583 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3584 {
3585 	/* NB: don't try to abort scan; wait for firmware to finish */
3586 }
3587 
3588 static void
3589 wpi_hwreset_task(void *arg, int pending)
3590 {
3591 	struct wpi_softc *sc;
3592 
3593 	wlan_serialize_enter();
3594 	sc = arg;
3595 	wpi_init_locked(sc, 0);
3596 	wlan_serialize_exit();
3597 }
3598 
3599 static void
3600 wpi_rfreset_task(void *arg, int pending)
3601 {
3602 	struct wpi_softc *sc;
3603 
3604 	wlan_serialize_enter();
3605 	sc = arg;
3606 	wpi_rfkill_resume(sc);
3607 	wlan_serialize_exit();
3608 }
3609 
3610 /*
3611  * Allocate DMA-safe memory for firmware transfer.
3612  */
3613 static int
3614 wpi_alloc_fwmem(struct wpi_softc *sc)
3615 {
3616 	/* allocate enough contiguous space to store text and data */
3617 	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3618 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3619 	    BUS_DMA_NOWAIT);
3620 }
3621 
3622 static void
3623 wpi_free_fwmem(struct wpi_softc *sc)
3624 {
3625 	wpi_dma_contig_free(&sc->fw_dma);
3626 }
3627 
3628 /**
3629  * Called every second, wpi_watchdog_callout used by the watch dog timer
3630  * to check that the card is still alive
3631  */
3632 static void
3633 wpi_watchdog_callout(void *arg)
3634 {
3635 	struct wpi_softc *sc;
3636 	struct ifnet *ifp;
3637 	struct ieee80211com *ic;
3638 	uint32_t tmp;
3639 
3640 	wlan_serialize_enter();
3641 	sc = arg;
3642 	ifp = sc->sc_ifp;
3643 	ic = ifp->if_l2com;
3644 	DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3645 
3646 	if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3647 		/* No need to lock firmware memory */
3648 		tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3649 
3650 		if ((tmp & 0x1) == 0) {
3651 			/* Radio kill switch is still off */
3652 			callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
3653 			wlan_serialize_exit();
3654 			return;
3655 		}
3656 
3657 		device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3658 		ieee80211_runtask(ic, &sc->sc_radiotask);
3659 		wlan_serialize_exit();
3660 		return;
3661 	}
3662 
3663 	if (sc->sc_tx_timer > 0) {
3664 		if (--sc->sc_tx_timer == 0) {
3665 			device_printf(sc->sc_dev,"device timeout\n");
3666 			ifp->if_oerrors++;
3667 			wlan_serialize_exit();
3668 			ieee80211_runtask(ic, &sc->sc_restarttask);
3669 			wlan_serialize_enter();
3670 		}
3671 	}
3672 	if (sc->sc_scan_timer > 0) {
3673 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3674 		if (--sc->sc_scan_timer == 0 && vap != NULL) {
3675 			device_printf(sc->sc_dev,"scan timeout\n");
3676 			ieee80211_cancel_scan(vap);
3677 			wlan_serialize_exit();
3678 			ieee80211_runtask(ic, &sc->sc_restarttask);
3679 			wlan_serialize_enter();
3680 		}
3681 	}
3682 
3683 	if (ifp->if_flags & IFF_RUNNING)
3684 		callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
3685 
3686 	wlan_serialize_exit();
3687 }
3688 
3689 #ifdef WPI_DEBUG
3690 static const char *wpi_cmd_str(int cmd)
3691 {
3692 	switch (cmd) {
3693 	case WPI_DISABLE_CMD:	return "WPI_DISABLE_CMD";
3694 	case WPI_CMD_CONFIGURE:	return "WPI_CMD_CONFIGURE";
3695 	case WPI_CMD_ASSOCIATE:	return "WPI_CMD_ASSOCIATE";
3696 	case WPI_CMD_SET_WME:	return "WPI_CMD_SET_WME";
3697 	case WPI_CMD_TSF:	return "WPI_CMD_TSF";
3698 	case WPI_CMD_ADD_NODE:	return "WPI_CMD_ADD_NODE";
3699 	case WPI_CMD_TX_DATA:	return "WPI_CMD_TX_DATA";
3700 	case WPI_CMD_MRR_SETUP:	return "WPI_CMD_MRR_SETUP";
3701 	case WPI_CMD_SET_LED:	return "WPI_CMD_SET_LED";
3702 	case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3703 	case WPI_CMD_SCAN:	return "WPI_CMD_SCAN";
3704 	case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3705 	case WPI_CMD_TXPOWER:	return "WPI_CMD_TXPOWER";
3706 	case WPI_CMD_BLUETOOTH:	return "WPI_CMD_BLUETOOTH";
3707 
3708 	default:
3709 		KASSERT(1, ("Unknown Command: %d\n", cmd));
3710 		return "UNKNOWN CMD";	/* Make the compiler happy */
3711 	}
3712 }
3713 #endif
3714 
3715 MODULE_DEPEND(wpi, pci,  1, 1, 1);
3716 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3717 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3718 MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1);
3719