xref: /dragonfly/sys/dev/netif/xl/if_xl.c (revision 783d47c4)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_xl.c,v 1.72.2.28 2003/10/08 06:01:57 murray Exp $
33  */
34 
35 /*
36  * 3Com 3c90x Etherlink XL PCI NIC driver
37  *
38  * Supports the 3Com "boomerang", "cyclone" and "hurricane" PCI
39  * bus-master chips (3c90x cards and embedded controllers) including
40  * the following:
41  *
42  * 3Com 3c900-TPO	10Mbps/RJ-45
43  * 3Com 3c900-COMBO	10Mbps/RJ-45,AUI,BNC
44  * 3Com 3c905-TX	10/100Mbps/RJ-45
45  * 3Com 3c905-T4	10/100Mbps/RJ-45
46  * 3Com 3c900B-TPO	10Mbps/RJ-45
47  * 3Com 3c900B-COMBO	10Mbps/RJ-45,AUI,BNC
48  * 3Com 3c900B-TPC	10Mbps/RJ-45,BNC
49  * 3Com 3c900B-FL	10Mbps/Fiber-optic
50  * 3Com 3c905B-COMBO	10/100Mbps/RJ-45,AUI,BNC
51  * 3Com 3c905B-TX	10/100Mbps/RJ-45
52  * 3Com 3c905B-FL/FX	10/100Mbps/Fiber-optic
53  * 3Com 3c905C-TX	10/100Mbps/RJ-45 (Tornado ASIC)
54  * 3Com 3c980-TX	10/100Mbps server adapter (Hurricane ASIC)
55  * 3Com 3c980C-TX	10/100Mbps server adapter (Tornado ASIC)
56  * 3Com 3cSOHO100-TX	10/100Mbps/RJ-45 (Hurricane ASIC)
57  * 3Com 3c450-TX	10/100Mbps/RJ-45 (Tornado ASIC)
58  * 3Com 3c555		10/100Mbps/RJ-45 (MiniPCI, Laptop Hurricane)
59  * 3Com 3c556		10/100Mbps/RJ-45 (MiniPCI, Hurricane ASIC)
60  * 3Com 3c556B		10/100Mbps/RJ-45 (MiniPCI, Hurricane ASIC)
61  * 3Com 3c575TX		10/100Mbps/RJ-45 (Cardbus, Hurricane ASIC)
62  * 3Com 3c575B		10/100Mbps/RJ-45 (Cardbus, Hurricane ASIC)
63  * 3Com 3c575C		10/100Mbps/RJ-45 (Cardbus, Hurricane ASIC)
64  * 3Com 3cxfem656	10/100Mbps/RJ-45 (Cardbus, Hurricane ASIC)
65  * 3Com 3cxfem656b	10/100Mbps/RJ-45 (Cardbus, Hurricane ASIC)
66  * 3Com 3cxfem656c	10/100Mbps/RJ-45 (Cardbus, Tornado ASIC)
67  * Dell Optiplex GX1 on-board 3c918 10/100Mbps/RJ-45
68  * Dell on-board 3c920 10/100Mbps/RJ-45
69  * Dell Precision on-board 3c905B 10/100Mbps/RJ-45
70  * Dell Latitude laptop docking station embedded 3c905-TX
71  *
72  * Written by Bill Paul <wpaul@ctr.columbia.edu>
73  * Electrical Engineering Department
74  * Columbia University, New York City
75  */
76 
77 /*
78  * The 3c90x series chips use a bus-master DMA interface for transfering
79  * packets to and from the controller chip. Some of the "vortex" cards
80  * (3c59x) also supported a bus master mode, however for those chips
81  * you could only DMA packets to/from a contiguous memory buffer. For
82  * transmission this would mean copying the contents of the queued mbuf
83  * chain into an mbuf cluster and then DMAing the cluster. This extra
84  * copy would sort of defeat the purpose of the bus master support for
85  * any packet that doesn't fit into a single mbuf.
86  *
87  * By contrast, the 3c90x cards support a fragment-based bus master
88  * mode where mbuf chains can be encapsulated using TX descriptors.
89  * This is similar to other PCI chips such as the Texas Instruments
90  * ThunderLAN and the Intel 82557/82558.
91  *
92  * The "vortex" driver (if_vx.c) happens to work for the "boomerang"
93  * bus master chips because they maintain the old PIO interface for
94  * backwards compatibility, but starting with the 3c905B and the
95  * "cyclone" chips, the compatibility interface has been dropped.
96  * Since using bus master DMA is a big win, we use this driver to
97  * support the PCI "boomerang" chips even though they work with the
98  * "vortex" driver in order to obtain better performance.
99  */
100 
101 #include "opt_polling.h"
102 
103 #include <sys/param.h>
104 #include <sys/systm.h>
105 #include <sys/sockio.h>
106 #include <sys/endian.h>
107 #include <sys/mbuf.h>
108 #include <sys/kernel.h>
109 #include <sys/socket.h>
110 #include <sys/serialize.h>
111 #include <sys/bus.h>
112 #include <sys/rman.h>
113 #include <sys/thread2.h>
114 #include <sys/interrupt.h>
115 
116 #include <net/if.h>
117 #include <net/ifq_var.h>
118 #include <net/if_arp.h>
119 #include <net/ethernet.h>
120 #include <net/if_dl.h>
121 #include <net/if_media.h>
122 #include <net/vlan/if_vlan_var.h>
123 
124 #include <net/bpf.h>
125 
126 #include "../mii_layer/mii.h"
127 #include "../mii_layer/miivar.h"
128 
129 #include <bus/pci/pcireg.h>
130 #include <bus/pci/pcivar.h>
131 
132 /* "controller miibus0" required.  See GENERIC if you get errors here. */
133 #include "miibus_if.h"
134 
135 #include "if_xlreg.h"
136 
137 #define XL905B_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
138 
139 /*
140  * Various supported device vendors/types and their names.
141  */
142 static struct xl_type xl_devs[] = {
143 	{ TC_VENDORID, TC_DEVICEID_BOOMERANG_10BT,
144 		"3Com 3c900-TPO Etherlink XL" },
145 	{ TC_VENDORID, TC_DEVICEID_BOOMERANG_10BT_COMBO,
146 		"3Com 3c900-COMBO Etherlink XL" },
147 	{ TC_VENDORID, TC_DEVICEID_BOOMERANG_10_100BT,
148 		"3Com 3c905-TX Fast Etherlink XL" },
149 	{ TC_VENDORID, TC_DEVICEID_BOOMERANG_100BT4,
150 		"3Com 3c905-T4 Fast Etherlink XL" },
151 	{ TC_VENDORID, TC_DEVICEID_KRAKATOA_10BT,
152 		"3Com 3c900B-TPO Etherlink XL" },
153 	{ TC_VENDORID, TC_DEVICEID_KRAKATOA_10BT_COMBO,
154 		"3Com 3c900B-COMBO Etherlink XL" },
155 	{ TC_VENDORID, TC_DEVICEID_KRAKATOA_10BT_TPC,
156 		"3Com 3c900B-TPC Etherlink XL" },
157 	{ TC_VENDORID, TC_DEVICEID_CYCLONE_10FL,
158 		"3Com 3c900B-FL Etherlink XL" },
159 	{ TC_VENDORID, TC_DEVICEID_HURRICANE_10_100BT,
160 		"3Com 3c905B-TX Fast Etherlink XL" },
161 	{ TC_VENDORID, TC_DEVICEID_CYCLONE_10_100BT4,
162 		"3Com 3c905B-T4 Fast Etherlink XL" },
163 	{ TC_VENDORID, TC_DEVICEID_CYCLONE_10_100FX,
164 		"3Com 3c905B-FX/SC Fast Etherlink XL" },
165 	{ TC_VENDORID, TC_DEVICEID_CYCLONE_10_100_COMBO,
166 		"3Com 3c905B-COMBO Fast Etherlink XL" },
167 	{ TC_VENDORID, TC_DEVICEID_TORNADO_10_100BT,
168 		"3Com 3c905C-TX Fast Etherlink XL" },
169 	{ TC_VENDORID, TC_DEVICEID_TORNADO_10_100BT_920B,
170 		"3Com 3c920B-EMB Integrated Fast Etherlink XL" },
171 	{ TC_VENDORID, TC_DEVICEID_HURRICANE_10_100BT_SERV,
172 		"3Com 3c980 Fast Etherlink XL" },
173 	{ TC_VENDORID, TC_DEVICEID_TORNADO_10_100BT_SERV,
174 		"3Com 3c980C Fast Etherlink XL" },
175 	{ TC_VENDORID, TC_DEVICEID_HURRICANE_SOHO100TX,
176 		"3Com 3cSOHO100-TX OfficeConnect" },
177 	{ TC_VENDORID, TC_DEVICEID_TORNADO_HOMECONNECT,
178 		"3Com 3c450-TX HomeConnect" },
179 	{ TC_VENDORID, TC_DEVICEID_HURRICANE_555,
180 		"3Com 3c555 Fast Etherlink XL" },
181 	{ TC_VENDORID, TC_DEVICEID_HURRICANE_556,
182 		"3Com 3c556 Fast Etherlink XL" },
183 	{ TC_VENDORID, TC_DEVICEID_HURRICANE_556B,
184 		"3Com 3c556B Fast Etherlink XL" },
185 	{ TC_VENDORID, TC_DEVICEID_HURRICANE_575A,
186 		"3Com 3c575TX Fast Etherlink XL" },
187 	{ TC_VENDORID, TC_DEVICEID_HURRICANE_575B,
188 		"3Com 3c575B Fast Etherlink XL" },
189 	{ TC_VENDORID, TC_DEVICEID_HURRICANE_575C,
190 		"3Com 3c575C Fast Etherlink XL" },
191 	{ TC_VENDORID, TC_DEVICEID_HURRICANE_656,
192 		"3Com 3c656 Fast Etherlink XL" },
193 	{ TC_VENDORID, TC_DEVICEID_HURRICANE_656B,
194 		"3Com 3c656B Fast Etherlink XL" },
195 	{ TC_VENDORID, TC_DEVICEID_TORNADO_656C,
196 		"3Com 3c656C Fast Etherlink XL" },
197 	{ 0, 0, NULL }
198 };
199 
200 static int xl_probe		(device_t);
201 static int xl_attach		(device_t);
202 static int xl_detach		(device_t);
203 static void xl_shutdown		(device_t);
204 static int xl_suspend		(device_t);
205 static int xl_resume		(device_t);
206 
207 static int xl_newbuf		(struct xl_softc *, struct xl_chain_onefrag *,
208 				 int);
209 static void xl_stats_update	(void *);
210 static void xl_stats_update_serialized(void *);
211 static int xl_encap		(struct xl_softc *, struct xl_chain *,
212 						struct mbuf *);
213 static void xl_rxeof		(struct xl_softc *, int);
214 static int xl_rx_resync		(struct xl_softc *);
215 static void xl_txeof		(struct xl_softc *);
216 static void xl_txeof_90xB	(struct xl_softc *);
217 static void xl_txeoc		(struct xl_softc *);
218 static void xl_intr		(void *);
219 static void xl_start_body	(struct ifnet *, int);
220 static void xl_start		(struct ifnet *);
221 static void xl_start_90xB	(struct ifnet *);
222 static int xl_ioctl		(struct ifnet *, u_long, caddr_t,
223 						struct ucred *);
224 static void xl_init		(void *);
225 static void xl_stop		(struct xl_softc *);
226 static void xl_watchdog		(struct ifnet *);
227 #ifdef DEVICE_POLLING
228 static void xl_start_poll	(struct ifnet *);
229 static void xl_poll		(struct ifnet *, enum poll_cmd, int);
230 #endif
231 static void xl_enable_intrs	(struct xl_softc *, uint16_t);
232 
233 static int xl_ifmedia_upd	(struct ifnet *);
234 static void xl_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
235 
236 static int xl_eeprom_wait	(struct xl_softc *);
237 static int xl_read_eeprom	(struct xl_softc *, caddr_t, int, int, int);
238 static void xl_mii_sync		(struct xl_softc *);
239 static void xl_mii_send		(struct xl_softc *, u_int32_t, int);
240 static int xl_mii_readreg	(struct xl_softc *, struct xl_mii_frame *);
241 static int xl_mii_writereg	(struct xl_softc *, struct xl_mii_frame *);
242 
243 static void xl_setcfg		(struct xl_softc *);
244 static void xl_setmode		(struct xl_softc *, int);
245 static void xl_setmulti		(struct xl_softc *);
246 static void xl_setmulti_hash	(struct xl_softc *);
247 static void xl_reset		(struct xl_softc *);
248 static int xl_list_rx_init	(struct xl_softc *);
249 static void xl_list_tx_init	(struct xl_softc *);
250 static void xl_list_tx_init_90xB(struct xl_softc *);
251 static void xl_wait		(struct xl_softc *);
252 static void xl_mediacheck	(struct xl_softc *);
253 static void xl_choose_xcvr	(struct xl_softc *, int);
254 
255 static int xl_dma_alloc		(device_t);
256 static void xl_dma_free		(device_t);
257 
258 #ifdef notdef
259 static void xl_testpacket	(struct xl_softc *);
260 #endif
261 
262 static int xl_miibus_readreg	(device_t, int, int);
263 static int xl_miibus_writereg	(device_t, int, int, int);
264 static void xl_miibus_statchg	(device_t);
265 static void xl_miibus_mediainit	(device_t);
266 
267 static device_method_t xl_methods[] = {
268 	/* Device interface */
269 	DEVMETHOD(device_probe,		xl_probe),
270 	DEVMETHOD(device_attach,	xl_attach),
271 	DEVMETHOD(device_detach,	xl_detach),
272 	DEVMETHOD(device_shutdown,	xl_shutdown),
273 	DEVMETHOD(device_suspend,	xl_suspend),
274 	DEVMETHOD(device_resume,	xl_resume),
275 
276 	/* bus interface */
277 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
278 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
279 
280 	/* MII interface */
281 	DEVMETHOD(miibus_readreg,	xl_miibus_readreg),
282 	DEVMETHOD(miibus_writereg,	xl_miibus_writereg),
283 	DEVMETHOD(miibus_statchg,	xl_miibus_statchg),
284 	DEVMETHOD(miibus_mediainit,	xl_miibus_mediainit),
285 
286 	{ 0, 0 }
287 };
288 
289 static driver_t xl_driver = {
290 	"xl",
291 	xl_methods,
292 	sizeof(struct xl_softc)
293 };
294 
295 static devclass_t xl_devclass;
296 
297 DECLARE_DUMMY_MODULE(if_xl);
298 MODULE_DEPEND(if_xl, miibus, 1, 1, 1);
299 DRIVER_MODULE(if_xl, pci, xl_driver, xl_devclass, NULL, NULL);
300 DRIVER_MODULE(if_xl, cardbus, xl_driver, xl_devclass, NULL, NULL);
301 DRIVER_MODULE(miibus, xl, miibus_driver, miibus_devclass, NULL, NULL);
302 
303 static void
304 xl_enable_intrs(struct xl_softc *sc, uint16_t intrs)
305 {
306 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ACK | 0xFF);
307 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ENB | intrs);
308 	if (sc->xl_flags & XL_FLAG_FUNCREG)
309 		bus_space_write_4(sc->xl_ftag, sc->xl_fhandle, 4, 0x8000);
310 }
311 
312 /*
313  * Murphy's law says that it's possible the chip can wedge and
314  * the 'command in progress' bit may never clear. Hence, we wait
315  * only a finite amount of time to avoid getting caught in an
316  * infinite loop. Normally this delay routine would be a macro,
317  * but it isn't called during normal operation so we can afford
318  * to make it a function.
319  */
320 static void
321 xl_wait(struct xl_softc *sc)
322 {
323 	int		i;
324 
325 	for (i = 0; i < XL_TIMEOUT; i++) {
326 		if (!(CSR_READ_2(sc, XL_STATUS) & XL_STAT_CMDBUSY))
327 			break;
328 	}
329 
330 	if (i == XL_TIMEOUT)
331 		if_printf(&sc->arpcom.ac_if, "command never completed!");
332 
333 	return;
334 }
335 
336 /*
337  * MII access routines are provided for adapters with external
338  * PHYs (3c905-TX, 3c905-T4, 3c905B-T4) and those with built-in
339  * autoneg logic that's faked up to look like a PHY (3c905B-TX).
340  * Note: if you don't perform the MDIO operations just right,
341  * it's possible to end up with code that works correctly with
342  * some chips/CPUs/processor speeds/bus speeds/etc but not
343  * with others.
344  */
345 #define MII_SET(x)					\
346 	CSR_WRITE_2(sc, XL_W4_PHY_MGMT,			\
347 		CSR_READ_2(sc, XL_W4_PHY_MGMT) | (x))
348 
349 #define MII_CLR(x)					\
350 	CSR_WRITE_2(sc, XL_W4_PHY_MGMT,			\
351 		CSR_READ_2(sc, XL_W4_PHY_MGMT) & ~(x))
352 
353 /*
354  * Sync the PHYs by setting data bit and strobing the clock 32 times.
355  */
356 static void
357 xl_mii_sync(struct xl_softc *sc)
358 {
359 	int		i;
360 
361 	XL_SEL_WIN(4);
362 	MII_SET(XL_MII_DIR|XL_MII_DATA);
363 
364 	for (i = 0; i < 32; i++) {
365 		MII_SET(XL_MII_CLK);
366 		MII_SET(XL_MII_DATA);
367 		MII_SET(XL_MII_DATA);
368 		MII_CLR(XL_MII_CLK);
369 		MII_SET(XL_MII_DATA);
370 		MII_SET(XL_MII_DATA);
371 	}
372 
373 	return;
374 }
375 
376 /*
377  * Clock a series of bits through the MII.
378  */
379 static void
380 xl_mii_send(struct xl_softc *sc, u_int32_t bits, int cnt)
381 {
382 	int			i;
383 
384 	XL_SEL_WIN(4);
385 	MII_CLR(XL_MII_CLK);
386 
387 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
388                 if (bits & i) {
389 			MII_SET(XL_MII_DATA);
390                 } else {
391 			MII_CLR(XL_MII_DATA);
392                 }
393 		MII_CLR(XL_MII_CLK);
394 		MII_SET(XL_MII_CLK);
395 	}
396 }
397 
398 /*
399  * Read an PHY register through the MII.
400  */
401 static int
402 xl_mii_readreg(struct xl_softc *sc, struct xl_mii_frame *frame)
403 {
404 	int			i, ack;
405 
406 	/*
407 	 * Set up frame for RX.
408 	 */
409 	frame->mii_stdelim = XL_MII_STARTDELIM;
410 	frame->mii_opcode = XL_MII_READOP;
411 	frame->mii_turnaround = 0;
412 	frame->mii_data = 0;
413 
414 	/*
415 	 * Select register window 4.
416 	 */
417 
418 	XL_SEL_WIN(4);
419 
420 	CSR_WRITE_2(sc, XL_W4_PHY_MGMT, 0);
421 	/*
422  	 * Turn on data xmit.
423 	 */
424 	MII_SET(XL_MII_DIR);
425 
426 	xl_mii_sync(sc);
427 
428 	/*
429 	 * Send command/address info.
430 	 */
431 	xl_mii_send(sc, frame->mii_stdelim, 2);
432 	xl_mii_send(sc, frame->mii_opcode, 2);
433 	xl_mii_send(sc, frame->mii_phyaddr, 5);
434 	xl_mii_send(sc, frame->mii_regaddr, 5);
435 
436 	/* Idle bit */
437 	MII_CLR((XL_MII_CLK|XL_MII_DATA));
438 	MII_SET(XL_MII_CLK);
439 
440 	/* Turn off xmit. */
441 	MII_CLR(XL_MII_DIR);
442 
443 	/* Check for ack */
444 	MII_CLR(XL_MII_CLK);
445 	ack = CSR_READ_2(sc, XL_W4_PHY_MGMT) & XL_MII_DATA;
446 	MII_SET(XL_MII_CLK);
447 
448 	/*
449 	 * Now try reading data bits. If the ack failed, we still
450 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
451 	 */
452 	if (ack) {
453 		for(i = 0; i < 16; i++) {
454 			MII_CLR(XL_MII_CLK);
455 			MII_SET(XL_MII_CLK);
456 		}
457 		goto fail;
458 	}
459 
460 	for (i = 0x8000; i; i >>= 1) {
461 		MII_CLR(XL_MII_CLK);
462 		if (!ack) {
463 			if (CSR_READ_2(sc, XL_W4_PHY_MGMT) & XL_MII_DATA)
464 				frame->mii_data |= i;
465 		}
466 		MII_SET(XL_MII_CLK);
467 	}
468 
469 fail:
470 
471 	MII_CLR(XL_MII_CLK);
472 	MII_SET(XL_MII_CLK);
473 
474 	if (ack)
475 		return(1);
476 	return(0);
477 }
478 
479 /*
480  * Write to a PHY register through the MII.
481  */
482 static int
483 xl_mii_writereg(struct xl_softc *sc, struct xl_mii_frame *frame)
484 {
485 	/*
486 	 * Set up frame for TX.
487 	 */
488 
489 	frame->mii_stdelim = XL_MII_STARTDELIM;
490 	frame->mii_opcode = XL_MII_WRITEOP;
491 	frame->mii_turnaround = XL_MII_TURNAROUND;
492 
493 	/*
494 	 * Select the window 4.
495 	 */
496 	XL_SEL_WIN(4);
497 
498 	/*
499  	 * Turn on data output.
500 	 */
501 	MII_SET(XL_MII_DIR);
502 
503 	xl_mii_sync(sc);
504 
505 	xl_mii_send(sc, frame->mii_stdelim, 2);
506 	xl_mii_send(sc, frame->mii_opcode, 2);
507 	xl_mii_send(sc, frame->mii_phyaddr, 5);
508 	xl_mii_send(sc, frame->mii_regaddr, 5);
509 	xl_mii_send(sc, frame->mii_turnaround, 2);
510 	xl_mii_send(sc, frame->mii_data, 16);
511 
512 	/* Idle bit. */
513 	MII_SET(XL_MII_CLK);
514 	MII_CLR(XL_MII_CLK);
515 
516 	/*
517 	 * Turn off xmit.
518 	 */
519 	MII_CLR(XL_MII_DIR);
520 
521 	return(0);
522 }
523 
524 static int
525 xl_miibus_readreg(device_t dev, int phy, int reg)
526 {
527 	struct xl_softc		*sc;
528 	struct xl_mii_frame	frame;
529 
530 	sc = device_get_softc(dev);
531 
532 	/*
533 	 * Pretend that PHYs are only available at MII address 24.
534 	 * This is to guard against problems with certain 3Com ASIC
535 	 * revisions that incorrectly map the internal transceiver
536 	 * control registers at all MII addresses. This can cause
537 	 * the miibus code to attach the same PHY several times over.
538 	 */
539 	if ((!(sc->xl_flags & XL_FLAG_PHYOK)) && phy != 24)
540 		return(0);
541 
542 	bzero((char *)&frame, sizeof(frame));
543 
544 	frame.mii_phyaddr = phy;
545 	frame.mii_regaddr = reg;
546 	xl_mii_readreg(sc, &frame);
547 
548 	return(frame.mii_data);
549 }
550 
551 static int
552 xl_miibus_writereg(device_t dev, int phy, int reg, int data)
553 {
554 	struct xl_softc		*sc;
555 	struct xl_mii_frame	frame;
556 
557 	sc = device_get_softc(dev);
558 
559 	if ((!(sc->xl_flags & XL_FLAG_PHYOK)) && phy != 24)
560 		return(0);
561 
562 	bzero((char *)&frame, sizeof(frame));
563 
564 	frame.mii_phyaddr = phy;
565 	frame.mii_regaddr = reg;
566 	frame.mii_data = data;
567 
568 	xl_mii_writereg(sc, &frame);
569 
570 	return(0);
571 }
572 
573 static void
574 xl_miibus_statchg(device_t dev)
575 {
576         struct xl_softc		*sc;
577         struct mii_data		*mii;
578 
579 	sc = device_get_softc(dev);
580 	mii = device_get_softc(sc->xl_miibus);
581 
582 	ASSERT_SERIALIZED(sc->arpcom.ac_if.if_serializer);
583 
584 	xl_setcfg(sc);
585 
586 	/* Set ASIC's duplex mode to match the PHY. */
587 	XL_SEL_WIN(3);
588 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
589 		CSR_WRITE_1(sc, XL_W3_MAC_CTRL, XL_MACCTRL_DUPLEX);
590 	else
591 		CSR_WRITE_1(sc, XL_W3_MAC_CTRL,
592 			(CSR_READ_1(sc, XL_W3_MAC_CTRL) & ~XL_MACCTRL_DUPLEX));
593 }
594 
595 /*
596  * Special support for the 3c905B-COMBO. This card has 10/100 support
597  * plus BNC and AUI ports. This means we will have both an miibus attached
598  * plus some non-MII media settings. In order to allow this, we have to
599  * add the extra media to the miibus's ifmedia struct, but we can't do
600  * that during xl_attach() because the miibus hasn't been attached yet.
601  * So instead, we wait until the miibus probe/attach is done, at which
602  * point we will get a callback telling is that it's safe to add our
603  * extra media.
604  */
605 static void
606 xl_miibus_mediainit(device_t dev)
607 {
608         struct xl_softc		*sc;
609         struct mii_data		*mii;
610 	struct ifmedia		*ifm;
611 
612 	sc = device_get_softc(dev);
613 	mii = device_get_softc(sc->xl_miibus);
614 	ifm = &mii->mii_media;
615 
616 	if (sc->xl_media & (XL_MEDIAOPT_AUI|XL_MEDIAOPT_10FL)) {
617 		/*
618 		 * Check for a 10baseFL board in disguise.
619 		 */
620 		if (sc->xl_type == XL_TYPE_905B &&
621 		    sc->xl_media == XL_MEDIAOPT_10FL) {
622 			if (bootverbose)
623 				device_printf(dev, "found 10baseFL\n");
624 			ifmedia_add(ifm, IFM_ETHER|IFM_10_FL, 0, NULL);
625 			ifmedia_add(ifm, IFM_ETHER|IFM_10_FL|IFM_HDX, 0, NULL);
626 			if (sc->xl_caps & XL_CAPS_FULL_DUPLEX)
627 				ifmedia_add(ifm,
628 				    IFM_ETHER|IFM_10_FL|IFM_FDX, 0, NULL);
629 		} else {
630 			if (bootverbose)
631 				device_printf(dev, "found AUI\n");
632 			ifmedia_add(ifm, IFM_ETHER|IFM_10_5, 0, NULL);
633 		}
634 	}
635 
636 	if (sc->xl_media & XL_MEDIAOPT_BNC) {
637 		if (bootverbose)
638 			device_printf(dev, "found BNC\n");
639 		ifmedia_add(ifm, IFM_ETHER|IFM_10_2, 0, NULL);
640 	}
641 
642 	return;
643 }
644 
645 /*
646  * The EEPROM is slow: give it time to come ready after issuing
647  * it a command.
648  */
649 static int
650 xl_eeprom_wait(struct xl_softc *sc)
651 {
652 	int			i;
653 
654 	for (i = 0; i < 100; i++) {
655 		if (CSR_READ_2(sc, XL_W0_EE_CMD) & XL_EE_BUSY)
656 			DELAY(162);
657 		else
658 			break;
659 	}
660 
661 	if (i == 100) {
662 		if_printf(&sc->arpcom.ac_if, "eeprom failed to come ready\n");
663 		return(1);
664 	}
665 
666 	return(0);
667 }
668 
669 /*
670  * Read a sequence of words from the EEPROM. Note that ethernet address
671  * data is stored in the EEPROM in network byte order.
672  */
673 static int
674 xl_read_eeprom(struct xl_softc *sc, caddr_t dest, int off, int cnt, int swap)
675 {
676 	int			err = 0, i;
677 	u_int16_t		word = 0, *ptr;
678 #define EEPROM_5BIT_OFFSET(A) ((((A) << 2) & 0x7F00) | ((A) & 0x003F))
679 #define EEPROM_8BIT_OFFSET(A) ((A) & 0x003F)
680 	/* WARNING! DANGER!
681 	 * It's easy to accidentally overwrite the rom content!
682 	 * Note: the 3c575 uses 8bit EEPROM offsets.
683 	 */
684 	XL_SEL_WIN(0);
685 
686 	if (xl_eeprom_wait(sc))
687 		return(1);
688 
689 	if (sc->xl_flags & XL_FLAG_EEPROM_OFFSET_30)
690 		off += 0x30;
691 
692 	for (i = 0; i < cnt; i++) {
693 		if (sc->xl_flags & XL_FLAG_8BITROM)
694 			CSR_WRITE_2(sc, XL_W0_EE_CMD,
695 			    XL_EE_8BIT_READ | EEPROM_8BIT_OFFSET(off + i));
696 		else
697 			CSR_WRITE_2(sc, XL_W0_EE_CMD,
698 			    XL_EE_READ | EEPROM_5BIT_OFFSET(off + i));
699 		err = xl_eeprom_wait(sc);
700 		if (err)
701 			break;
702 		word = CSR_READ_2(sc, XL_W0_EE_DATA);
703 		ptr = (u_int16_t *)(dest + (i * 2));
704 		if (swap)
705 			*ptr = ntohs(word);
706 		else
707 			*ptr = word;
708 	}
709 
710 	return(err ? 1 : 0);
711 }
712 
713 /*
714  * NICs older than the 3c905B have only one multicast option, which
715  * is to enable reception of all multicast frames.
716  */
717 static void
718 xl_setmulti(struct xl_softc *sc)
719 {
720 	struct ifnet		*ifp;
721 	struct ifmultiaddr	*ifma;
722 	u_int8_t		rxfilt;
723 	int			mcnt = 0;
724 
725 	ifp = &sc->arpcom.ac_if;
726 
727 	XL_SEL_WIN(5);
728 	rxfilt = CSR_READ_1(sc, XL_W5_RX_FILTER);
729 
730 	if (ifp->if_flags & IFF_ALLMULTI) {
731 		rxfilt |= XL_RXFILTER_ALLMULTI;
732 		CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt);
733 		return;
734 	}
735 
736 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
737 		mcnt++;
738 
739 	if (mcnt)
740 		rxfilt |= XL_RXFILTER_ALLMULTI;
741 	else
742 		rxfilt &= ~XL_RXFILTER_ALLMULTI;
743 
744 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt);
745 
746 	return;
747 }
748 
749 /*
750  * 3c905B adapters have a hash filter that we can program.
751  */
752 static void
753 xl_setmulti_hash(struct xl_softc *sc)
754 {
755 	struct ifnet		*ifp;
756 	int			h = 0, i;
757 	struct ifmultiaddr	*ifma;
758 	u_int8_t		rxfilt;
759 	int			mcnt = 0;
760 
761 	ifp = &sc->arpcom.ac_if;
762 
763 	XL_SEL_WIN(5);
764 	rxfilt = CSR_READ_1(sc, XL_W5_RX_FILTER);
765 
766 	if (ifp->if_flags & IFF_ALLMULTI) {
767 		rxfilt |= XL_RXFILTER_ALLMULTI;
768 		CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt);
769 		return;
770 	} else
771 		rxfilt &= ~XL_RXFILTER_ALLMULTI;
772 
773 
774 	/* first, zot all the existing hash bits */
775 	for (i = 0; i < XL_HASHFILT_SIZE; i++)
776 		CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_HASH|i);
777 
778 	/* now program new ones */
779 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
780 		if (ifma->ifma_addr->sa_family != AF_LINK)
781 			continue;
782 
783 		/*
784 		 * Note: the 3c905B currently only supports a 64-bit
785 		 * hash table, which means we really only need 6 bits,
786 		 * but the manual indicates that future chip revisions
787 		 * will have a 256-bit hash table, hence the routine is
788 		 * set up to calculate 8 bits of position info in case
789 		 * we need it some day.
790 		 * Note II, The Sequel: _CURRENT_ versions of the 3c905B
791 		 * have a 256 bit hash table. This means we have to use
792 		 * all 8 bits regardless.  On older cards, the upper 2
793 		 * bits will be ignored. Grrrr....
794 		 */
795 		h = ether_crc32_be(
796 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
797 			ETHER_ADDR_LEN) & 0xff;
798 		CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_HASH|XL_HASH_SET|h);
799 		mcnt++;
800 	}
801 
802 	if (mcnt)
803 		rxfilt |= XL_RXFILTER_MULTIHASH;
804 	else
805 		rxfilt &= ~XL_RXFILTER_MULTIHASH;
806 
807 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt);
808 
809 	return;
810 }
811 
812 #ifdef notdef
813 static void
814 xl_testpacket(struct xl_softc *sc)
815 {
816 	struct mbuf		*m;
817 	struct ifnet		*ifp;
818 
819 	ifp = &sc->arpcom.ac_if;
820 
821 	MGETHDR(m, MB_DONTWAIT, MT_DATA);
822 
823 	if (m == NULL)
824 		return;
825 
826 	bcopy(&sc->arpcom.ac_enaddr,
827 		mtod(m, struct ether_header *)->ether_dhost, ETHER_ADDR_LEN);
828 	bcopy(&sc->arpcom.ac_enaddr,
829 		mtod(m, struct ether_header *)->ether_shost, ETHER_ADDR_LEN);
830 	mtod(m, struct ether_header *)->ether_type = htons(3);
831 	mtod(m, unsigned char *)[14] = 0;
832 	mtod(m, unsigned char *)[15] = 0;
833 	mtod(m, unsigned char *)[16] = 0xE3;
834 	m->m_len = m->m_pkthdr.len = sizeof(struct ether_header) + 3;
835 	IF_ENQUEUE(&ifp->if_snd, m);
836 	xl_start(ifp);
837 
838 	return;
839 }
840 #endif
841 
842 static void
843 xl_setcfg(struct xl_softc *sc)
844 {
845 	u_int32_t		icfg;
846 
847 	XL_SEL_WIN(3);
848 	icfg = CSR_READ_4(sc, XL_W3_INTERNAL_CFG);
849 	icfg &= ~XL_ICFG_CONNECTOR_MASK;
850 	if (sc->xl_media & XL_MEDIAOPT_MII ||
851 		sc->xl_media & XL_MEDIAOPT_BT4)
852 		icfg |= (XL_XCVR_MII << XL_ICFG_CONNECTOR_BITS);
853 	if (sc->xl_media & XL_MEDIAOPT_BTX)
854 		icfg |= (XL_XCVR_AUTO << XL_ICFG_CONNECTOR_BITS);
855 
856 	CSR_WRITE_4(sc, XL_W3_INTERNAL_CFG, icfg);
857 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_STOP);
858 
859 	return;
860 }
861 
862 static void
863 xl_setmode(struct xl_softc *sc, int media)
864 {
865 	struct ifnet *ifp = &sc->arpcom.ac_if;
866 	u_int32_t		icfg;
867 	u_int16_t		mediastat;
868 
869 	if_printf(ifp, "selecting ");
870 
871 	XL_SEL_WIN(4);
872 	mediastat = CSR_READ_2(sc, XL_W4_MEDIA_STATUS);
873 	XL_SEL_WIN(3);
874 	icfg = CSR_READ_4(sc, XL_W3_INTERNAL_CFG);
875 
876 	if (sc->xl_media & XL_MEDIAOPT_BT) {
877 		if (IFM_SUBTYPE(media) == IFM_10_T) {
878 			kprintf("10baseT transceiver, ");
879 			sc->xl_xcvr = XL_XCVR_10BT;
880 			icfg &= ~XL_ICFG_CONNECTOR_MASK;
881 			icfg |= (XL_XCVR_10BT << XL_ICFG_CONNECTOR_BITS);
882 			mediastat |= XL_MEDIASTAT_LINKBEAT|
883 					XL_MEDIASTAT_JABGUARD;
884 			mediastat &= ~XL_MEDIASTAT_SQEENB;
885 		}
886 	}
887 
888 	if (sc->xl_media & XL_MEDIAOPT_BFX) {
889 		if (IFM_SUBTYPE(media) == IFM_100_FX) {
890 			kprintf("100baseFX port, ");
891 			sc->xl_xcvr = XL_XCVR_100BFX;
892 			icfg &= ~XL_ICFG_CONNECTOR_MASK;
893 			icfg |= (XL_XCVR_100BFX << XL_ICFG_CONNECTOR_BITS);
894 			mediastat |= XL_MEDIASTAT_LINKBEAT;
895 			mediastat &= ~XL_MEDIASTAT_SQEENB;
896 		}
897 	}
898 
899 	if (sc->xl_media & (XL_MEDIAOPT_AUI|XL_MEDIAOPT_10FL)) {
900 		if (IFM_SUBTYPE(media) == IFM_10_5) {
901 			kprintf("AUI port, ");
902 			sc->xl_xcvr = XL_XCVR_AUI;
903 			icfg &= ~XL_ICFG_CONNECTOR_MASK;
904 			icfg |= (XL_XCVR_AUI << XL_ICFG_CONNECTOR_BITS);
905 			mediastat &= ~(XL_MEDIASTAT_LINKBEAT|
906 					XL_MEDIASTAT_JABGUARD);
907 			mediastat |= ~XL_MEDIASTAT_SQEENB;
908 		}
909 		if (IFM_SUBTYPE(media) == IFM_10_FL) {
910 			kprintf("10baseFL transceiver, ");
911 			sc->xl_xcvr = XL_XCVR_AUI;
912 			icfg &= ~XL_ICFG_CONNECTOR_MASK;
913 			icfg |= (XL_XCVR_AUI << XL_ICFG_CONNECTOR_BITS);
914 			mediastat &= ~(XL_MEDIASTAT_LINKBEAT|
915 					XL_MEDIASTAT_JABGUARD);
916 			mediastat |= ~XL_MEDIASTAT_SQEENB;
917 		}
918 	}
919 
920 	if (sc->xl_media & XL_MEDIAOPT_BNC) {
921 		if (IFM_SUBTYPE(media) == IFM_10_2) {
922 			kprintf("BNC port, ");
923 			sc->xl_xcvr = XL_XCVR_COAX;
924 			icfg &= ~XL_ICFG_CONNECTOR_MASK;
925 			icfg |= (XL_XCVR_COAX << XL_ICFG_CONNECTOR_BITS);
926 			mediastat &= ~(XL_MEDIASTAT_LINKBEAT|
927 					XL_MEDIASTAT_JABGUARD|
928 					XL_MEDIASTAT_SQEENB);
929 		}
930 	}
931 
932 	if ((media & IFM_GMASK) == IFM_FDX ||
933 			IFM_SUBTYPE(media) == IFM_100_FX) {
934 		kprintf("full duplex\n");
935 		XL_SEL_WIN(3);
936 		CSR_WRITE_1(sc, XL_W3_MAC_CTRL, XL_MACCTRL_DUPLEX);
937 	} else {
938 		kprintf("half duplex\n");
939 		XL_SEL_WIN(3);
940 		CSR_WRITE_1(sc, XL_W3_MAC_CTRL,
941 			(CSR_READ_1(sc, XL_W3_MAC_CTRL) & ~XL_MACCTRL_DUPLEX));
942 	}
943 
944 	if (IFM_SUBTYPE(media) == IFM_10_2)
945 		CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_START);
946 	else
947 		CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_STOP);
948 	CSR_WRITE_4(sc, XL_W3_INTERNAL_CFG, icfg);
949 	XL_SEL_WIN(4);
950 	CSR_WRITE_2(sc, XL_W4_MEDIA_STATUS, mediastat);
951 	DELAY(800);
952 	XL_SEL_WIN(7);
953 }
954 
955 static void
956 xl_reset(struct xl_softc *sc)
957 {
958 	int		i;
959 
960 	XL_SEL_WIN(0);
961 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RESET |
962 		    ((sc->xl_flags & XL_FLAG_WEIRDRESET) ?
963 		     XL_RESETOPT_DISADVFD:0));
964 
965 	/*
966 	 * If we're using memory mapped register mode, pause briefly
967 	 * after issuing the reset command before trying to access any
968 	 * other registers. With my 3c575C cardbus card, failing to do
969 	 * this results in the system locking up while trying to poll
970 	 * the command busy bit in the status register.
971 	 */
972 	if (sc->xl_flags & XL_FLAG_USE_MMIO)
973 		DELAY(100000);
974 
975 	for (i = 0; i < XL_TIMEOUT; i++) {
976 		DELAY(10);
977 		if (!(CSR_READ_2(sc, XL_STATUS) & XL_STAT_CMDBUSY))
978 			break;
979 	}
980 
981 	if (i == XL_TIMEOUT)
982 		if_printf(&sc->arpcom.ac_if, "reset didn't complete\n");
983 
984 	/* Reset TX and RX. */
985 	/* Note: the RX reset takes an absurd amount of time
986 	 * on newer versions of the Tornado chips such as those
987 	 * on the 3c905CX and newer 3c908C cards. We wait an
988 	 * extra amount of time so that xl_wait() doesn't complain
989 	 * and annoy the users.
990 	 */
991 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_RESET);
992 	DELAY(100000);
993 	xl_wait(sc);
994 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_RESET);
995 	xl_wait(sc);
996 
997 	if (sc->xl_flags & XL_FLAG_INVERT_LED_PWR ||
998 	    sc->xl_flags & XL_FLAG_INVERT_MII_PWR) {
999 		XL_SEL_WIN(2);
1000 		CSR_WRITE_2(sc, XL_W2_RESET_OPTIONS, CSR_READ_2(sc,
1001 		    XL_W2_RESET_OPTIONS)
1002 		    | ((sc->xl_flags & XL_FLAG_INVERT_LED_PWR)?XL_RESETOPT_INVERT_LED:0)
1003 		    | ((sc->xl_flags & XL_FLAG_INVERT_MII_PWR)?XL_RESETOPT_INVERT_MII:0)
1004 		    );
1005 	}
1006 
1007 	/* Wait a little while for the chip to get its brains in order. */
1008 	DELAY(100000);
1009         return;
1010 }
1011 
1012 /*
1013  * Probe for a 3Com Etherlink XL chip. Check the PCI vendor and device
1014  * IDs against our list and return a device name if we find a match.
1015  */
1016 static int
1017 xl_probe(device_t dev)
1018 {
1019 	struct xl_type *t;
1020 	uint16_t vid, did;
1021 
1022 	vid = pci_get_vendor(dev);
1023 	did = pci_get_device(dev);
1024 	for (t = xl_devs; t->xl_name != NULL; t++) {
1025 		if (vid == t->xl_vid && did == t->xl_did) {
1026 			device_set_desc(dev, t->xl_name);
1027 			return(0);
1028 		}
1029 	}
1030 	return(ENXIO);
1031 }
1032 
1033 /*
1034  * This routine is a kludge to work around possible hardware faults
1035  * or manufacturing defects that can cause the media options register
1036  * (or reset options register, as it's called for the first generation
1037  * 3c90x adapters) to return an incorrect result. I have encountered
1038  * one Dell Latitude laptop docking station with an integrated 3c905-TX
1039  * which doesn't have any of the 'mediaopt' bits set. This screws up
1040  * the attach routine pretty badly because it doesn't know what media
1041  * to look for. If we find ourselves in this predicament, this routine
1042  * will try to guess the media options values and warn the user of a
1043  * possible manufacturing defect with his adapter/system/whatever.
1044  */
1045 static void
1046 xl_mediacheck(struct xl_softc *sc)
1047 {
1048 	struct ifnet *ifp = &sc->arpcom.ac_if;
1049 
1050 	/*
1051 	 * If some of the media options bits are set, assume they are
1052 	 * correct. If not, try to figure it out down below.
1053 	 * XXX I should check for 10baseFL, but I don't have an adapter
1054 	 * to test with.
1055 	 */
1056 	if (sc->xl_media & (XL_MEDIAOPT_MASK & ~XL_MEDIAOPT_VCO)) {
1057 		/*
1058 	 	 * Check the XCVR value. If it's not in the normal range
1059 	 	 * of values, we need to fake it up here.
1060 	 	 */
1061 		if (sc->xl_xcvr <= XL_XCVR_AUTO)
1062 			return;
1063 		else {
1064 			if_printf(ifp, "bogus xcvr value in EEPROM (%x)\n",
1065 			    sc->xl_xcvr);
1066 			if_printf(ifp,
1067 			    "choosing new default based on card type\n");
1068 		}
1069 	} else {
1070 		if (sc->xl_type == XL_TYPE_905B &&
1071 		    sc->xl_media & XL_MEDIAOPT_10FL)
1072 			return;
1073 		if_printf(ifp, "WARNING: no media options bits set in "
1074 			"the media options register!!\n");
1075 		if_printf(ifp, "this could be a manufacturing defect in "
1076 			"your adapter or system\n");
1077 		if_printf(ifp, "attempting to guess media type; you "
1078 			"should probably consult your vendor\n");
1079 	}
1080 
1081 	xl_choose_xcvr(sc, 1);
1082 }
1083 
1084 static void
1085 xl_choose_xcvr(struct xl_softc *sc, int verbose)
1086 {
1087 	struct ifnet *ifp = &sc->arpcom.ac_if;
1088 	u_int16_t		devid;
1089 
1090 	/*
1091 	 * Read the device ID from the EEPROM.
1092 	 * This is what's loaded into the PCI device ID register, so it has
1093 	 * to be correct otherwise we wouldn't have gotten this far.
1094 	 */
1095 	xl_read_eeprom(sc, (caddr_t)&devid, XL_EE_PRODID, 1, 0);
1096 
1097 	switch(devid) {
1098 	case TC_DEVICEID_BOOMERANG_10BT:	/* 3c900-TPO */
1099 	case TC_DEVICEID_KRAKATOA_10BT:		/* 3c900B-TPO */
1100 		sc->xl_media = XL_MEDIAOPT_BT;
1101 		sc->xl_xcvr = XL_XCVR_10BT;
1102 		if (verbose)
1103 			if_printf(ifp, "guessing 10BaseT transceiver\n");
1104 		break;
1105 	case TC_DEVICEID_BOOMERANG_10BT_COMBO:	/* 3c900-COMBO */
1106 	case TC_DEVICEID_KRAKATOA_10BT_COMBO:	/* 3c900B-COMBO */
1107 		sc->xl_media = XL_MEDIAOPT_BT|XL_MEDIAOPT_BNC|XL_MEDIAOPT_AUI;
1108 		sc->xl_xcvr = XL_XCVR_10BT;
1109 		if (verbose)
1110 			if_printf(ifp, "guessing COMBO (AUI/BNC/TP)\n");
1111 		break;
1112 	case TC_DEVICEID_KRAKATOA_10BT_TPC:	/* 3c900B-TPC */
1113 		sc->xl_media = XL_MEDIAOPT_BT|XL_MEDIAOPT_BNC;
1114 		sc->xl_xcvr = XL_XCVR_10BT;
1115 		if (verbose)
1116 			if_printf(ifp, "guessing TPC (BNC/TP)\n");
1117 		break;
1118 	case TC_DEVICEID_CYCLONE_10FL:		/* 3c900B-FL */
1119 		sc->xl_media = XL_MEDIAOPT_10FL;
1120 		sc->xl_xcvr = XL_XCVR_AUI;
1121 		if (verbose)
1122 			if_printf(ifp, "guessing 10baseFL\n");
1123 		break;
1124 	case TC_DEVICEID_BOOMERANG_10_100BT:	/* 3c905-TX */
1125 	case TC_DEVICEID_HURRICANE_555:		/* 3c555 */
1126 	case TC_DEVICEID_HURRICANE_556:		/* 3c556 */
1127 	case TC_DEVICEID_HURRICANE_556B:	/* 3c556B */
1128 	case TC_DEVICEID_HURRICANE_575A:	/* 3c575TX */
1129 	case TC_DEVICEID_HURRICANE_575B:	/* 3c575B */
1130 	case TC_DEVICEID_HURRICANE_575C:	/* 3c575C */
1131 	case TC_DEVICEID_HURRICANE_656:		/* 3c656 */
1132 	case TC_DEVICEID_HURRICANE_656B:	/* 3c656B */
1133 	case TC_DEVICEID_TORNADO_656C:		/* 3c656C */
1134 	case TC_DEVICEID_TORNADO_10_100BT_920B:	/* 3c920B-EMB */
1135 		sc->xl_media = XL_MEDIAOPT_MII;
1136 		sc->xl_xcvr = XL_XCVR_MII;
1137 		if (verbose)
1138 			if_printf(ifp, "guessing MII\n");
1139 		break;
1140 	case TC_DEVICEID_BOOMERANG_100BT4:	/* 3c905-T4 */
1141 	case TC_DEVICEID_CYCLONE_10_100BT4:	/* 3c905B-T4 */
1142 		sc->xl_media = XL_MEDIAOPT_BT4;
1143 		sc->xl_xcvr = XL_XCVR_MII;
1144 		if (verbose)
1145 			if_printf(ifp, "guessing 100BaseT4/MII\n");
1146 		break;
1147 	case TC_DEVICEID_HURRICANE_10_100BT:	/* 3c905B-TX */
1148 	case TC_DEVICEID_HURRICANE_10_100BT_SERV:/*3c980-TX */
1149 	case TC_DEVICEID_TORNADO_10_100BT_SERV:	/* 3c980C-TX */
1150 	case TC_DEVICEID_HURRICANE_SOHO100TX:	/* 3cSOHO100-TX */
1151 	case TC_DEVICEID_TORNADO_10_100BT:	/* 3c905C-TX */
1152 	case TC_DEVICEID_TORNADO_HOMECONNECT:	/* 3c450-TX */
1153 		sc->xl_media = XL_MEDIAOPT_BTX;
1154 		sc->xl_xcvr = XL_XCVR_AUTO;
1155 		if (verbose)
1156 			if_printf(ifp, "guessing 10/100 internal\n");
1157 		break;
1158 	case TC_DEVICEID_CYCLONE_10_100_COMBO:	/* 3c905B-COMBO */
1159 		sc->xl_media = XL_MEDIAOPT_BTX|XL_MEDIAOPT_BNC|XL_MEDIAOPT_AUI;
1160 		sc->xl_xcvr = XL_XCVR_AUTO;
1161 		if (verbose)
1162 			if_printf(ifp, "guessing 10/100 plus BNC/AUI\n");
1163 		break;
1164 	default:
1165 		if_printf(ifp,
1166 		    "unknown device ID: %x -- defaulting to 10baseT\n", devid);
1167 		sc->xl_media = XL_MEDIAOPT_BT;
1168 		break;
1169 	}
1170 
1171 	return;
1172 }
1173 
1174 /*
1175  * Attach the interface. Allocate softc structures, do ifmedia
1176  * setup and ethernet/BPF attach.
1177  */
1178 static int
1179 xl_attach(device_t dev)
1180 {
1181 	u_char			eaddr[ETHER_ADDR_LEN];
1182 	u_int16_t		xcvr[2];
1183 	struct xl_softc		*sc;
1184 	struct ifnet		*ifp;
1185 	int			media = IFM_ETHER|IFM_100_TX|IFM_FDX;
1186 	int			error = 0, rid, res;
1187 	uint16_t		did;
1188 
1189 	sc = device_get_softc(dev);
1190 
1191 	ifmedia_init(&sc->ifmedia, 0, xl_ifmedia_upd, xl_ifmedia_sts);
1192 
1193 	did = pci_get_device(dev);
1194 
1195 	sc->xl_flags = 0;
1196 	if (did == TC_DEVICEID_HURRICANE_555)
1197 		sc->xl_flags |= XL_FLAG_EEPROM_OFFSET_30 | XL_FLAG_PHYOK;
1198 	if (did == TC_DEVICEID_HURRICANE_556 ||
1199 	    did == TC_DEVICEID_HURRICANE_556B)
1200 		sc->xl_flags |= XL_FLAG_FUNCREG | XL_FLAG_PHYOK |
1201 		    XL_FLAG_EEPROM_OFFSET_30 | XL_FLAG_WEIRDRESET |
1202 		    XL_FLAG_INVERT_LED_PWR | XL_FLAG_INVERT_MII_PWR;
1203 	if (did == TC_DEVICEID_HURRICANE_555 ||
1204 	    did == TC_DEVICEID_HURRICANE_556)
1205 		sc->xl_flags |= XL_FLAG_8BITROM;
1206 	if (did == TC_DEVICEID_HURRICANE_556B)
1207 		sc->xl_flags |= XL_FLAG_NO_XCVR_PWR;
1208 	if (did == TC_DEVICEID_HURRICANE_575B ||
1209 	    did == TC_DEVICEID_HURRICANE_575C ||
1210 	    did == TC_DEVICEID_HURRICANE_656B ||
1211 	    did == TC_DEVICEID_TORNADO_656C)
1212 		sc->xl_flags |= XL_FLAG_FUNCREG;
1213 	if (did == TC_DEVICEID_HURRICANE_575A ||
1214 	    did == TC_DEVICEID_HURRICANE_575B ||
1215 	    did == TC_DEVICEID_HURRICANE_575C ||
1216 	    did == TC_DEVICEID_HURRICANE_656B ||
1217 	    did == TC_DEVICEID_TORNADO_656C)
1218 		sc->xl_flags |= XL_FLAG_PHYOK | XL_FLAG_EEPROM_OFFSET_30 |
1219 		    XL_FLAG_8BITROM;
1220 	if (did == TC_DEVICEID_HURRICANE_656)
1221 		sc->xl_flags |= XL_FLAG_FUNCREG | XL_FLAG_PHYOK;
1222 	if (did == TC_DEVICEID_HURRICANE_575B)
1223 		sc->xl_flags |= XL_FLAG_INVERT_LED_PWR;
1224 	if (did == TC_DEVICEID_HURRICANE_575C)
1225 		sc->xl_flags |= XL_FLAG_INVERT_MII_PWR;
1226 	if (did == TC_DEVICEID_TORNADO_656C)
1227 		sc->xl_flags |= XL_FLAG_INVERT_MII_PWR;
1228 	if (did == TC_DEVICEID_HURRICANE_656 ||
1229 	    did == TC_DEVICEID_HURRICANE_656B)
1230 		sc->xl_flags |= XL_FLAG_INVERT_MII_PWR |
1231 		    XL_FLAG_INVERT_LED_PWR;
1232 	if (did == TC_DEVICEID_TORNADO_10_100BT_920B)
1233 		sc->xl_flags |= XL_FLAG_PHYOK;
1234 #ifndef BURN_BRIDGES
1235 	/*
1236 	 * If this is a 3c905B, we have to check one extra thing.
1237 	 * The 905B supports power management and may be placed in
1238 	 * a low-power mode (D3 mode), typically by certain operating
1239 	 * systems which shall not be named. The PCI BIOS is supposed
1240 	 * to reset the NIC and bring it out of low-power mode, but
1241 	 * some do not. Consequently, we have to see if this chip
1242 	 * supports power management, and if so, make sure it's not
1243 	 * in low-power mode. If power management is available, the
1244 	 * capid byte will be 0x01.
1245 	 *
1246 	 * I _think_ that what actually happens is that the chip
1247 	 * loses its PCI configuration during the transition from
1248 	 * D3 back to D0; this means that it should be possible for
1249 	 * us to save the PCI iobase, membase and IRQ, put the chip
1250 	 * back in the D0 state, then restore the PCI config ourselves.
1251 	 */
1252 
1253 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1254 		u_int32_t		iobase, membase, irq;
1255 
1256 		/* Save important PCI config data. */
1257 		iobase = pci_read_config(dev, XL_PCI_LOIO, 4);
1258 		membase = pci_read_config(dev, XL_PCI_LOMEM, 4);
1259 		irq = pci_read_config(dev, XL_PCI_INTLINE, 4);
1260 
1261 		/* Reset the power state. */
1262 		device_printf(dev, "chip is in D%d power mode "
1263 		    "-- setting to D0\n", pci_get_powerstate(dev));
1264 
1265 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1266 
1267 		/* Restore PCI config data. */
1268 		pci_write_config(dev, XL_PCI_LOIO, iobase, 4);
1269 		pci_write_config(dev, XL_PCI_LOMEM, membase, 4);
1270 		pci_write_config(dev, XL_PCI_INTLINE, irq, 4);
1271 	}
1272 #endif
1273 	/*
1274 	 * Map control/status registers.
1275 	 */
1276 	pci_enable_busmaster(dev);
1277 
1278 	rid = XL_PCI_LOMEM;
1279 	res = SYS_RES_MEMORY;
1280 
1281 #if 0
1282 	sc->xl_res = bus_alloc_resource_any(dev, res, &rid, RF_ACTIVE);
1283 #endif
1284 
1285 	if (sc->xl_res != NULL) {
1286 		sc->xl_flags |= XL_FLAG_USE_MMIO;
1287 		if (bootverbose)
1288 			device_printf(dev, "using memory mapped I/O\n");
1289 	} else {
1290 		rid = XL_PCI_LOIO;
1291 		res = SYS_RES_IOPORT;
1292 		sc->xl_res = bus_alloc_resource_any(dev, res, &rid, RF_ACTIVE);
1293 		if (sc->xl_res == NULL) {
1294 			device_printf(dev, "couldn't map ports/memory\n");
1295 			error = ENXIO;
1296 			goto fail;
1297 		}
1298 		if (bootverbose)
1299 			device_printf(dev, "using port I/O\n");
1300 	}
1301 
1302 	sc->xl_btag = rman_get_bustag(sc->xl_res);
1303 	sc->xl_bhandle = rman_get_bushandle(sc->xl_res);
1304 
1305 	if (sc->xl_flags & XL_FLAG_FUNCREG) {
1306 		rid = XL_PCI_FUNCMEM;
1307 		sc->xl_fres = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1308 		    RF_ACTIVE);
1309 
1310 		if (sc->xl_fres == NULL) {
1311 			device_printf(dev, "couldn't map funcreg memory\n");
1312 			error = ENXIO;
1313 			goto fail;
1314 		}
1315 
1316 		sc->xl_ftag = rman_get_bustag(sc->xl_fres);
1317 		sc->xl_fhandle = rman_get_bushandle(sc->xl_fres);
1318 	}
1319 
1320 	/* Allocate interrupt */
1321 	rid = 0;
1322 	sc->xl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1323 	    RF_SHAREABLE | RF_ACTIVE);
1324 	if (sc->xl_irq == NULL) {
1325 		device_printf(dev, "couldn't map interrupt\n");
1326 		error = ENXIO;
1327 		goto fail;
1328 	}
1329 
1330 	ifp = &sc->arpcom.ac_if;
1331 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1332 
1333 	/* Reset the adapter. */
1334 	xl_reset(sc);
1335 
1336 	/*
1337 	 * Get station address from the EEPROM.
1338 	 */
1339 	if (xl_read_eeprom(sc, (caddr_t)&eaddr, XL_EE_OEM_ADR0, 3, 1)) {
1340 		device_printf(dev, "failed to read station address\n");
1341 		error = ENXIO;
1342 		goto fail;
1343 	}
1344 
1345 	callout_init(&sc->xl_stat_timer);
1346 
1347 	error = xl_dma_alloc(dev);
1348 	if (error)
1349 		goto fail;
1350 
1351 	/*
1352 	 * Figure out the card type. 3c905B adapters have the
1353 	 * 'supportsNoTxLength' bit set in the capabilities
1354 	 * word in the EEPROM.
1355 	 * Note: my 3c575C cardbus card lies. It returns a value
1356 	 * of 0x1578 for its capabilities word, which is somewhat
1357  	 * nonsensical. Another way to distinguish a 3c90x chip
1358 	 * from a 3c90xB/C chip is to check for the 'supportsLargePackets'
1359 	 * bit. This will only be set for 3c90x boomerage chips.
1360 	 */
1361 	xl_read_eeprom(sc, (caddr_t)&sc->xl_caps, XL_EE_CAPS, 1, 0);
1362 	if (sc->xl_caps & XL_CAPS_NO_TXLENGTH ||
1363 	    !(sc->xl_caps & XL_CAPS_LARGE_PKTS))
1364 		sc->xl_type = XL_TYPE_905B;
1365 	else
1366 		sc->xl_type = XL_TYPE_90X;
1367 	if (bootverbose) {
1368 		device_printf(dev, "type %s\n",
1369 			      sc->xl_type == XL_TYPE_905B ? "90XB" : "90X");
1370 	}
1371 
1372 	ifp->if_softc = sc;
1373 	ifp->if_mtu = ETHERMTU;
1374 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1375 	ifp->if_ioctl = xl_ioctl;
1376 	if (sc->xl_type == XL_TYPE_905B) {
1377 		ifp->if_start = xl_start_90xB;
1378 		ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_VLAN_MTU;
1379 	} else {
1380 		ifp->if_start = xl_start;
1381 	}
1382 	ifp->if_watchdog = xl_watchdog;
1383 	ifp->if_init = xl_init;
1384 #ifdef DEVICE_POLLING
1385 	ifp->if_poll = xl_poll;
1386 #endif
1387 	ifp->if_baudrate = 10000000;
1388 	ifq_set_maxlen(&ifp->if_snd, XL_TX_LIST_CNT - 1);
1389 	ifq_set_ready(&ifp->if_snd);
1390 	/*
1391 	 * NOTE: Hardware checksum features disabled by default.
1392 	 * This seems to corrupt tx packet data one out of a
1393 	 * million packets or so and then generates a good checksum
1394 	 * so the receiver doesn't know the packet is bad
1395 	 */
1396 	ifp->if_capenable = ifp->if_capabilities & ~IFCAP_HWCSUM;
1397 	if (ifp->if_capenable & IFCAP_TXCSUM)
1398 		ifp->if_hwassist = XL905B_CSUM_FEATURES;
1399 
1400 	/*
1401 	 * Now we have to see what sort of media we have.
1402 	 * This includes probing for an MII interace and a
1403 	 * possible PHY.
1404 	 */
1405 	XL_SEL_WIN(3);
1406 	sc->xl_media = CSR_READ_2(sc, XL_W3_MEDIA_OPT);
1407 	if (bootverbose)
1408 		if_printf(ifp, "media options word: %x\n", sc->xl_media);
1409 
1410 	xl_read_eeprom(sc, (char *)&xcvr, XL_EE_ICFG_0, 2, 0);
1411 	sc->xl_xcvr = xcvr[0] | xcvr[1] << 16;
1412 	sc->xl_xcvr &= XL_ICFG_CONNECTOR_MASK;
1413 	sc->xl_xcvr >>= XL_ICFG_CONNECTOR_BITS;
1414 
1415 	xl_mediacheck(sc);
1416 
1417 	if (sc->xl_media & XL_MEDIAOPT_MII || sc->xl_media & XL_MEDIAOPT_BTX
1418 			|| sc->xl_media & XL_MEDIAOPT_BT4) {
1419 		if (bootverbose)
1420 			if_printf(ifp, "found MII/AUTO\n");
1421 		xl_setcfg(sc);
1422 
1423 		error = mii_phy_probe(dev, &sc->xl_miibus,
1424 				      xl_ifmedia_upd, xl_ifmedia_sts);
1425 		if (error) {
1426 			if_printf(ifp, "no PHY found!\n");
1427 			goto fail;
1428 		}
1429 
1430 		goto done;
1431 	}
1432 
1433 	/*
1434 	 * Sanity check. If the user has selected "auto" and this isn't
1435 	 * a 10/100 card of some kind, we need to force the transceiver
1436 	 * type to something sane.
1437 	 */
1438 	if (sc->xl_xcvr == XL_XCVR_AUTO)
1439 		xl_choose_xcvr(sc, bootverbose);
1440 
1441 	/*
1442 	 * Do ifmedia setup.
1443 	 */
1444 	if (sc->xl_media & XL_MEDIAOPT_BT) {
1445 		if (bootverbose)
1446 			if_printf(ifp, "found 10baseT\n");
1447 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1448 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
1449 		if (sc->xl_caps & XL_CAPS_FULL_DUPLEX)
1450 			ifmedia_add(&sc->ifmedia,
1451 			    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1452 	}
1453 
1454 	if (sc->xl_media & (XL_MEDIAOPT_AUI|XL_MEDIAOPT_10FL)) {
1455 		/*
1456 		 * Check for a 10baseFL board in disguise.
1457 		 */
1458 		if (sc->xl_type == XL_TYPE_905B &&
1459 		    sc->xl_media == XL_MEDIAOPT_10FL) {
1460 			if (bootverbose)
1461 				if_printf(ifp, "found 10baseFL\n");
1462 			ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_FL, 0, NULL);
1463 			ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_FL|IFM_HDX,
1464 			    0, NULL);
1465 			if (sc->xl_caps & XL_CAPS_FULL_DUPLEX)
1466 				ifmedia_add(&sc->ifmedia,
1467 				    IFM_ETHER|IFM_10_FL|IFM_FDX, 0, NULL);
1468 		} else {
1469 			if (bootverbose)
1470 				if_printf(ifp, "found AUI\n");
1471 			ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_5, 0, NULL);
1472 		}
1473 	}
1474 
1475 	if (sc->xl_media & XL_MEDIAOPT_BNC) {
1476 		if (bootverbose)
1477 			if_printf(ifp, "found BNC\n");
1478 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_2, 0, NULL);
1479 	}
1480 
1481 	if (sc->xl_media & XL_MEDIAOPT_BFX) {
1482 		if (bootverbose)
1483 			if_printf(ifp, "found 100baseFX\n");
1484 		ifp->if_baudrate = 100000000;
1485 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_FX, 0, NULL);
1486 	}
1487 
1488 	/* Choose a default media. */
1489 	switch(sc->xl_xcvr) {
1490 	case XL_XCVR_10BT:
1491 		media = IFM_ETHER|IFM_10_T;
1492 		xl_setmode(sc, media);
1493 		break;
1494 	case XL_XCVR_AUI:
1495 		if (sc->xl_type == XL_TYPE_905B &&
1496 		    sc->xl_media == XL_MEDIAOPT_10FL) {
1497 			media = IFM_ETHER|IFM_10_FL;
1498 			xl_setmode(sc, media);
1499 		} else {
1500 			media = IFM_ETHER|IFM_10_5;
1501 			xl_setmode(sc, media);
1502 		}
1503 		break;
1504 	case XL_XCVR_COAX:
1505 		media = IFM_ETHER|IFM_10_2;
1506 		xl_setmode(sc, media);
1507 		break;
1508 	case XL_XCVR_AUTO:
1509 	case XL_XCVR_100BTX:
1510 	case XL_XCVR_MII:
1511 		/* Chosen by miibus */
1512 		break;
1513 	case XL_XCVR_100BFX:
1514 		media = IFM_ETHER|IFM_100_FX;
1515 		break;
1516 	default:
1517 		if_printf(ifp, "unknown XCVR type: %d\n", sc->xl_xcvr);
1518 		/*
1519 		 * This will probably be wrong, but it prevents
1520 	 	 * the ifmedia code from panicking.
1521 		 */
1522 		media = IFM_ETHER|IFM_10_T;
1523 		break;
1524 	}
1525 
1526 	if (sc->xl_miibus == NULL)
1527 		ifmedia_set(&sc->ifmedia, media);
1528 
1529 done:
1530 
1531 	if (sc->xl_flags & XL_FLAG_NO_XCVR_PWR) {
1532 		XL_SEL_WIN(0);
1533 		CSR_WRITE_2(sc, XL_W0_MFG_ID, XL_NO_XCVR_PWR_MAGICBITS);
1534 	}
1535 
1536 	/*
1537 	 * Call MI attach routine.
1538 	 */
1539 	ether_ifattach(ifp, eaddr, NULL);
1540 
1541         /*
1542          * Tell the upper layer(s) we support long frames.
1543          */
1544         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1545 
1546 	/* Hook interrupt last to avoid having to lock softc */
1547 	error = bus_setup_intr(dev, sc->xl_irq, INTR_MPSAFE,
1548 			       xl_intr, sc, &sc->xl_intrhand,
1549 			       ifp->if_serializer);
1550 	if (error) {
1551 		if_printf(ifp, "couldn't set up irq\n");
1552 		ether_ifdetach(ifp);
1553 		goto fail;
1554 	}
1555 
1556 	ifp->if_cpuid = rman_get_cpuid(sc->xl_irq);
1557 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
1558 
1559 	return 0;
1560 
1561 fail:
1562 	xl_detach(dev);
1563 	return error;
1564 }
1565 
1566 /*
1567  * Shutdown hardware and free up resources. This can be called any
1568  * time after the mutex has been initialized. It is called in both
1569  * the error case in attach and the normal detach case so it needs
1570  * to be careful about only freeing resources that have actually been
1571  * allocated.
1572  */
1573 static int
1574 xl_detach(device_t dev)
1575 {
1576 	struct xl_softc		*sc;
1577 	struct ifnet		*ifp;
1578 	int			rid, res;
1579 
1580 	sc = device_get_softc(dev);
1581 	ifp = &sc->arpcom.ac_if;
1582 
1583 	if (sc->xl_flags & XL_FLAG_USE_MMIO) {
1584 		rid = XL_PCI_LOMEM;
1585 		res = SYS_RES_MEMORY;
1586 	} else {
1587 		rid = XL_PCI_LOIO;
1588 		res = SYS_RES_IOPORT;
1589 	}
1590 
1591 	if (device_is_attached(dev)) {
1592 		lwkt_serialize_enter(ifp->if_serializer);
1593 		xl_reset(sc);
1594 		xl_stop(sc);
1595 		bus_teardown_intr(dev, sc->xl_irq, sc->xl_intrhand);
1596 		lwkt_serialize_exit(ifp->if_serializer);
1597 
1598 		ether_ifdetach(ifp);
1599 	}
1600 
1601 	if (sc->xl_miibus)
1602 		device_delete_child(dev, sc->xl_miibus);
1603 	bus_generic_detach(dev);
1604 	ifmedia_removeall(&sc->ifmedia);
1605 
1606 	if (sc->xl_irq)
1607 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->xl_irq);
1608 	if (sc->xl_fres != NULL)
1609 		bus_release_resource(dev, SYS_RES_MEMORY,
1610 		    XL_PCI_FUNCMEM, sc->xl_fres);
1611 	if (sc->xl_res)
1612 		bus_release_resource(dev, res, rid, sc->xl_res);
1613 
1614 	xl_dma_free(dev);
1615 
1616 	return(0);
1617 }
1618 
1619 static int
1620 xl_dma_alloc(device_t dev)
1621 {
1622 	struct xl_softc *sc;
1623 	struct xl_chain_data *cd;
1624 	struct xl_list_data *ld;
1625 	bus_dmamem_t dmem;
1626 	int i, error;
1627 
1628 	sc = device_get_softc(dev);
1629 	cd = &sc->xl_cdata;
1630 	ld = &sc->xl_ldata;
1631 
1632 	/*
1633 	 * Allocate the parent bus DMA tag appropriate for PCI.
1634 	 */
1635 	error = bus_dma_tag_create(NULL, 1, 0,
1636 				   BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
1637 				   NULL, NULL,
1638 				   BUS_SPACE_MAXSIZE_32BIT, 0,
1639 				   BUS_SPACE_MAXSIZE_32BIT,
1640 				   0, &sc->xl_parent_tag);
1641 	if (error) {
1642 		device_printf(dev, "could not allocate parent dma tag\n");
1643 		return error;
1644 	}
1645 
1646 	/*
1647 	 * Now allocate a tag for the DMA descriptor lists and a chunk
1648 	 * of DMA-able memory based on the tag.  Also obtain the DMA
1649 	 * addresses of the RX and TX ring, which we'll need later.
1650 	 * All of our lists are allocated as a contiguous block
1651 	 * of memory.
1652 	 */
1653 	error = bus_dmamem_coherent(sc->xl_parent_tag, XL_LIST_ALIGN, 0,
1654 				    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1655 				    XL_RX_LIST_SZ, BUS_DMA_WAITOK, &dmem);
1656 	if (error) {
1657 		device_printf(dev, "failed to allocate rx list\n");
1658 		return error;
1659 	}
1660 	ld->xl_rx_tag = dmem.dmem_tag;
1661 	ld->xl_rx_dmamap = dmem.dmem_map;
1662 	ld->xl_rx_list = dmem.dmem_addr;
1663 	ld->xl_rx_dmaaddr = dmem.dmem_busaddr;
1664 
1665 	error = bus_dmamem_coherent(sc->xl_parent_tag, XL_LIST_ALIGN, 0,
1666 				    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1667 				    XL_TX_LIST_SZ, BUS_DMA_WAITOK, &dmem);
1668 	if (error) {
1669 		device_printf(dev, "failed to allocate tx list\n");
1670 		return error;
1671 	}
1672 	ld->xl_tx_tag = dmem.dmem_tag;
1673 	ld->xl_tx_dmamap = dmem.dmem_map;
1674 	ld->xl_tx_list = dmem.dmem_addr;
1675 	ld->xl_tx_dmaaddr = dmem.dmem_busaddr;
1676 
1677 	/*
1678 	 * Allocate a DMA tag for the mapping of mbufs.
1679 	 */
1680 	error = bus_dma_tag_create(sc->xl_parent_tag, 1, 0,
1681 				   BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1682 				   NULL, NULL,
1683 				   MCLBYTES, 1, MCLBYTES,
1684 				   BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
1685 				   &sc->xl_rx_mtag);
1686 	if (error) {
1687 		device_printf(dev, "failed to allocate RX mbuf dma tag\n");
1688 		return error;
1689 	}
1690 
1691 	/*
1692 	 * Allocate a spare DMA map for the RX ring.
1693 	 */
1694 	error = bus_dmamap_create(sc->xl_rx_mtag, BUS_DMA_WAITOK,
1695 				  &sc->xl_tmpmap);
1696 	if (error) {
1697 		device_printf(dev, "failed to create RX mbuf tmp dma map\n");
1698 		bus_dma_tag_destroy(sc->xl_rx_mtag);
1699 		sc->xl_rx_mtag = NULL;
1700 		return error;
1701 	}
1702 
1703 	for (i = 0; i < XL_RX_LIST_CNT; i++) {
1704 		error = bus_dmamap_create(sc->xl_rx_mtag, BUS_DMA_WAITOK,
1705 					  &cd->xl_rx_chain[i].xl_map);
1706 		if (error) {
1707 			device_printf(dev, "failed to create %dth "
1708 				      "rx descriptor dma map!\n", i);
1709 			return error;
1710 		}
1711 		cd->xl_rx_chain[i].xl_ptr = &ld->xl_rx_list[i];
1712 	}
1713 
1714 	error = bus_dma_tag_create(sc->xl_parent_tag, 1, 0,
1715 				   BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1716 				   NULL, NULL,
1717 				   MCLBYTES, XL_MAXFRAGS, MCLBYTES,
1718 				   BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK,
1719 				   &sc->xl_tx_mtag);
1720 	if (error) {
1721 		device_printf(dev, "failed to allocate TX mbuf dma tag\n");
1722 		return error;
1723 	}
1724 
1725 	for (i = 0; i < XL_TX_LIST_CNT; i++) {
1726 		error = bus_dmamap_create(sc->xl_tx_mtag, BUS_DMA_WAITOK,
1727 					  &cd->xl_tx_chain[i].xl_map);
1728 		if (error) {
1729 			device_printf(dev, "failed to create %dth "
1730 				      "tx descriptor dma map!\n", i);
1731 			return error;
1732 		}
1733 		cd->xl_tx_chain[i].xl_ptr = &ld->xl_tx_list[i];
1734 	}
1735 	return 0;
1736 }
1737 
1738 static void
1739 xl_dma_free(device_t dev)
1740 {
1741 	struct xl_softc *sc;
1742 	struct xl_chain_data *cd;
1743 	struct xl_list_data *ld;
1744 	int i;
1745 
1746 	sc = device_get_softc(dev);
1747 	cd = &sc->xl_cdata;
1748 	ld = &sc->xl_ldata;
1749 
1750 	for (i = 0; i < XL_RX_LIST_CNT; ++i) {
1751 		if (cd->xl_rx_chain[i].xl_ptr != NULL) {
1752 			if (cd->xl_rx_chain[i].xl_mbuf != NULL) {
1753 				bus_dmamap_unload(sc->xl_rx_mtag,
1754 						  cd->xl_rx_chain[i].xl_map);
1755 				m_freem(cd->xl_rx_chain[i].xl_mbuf);
1756 			}
1757 			bus_dmamap_destroy(sc->xl_rx_mtag,
1758 					   cd->xl_rx_chain[i].xl_map);
1759 		}
1760 	}
1761 
1762 	for (i = 0; i < XL_TX_LIST_CNT; ++i) {
1763 		if (cd->xl_tx_chain[i].xl_ptr != NULL) {
1764 			if (cd->xl_tx_chain[i].xl_mbuf != NULL) {
1765 				bus_dmamap_unload(sc->xl_tx_mtag,
1766 						  cd->xl_tx_chain[i].xl_map);
1767 				m_freem(cd->xl_tx_chain[i].xl_mbuf);
1768 			}
1769 			bus_dmamap_destroy(sc->xl_tx_mtag,
1770 					   cd->xl_tx_chain[i].xl_map);
1771 		}
1772 	}
1773 
1774 	if (ld->xl_rx_tag) {
1775 		bus_dmamap_unload(ld->xl_rx_tag, ld->xl_rx_dmamap);
1776 		bus_dmamem_free(ld->xl_rx_tag, ld->xl_rx_list,
1777 				ld->xl_rx_dmamap);
1778 		bus_dma_tag_destroy(ld->xl_rx_tag);
1779 	}
1780 
1781 	if (ld->xl_tx_tag) {
1782 		bus_dmamap_unload(ld->xl_tx_tag, ld->xl_tx_dmamap);
1783 		bus_dmamem_free(ld->xl_tx_tag, ld->xl_tx_list,
1784 				ld->xl_tx_dmamap);
1785 		bus_dma_tag_destroy(ld->xl_tx_tag);
1786 	}
1787 
1788 	if (sc->xl_rx_mtag) {
1789 		bus_dmamap_destroy(sc->xl_rx_mtag, sc->xl_tmpmap);
1790 		bus_dma_tag_destroy(sc->xl_rx_mtag);
1791 	}
1792 	if (sc->xl_tx_mtag)
1793 		bus_dma_tag_destroy(sc->xl_tx_mtag);
1794 
1795 	if (sc->xl_parent_tag)
1796 		bus_dma_tag_destroy(sc->xl_parent_tag);
1797 }
1798 
1799 /*
1800  * Initialize the transmit descriptors.
1801  */
1802 static void
1803 xl_list_tx_init(struct xl_softc *sc)
1804 {
1805 	struct xl_chain_data	*cd;
1806 	struct xl_list_data	*ld;
1807 	int			i;
1808 
1809 	cd = &sc->xl_cdata;
1810 	ld = &sc->xl_ldata;
1811 	for (i = 0; i < XL_TX_LIST_CNT; i++) {
1812 		cd->xl_tx_chain[i].xl_phys = ld->xl_tx_dmaaddr +
1813 		    i * sizeof(struct xl_list);
1814 		if (i == (XL_TX_LIST_CNT - 1))
1815 			cd->xl_tx_chain[i].xl_next = NULL;
1816 		else
1817 			cd->xl_tx_chain[i].xl_next = &cd->xl_tx_chain[i + 1];
1818 	}
1819 
1820 	cd->xl_tx_free = &cd->xl_tx_chain[0];
1821 	cd->xl_tx_tail = cd->xl_tx_head = NULL;
1822 }
1823 
1824 /*
1825  * Initialize the transmit descriptors.
1826  */
1827 static void
1828 xl_list_tx_init_90xB(struct xl_softc *sc)
1829 {
1830 	struct xl_chain_data	*cd;
1831 	struct xl_list_data	*ld;
1832 	int			i;
1833 
1834 	cd = &sc->xl_cdata;
1835 	ld = &sc->xl_ldata;
1836 	for (i = 0; i < XL_TX_LIST_CNT; i++) {
1837 		cd->xl_tx_chain[i].xl_phys = ld->xl_tx_dmaaddr +
1838 		    i * sizeof(struct xl_list);
1839 		if (i == (XL_TX_LIST_CNT - 1))
1840 			cd->xl_tx_chain[i].xl_next = &cd->xl_tx_chain[0];
1841 		else
1842 			cd->xl_tx_chain[i].xl_next = &cd->xl_tx_chain[i + 1];
1843 		if (i == 0) {
1844 			cd->xl_tx_chain[i].xl_prev =
1845 			    &cd->xl_tx_chain[XL_TX_LIST_CNT - 1];
1846 		} else {
1847 			cd->xl_tx_chain[i].xl_prev =
1848 			    &cd->xl_tx_chain[i - 1];
1849 		}
1850 	}
1851 
1852 	ld->xl_tx_list[0].xl_status = htole32(XL_TXSTAT_EMPTY);
1853 
1854 	cd->xl_tx_prod = 1;
1855 	cd->xl_tx_cons = 1;
1856 	cd->xl_tx_cnt = 0;
1857 }
1858 
1859 /*
1860  * Initialize the RX descriptors and allocate mbufs for them. Note that
1861  * we arrange the descriptors in a closed ring, so that the last descriptor
1862  * points back to the first.
1863  */
1864 static int
1865 xl_list_rx_init(struct xl_softc *sc)
1866 {
1867 	struct xl_chain_data	*cd;
1868 	struct xl_list_data	*ld;
1869 	int			error, i, next;
1870 	u_int32_t		nextptr;
1871 
1872 	cd = &sc->xl_cdata;
1873 	ld = &sc->xl_ldata;
1874 
1875 	for (i = 0; i < XL_RX_LIST_CNT; i++) {
1876 		error = xl_newbuf(sc, &cd->xl_rx_chain[i], 1);
1877 		if (error)
1878 			return(error);
1879 		if (i == (XL_RX_LIST_CNT - 1))
1880 			next = 0;
1881 		else
1882 			next = i + 1;
1883 		nextptr = ld->xl_rx_dmaaddr +
1884 		    next * sizeof(struct xl_list_onefrag);
1885 		cd->xl_rx_chain[i].xl_next = &cd->xl_rx_chain[next];
1886 		ld->xl_rx_list[i].xl_next = htole32(nextptr);
1887 	}
1888 
1889 	cd->xl_rx_head = &cd->xl_rx_chain[0];
1890 
1891 	return(0);
1892 }
1893 
1894 /*
1895  * Initialize an RX descriptor and attach an MBUF cluster.
1896  * If we fail to do so, we need to leave the old mbuf and
1897  * the old DMA map untouched so that it can be reused.
1898  */
1899 static int
1900 xl_newbuf(struct xl_softc *sc, struct xl_chain_onefrag *c, int init)
1901 {
1902 	struct mbuf		*m_new;
1903 	bus_dmamap_t		map;
1904 	int			error, nsegs;
1905 	bus_dma_segment_t	seg;
1906 
1907 	m_new = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
1908 	if (m_new == NULL)
1909 		return(ENOBUFS);
1910 
1911 	m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1912 
1913 	/* Force longword alignment for packet payload. */
1914 	m_adj(m_new, ETHER_ALIGN);
1915 
1916 	error = bus_dmamap_load_mbuf_segment(sc->xl_rx_mtag, sc->xl_tmpmap,
1917 			m_new, &seg, 1, &nsegs, BUS_DMA_NOWAIT);
1918 	if (error) {
1919 		m_freem(m_new);
1920 		if (init) {
1921 			if_printf(&sc->arpcom.ac_if,
1922 				  "can't map mbuf (error %d)\n", error);
1923 		}
1924 		return(error);
1925 	}
1926 
1927 	if (c->xl_mbuf != NULL) {
1928 		bus_dmamap_sync(sc->xl_rx_mtag, c->xl_map,
1929 				BUS_DMASYNC_POSTREAD);
1930 		bus_dmamap_unload(sc->xl_rx_mtag, c->xl_map);
1931 	}
1932 
1933 	map = c->xl_map;
1934 	c->xl_map = sc->xl_tmpmap;
1935 	sc->xl_tmpmap = map;
1936 	c->xl_mbuf = m_new;
1937 
1938 	c->xl_ptr->xl_frag.xl_len = htole32(seg.ds_len | XL_LAST_FRAG);
1939 	c->xl_ptr->xl_frag.xl_addr = htole32(seg.ds_addr);
1940 	c->xl_ptr->xl_status = 0;
1941 
1942 	return(0);
1943 }
1944 
1945 static int
1946 xl_rx_resync(struct xl_softc *sc)
1947 {
1948 	struct xl_chain_onefrag	*pos;
1949 	int			i;
1950 
1951 	pos = sc->xl_cdata.xl_rx_head;
1952 
1953 	for (i = 0; i < XL_RX_LIST_CNT; i++) {
1954 		if (pos->xl_ptr->xl_status)
1955 			break;
1956 		pos = pos->xl_next;
1957 	}
1958 
1959 	if (i == XL_RX_LIST_CNT)
1960 		return(0);
1961 
1962 	sc->xl_cdata.xl_rx_head = pos;
1963 
1964 	return(EAGAIN);
1965 }
1966 
1967 /*
1968  * A frame has been uploaded: pass the resulting mbuf chain up to
1969  * the higher level protocols.
1970  */
1971 static void
1972 xl_rxeof(struct xl_softc *sc, int count)
1973 {
1974         struct mbuf		*m;
1975         struct ifnet		*ifp;
1976 	struct xl_chain_onefrag	*cur_rx;
1977 	int			total_len = 0;
1978 	u_int32_t		rxstat;
1979 
1980 	ifp = &sc->arpcom.ac_if;
1981 again:
1982 	while((rxstat = le32toh(sc->xl_cdata.xl_rx_head->xl_ptr->xl_status))) {
1983 #ifdef DEVICE_POLLING
1984 		if (count >= 0 && count-- == 0)
1985 			break;
1986 #endif
1987 		cur_rx = sc->xl_cdata.xl_rx_head;
1988 		sc->xl_cdata.xl_rx_head = cur_rx->xl_next;
1989 		total_len = rxstat & XL_RXSTAT_LENMASK;
1990 
1991 		/*
1992 		 * Since we have told the chip to allow large frames,
1993 		 * we need to trap giant frame errors in software. We allow
1994 		 * a little more than the normal frame size to account for
1995 		 * frames with VLAN tags.
1996 		 */
1997 		if (total_len > XL_MAX_FRAMELEN)
1998 			rxstat |= (XL_RXSTAT_UP_ERROR|XL_RXSTAT_OVERSIZE);
1999 
2000 		/*
2001 		 * If an error occurs, update stats, clear the
2002 		 * status word and leave the mbuf cluster in place:
2003 		 * it should simply get re-used next time this descriptor
2004 	 	 * comes up in the ring.
2005 		 */
2006 		if (rxstat & XL_RXSTAT_UP_ERROR) {
2007 			ifp->if_ierrors++;
2008 			cur_rx->xl_ptr->xl_status = 0;
2009 			continue;
2010 		}
2011 
2012 		/*
2013 		 * If the error bit was not set, the upload complete
2014 		 * bit should be set which means we have a valid packet.
2015 		 * If not, something truly strange has happened.
2016 		 */
2017 		if (!(rxstat & XL_RXSTAT_UP_CMPLT)) {
2018 			if_printf(ifp,
2019 				  "bad receive status -- packet dropped\n");
2020 			ifp->if_ierrors++;
2021 			cur_rx->xl_ptr->xl_status = 0;
2022 			continue;
2023 		}
2024 
2025 		/* No errors; receive the packet. */
2026 		m = cur_rx->xl_mbuf;
2027 
2028 		/*
2029 		 * Try to conjure up a new mbuf cluster. If that
2030 		 * fails, it means we have an out of memory condition and
2031 		 * should leave the buffer in place and continue. This will
2032 		 * result in a lost packet, but there's little else we
2033 		 * can do in this situation.
2034 		 */
2035 		if (xl_newbuf(sc, cur_rx, 0)) {
2036 			ifp->if_ierrors++;
2037 			cur_rx->xl_ptr->xl_status = 0;
2038 			continue;
2039 		}
2040 
2041 		ifp->if_ipackets++;
2042 		m->m_pkthdr.rcvif = ifp;
2043 		m->m_pkthdr.len = m->m_len = total_len;
2044 
2045 		if (ifp->if_capenable & IFCAP_RXCSUM) {
2046 			/* Do IP checksum checking. */
2047 			if (rxstat & XL_RXSTAT_IPCKOK)
2048 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2049 			if (!(rxstat & XL_RXSTAT_IPCKERR))
2050 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2051 			if ((rxstat & XL_RXSTAT_TCPCOK &&
2052 			     !(rxstat & XL_RXSTAT_TCPCKERR)) ||
2053 			    (rxstat & XL_RXSTAT_UDPCKOK &&
2054 			     !(rxstat & XL_RXSTAT_UDPCKERR))) {
2055 				m->m_pkthdr.csum_flags |=
2056 					CSUM_DATA_VALID|CSUM_PSEUDO_HDR|
2057 					CSUM_FRAG_NOT_CHECKED;
2058 				m->m_pkthdr.csum_data = 0xffff;
2059 			}
2060 		}
2061 
2062 		ifp->if_input(ifp, m);
2063 	}
2064 
2065 	if (sc->xl_type != XL_TYPE_905B) {
2066 		/*
2067 		 * Handle the 'end of channel' condition. When the upload
2068 		 * engine hits the end of the RX ring, it will stall. This
2069 		 * is our cue to flush the RX ring, reload the uplist pointer
2070 		 * register and unstall the engine.
2071 		 * XXX This is actually a little goofy. With the ThunderLAN
2072 		 * chip, you get an interrupt when the receiver hits the end
2073 		 * of the receive ring, which tells you exactly when you
2074 		 * you need to reload the ring pointer. Here we have to
2075 		 * fake it. I'm mad at myself for not being clever enough
2076 		 * to avoid the use of a goto here.
2077 		 */
2078 		if (CSR_READ_4(sc, XL_UPLIST_PTR) == 0 ||
2079 		    CSR_READ_4(sc, XL_UPLIST_STATUS) & XL_PKTSTAT_UP_STALLED) {
2080 			CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_UP_STALL);
2081 			xl_wait(sc);
2082 			CSR_WRITE_4(sc, XL_UPLIST_PTR,
2083 				    sc->xl_ldata.xl_rx_dmaaddr);
2084 			sc->xl_cdata.xl_rx_head = &sc->xl_cdata.xl_rx_chain[0];
2085 			CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_UP_UNSTALL);
2086 			goto again;
2087 		}
2088 	}
2089 }
2090 
2091 /*
2092  * A frame was downloaded to the chip. It's safe for us to clean up
2093  * the list buffers.
2094  */
2095 static void
2096 xl_txeof(struct xl_softc *sc)
2097 {
2098 	struct xl_chain		*cur_tx;
2099 	struct ifnet		*ifp;
2100 
2101 	ifp = &sc->arpcom.ac_if;
2102 
2103 	/* Clear the timeout timer. */
2104 	ifp->if_timer = 0;
2105 
2106 	/*
2107 	 * Go through our tx list and free mbufs for those
2108 	 * frames that have been uploaded. Note: the 3c905B
2109 	 * sets a special bit in the status word to let us
2110 	 * know that a frame has been downloaded, but the
2111 	 * original 3c900/3c905 adapters don't do that.
2112 	 * Consequently, we have to use a different test if
2113 	 * xl_type != XL_TYPE_905B.
2114 	 */
2115 	while(sc->xl_cdata.xl_tx_head != NULL) {
2116 		cur_tx = sc->xl_cdata.xl_tx_head;
2117 
2118 		if (CSR_READ_4(sc, XL_DOWNLIST_PTR))
2119 			break;
2120 
2121 		sc->xl_cdata.xl_tx_head = cur_tx->xl_next;
2122 		bus_dmamap_unload(sc->xl_tx_mtag, cur_tx->xl_map);
2123 		m_freem(cur_tx->xl_mbuf);
2124 		cur_tx->xl_mbuf = NULL;
2125 		ifp->if_opackets++;
2126 
2127 		cur_tx->xl_next = sc->xl_cdata.xl_tx_free;
2128 		sc->xl_cdata.xl_tx_free = cur_tx;
2129 	}
2130 
2131 	if (sc->xl_cdata.xl_tx_head == NULL) {
2132 		ifp->if_flags &= ~IFF_OACTIVE;
2133 		sc->xl_cdata.xl_tx_tail = NULL;
2134 	} else {
2135 		if (CSR_READ_4(sc, XL_DMACTL) & XL_DMACTL_DOWN_STALLED ||
2136 			!CSR_READ_4(sc, XL_DOWNLIST_PTR)) {
2137 			CSR_WRITE_4(sc, XL_DOWNLIST_PTR,
2138 				sc->xl_cdata.xl_tx_head->xl_phys);
2139 			CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_UNSTALL);
2140 		}
2141 	}
2142 
2143 	return;
2144 }
2145 
2146 static void
2147 xl_txeof_90xB(struct xl_softc *sc)
2148 {
2149 	struct xl_chain		*cur_tx = NULL;
2150 	struct ifnet		*ifp;
2151 	int			idx;
2152 
2153 	ifp = &sc->arpcom.ac_if;
2154 
2155 	idx = sc->xl_cdata.xl_tx_cons;
2156 	while(idx != sc->xl_cdata.xl_tx_prod) {
2157 
2158 		cur_tx = &sc->xl_cdata.xl_tx_chain[idx];
2159 
2160 		if (!(le32toh(cur_tx->xl_ptr->xl_status) &
2161 		      XL_TXSTAT_DL_COMPLETE))
2162 			break;
2163 
2164 		if (cur_tx->xl_mbuf != NULL) {
2165 			bus_dmamap_unload(sc->xl_tx_mtag, cur_tx->xl_map);
2166 			m_freem(cur_tx->xl_mbuf);
2167 			cur_tx->xl_mbuf = NULL;
2168 		}
2169 
2170 		ifp->if_opackets++;
2171 
2172 		sc->xl_cdata.xl_tx_cnt--;
2173 		XL_INC(idx, XL_TX_LIST_CNT);
2174 		ifp->if_timer = 0;
2175 	}
2176 
2177 	sc->xl_cdata.xl_tx_cons = idx;
2178 
2179 	if (cur_tx != NULL)
2180 		ifp->if_flags &= ~IFF_OACTIVE;
2181 
2182 	return;
2183 }
2184 
2185 /*
2186  * TX 'end of channel' interrupt handler. Actually, we should
2187  * only get a 'TX complete' interrupt if there's a transmit error,
2188  * so this is really TX error handler.
2189  */
2190 static void
2191 xl_txeoc(struct xl_softc *sc)
2192 {
2193 	struct ifnet *ifp = &sc->arpcom.ac_if;
2194 	u_int8_t		txstat;
2195 
2196 	while((txstat = CSR_READ_1(sc, XL_TX_STATUS))) {
2197 		if (txstat & XL_TXSTATUS_UNDERRUN ||
2198 			txstat & XL_TXSTATUS_JABBER ||
2199 			txstat & XL_TXSTATUS_RECLAIM) {
2200 			if_printf(ifp, "transmission error: %x\n", txstat);
2201 			CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_RESET);
2202 			xl_wait(sc);
2203 			if (sc->xl_type == XL_TYPE_905B) {
2204 				if (sc->xl_cdata.xl_tx_cnt) {
2205 					int			i;
2206 					struct xl_chain		*c;
2207 					i = sc->xl_cdata.xl_tx_cons;
2208 					c = &sc->xl_cdata.xl_tx_chain[i];
2209 					CSR_WRITE_4(sc, XL_DOWNLIST_PTR,
2210 					    c->xl_phys);
2211 					CSR_WRITE_1(sc, XL_DOWN_POLL, 64);
2212 				}
2213 			} else {
2214 				if (sc->xl_cdata.xl_tx_head != NULL)
2215 					CSR_WRITE_4(sc, XL_DOWNLIST_PTR,
2216 					    sc->xl_cdata.xl_tx_head->xl_phys);
2217 			}
2218 			/*
2219 			 * Remember to set this for the
2220 			 * first generation 3c90X chips.
2221 			 */
2222 			CSR_WRITE_1(sc, XL_TX_FREETHRESH, XL_PACKET_SIZE >> 8);
2223 			if (txstat & XL_TXSTATUS_UNDERRUN &&
2224 			    sc->xl_tx_thresh < XL_PACKET_SIZE) {
2225 				sc->xl_tx_thresh += XL_MIN_FRAMELEN;
2226 				if_printf(ifp, "tx underrun, increasing tx start"
2227 				    " threshold to %d bytes\n",
2228 				    sc->xl_tx_thresh);
2229 			}
2230 			CSR_WRITE_2(sc, XL_COMMAND,
2231 			    XL_CMD_TX_SET_START|sc->xl_tx_thresh);
2232 			if (sc->xl_type == XL_TYPE_905B) {
2233 				CSR_WRITE_2(sc, XL_COMMAND,
2234 				XL_CMD_SET_TX_RECLAIM|(XL_PACKET_SIZE >> 4));
2235 			}
2236 			CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_ENABLE);
2237 			CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_UNSTALL);
2238 		} else {
2239 			CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_ENABLE);
2240 			CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_UNSTALL);
2241 		}
2242 		/*
2243 		 * Write an arbitrary byte to the TX_STATUS register
2244 	 	 * to clear this interrupt/error and advance to the next.
2245 		 */
2246 		CSR_WRITE_1(sc, XL_TX_STATUS, 0x01);
2247 	}
2248 
2249 	return;
2250 }
2251 
2252 #ifdef DEVICE_POLLING
2253 
2254 static void
2255 xl_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2256 {
2257 	struct xl_softc *sc = ifp->if_softc;
2258 
2259 	ASSERT_SERIALIZED(ifp->if_serializer);
2260 
2261 	switch (cmd) {
2262 	case POLL_REGISTER:
2263 		xl_enable_intrs(sc, 0);
2264 		if (sc->xl_type != XL_TYPE_905B)
2265 			ifp->if_start = xl_start_poll;
2266 		break;
2267 	case POLL_DEREGISTER:
2268 		if (sc->xl_type != XL_TYPE_905B)
2269 			ifp->if_start = xl_start;
2270 		xl_enable_intrs(sc, XL_INTRS);
2271 		break;
2272 	case POLL_ONLY:
2273 	case POLL_AND_CHECK_STATUS:
2274 		xl_rxeof(sc, count);
2275 		if (sc->xl_type == XL_TYPE_905B)
2276 			xl_txeof_90xB(sc);
2277 		else
2278 			xl_txeof(sc);
2279 
2280 		if (!ifq_is_empty(&ifp->if_snd))
2281 			if_devstart(ifp);
2282 
2283 		if (cmd == POLL_AND_CHECK_STATUS) {
2284 			uint16_t status;
2285 
2286 			/* XXX copy & pasted from xl_intr() */
2287 			status = CSR_READ_2(sc, XL_STATUS);
2288 			if ((status & XL_INTRS) && status != 0xFFFF) {
2289 				CSR_WRITE_2(sc, XL_COMMAND,
2290 				    XL_CMD_INTR_ACK | (status & XL_INTRS));
2291 
2292 				if (status & XL_STAT_TX_COMPLETE) {
2293 					ifp->if_oerrors++;
2294 					xl_txeoc(sc);
2295 				}
2296 
2297 				if (status & XL_STAT_ADFAIL) {
2298 					xl_reset(sc);
2299 					xl_init(sc);
2300 				}
2301 
2302 				if (status & XL_STAT_STATSOFLOW) {
2303 					sc->xl_stats_no_timeout = 1;
2304 					xl_stats_update_serialized(sc);
2305 					sc->xl_stats_no_timeout = 0;
2306 				}
2307 			}
2308 		}
2309 		break;
2310 	}
2311 }
2312 
2313 #endif	/* DEVICE_POLLING */
2314 
2315 static void
2316 xl_intr(void *arg)
2317 {
2318 	struct xl_softc		*sc;
2319 	struct ifnet		*ifp;
2320 	u_int16_t		status;
2321 
2322 	sc = arg;
2323 	ifp = &sc->arpcom.ac_if;
2324 
2325 	ASSERT_SERIALIZED(ifp->if_serializer);
2326 
2327 	while(((status = CSR_READ_2(sc, XL_STATUS)) & XL_INTRS) &&
2328 	      status != 0xFFFF) {
2329 
2330 		CSR_WRITE_2(sc, XL_COMMAND,
2331 		    XL_CMD_INTR_ACK|(status & XL_INTRS));
2332 
2333 		if (status & XL_STAT_UP_COMPLETE) {
2334 			int			curpkts;
2335 
2336 			curpkts = ifp->if_ipackets;
2337 			xl_rxeof(sc, -1);
2338 			if (curpkts == ifp->if_ipackets) {
2339 				while (xl_rx_resync(sc))
2340 					xl_rxeof(sc, -1);
2341 			}
2342 		}
2343 
2344 		if (status & XL_STAT_DOWN_COMPLETE) {
2345 			if (sc->xl_type == XL_TYPE_905B)
2346 				xl_txeof_90xB(sc);
2347 			else
2348 				xl_txeof(sc);
2349 		}
2350 
2351 		if (status & XL_STAT_TX_COMPLETE) {
2352 			ifp->if_oerrors++;
2353 			xl_txeoc(sc);
2354 		}
2355 
2356 		if (status & XL_STAT_ADFAIL) {
2357 			xl_reset(sc);
2358 			xl_init(sc);
2359 		}
2360 
2361 		if (status & XL_STAT_STATSOFLOW) {
2362 			sc->xl_stats_no_timeout = 1;
2363 			xl_stats_update_serialized(sc);
2364 			sc->xl_stats_no_timeout = 0;
2365 		}
2366 	}
2367 
2368 	if (!ifq_is_empty(&ifp->if_snd))
2369 		if_devstart(ifp);
2370 }
2371 
2372 static void
2373 xl_stats_update(void *xsc)
2374 {
2375 	struct xl_softc	*sc = xsc;
2376 
2377 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
2378 	xl_stats_update_serialized(xsc);
2379 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
2380 }
2381 
2382 static void
2383 xl_stats_update_serialized(void *xsc)
2384 {
2385 	struct xl_softc		*sc;
2386 	struct ifnet		*ifp;
2387 	struct xl_stats		xl_stats;
2388 	u_int8_t		*p;
2389 	int			i;
2390 	struct mii_data		*mii = NULL;
2391 
2392 	bzero((char *)&xl_stats, sizeof(struct xl_stats));
2393 
2394 	sc = xsc;
2395 	ifp = &sc->arpcom.ac_if;
2396 	if (sc->xl_miibus != NULL)
2397 		mii = device_get_softc(sc->xl_miibus);
2398 
2399 	p = (u_int8_t *)&xl_stats;
2400 
2401 	/* Read all the stats registers. */
2402 	XL_SEL_WIN(6);
2403 
2404 	for (i = 0; i < 16; i++)
2405 		*p++ = CSR_READ_1(sc, XL_W6_CARRIER_LOST + i);
2406 
2407 	ifp->if_ierrors += xl_stats.xl_rx_overrun;
2408 
2409 	ifp->if_collisions += xl_stats.xl_tx_multi_collision +
2410 				xl_stats.xl_tx_single_collision +
2411 				xl_stats.xl_tx_late_collision;
2412 
2413 	/*
2414 	 * Boomerang and cyclone chips have an extra stats counter
2415 	 * in window 4 (BadSSD). We have to read this too in order
2416 	 * to clear out all the stats registers and avoid a statsoflow
2417 	 * interrupt.
2418 	 */
2419 	XL_SEL_WIN(4);
2420 	CSR_READ_1(sc, XL_W4_BADSSD);
2421 
2422 	if ((mii != NULL) && (!sc->xl_stats_no_timeout))
2423 		mii_tick(mii);
2424 
2425 	XL_SEL_WIN(7);
2426 
2427 	if (!sc->xl_stats_no_timeout)
2428 		callout_reset(&sc->xl_stat_timer, hz, xl_stats_update, sc);
2429 
2430 	return;
2431 }
2432 
2433 /*
2434  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
2435  * pointers to the fragment pointers.
2436  */
2437 static int
2438 xl_encap(struct xl_softc *sc, struct xl_chain *c, struct mbuf *m_head)
2439 {
2440 	int			error, nsegs, i;
2441 	u_int32_t		status;
2442 	bus_dma_segment_t	segs[XL_MAXFRAGS];
2443 	struct xl_list		*l;
2444 
2445 	error = bus_dmamap_load_mbuf_defrag(sc->xl_tx_mtag, c->xl_map, &m_head,
2446 			segs, XL_MAXFRAGS, &nsegs, BUS_DMA_NOWAIT);
2447 	if (error) {
2448 		m_freem(m_head);
2449 		return error;
2450 	}
2451 	bus_dmamap_sync(sc->xl_tx_mtag, c->xl_map, BUS_DMASYNC_PREWRITE);
2452 
2453 	if (sc->xl_type == XL_TYPE_905B) {
2454 		status = XL_TXSTAT_RND_DEFEAT;
2455 		if (m_head->m_pkthdr.csum_flags) {
2456 			if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2457 				status |= XL_TXSTAT_IPCKSUM;
2458 			if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
2459 				status |= XL_TXSTAT_TCPCKSUM;
2460 			if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
2461 				status |= XL_TXSTAT_UDPCKSUM;
2462 		}
2463 	} else {
2464 		status = m_head->m_pkthdr.len;
2465 	}
2466 
2467 	l = c->xl_ptr;
2468 	for (i = 0; i < nsegs; i++) {
2469 		l->xl_frag[i].xl_addr = htole32(segs[i].ds_addr);
2470 		l->xl_frag[i].xl_len = htole32(segs[i].ds_len);
2471 	}
2472 	l->xl_frag[nsegs - 1].xl_len =
2473 		htole32(segs[nsegs - 1].ds_len | XL_LAST_FRAG);
2474 	l->xl_status = htole32(status);
2475 	l->xl_next = 0;
2476 
2477 	c->xl_mbuf = m_head;
2478 
2479 	return(0);
2480 }
2481 
2482 static void
2483 xl_start(struct ifnet *ifp)
2484 {
2485 	ASSERT_SERIALIZED(ifp->if_serializer);
2486 	xl_start_body(ifp, 1);
2487 }
2488 
2489 #ifdef DEVICE_POLLING
2490 static void
2491 xl_start_poll(struct ifnet *ifp)
2492 {
2493 	xl_start_body(ifp, 0);
2494 }
2495 #endif
2496 
2497 /*
2498  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2499  * to the mbuf data regions directly in the transmit lists. We also save a
2500  * copy of the pointers since the transmit list fragment pointers are
2501  * physical addresses.
2502  */
2503 static void
2504 xl_start_body(struct ifnet *ifp, int proc_rx)
2505 {
2506 	struct xl_softc		*sc;
2507 	struct mbuf		*m_head = NULL;
2508 	struct xl_chain		*prev = NULL, *cur_tx = NULL, *start_tx;
2509 	struct xl_chain		*prev_tx;
2510 	u_int32_t		status;
2511 	int			error;
2512 
2513 	sc = ifp->if_softc;
2514 	/*
2515 	 * Check for an available queue slot. If there are none,
2516 	 * punt.
2517 	 */
2518 	if (sc->xl_cdata.xl_tx_free == NULL) {
2519 		xl_txeoc(sc);
2520 		xl_txeof(sc);
2521 		if (sc->xl_cdata.xl_tx_free == NULL) {
2522 			ifp->if_flags |= IFF_OACTIVE;
2523 			return;
2524 		}
2525 	}
2526 
2527 	start_tx = sc->xl_cdata.xl_tx_free;
2528 
2529 	while(sc->xl_cdata.xl_tx_free != NULL) {
2530 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
2531 		if (m_head == NULL)
2532 			break;
2533 
2534 		/* Pick a descriptor off the free list. */
2535 		prev_tx = cur_tx;
2536 		cur_tx = sc->xl_cdata.xl_tx_free;
2537 
2538 		/* Pack the data into the descriptor. */
2539 		error = xl_encap(sc, cur_tx, m_head);
2540 		if (error) {
2541 			cur_tx = prev_tx;
2542 			continue;
2543 		}
2544 
2545 		sc->xl_cdata.xl_tx_free = cur_tx->xl_next;
2546 		cur_tx->xl_next = NULL;
2547 
2548 		/* Chain it together. */
2549 		if (prev != NULL) {
2550 			prev->xl_next = cur_tx;
2551 			prev->xl_ptr->xl_next = htole32(cur_tx->xl_phys);
2552 		}
2553 		prev = cur_tx;
2554 
2555 		BPF_MTAP(ifp, cur_tx->xl_mbuf);
2556 	}
2557 
2558 	/*
2559 	 * If there are no packets queued, bail.
2560 	 */
2561 	if (cur_tx == NULL)
2562 		return;
2563 
2564 	/*
2565 	 * Place the request for the upload interrupt
2566 	 * in the last descriptor in the chain. This way, if
2567 	 * we're chaining several packets at once, we'll only
2568 	 * get an interupt once for the whole chain rather than
2569 	 * once for each packet.
2570 	 */
2571 	cur_tx->xl_ptr->xl_status = htole32(le32toh(cur_tx->xl_ptr->xl_status) |
2572 	    XL_TXSTAT_DL_INTR);
2573 
2574 	/*
2575 	 * Queue the packets. If the TX channel is clear, update
2576 	 * the downlist pointer register.
2577 	 */
2578 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_STALL);
2579 	xl_wait(sc);
2580 
2581 	if (sc->xl_cdata.xl_tx_head != NULL) {
2582 		sc->xl_cdata.xl_tx_tail->xl_next = start_tx;
2583 		sc->xl_cdata.xl_tx_tail->xl_ptr->xl_next =
2584 		    htole32(start_tx->xl_phys);
2585 		status = sc->xl_cdata.xl_tx_tail->xl_ptr->xl_status;
2586 		sc->xl_cdata.xl_tx_tail->xl_ptr->xl_status =
2587 		    htole32(le32toh(status) & ~XL_TXSTAT_DL_INTR);
2588 		sc->xl_cdata.xl_tx_tail = cur_tx;
2589 	} else {
2590 		sc->xl_cdata.xl_tx_head = start_tx;
2591 		sc->xl_cdata.xl_tx_tail = cur_tx;
2592 	}
2593 
2594 	if (!CSR_READ_4(sc, XL_DOWNLIST_PTR))
2595 		CSR_WRITE_4(sc, XL_DOWNLIST_PTR, start_tx->xl_phys);
2596 
2597 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_UNSTALL);
2598 
2599 	XL_SEL_WIN(7);
2600 
2601 	/*
2602 	 * Set a timeout in case the chip goes out to lunch.
2603 	 */
2604 	ifp->if_timer = 5;
2605 
2606 	if (proc_rx) {
2607 		/*
2608 		 * XXX Under certain conditions, usually on slower machines
2609 		 * where interrupts may be dropped, it's possible for the
2610 		 * adapter to chew up all the buffers in the receive ring
2611 		 * and stall, without us being able to do anything about it.
2612 		 * To guard against this, we need to make a pass over the
2613 		 * RX queue to make sure there aren't any packets pending.
2614 		 * Doing it here means we can flush the receive ring at the
2615 		 * same time the chip is DMAing the transmit descriptors we
2616 		 * just gave it.
2617 		 *
2618 		 * 3Com goes to some lengths to emphasize the Parallel
2619 		 * Tasking (tm) nature of their chips in all their marketing
2620 		 * literature;  we may as well take advantage of it. :)
2621 		 */
2622 		xl_rxeof(sc, -1);
2623 	}
2624 }
2625 
2626 static void
2627 xl_start_90xB(struct ifnet *ifp)
2628 {
2629 	struct xl_softc		*sc;
2630 	struct mbuf		*m_head = NULL;
2631 	struct xl_chain		*prev = NULL, *cur_tx = NULL, *start_tx;
2632 	struct xl_chain		*prev_tx;
2633 	int			error, idx;
2634 
2635 	ASSERT_SERIALIZED(ifp->if_serializer);
2636 
2637 	sc = ifp->if_softc;
2638 
2639 	if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING)
2640 		return;
2641 
2642 	idx = sc->xl_cdata.xl_tx_prod;
2643 	start_tx = &sc->xl_cdata.xl_tx_chain[idx];
2644 
2645 	while (sc->xl_cdata.xl_tx_chain[idx].xl_mbuf == NULL) {
2646 
2647 		if ((XL_TX_LIST_CNT - sc->xl_cdata.xl_tx_cnt) < 3) {
2648 			ifp->if_flags |= IFF_OACTIVE;
2649 			break;
2650 		}
2651 
2652 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
2653 		if (m_head == NULL)
2654 			break;
2655 
2656 		prev_tx = cur_tx;
2657 		cur_tx = &sc->xl_cdata.xl_tx_chain[idx];
2658 
2659 		/* Pack the data into the descriptor. */
2660 		error = xl_encap(sc, cur_tx, m_head);
2661 		if (error) {
2662 			cur_tx = prev_tx;
2663 			continue;
2664 		}
2665 
2666 		/* Chain it together. */
2667 		if (prev != NULL)
2668 			prev->xl_ptr->xl_next = htole32(cur_tx->xl_phys);
2669 		prev = cur_tx;
2670 
2671 		BPF_MTAP(ifp, cur_tx->xl_mbuf);
2672 
2673 		XL_INC(idx, XL_TX_LIST_CNT);
2674 		sc->xl_cdata.xl_tx_cnt++;
2675 	}
2676 
2677 	/*
2678 	 * If there are no packets queued, bail.
2679 	 */
2680 	if (cur_tx == NULL)
2681 		return;
2682 
2683 	/*
2684 	 * Place the request for the upload interrupt
2685 	 * in the last descriptor in the chain. This way, if
2686 	 * we're chaining several packets at once, we'll only
2687 	 * get an interupt once for the whole chain rather than
2688 	 * once for each packet.
2689 	 */
2690 	cur_tx->xl_ptr->xl_status = htole32(le32toh(cur_tx->xl_ptr->xl_status) |
2691 	    XL_TXSTAT_DL_INTR);
2692 
2693 	/* Start transmission */
2694 	sc->xl_cdata.xl_tx_prod = idx;
2695 	start_tx->xl_prev->xl_ptr->xl_next = htole32(start_tx->xl_phys);
2696 
2697 	/*
2698 	 * Set a timeout in case the chip goes out to lunch.
2699 	 */
2700 	ifp->if_timer = 5;
2701 }
2702 
2703 static void
2704 xl_init(void *xsc)
2705 {
2706 	struct xl_softc		*sc = xsc;
2707 	struct ifnet		*ifp = &sc->arpcom.ac_if;
2708 	int			error, i;
2709 	u_int16_t		rxfilt = 0;
2710 	struct mii_data		*mii = NULL;
2711 
2712 	ASSERT_SERIALIZED(ifp->if_serializer);
2713 
2714 	/*
2715 	 * Cancel pending I/O and free all RX/TX buffers.
2716 	 */
2717 	xl_stop(sc);
2718 
2719 	if (sc->xl_miibus == NULL) {
2720 		CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_RESET);
2721 		xl_wait(sc);
2722 	}
2723 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_RESET);
2724 	xl_wait(sc);
2725 	DELAY(10000);
2726 
2727 	if (sc->xl_miibus != NULL)
2728 		mii = device_get_softc(sc->xl_miibus);
2729 
2730 	/* Init our MAC address */
2731 	XL_SEL_WIN(2);
2732 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
2733 		CSR_WRITE_1(sc, XL_W2_STATION_ADDR_LO + i,
2734 				sc->arpcom.ac_enaddr[i]);
2735 	}
2736 
2737 	/* Clear the station mask. */
2738 	for (i = 0; i < 3; i++)
2739 		CSR_WRITE_2(sc, XL_W2_STATION_MASK_LO + (i * 2), 0);
2740 #ifdef notdef
2741 	/* Reset TX and RX. */
2742 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_RESET);
2743 	xl_wait(sc);
2744 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_RESET);
2745 	xl_wait(sc);
2746 #endif
2747 	/* Init circular RX list. */
2748 	error = xl_list_rx_init(sc);
2749 	if (error) {
2750 		if_printf(ifp, "initialization of the rx ring failed (%d)\n",
2751 			  error);
2752 		xl_stop(sc);
2753 		return;
2754 	}
2755 
2756 	/* Init TX descriptors. */
2757 	if (sc->xl_type == XL_TYPE_905B)
2758 		xl_list_tx_init_90xB(sc);
2759 	else
2760 		xl_list_tx_init(sc);
2761 
2762 	/*
2763 	 * Set the TX freethresh value.
2764 	 * Note that this has no effect on 3c905B "cyclone"
2765 	 * cards but is required for 3c900/3c905 "boomerang"
2766 	 * cards in order to enable the download engine.
2767 	 */
2768 	CSR_WRITE_1(sc, XL_TX_FREETHRESH, XL_PACKET_SIZE >> 8);
2769 
2770 	/* Set the TX start threshold for best performance. */
2771 	sc->xl_tx_thresh = XL_MIN_FRAMELEN;
2772 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_SET_START|sc->xl_tx_thresh);
2773 
2774 	/*
2775 	 * If this is a 3c905B, also set the tx reclaim threshold.
2776 	 * This helps cut down on the number of tx reclaim errors
2777 	 * that could happen on a busy network. The chip multiplies
2778 	 * the register value by 16 to obtain the actual threshold
2779 	 * in bytes, so we divide by 16 when setting the value here.
2780 	 * The existing threshold value can be examined by reading
2781 	 * the register at offset 9 in window 5.
2782 	 */
2783 	if (sc->xl_type == XL_TYPE_905B) {
2784 		CSR_WRITE_2(sc, XL_COMMAND,
2785 		    XL_CMD_SET_TX_RECLAIM|(XL_PACKET_SIZE >> 4));
2786 	}
2787 
2788 	/* Set RX filter bits. */
2789 	XL_SEL_WIN(5);
2790 	rxfilt = CSR_READ_1(sc, XL_W5_RX_FILTER);
2791 
2792 	/* Set the individual bit to receive frames for this host only. */
2793 	rxfilt |= XL_RXFILTER_INDIVIDUAL;
2794 
2795 	/* If we want promiscuous mode, set the allframes bit. */
2796 	if (ifp->if_flags & IFF_PROMISC) {
2797 		rxfilt |= XL_RXFILTER_ALLFRAMES;
2798 		CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt);
2799 	} else {
2800 		rxfilt &= ~XL_RXFILTER_ALLFRAMES;
2801 		CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt);
2802 	}
2803 
2804 	/*
2805 	 * Set capture broadcast bit to capture broadcast frames.
2806 	 */
2807 	if (ifp->if_flags & IFF_BROADCAST) {
2808 		rxfilt |= XL_RXFILTER_BROADCAST;
2809 		CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt);
2810 	} else {
2811 		rxfilt &= ~XL_RXFILTER_BROADCAST;
2812 		CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt);
2813 	}
2814 
2815 	/*
2816 	 * Program the multicast filter, if necessary.
2817 	 */
2818 	if (sc->xl_type == XL_TYPE_905B)
2819 		xl_setmulti_hash(sc);
2820 	else
2821 		xl_setmulti(sc);
2822 
2823 	if (sc->xl_type == XL_TYPE_905B) {
2824 		/* Set UP polling interval */
2825 		CSR_WRITE_1(sc, XL_UP_POLL, 64);
2826 	}
2827 
2828 	/*
2829 	 * Load the address of the RX list. We have to
2830 	 * stall the upload engine before we can manipulate
2831 	 * the uplist pointer register, then unstall it when
2832 	 * we're finished. We also have to wait for the
2833 	 * stall command to complete before proceeding.
2834 	 * Note that we have to do this after any RX resets
2835 	 * have completed since the uplist register is cleared
2836 	 * by a reset.
2837 	 */
2838 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_UP_STALL);
2839 	xl_wait(sc);
2840 	CSR_WRITE_4(sc, XL_UPLIST_PTR, sc->xl_ldata.xl_rx_dmaaddr);
2841 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_UP_UNSTALL);
2842 	xl_wait(sc);
2843 
2844 	if (sc->xl_type == XL_TYPE_905B) {
2845 		/* Set DN polling interval */
2846 		CSR_WRITE_1(sc, XL_DOWN_POLL, 64);
2847 
2848 		/* Load the address of the TX list */
2849 		CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_STALL);
2850 		xl_wait(sc);
2851 		CSR_WRITE_4(sc, XL_DOWNLIST_PTR,
2852 		    sc->xl_cdata.xl_tx_chain[0].xl_phys);
2853 		CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_UNSTALL);
2854 		xl_wait(sc);
2855 	}
2856 
2857 	/*
2858 	 * If the coax transceiver is on, make sure to enable
2859 	 * the DC-DC converter.
2860  	 */
2861 	XL_SEL_WIN(3);
2862 	if (sc->xl_xcvr == XL_XCVR_COAX)
2863 		CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_START);
2864 	else
2865 		CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_STOP);
2866 
2867 	/*
2868 	 * increase packet size to allow reception of 802.1q or ISL packets.
2869 	 * For the 3c90x chip, set the 'allow large packets' bit in the MAC
2870 	 * control register. For 3c90xB/C chips, use the RX packet size
2871 	 * register.
2872 	 */
2873 
2874 	if (sc->xl_type == XL_TYPE_905B) {
2875 		CSR_WRITE_2(sc, XL_W3_MAXPKTSIZE, XL_PACKET_SIZE);
2876 	} else {
2877 		u_int8_t macctl;
2878 		macctl = CSR_READ_1(sc, XL_W3_MAC_CTRL);
2879 		macctl |= XL_MACCTRL_ALLOW_LARGE_PACK;
2880 		CSR_WRITE_1(sc, XL_W3_MAC_CTRL, macctl);
2881 	}
2882 
2883 	/* Clear out the stats counters. */
2884 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_STATS_DISABLE);
2885 	sc->xl_stats_no_timeout = 1;
2886 	xl_stats_update_serialized(sc);
2887 	sc->xl_stats_no_timeout = 0;
2888 	XL_SEL_WIN(4);
2889 	CSR_WRITE_2(sc, XL_W4_NET_DIAG, XL_NETDIAG_UPPER_BYTES_ENABLE);
2890 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_STATS_ENABLE);
2891 
2892 	/*
2893 	 * Enable interrupts.
2894 	 */
2895 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_STAT_ENB | XL_INTRS);
2896 #ifdef DEVICE_POLLING
2897 	/* Do not enable interrupt if polling(4) is enabled */
2898 	if ((ifp->if_flags & IFF_POLLING) != 0)
2899 		xl_enable_intrs(sc, 0);
2900 	else
2901 #endif
2902 	xl_enable_intrs(sc, XL_INTRS);
2903 
2904 	/* Set the RX early threshold */
2905 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_THRESH|(XL_PACKET_SIZE >>2));
2906 	CSR_WRITE_2(sc, XL_DMACTL, XL_DMACTL_UP_RX_EARLY);
2907 
2908 	/* Enable receiver and transmitter. */
2909 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_ENABLE);
2910 	xl_wait(sc);
2911 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_ENABLE);
2912 	xl_wait(sc);
2913 
2914 	if (mii != NULL)
2915 		mii_mediachg(mii);
2916 
2917 	/* Select window 7 for normal operations. */
2918 	XL_SEL_WIN(7);
2919 
2920 	ifp->if_flags |= IFF_RUNNING;
2921 	ifp->if_flags &= ~IFF_OACTIVE;
2922 
2923 	callout_reset(&sc->xl_stat_timer, hz, xl_stats_update, sc);
2924 }
2925 
2926 /*
2927  * Set media options.
2928  */
2929 static int
2930 xl_ifmedia_upd(struct ifnet *ifp)
2931 {
2932 	struct xl_softc		*sc;
2933 	struct ifmedia		*ifm = NULL;
2934 	struct mii_data		*mii = NULL;
2935 
2936 	ASSERT_SERIALIZED(ifp->if_serializer);
2937 
2938 	sc = ifp->if_softc;
2939 	if (sc->xl_miibus != NULL)
2940 		mii = device_get_softc(sc->xl_miibus);
2941 	if (mii == NULL)
2942 		ifm = &sc->ifmedia;
2943 	else
2944 		ifm = &mii->mii_media;
2945 
2946 	switch(IFM_SUBTYPE(ifm->ifm_media)) {
2947 	case IFM_100_FX:
2948 	case IFM_10_FL:
2949 	case IFM_10_2:
2950 	case IFM_10_5:
2951 		xl_setmode(sc, ifm->ifm_media);
2952 		return(0);
2953 		break;
2954 	default:
2955 		break;
2956 	}
2957 
2958 	if (sc->xl_media & XL_MEDIAOPT_MII || sc->xl_media & XL_MEDIAOPT_BTX
2959 		|| sc->xl_media & XL_MEDIAOPT_BT4) {
2960 		xl_init(sc);
2961 	} else {
2962 		xl_setmode(sc, ifm->ifm_media);
2963 	}
2964 
2965 	return(0);
2966 }
2967 
2968 /*
2969  * Report current media status.
2970  */
2971 static void
2972 xl_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2973 {
2974 	struct xl_softc		*sc;
2975 	u_int32_t		icfg;
2976 	struct mii_data		*mii = NULL;
2977 
2978 	ASSERT_SERIALIZED(ifp->if_serializer);
2979 
2980 	sc = ifp->if_softc;
2981 	if (sc->xl_miibus != NULL)
2982 		mii = device_get_softc(sc->xl_miibus);
2983 
2984 	XL_SEL_WIN(3);
2985 	icfg = CSR_READ_4(sc, XL_W3_INTERNAL_CFG) & XL_ICFG_CONNECTOR_MASK;
2986 	icfg >>= XL_ICFG_CONNECTOR_BITS;
2987 
2988 	ifmr->ifm_active = IFM_ETHER;
2989 
2990 	switch(icfg) {
2991 	case XL_XCVR_10BT:
2992 		ifmr->ifm_active = IFM_ETHER|IFM_10_T;
2993 		if (CSR_READ_1(sc, XL_W3_MAC_CTRL) & XL_MACCTRL_DUPLEX)
2994 			ifmr->ifm_active |= IFM_FDX;
2995 		else
2996 			ifmr->ifm_active |= IFM_HDX;
2997 		break;
2998 	case XL_XCVR_AUI:
2999 		if (sc->xl_type == XL_TYPE_905B &&
3000 		    sc->xl_media == XL_MEDIAOPT_10FL) {
3001 			ifmr->ifm_active = IFM_ETHER|IFM_10_FL;
3002 			if (CSR_READ_1(sc, XL_W3_MAC_CTRL) & XL_MACCTRL_DUPLEX)
3003 				ifmr->ifm_active |= IFM_FDX;
3004 			else
3005 				ifmr->ifm_active |= IFM_HDX;
3006 		} else
3007 			ifmr->ifm_active = IFM_ETHER|IFM_10_5;
3008 		break;
3009 	case XL_XCVR_COAX:
3010 		ifmr->ifm_active = IFM_ETHER|IFM_10_2;
3011 		break;
3012 	/*
3013 	 * XXX MII and BTX/AUTO should be separate cases.
3014 	 */
3015 
3016 	case XL_XCVR_100BTX:
3017 	case XL_XCVR_AUTO:
3018 	case XL_XCVR_MII:
3019 		if (mii != NULL) {
3020 			mii_pollstat(mii);
3021 			ifmr->ifm_active = mii->mii_media_active;
3022 			ifmr->ifm_status = mii->mii_media_status;
3023 		}
3024 		break;
3025 	case XL_XCVR_100BFX:
3026 		ifmr->ifm_active = IFM_ETHER|IFM_100_FX;
3027 		break;
3028 	default:
3029 		if_printf(ifp, "unknown XCVR type: %d\n", icfg);
3030 		break;
3031 	}
3032 
3033 	return;
3034 }
3035 
3036 static int
3037 xl_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
3038 {
3039 	struct xl_softc		*sc = ifp->if_softc;
3040 	struct ifreq		*ifr = (struct ifreq *) data;
3041 	int			error = 0;
3042 	struct mii_data		*mii = NULL;
3043 	u_int8_t		rxfilt;
3044 
3045 	ASSERT_SERIALIZED(ifp->if_serializer);
3046 
3047 	switch(command) {
3048 	case SIOCSIFFLAGS:
3049 		XL_SEL_WIN(5);
3050 		rxfilt = CSR_READ_1(sc, XL_W5_RX_FILTER);
3051 		if (ifp->if_flags & IFF_UP) {
3052 			if (ifp->if_flags & IFF_RUNNING &&
3053 			    ifp->if_flags & IFF_PROMISC &&
3054 			    !(sc->xl_if_flags & IFF_PROMISC)) {
3055 				rxfilt |= XL_RXFILTER_ALLFRAMES;
3056 				CSR_WRITE_2(sc, XL_COMMAND,
3057 				    XL_CMD_RX_SET_FILT|rxfilt);
3058 				XL_SEL_WIN(7);
3059 			} else if (ifp->if_flags & IFF_RUNNING &&
3060 			    !(ifp->if_flags & IFF_PROMISC) &&
3061 			    sc->xl_if_flags & IFF_PROMISC) {
3062 				rxfilt &= ~XL_RXFILTER_ALLFRAMES;
3063 				CSR_WRITE_2(sc, XL_COMMAND,
3064 				    XL_CMD_RX_SET_FILT|rxfilt);
3065 				XL_SEL_WIN(7);
3066 			} else
3067 				xl_init(sc);
3068 		} else {
3069 			if (ifp->if_flags & IFF_RUNNING)
3070 				xl_stop(sc);
3071 		}
3072 		sc->xl_if_flags = ifp->if_flags;
3073 		error = 0;
3074 		break;
3075 	case SIOCADDMULTI:
3076 	case SIOCDELMULTI:
3077 		if (sc->xl_type == XL_TYPE_905B)
3078 			xl_setmulti_hash(sc);
3079 		else
3080 			xl_setmulti(sc);
3081 		error = 0;
3082 		break;
3083 	case SIOCGIFMEDIA:
3084 	case SIOCSIFMEDIA:
3085 		if (sc->xl_miibus != NULL)
3086 			mii = device_get_softc(sc->xl_miibus);
3087 		if (mii == NULL)
3088 			error = ifmedia_ioctl(ifp, ifr,
3089 			    &sc->ifmedia, command);
3090 		else
3091 			error = ifmedia_ioctl(ifp, ifr,
3092 			    &mii->mii_media, command);
3093 		break;
3094         case SIOCSIFCAP:
3095 		ifp->if_capenable &= ~IFCAP_HWCSUM;
3096 		ifp->if_capenable |= (ifr->ifr_reqcap & IFCAP_HWCSUM);
3097 		if (ifp->if_capenable & IFCAP_HWCSUM)
3098 			ifp->if_hwassist = XL905B_CSUM_FEATURES;
3099 		else
3100 			ifp->if_hwassist = 0;
3101 		break;
3102 	default:
3103 		error = ether_ioctl(ifp, command, data);
3104 		break;
3105 	}
3106 	return(error);
3107 }
3108 
3109 static void
3110 xl_watchdog(struct ifnet *ifp)
3111 {
3112 	struct xl_softc		*sc;
3113 	u_int16_t		status = 0;
3114 
3115 	ASSERT_SERIALIZED(ifp->if_serializer);
3116 
3117 	sc = ifp->if_softc;
3118 
3119 	ifp->if_oerrors++;
3120 	XL_SEL_WIN(4);
3121 	status = CSR_READ_2(sc, XL_W4_MEDIA_STATUS);
3122 	if_printf(ifp, "watchdog timeout\n");
3123 
3124 	if (status & XL_MEDIASTAT_CARRIER)
3125 		if_printf(ifp, "no carrier - transceiver cable problem?\n");
3126 	xl_txeoc(sc);
3127 	xl_txeof(sc);
3128 	xl_rxeof(sc, -1);
3129 	xl_reset(sc);
3130 	xl_init(sc);
3131 
3132 	if (!ifq_is_empty(&ifp->if_snd))
3133 		if_devstart(ifp);
3134 }
3135 
3136 /*
3137  * Stop the adapter and free any mbufs allocated to the
3138  * RX and TX lists.
3139  */
3140 static void
3141 xl_stop(struct xl_softc *sc)
3142 {
3143 	int		i;
3144 	struct ifnet		*ifp;
3145 
3146 	ifp = &sc->arpcom.ac_if;
3147 	ASSERT_SERIALIZED(ifp->if_serializer);
3148 
3149 	ifp->if_timer = 0;
3150 
3151 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_DISABLE);
3152 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_STATS_DISABLE);
3153 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ENB);
3154 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_DISCARD);
3155 	xl_wait(sc);
3156 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_DISABLE);
3157 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_STOP);
3158 	DELAY(800);
3159 
3160 #ifdef foo
3161 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_RESET);
3162 	xl_wait(sc);
3163 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_RESET);
3164 	xl_wait(sc);
3165 #endif
3166 
3167 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ACK|XL_STAT_INTLATCH);
3168 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_STAT_ENB|0);
3169 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ENB|0);
3170 	if (sc->xl_flags & XL_FLAG_FUNCREG)
3171 		bus_space_write_4(sc->xl_ftag, sc->xl_fhandle, 4, 0x8000);
3172 
3173 	/* Stop the stats updater. */
3174 	callout_stop(&sc->xl_stat_timer);
3175 
3176 	/*
3177 	 * Free data in the RX lists.
3178 	 */
3179 	for (i = 0; i < XL_RX_LIST_CNT; i++) {
3180 		if (sc->xl_cdata.xl_rx_chain[i].xl_mbuf != NULL) {
3181 			bus_dmamap_unload(sc->xl_rx_mtag,
3182 			    sc->xl_cdata.xl_rx_chain[i].xl_map);
3183 			m_freem(sc->xl_cdata.xl_rx_chain[i].xl_mbuf);
3184 			sc->xl_cdata.xl_rx_chain[i].xl_mbuf = NULL;
3185 		}
3186 	}
3187 	bzero(sc->xl_ldata.xl_rx_list, XL_RX_LIST_SZ);
3188 
3189 	/*
3190 	 * Free the TX list buffers.
3191 	 */
3192 	for (i = 0; i < XL_TX_LIST_CNT; i++) {
3193 		if (sc->xl_cdata.xl_tx_chain[i].xl_mbuf != NULL) {
3194 			bus_dmamap_unload(sc->xl_tx_mtag,
3195 			    sc->xl_cdata.xl_tx_chain[i].xl_map);
3196 			m_freem(sc->xl_cdata.xl_tx_chain[i].xl_mbuf);
3197 			sc->xl_cdata.xl_tx_chain[i].xl_mbuf = NULL;
3198 		}
3199 	}
3200 	bzero(sc->xl_ldata.xl_tx_list, XL_TX_LIST_SZ);
3201 
3202 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3203 }
3204 
3205 /*
3206  * Stop all chip I/O so that the kernel's probe routines don't
3207  * get confused by errant DMAs when rebooting.
3208  */
3209 static void
3210 xl_shutdown(device_t dev)
3211 {
3212 	struct xl_softc	*sc = device_get_softc(dev);
3213 
3214 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
3215 	xl_reset(sc);
3216 	xl_stop(sc);
3217 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
3218 }
3219 
3220 static int
3221 xl_suspend(device_t dev)
3222 {
3223 	struct xl_softc *sc = device_get_softc(dev);
3224 
3225 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
3226 	xl_stop(sc);
3227 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
3228 
3229 	return(0);
3230 }
3231 
3232 static int
3233 xl_resume(device_t dev)
3234 {
3235 	struct xl_softc		*sc;
3236 	struct ifnet		*ifp;
3237 
3238 	sc = device_get_softc(dev);
3239 	ifp = &sc->arpcom.ac_if;
3240 
3241 	lwkt_serialize_enter(ifp->if_serializer);
3242 	xl_reset(sc);
3243 	if (ifp->if_flags & IFF_UP)
3244 		xl_init(sc);
3245 	lwkt_serialize_exit(ifp->if_serializer);
3246 
3247 	return(0);
3248 }
3249