xref: /dragonfly/sys/dev/raid/aac/aac.c (revision 1d1731fa)
1 /*-
2  * Copyright (c) 2000 Michael Smith
3  * Copyright (c) 2001 Scott Long
4  * Copyright (c) 2000 BSDi
5  * Copyright (c) 2001 Adaptec, Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	$FreeBSD: src/sys/dev/aac/aac.c,v 1.9.2.14 2003/04/08 13:22:08 scottl Exp $
30  *	$DragonFly: src/sys/dev/raid/aac/aac.c,v 1.8 2003/08/07 21:17:07 dillon Exp $
31  */
32 
33 /*
34  * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
35  */
36 
37 #include "opt_aac.h"
38 
39 /* #include <stddef.h> */
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/malloc.h>
43 #include <sys/kernel.h>
44 #include <sys/kthread.h>
45 #include <sys/sysctl.h>
46 #include <sys/poll.h>
47 #if __FreeBSD_version >= 500005
48 #include <sys/selinfo.h>
49 #else
50 #include <sys/select.h>
51 #endif
52 
53 #include "aac_compat.h"
54 
55 #include <sys/bus.h>
56 #include <sys/conf.h>
57 #include <sys/devicestat.h>
58 #include <sys/disk.h>
59 #include <sys/signalvar.h>
60 #include <sys/time.h>
61 #include <sys/eventhandler.h>
62 
63 #include <machine/bus_memio.h>
64 #include <machine/bus.h>
65 #include <machine/resource.h>
66 
67 #include "aacreg.h"
68 #include "aac_ioctl.h"
69 #include "aacvar.h"
70 #include "aac_tables.h"
71 #include "aac_cam.h"
72 
73 static void	aac_startup(void *arg);
74 static void	aac_add_container(struct aac_softc *sc,
75 				  struct aac_mntinforesp *mir, int f);
76 static void	aac_get_bus_info(struct aac_softc *sc);
77 
78 /* Command Processing */
79 static void	aac_timeout(struct aac_softc *sc);
80 static int	aac_start(struct aac_command *cm);
81 static void	aac_complete(void *context, int pending);
82 static int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
83 static void	aac_bio_complete(struct aac_command *cm);
84 static int	aac_wait_command(struct aac_command *cm, int timeout);
85 static void	aac_host_command(struct aac_softc *sc);
86 static void	aac_host_response(struct aac_softc *sc);
87 
88 /* Command Buffer Management */
89 static void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
90 				       int nseg, int error);
91 static int	aac_alloc_commands(struct aac_softc *sc);
92 static void	aac_free_commands(struct aac_softc *sc);
93 static void	aac_map_command(struct aac_command *cm);
94 static void	aac_unmap_command(struct aac_command *cm);
95 
96 /* Hardware Interface */
97 static void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
98 			       int error);
99 static int	aac_check_firmware(struct aac_softc *sc);
100 static int	aac_init(struct aac_softc *sc);
101 static int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
102 				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
103 				 u_int32_t arg3, u_int32_t *sp);
104 static int	aac_enqueue_fib(struct aac_softc *sc, int queue,
105 				struct aac_command *cm);
106 static int	aac_dequeue_fib(struct aac_softc *sc, int queue,
107 				u_int32_t *fib_size, struct aac_fib **fib_addr);
108 static int	aac_enqueue_response(struct aac_softc *sc, int queue,
109 				     struct aac_fib *fib);
110 
111 /* Falcon/PPC interface */
112 static int	aac_fa_get_fwstatus(struct aac_softc *sc);
113 static void	aac_fa_qnotify(struct aac_softc *sc, int qbit);
114 static int	aac_fa_get_istatus(struct aac_softc *sc);
115 static void	aac_fa_clear_istatus(struct aac_softc *sc, int mask);
116 static void	aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
117 				   u_int32_t arg0, u_int32_t arg1,
118 				   u_int32_t arg2, u_int32_t arg3);
119 static int	aac_fa_get_mailbox(struct aac_softc *sc, int mb);
120 static void	aac_fa_set_interrupts(struct aac_softc *sc, int enable);
121 
122 struct aac_interface aac_fa_interface = {
123 	aac_fa_get_fwstatus,
124 	aac_fa_qnotify,
125 	aac_fa_get_istatus,
126 	aac_fa_clear_istatus,
127 	aac_fa_set_mailbox,
128 	aac_fa_get_mailbox,
129 	aac_fa_set_interrupts
130 };
131 
132 /* StrongARM interface */
133 static int	aac_sa_get_fwstatus(struct aac_softc *sc);
134 static void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
135 static int	aac_sa_get_istatus(struct aac_softc *sc);
136 static void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
137 static void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
138 				   u_int32_t arg0, u_int32_t arg1,
139 				   u_int32_t arg2, u_int32_t arg3);
140 static int	aac_sa_get_mailbox(struct aac_softc *sc, int mb);
141 static void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
142 
143 struct aac_interface aac_sa_interface = {
144 	aac_sa_get_fwstatus,
145 	aac_sa_qnotify,
146 	aac_sa_get_istatus,
147 	aac_sa_clear_istatus,
148 	aac_sa_set_mailbox,
149 	aac_sa_get_mailbox,
150 	aac_sa_set_interrupts
151 };
152 
153 /* i960Rx interface */
154 static int	aac_rx_get_fwstatus(struct aac_softc *sc);
155 static void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
156 static int	aac_rx_get_istatus(struct aac_softc *sc);
157 static void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
158 static void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
159 				   u_int32_t arg0, u_int32_t arg1,
160 				   u_int32_t arg2, u_int32_t arg3);
161 static int	aac_rx_get_mailbox(struct aac_softc *sc, int mb);
162 static void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
163 
164 struct aac_interface aac_rx_interface = {
165 	aac_rx_get_fwstatus,
166 	aac_rx_qnotify,
167 	aac_rx_get_istatus,
168 	aac_rx_clear_istatus,
169 	aac_rx_set_mailbox,
170 	aac_rx_get_mailbox,
171 	aac_rx_set_interrupts
172 };
173 
174 /* Debugging and Diagnostics */
175 static void	aac_describe_controller(struct aac_softc *sc);
176 static char	*aac_describe_code(struct aac_code_lookup *table,
177 				   u_int32_t code);
178 
179 /* Management Interface */
180 static d_open_t		aac_open;
181 static d_close_t	aac_close;
182 static d_ioctl_t	aac_ioctl;
183 static d_poll_t		aac_poll;
184 static int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
185 static void		aac_handle_aif(struct aac_softc *sc,
186 					   struct aac_fib *fib);
187 static int		aac_rev_check(struct aac_softc *sc, caddr_t udata);
188 static int		aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
189 static int		aac_return_aif(struct aac_softc *sc, caddr_t uptr);
190 static int		aac_query_disk(struct aac_softc *sc, caddr_t uptr);
191 
192 #define AAC_CDEV_MAJOR	150
193 
194 static struct cdevsw aac_cdevsw = {
195 	"aac",			/* name */
196 	AAC_CDEV_MAJOR,		/* major */
197 	0,			/* flags */
198 	NULL,			/* port */
199 	0,			/* autoq */
200 
201 	aac_open,		/* open */
202 	aac_close,		/* close */
203 	noread,			/* read */
204 	nowrite,		/* write */
205 	aac_ioctl,		/* ioctl */
206 	aac_poll,		/* poll */
207 	nommap,			/* mmap */
208 	nostrategy,		/* strategy */
209 	nodump,			/* dump */
210 	nopsize			/* psize */
211 };
212 
213 MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
214 
215 /* sysctl node */
216 SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
217 
218 /*
219  * Device Interface
220  */
221 
222 /*
223  * Initialise the controller and softc
224  */
225 int
226 aac_attach(struct aac_softc *sc)
227 {
228 	int error, unit;
229 
230 	debug_called(1);
231 
232 	/*
233 	 * Initialise per-controller queues.
234 	 */
235 	aac_initq_free(sc);
236 	aac_initq_ready(sc);
237 	aac_initq_busy(sc);
238 	aac_initq_complete(sc);
239 	aac_initq_bio(sc);
240 
241 #if __FreeBSD_version >= 500005
242 	/*
243 	 * Initialise command-completion task.
244 	 */
245 	TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
246 #endif
247 
248 	/* disable interrupts before we enable anything */
249 	AAC_MASK_INTERRUPTS(sc);
250 
251 	/* mark controller as suspended until we get ourselves organised */
252 	sc->aac_state |= AAC_STATE_SUSPEND;
253 
254 	/*
255 	 * Check that the firmware on the card is supported.
256 	 */
257 	if ((error = aac_check_firmware(sc)) != 0)
258 		return(error);
259 
260 	/* Init the sync fib lock */
261 	AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock");
262 
263 	/*
264 	 * Initialise the adapter.
265 	 */
266 	if ((error = aac_init(sc)) != 0)
267 		return(error);
268 
269 	/*
270 	 * Print a little information about the controller.
271 	 */
272 	aac_describe_controller(sc);
273 
274 	/*
275 	 * Register to probe our containers later.
276 	 */
277 	TAILQ_INIT(&sc->aac_container_tqh);
278 	AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
279 
280 	/*
281 	 * Lock for the AIF queue
282 	 */
283 	AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
284 
285 	sc->aac_ich.ich_func = aac_startup;
286 	sc->aac_ich.ich_arg = sc;
287 	if (config_intrhook_establish(&sc->aac_ich) != 0) {
288 		device_printf(sc->aac_dev,
289 			      "can't establish configuration hook\n");
290 		return(ENXIO);
291 	}
292 
293 	/*
294 	 * Make the control device.
295 	 */
296 	unit = device_get_unit(sc->aac_dev);
297 	sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_WHEEL, 0644,
298 				 "aac%d", unit);
299 #if __FreeBSD_version > 500005
300 	(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
301 	(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
302 #endif
303 	sc->aac_dev_t->si_drv1 = sc;
304 
305 	/* Create the AIF thread */
306 #if __FreeBSD_version > 500005
307 	if (kthread_create((void(*)(void *))aac_host_command, sc,
308 			   &sc->aifthread, 0, "aac%daif", unit))
309 #else
310 	if (kthread_create((void(*)(void *))aac_host_command, sc,
311 			   &sc->aifthread, "aac%daif", unit))
312 #endif
313 		panic("Could not create AIF thread\n");
314 
315 	/* Register the shutdown method to only be called post-dump */
316 	if ((EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown, sc->aac_dev,
317 				   SHUTDOWN_PRI_DEFAULT)) == NULL)
318 	device_printf(sc->aac_dev, "shutdown event registration failed\n");
319 
320 	/* Register with CAM for the non-DASD devices */
321 	if ((sc->flags & AAC_FLAGS_ENABLE_CAM) != 0)
322 		aac_get_bus_info(sc);
323 
324 	return(0);
325 }
326 
327 /*
328  * Probe for containers, create disks.
329  */
330 static void
331 aac_startup(void *arg)
332 {
333 	struct aac_softc *sc;
334 	struct aac_fib *fib;
335 	struct aac_mntinfo *mi;
336 	struct aac_mntinforesp *mir = NULL;
337 	int i = 0;
338 
339 	debug_called(1);
340 
341 	sc = (struct aac_softc *)arg;
342 
343 	/* disconnect ourselves from the intrhook chain */
344 	config_intrhook_disestablish(&sc->aac_ich);
345 
346 	aac_alloc_sync_fib(sc, &fib, 0);
347 	mi = (struct aac_mntinfo *)&fib->data[0];
348 
349 	/* loop over possible containers */
350 	do {
351 		/* request information on this container */
352 		bzero(mi, sizeof(struct aac_mntinfo));
353 		mi->Command = VM_NameServe;
354 		mi->MntType = FT_FILESYS;
355 		mi->MntCount = i;
356 		if (aac_sync_fib(sc, ContainerCommand, 0, fib,
357 				 sizeof(struct aac_mntinfo))) {
358 			debug(2, "error probing container %d", i);
359 			continue;
360 		}
361 
362 		mir = (struct aac_mntinforesp *)&fib->data[0];
363 		aac_add_container(sc, mir, 0);
364 		i++;
365 	} while ((i < mir->MntRespCount) && (i < AAC_MAX_CONTAINERS));
366 
367 	aac_release_sync_fib(sc);
368 
369 	/* poke the bus to actually attach the child devices */
370 	if (bus_generic_attach(sc->aac_dev))
371 		device_printf(sc->aac_dev, "bus_generic_attach failed\n");
372 
373 	/* mark the controller up */
374 	sc->aac_state &= ~AAC_STATE_SUSPEND;
375 
376 	/* enable interrupts now */
377 	AAC_UNMASK_INTERRUPTS(sc);
378 
379 	/* enable the timeout watchdog */
380 	timeout((timeout_t*)aac_timeout, sc, AAC_PERIODIC_INTERVAL * hz);
381 }
382 
383 /*
384  * Create a device to respresent a new container
385  */
386 static void
387 aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
388 {
389 	struct aac_container *co;
390 	device_t child;
391 
392 	/*
393 	 * Check container volume type for validity.  Note that many of
394 	 * the possible types may never show up.
395 	 */
396 	if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
397 		MALLOC(co, struct aac_container *, sizeof *co, M_AACBUF,
398 		       M_NOWAIT);
399 		if (co == NULL)
400 			panic("Out of memory?!\n");
401 		debug(1, "id %x  name '%.16s'  size %u  type %d",
402 		      mir->MntTable[0].ObjectId,
403 		      mir->MntTable[0].FileSystemName,
404 		      mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
405 
406 		if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
407 			device_printf(sc->aac_dev, "device_add_child failed\n");
408 		else
409 			device_set_ivars(child, co);
410 		device_set_desc(child, aac_describe_code(aac_container_types,
411 				mir->MntTable[0].VolType));
412 		co->co_disk = child;
413 		co->co_found = f;
414 		bcopy(&mir->MntTable[0], &co->co_mntobj,
415 		      sizeof(struct aac_mntobj));
416 		AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
417 		TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
418 		AAC_LOCK_RELEASE(&sc->aac_container_lock);
419 	}
420 }
421 
422 /*
423  * Free all of the resources associated with (sc)
424  *
425  * Should not be called if the controller is active.
426  */
427 void
428 aac_free(struct aac_softc *sc)
429 {
430 	debug_called(1);
431 
432 	/* remove the control device */
433 	if (sc->aac_dev_t != NULL)
434 		destroy_dev(sc->aac_dev_t);
435 
436 	/* throw away any FIB buffers, discard the FIB DMA tag */
437 	if (sc->aac_fibs != NULL)
438 		aac_free_commands(sc);
439 	if (sc->aac_fib_dmat)
440 		bus_dma_tag_destroy(sc->aac_fib_dmat);
441 
442 	/* destroy the common area */
443 	if (sc->aac_common) {
444 		bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
445 		bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
446 				sc->aac_common_dmamap);
447 	}
448 	if (sc->aac_common_dmat)
449 		bus_dma_tag_destroy(sc->aac_common_dmat);
450 
451 	/* disconnect the interrupt handler */
452 	if (sc->aac_intr)
453 		bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
454 	if (sc->aac_irq != NULL)
455 		bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
456 				     sc->aac_irq);
457 
458 	/* destroy data-transfer DMA tag */
459 	if (sc->aac_buffer_dmat)
460 		bus_dma_tag_destroy(sc->aac_buffer_dmat);
461 
462 	/* destroy the parent DMA tag */
463 	if (sc->aac_parent_dmat)
464 		bus_dma_tag_destroy(sc->aac_parent_dmat);
465 
466 	/* release the register window mapping */
467 	if (sc->aac_regs_resource != NULL)
468 		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
469 				     sc->aac_regs_rid, sc->aac_regs_resource);
470 }
471 
472 /*
473  * Disconnect from the controller completely, in preparation for unload.
474  */
475 int
476 aac_detach(device_t dev)
477 {
478 	struct aac_softc *sc;
479 #if AAC_BROKEN
480 	int error;
481 #endif
482 
483 	debug_called(1);
484 
485 	sc = device_get_softc(dev);
486 
487 	if (sc->aac_state & AAC_STATE_OPEN)
488 	return(EBUSY);
489 
490 #if AAC_BROKEN
491 	if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
492 		sc->aifflags |= AAC_AIFFLAGS_EXIT;
493 		wakeup(sc->aifthread);
494 		tsleep(sc->aac_dev, PCATCH, "aacdch", 30 * hz);
495 	}
496 
497 	if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
498 		panic("Cannot shutdown AIF thread\n");
499 
500 	if ((error = aac_shutdown(dev)))
501 		return(error);
502 
503 	aac_free(sc);
504 
505 	return(0);
506 #else
507 	return (EBUSY);
508 #endif
509 }
510 
511 /*
512  * Bring the controller down to a dormant state and detach all child devices.
513  *
514  * This function is called before detach or system shutdown.
515  *
516  * Note that we can assume that the bioq on the controller is empty, as we won't
517  * allow shutdown if any device is open.
518  */
519 int
520 aac_shutdown(device_t dev)
521 {
522 	struct aac_softc *sc;
523 	struct aac_fib *fib;
524 	struct aac_close_command *cc;
525 	int s;
526 
527 	debug_called(1);
528 
529 	sc = device_get_softc(dev);
530 
531 	s = splbio();
532 
533 	sc->aac_state |= AAC_STATE_SUSPEND;
534 
535 	/*
536 	 * Send a Container shutdown followed by a HostShutdown FIB to the
537 	 * controller to convince it that we don't want to talk to it anymore.
538 	 * We've been closed and all I/O completed already
539 	 */
540 	device_printf(sc->aac_dev, "shutting down controller...");
541 
542 	aac_alloc_sync_fib(sc, &fib, AAC_SYNC_LOCK_FORCE);
543 	cc = (struct aac_close_command *)&fib->data[0];
544 
545 	bzero(cc, sizeof(struct aac_close_command));
546 	cc->Command = VM_CloseAll;
547 	cc->ContainerId = 0xffffffff;
548 	if (aac_sync_fib(sc, ContainerCommand, 0, fib,
549 	    sizeof(struct aac_close_command)))
550 		printf("FAILED.\n");
551 	else {
552 		fib->data[0] = 0;
553 		/*
554 		 * XXX Issuing this command to the controller makes it shut down
555 		 * but also keeps it from coming back up without a reset of the
556 		 * PCI bus.  This is not desirable if you are just unloading the
557 		 * driver module with the intent to reload it later.
558 		 */
559 		if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
560 		    fib, 1)) {
561 			printf("FAILED.\n");
562 		} else {
563 			printf("done.\n");
564 		}
565 	}
566 
567 	AAC_MASK_INTERRUPTS(sc);
568 
569 	splx(s);
570 	return(0);
571 }
572 
573 /*
574  * Bring the controller to a quiescent state, ready for system suspend.
575  */
576 int
577 aac_suspend(device_t dev)
578 {
579 	struct aac_softc *sc;
580 	int s;
581 
582 	debug_called(1);
583 
584 	sc = device_get_softc(dev);
585 
586 	s = splbio();
587 
588 	sc->aac_state |= AAC_STATE_SUSPEND;
589 
590 	AAC_MASK_INTERRUPTS(sc);
591 	splx(s);
592 	return(0);
593 }
594 
595 /*
596  * Bring the controller back to a state ready for operation.
597  */
598 int
599 aac_resume(device_t dev)
600 {
601 	struct aac_softc *sc;
602 
603 	debug_called(1);
604 
605 	sc = device_get_softc(dev);
606 
607 	sc->aac_state &= ~AAC_STATE_SUSPEND;
608 	AAC_UNMASK_INTERRUPTS(sc);
609 	return(0);
610 }
611 
612 /*
613  * Take an interrupt.
614  */
615 void
616 aac_intr(void *arg)
617 {
618 	struct aac_softc *sc;
619 	u_int16_t reason;
620 	u_int32_t *resp_queue;
621 
622 	debug_called(2);
623 
624 	sc = (struct aac_softc *)arg;
625 
626 	/*
627 	 * Optimize the common case of adapter response interrupts.
628 	 * We must read from the card prior to processing the responses
629 	 * to ensure the clear is flushed prior to accessing the queues.
630 	 * Reading the queues from local memory might save us a PCI read.
631 	 */
632 	resp_queue = sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE];
633 	if (resp_queue[AAC_PRODUCER_INDEX] != resp_queue[AAC_CONSUMER_INDEX])
634 		reason = AAC_DB_RESPONSE_READY;
635 	else
636 		reason = AAC_GET_ISTATUS(sc);
637 	AAC_CLEAR_ISTATUS(sc, reason);
638 	(void)AAC_GET_ISTATUS(sc);
639 
640 	/* It's not ok to return here because of races with the previous step */
641 	if (reason & AAC_DB_RESPONSE_READY)
642 		aac_host_response(sc);
643 
644 	/* controller wants to talk to the log */
645 	if (reason & AAC_DB_PRINTF)
646 		aac_print_printf(sc);
647 
648 	/* controller has a message for us? */
649 	if (reason & AAC_DB_COMMAND_READY) {
650 		/* XXX What happens if the thread is already awake? */
651 		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
652 			sc->aifflags |= AAC_AIFFLAGS_PENDING;
653 			wakeup(sc->aifthread);
654 		}
655 	}
656 }
657 
658 /*
659  * Command Processing
660  */
661 
662 /*
663  * Start as much queued I/O as possible on the controller
664  */
665 void
666 aac_startio(struct aac_softc *sc)
667 {
668 	struct aac_command *cm;
669 
670 	debug_called(2);
671 
672 	for (;;) {
673 		/*
674 		 * Try to get a command that's been put off for lack of
675 		 * resources
676 		 */
677 		cm = aac_dequeue_ready(sc);
678 
679 		/*
680 		 * Try to build a command off the bio queue (ignore error
681 		 * return)
682 		 */
683 		if (cm == NULL)
684 			aac_bio_command(sc, &cm);
685 
686 		/* nothing to do? */
687 		if (cm == NULL)
688 			break;
689 
690 		/* try to give the command to the controller */
691 		if (aac_start(cm) == EBUSY) {
692 			/* put it on the ready queue for later */
693 			aac_requeue_ready(cm);
694 			break;
695 		}
696 	}
697 }
698 
699 /*
700  * Deliver a command to the controller; allocate controller resources at the
701  * last moment when possible.
702  */
703 static int
704 aac_start(struct aac_command *cm)
705 {
706 	struct aac_softc *sc;
707 	int error;
708 
709 	debug_called(2);
710 
711 	sc = cm->cm_sc;
712 
713 	/* get the command mapped */
714 	aac_map_command(cm);
715 
716 	/* fix up the address values in the FIB */
717 	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
718 	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
719 
720 	/* save a pointer to the command for speedy reverse-lookup */
721 	cm->cm_fib->Header.SenderData = (u_int32_t)cm;	/* XXX 64-bit physical
722 							 * address issue */
723 	/* put the FIB on the outbound queue */
724 	error = aac_enqueue_fib(sc, cm->cm_queue, cm);
725 	return(error);
726 }
727 
728 /*
729  * Handle notification of one or more FIBs coming from the controller.
730  */
731 static void
732 aac_host_command(struct aac_softc *sc)
733 {
734 	struct aac_fib *fib;
735 	u_int32_t fib_size;
736 	int size;
737 
738 	debug_called(2);
739 
740 	sc->aifflags |= AAC_AIFFLAGS_RUNNING;
741 
742 	while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) {
743 		if (!(sc->aifflags & AAC_AIFFLAGS_PENDING))
744 			tsleep(sc->aifthread, 0, "aifthd", 15 * hz);
745 
746 		sc->aifflags &= ~AAC_AIFFLAGS_PENDING;
747 		for (;;) {
748 			if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
749 					    &fib_size, &fib))
750 				break;	/* nothing to do */
751 
752 			AAC_PRINT_FIB(sc, fib);
753 
754 			switch (fib->Header.Command) {
755 			case AifRequest:
756 				aac_handle_aif(sc, fib);
757 				break;
758 			default:
759 				device_printf(sc->aac_dev, "unknown command "
760 					      "from controller\n");
761 				break;
762 			}
763 
764 			/* Return the AIF to the controller. */
765 			if ((fib->Header.XferState == 0) ||
766 			    (fib->Header.StructType != AAC_FIBTYPE_TFIB))
767 				break;
768 
769 			if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
770 				fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
771 				*(AAC_FSAStatus*)fib->data = ST_OK;
772 
773 				/* XXX Compute the Size field? */
774 				size = fib->Header.Size;
775 				if (size > sizeof(struct aac_fib)) {
776 					size = sizeof(struct aac_fib);
777 					fib->Header.Size = size;
778 				}
779 				/*
780 				 * Since we did not generate this command, it
781 				 * cannot go through the normal
782 				 * enqueue->startio chain.
783 				 */
784 				aac_enqueue_response(sc,
785 						     AAC_ADAP_NORM_RESP_QUEUE,
786 						     fib);
787 			}
788 		}
789 	}
790 	sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
791 	wakeup(sc->aac_dev);
792 
793 #if __FreeBSD_version > 500005
794 	mtx_lock(&Giant);
795 #endif
796 	kthread_exit();
797 }
798 
799 /*
800  * Handle notification of one or more FIBs completed by the controller
801  */
802 static void
803 aac_host_response(struct aac_softc *sc)
804 {
805 	struct aac_command *cm;
806 	struct aac_fib *fib;
807 	u_int32_t fib_size;
808 
809 	debug_called(2);
810 
811 	for (;;) {
812 		/* look for completed FIBs on our queue */
813 		if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
814 				    &fib))
815 			break;	/* nothing to do */
816 
817 		/* get the command, unmap and queue for later processing */
818 		cm = (struct aac_command *)fib->Header.SenderData;
819 		if (cm == NULL) {
820 			AAC_PRINT_FIB(sc, fib);
821 		} else {
822 			aac_remove_busy(cm);
823 			aac_unmap_command(cm);		/* XXX defer? */
824 			aac_enqueue_complete(cm);
825 		}
826 	}
827 
828 	/* handle completion processing */
829 #if __FreeBSD_version >= 500005
830 	taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete);
831 #else
832 	aac_complete(sc, 0);
833 #endif
834 }
835 
836 /*
837  * Process completed commands.
838  */
839 static void
840 aac_complete(void *context, int pending)
841 {
842 	struct aac_softc *sc;
843 	struct aac_command *cm;
844 
845 	debug_called(2);
846 
847 	sc = (struct aac_softc *)context;
848 
849 	/* pull completed commands off the queue */
850 	for (;;) {
851 		cm = aac_dequeue_complete(sc);
852 		if (cm == NULL)
853 			break;
854 		cm->cm_flags |= AAC_CMD_COMPLETED;
855 
856 		/* is there a completion handler? */
857 		if (cm->cm_complete != NULL) {
858 			cm->cm_complete(cm);
859 		} else {
860 			/* assume that someone is sleeping on this command */
861 			wakeup(cm);
862 		}
863 	}
864 
865 	/* see if we can start some more I/O */
866 	aac_startio(sc);
867 }
868 
869 /*
870  * Handle a bio submitted from a disk device.
871  */
872 void
873 aac_submit_bio(struct bio *bp)
874 {
875 	struct aac_disk *ad;
876 	struct aac_softc *sc;
877 
878 	debug_called(2);
879 
880 	ad = (struct aac_disk *)bp->bio_dev->si_drv1;
881 	sc = ad->ad_controller;
882 
883 	/* queue the BIO and try to get some work done */
884 	aac_enqueue_bio(sc, bp);
885 	aac_startio(sc);
886 }
887 
888 /*
889  * Get a bio and build a command to go with it.
890  */
891 static int
892 aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
893 {
894 	struct aac_command *cm;
895 	struct aac_fib *fib;
896 	struct aac_blockread *br;
897 	struct aac_blockwrite *bw;
898 	struct aac_disk *ad;
899 	struct bio *bp;
900 
901 	debug_called(2);
902 
903 	/* get the resources we will need */
904 	cm = NULL;
905 	if ((bp = aac_dequeue_bio(sc)) == NULL)
906 		goto fail;
907 	if (aac_alloc_command(sc, &cm))	/* get a command */
908 		goto fail;
909 
910 	/* fill out the command */
911 	cm->cm_data = (void *)bp->bio_data;
912 	cm->cm_datalen = bp->bio_bcount;
913 	cm->cm_complete = aac_bio_complete;
914 	cm->cm_private = bp;
915 	cm->cm_timestamp = time_second;
916 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
917 
918 	/* build the FIB */
919 	fib = cm->cm_fib;
920 	fib->Header.XferState =
921 		AAC_FIBSTATE_HOSTOWNED   |
922 		AAC_FIBSTATE_INITIALISED |
923 		AAC_FIBSTATE_EMPTY	 |
924 		AAC_FIBSTATE_FROMHOST	 |
925 		AAC_FIBSTATE_REXPECTED   |
926 		AAC_FIBSTATE_NORM	 |
927 		AAC_FIBSTATE_ASYNC	 |
928 		AAC_FIBSTATE_FAST_RESPONSE;
929 	fib->Header.Command = ContainerCommand;
930 	fib->Header.Size = sizeof(struct aac_fib_header);
931 
932 	/* build the read/write request */
933 	ad = (struct aac_disk *)bp->bio_dev->si_drv1;
934 	if (BIO_IS_READ(bp)) {
935 		br = (struct aac_blockread *)&fib->data[0];
936 		br->Command = VM_CtBlockRead;
937 		br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
938 		br->BlockNumber = bp->bio_pblkno;
939 		br->ByteCount = bp->bio_bcount;
940 		fib->Header.Size += sizeof(struct aac_blockread);
941 		cm->cm_sgtable = &br->SgMap;
942 		cm->cm_flags |= AAC_CMD_DATAIN;
943 	} else {
944 		bw = (struct aac_blockwrite *)&fib->data[0];
945 		bw->Command = VM_CtBlockWrite;
946 		bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
947 		bw->BlockNumber = bp->bio_pblkno;
948 		bw->ByteCount = bp->bio_bcount;
949 		bw->Stable = CUNSTABLE;	/* XXX what's appropriate here? */
950 		fib->Header.Size += sizeof(struct aac_blockwrite);
951 		cm->cm_flags |= AAC_CMD_DATAOUT;
952 		cm->cm_sgtable = &bw->SgMap;
953 	}
954 
955 	*cmp = cm;
956 	return(0);
957 
958 fail:
959 	if (bp != NULL)
960 		aac_enqueue_bio(sc, bp);
961 	if (cm != NULL)
962 		aac_release_command(cm);
963 	return(ENOMEM);
964 }
965 
966 /*
967  * Handle a bio-instigated command that has been completed.
968  */
969 static void
970 aac_bio_complete(struct aac_command *cm)
971 {
972 	struct aac_blockread_response *brr;
973 	struct aac_blockwrite_response *bwr;
974 	struct bio *bp;
975 	AAC_FSAStatus status;
976 
977 	/* fetch relevant status and then release the command */
978 	bp = (struct bio *)cm->cm_private;
979 	if (BIO_IS_READ(bp)) {
980 		brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
981 		status = brr->Status;
982 	} else {
983 		bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
984 		status = bwr->Status;
985 	}
986 	aac_release_command(cm);
987 
988 	/* fix up the bio based on status */
989 	if (status == ST_OK) {
990 		bp->bio_resid = 0;
991 	} else {
992 		bp->bio_error = EIO;
993 		bp->bio_flags |= BIO_ERROR;
994 		/* pass an error string out to the disk layer */
995 		bp->bio_driver1 = aac_describe_code(aac_command_status_table,
996 						    status);
997 	}
998 	aac_biodone(bp);
999 }
1000 
1001 /*
1002  * Dump a block of data to the controller.  If the queue is full, tell the
1003  * caller to hold off and wait for the queue to drain.
1004  */
1005 int
1006 aac_dump_enqueue(struct aac_disk *ad, u_int32_t lba, void *data, int dumppages)
1007 {
1008 	struct aac_softc *sc;
1009 	struct aac_command *cm;
1010 	struct aac_fib *fib;
1011 	struct aac_blockwrite *bw;
1012 
1013 	sc = ad->ad_controller;
1014 	cm = NULL;
1015 
1016 	if (aac_alloc_command(sc, &cm))
1017 		return (EBUSY);
1018 
1019 	/* fill out the command */
1020 	cm->cm_data = data;
1021 	cm->cm_datalen = dumppages * PAGE_SIZE;
1022 	cm->cm_complete = NULL;
1023 	cm->cm_private = NULL;
1024 	cm->cm_timestamp = time_second;
1025 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1026 
1027 	/* build the FIB */
1028 	fib = cm->cm_fib;
1029 	fib->Header.XferState =
1030 	AAC_FIBSTATE_HOSTOWNED   |
1031 	AAC_FIBSTATE_INITIALISED |
1032 	AAC_FIBSTATE_FROMHOST	 |
1033 	AAC_FIBSTATE_REXPECTED   |
1034 	AAC_FIBSTATE_NORM;
1035 	fib->Header.Command = ContainerCommand;
1036 	fib->Header.Size = sizeof(struct aac_fib_header);
1037 
1038 	bw = (struct aac_blockwrite *)&fib->data[0];
1039 	bw->Command = VM_CtBlockWrite;
1040 	bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
1041 	bw->BlockNumber = lba;
1042 	bw->ByteCount = dumppages * PAGE_SIZE;
1043 	bw->Stable = CUNSTABLE;		/* XXX what's appropriate here? */
1044 	fib->Header.Size += sizeof(struct aac_blockwrite);
1045 	cm->cm_flags |= AAC_CMD_DATAOUT;
1046 	cm->cm_sgtable = &bw->SgMap;
1047 
1048 	return (aac_start(cm));
1049 }
1050 
1051 /*
1052  * Wait for the card's queue to drain when dumping.  Also check for monitor
1053  * printf's
1054  */
1055 void
1056 aac_dump_complete(struct aac_softc *sc)
1057 {
1058 	struct aac_fib *fib;
1059 	struct aac_command *cm;
1060 	u_int16_t reason;
1061 	u_int32_t pi, ci, fib_size;
1062 
1063 	do {
1064 		reason = AAC_GET_ISTATUS(sc);
1065 		if (reason & AAC_DB_RESPONSE_READY) {
1066 			AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY);
1067 			for (;;) {
1068 				if (aac_dequeue_fib(sc,
1069 						    AAC_HOST_NORM_RESP_QUEUE,
1070 						    &fib_size, &fib))
1071 					break;
1072 				cm = (struct aac_command *)
1073 					fib->Header.SenderData;
1074 				if (cm == NULL)
1075 					AAC_PRINT_FIB(sc, fib);
1076 				else {
1077 					aac_remove_busy(cm);
1078 					aac_unmap_command(cm);
1079 					aac_enqueue_complete(cm);
1080 					aac_release_command(cm);
1081 				}
1082 			}
1083 		}
1084 		if (reason & AAC_DB_PRINTF) {
1085 			AAC_CLEAR_ISTATUS(sc, AAC_DB_PRINTF);
1086 			aac_print_printf(sc);
1087 		}
1088 		pi = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][
1089 			AAC_PRODUCER_INDEX];
1090 		ci = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][
1091 			AAC_CONSUMER_INDEX];
1092 	} while (ci != pi);
1093 
1094 	return;
1095 }
1096 
1097 /*
1098  * Submit a command to the controller, return when it completes.
1099  * XXX This is very dangerous!  If the card has gone out to lunch, we could
1100  *     be stuck here forever.  At the same time, signals are not caught
1101  *     because there is a risk that a signal could wakeup the tsleep before
1102  *     the card has a chance to complete the command.  The passed in timeout
1103  *     is ignored for the same reason.  Since there is no way to cancel a
1104  *     command in progress, we should probably create a 'dead' queue where
1105  *     commands go that have been interrupted/timed-out/etc, that keeps them
1106  *     out of the free pool.  That way, if the card is just slow, it won't
1107  *     spam the memory of a command that has been recycled.
1108  */
1109 static int
1110 aac_wait_command(struct aac_command *cm, int timeout)
1111 {
1112 	int s, error = 0;
1113 
1114 	debug_called(2);
1115 
1116 	/* Put the command on the ready queue and get things going */
1117 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1118 	aac_enqueue_ready(cm);
1119 	aac_startio(cm->cm_sc);
1120 	s = splbio();
1121 	while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
1122 		error = tsleep(cm, 0, "aacwait", 0);
1123 	}
1124 	splx(s);
1125 	return(error);
1126 }
1127 
1128 /*
1129  *Command Buffer Management
1130  */
1131 
1132 /*
1133  * Allocate a command.
1134  */
1135 int
1136 aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1137 {
1138 	struct aac_command *cm;
1139 
1140 	debug_called(3);
1141 
1142 	if ((cm = aac_dequeue_free(sc)) == NULL)
1143 		return(ENOMEM);
1144 
1145 	*cmp = cm;
1146 	return(0);
1147 }
1148 
1149 /*
1150  * Release a command back to the freelist.
1151  */
1152 void
1153 aac_release_command(struct aac_command *cm)
1154 {
1155 	debug_called(3);
1156 
1157 	/* (re)initialise the command/FIB */
1158 	cm->cm_sgtable = NULL;
1159 	cm->cm_flags = 0;
1160 	cm->cm_complete = NULL;
1161 	cm->cm_private = NULL;
1162 	cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1163 	cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1164 	cm->cm_fib->Header.Flags = 0;
1165 	cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1166 
1167 	/*
1168 	 * These are duplicated in aac_start to cover the case where an
1169 	 * intermediate stage may have destroyed them.  They're left
1170 	 * initialised here for debugging purposes only.
1171 	 */
1172 	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
1173 	cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1174 	cm->cm_fib->Header.SenderData = 0;
1175 
1176 	aac_enqueue_free(cm);
1177 }
1178 
1179 /*
1180  * Map helper for command/FIB allocation.
1181  */
1182 static void
1183 aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1184 {
1185 	struct aac_softc *sc;
1186 
1187 	sc = (struct aac_softc *)arg;
1188 
1189 	debug_called(3);
1190 
1191 	sc->aac_fibphys = segs[0].ds_addr;
1192 }
1193 
1194 /*
1195  * Allocate and initialise commands/FIBs for this adapter.
1196  */
1197 static int
1198 aac_alloc_commands(struct aac_softc *sc)
1199 {
1200 	struct aac_command *cm;
1201 	int i;
1202 
1203 	debug_called(1);
1204 
1205 	/* allocate the FIBs in DMAable memory and load them */
1206 	if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&sc->aac_fibs,
1207 			 BUS_DMA_NOWAIT, &sc->aac_fibmap)) {
1208 		return(ENOMEM);
1209 	}
1210 
1211 	bus_dmamap_load(sc->aac_fib_dmat, sc->aac_fibmap, sc->aac_fibs,
1212 			AAC_FIB_COUNT * sizeof(struct aac_fib),
1213 			aac_map_command_helper, sc, 0);
1214 
1215 	/* initialise constant fields in the command structure */
1216 	bzero(sc->aac_fibs, AAC_FIB_COUNT * sizeof(struct aac_fib));
1217 	for (i = 0; i < AAC_FIB_COUNT; i++) {
1218 		cm = &sc->aac_command[i];
1219 		cm->cm_sc = sc;
1220 		cm->cm_fib = sc->aac_fibs + i;
1221 		cm->cm_fibphys = sc->aac_fibphys + (i * sizeof(struct aac_fib));
1222 
1223 		if (!bus_dmamap_create(sc->aac_buffer_dmat, 0, &cm->cm_datamap))
1224 			aac_release_command(cm);
1225 	}
1226 	return(0);
1227 }
1228 
1229 /*
1230  * Free FIBs owned by this adapter.
1231  */
1232 static void
1233 aac_free_commands(struct aac_softc *sc)
1234 {
1235 	int i;
1236 
1237 	debug_called(1);
1238 
1239 	for (i = 0; i < AAC_FIB_COUNT; i++)
1240 		bus_dmamap_destroy(sc->aac_buffer_dmat,
1241 				   sc->aac_command[i].cm_datamap);
1242 
1243 	bus_dmamap_unload(sc->aac_fib_dmat, sc->aac_fibmap);
1244 	bus_dmamem_free(sc->aac_fib_dmat, sc->aac_fibs, sc->aac_fibmap);
1245 }
1246 
1247 /*
1248  * Command-mapping helper function - populate this command's s/g table.
1249  */
1250 static void
1251 aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1252 {
1253 	struct aac_command *cm;
1254 	struct aac_fib *fib;
1255 	struct aac_sg_table *sg;
1256 	int i;
1257 
1258 	debug_called(3);
1259 
1260 	cm = (struct aac_command *)arg;
1261 	fib = cm->cm_fib;
1262 
1263 	/* find the s/g table */
1264 	sg = cm->cm_sgtable;
1265 
1266 	/* copy into the FIB */
1267 	if (sg != NULL) {
1268 		sg->SgCount = nseg;
1269 		for (i = 0; i < nseg; i++) {
1270 			sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1271 			sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1272 		}
1273 		/* update the FIB size for the s/g count */
1274 		fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1275 	}
1276 
1277 }
1278 
1279 /*
1280  * Map a command into controller-visible space.
1281  */
1282 static void
1283 aac_map_command(struct aac_command *cm)
1284 {
1285 	struct aac_softc *sc;
1286 
1287 	debug_called(2);
1288 
1289 	sc = cm->cm_sc;
1290 
1291 	/* don't map more than once */
1292 	if (cm->cm_flags & AAC_CMD_MAPPED)
1293 		return;
1294 
1295 	if (cm->cm_datalen != 0) {
1296 		bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap,
1297 				cm->cm_data, cm->cm_datalen,
1298 				aac_map_command_sg, cm, 0);
1299 
1300 		if (cm->cm_flags & AAC_CMD_DATAIN)
1301 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1302 					BUS_DMASYNC_PREREAD);
1303 		if (cm->cm_flags & AAC_CMD_DATAOUT)
1304 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1305 					BUS_DMASYNC_PREWRITE);
1306 	}
1307 	cm->cm_flags |= AAC_CMD_MAPPED;
1308 }
1309 
1310 /*
1311  * Unmap a command from controller-visible space.
1312  */
1313 static void
1314 aac_unmap_command(struct aac_command *cm)
1315 {
1316 	struct aac_softc *sc;
1317 
1318 	debug_called(2);
1319 
1320 	sc = cm->cm_sc;
1321 
1322 	if (!(cm->cm_flags & AAC_CMD_MAPPED))
1323 		return;
1324 
1325 	if (cm->cm_datalen != 0) {
1326 		if (cm->cm_flags & AAC_CMD_DATAIN)
1327 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1328 					BUS_DMASYNC_POSTREAD);
1329 		if (cm->cm_flags & AAC_CMD_DATAOUT)
1330 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1331 					BUS_DMASYNC_POSTWRITE);
1332 
1333 		bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1334 	}
1335 	cm->cm_flags &= ~AAC_CMD_MAPPED;
1336 }
1337 
1338 /*
1339  * Hardware Interface
1340  */
1341 
1342 /*
1343  * Initialise the adapter.
1344  */
1345 static void
1346 aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1347 {
1348 	struct aac_softc *sc;
1349 
1350 	debug_called(1);
1351 
1352 	sc = (struct aac_softc *)arg;
1353 
1354 	sc->aac_common_busaddr = segs[0].ds_addr;
1355 }
1356 
1357 static int
1358 aac_check_firmware(struct aac_softc *sc)
1359 {
1360 	u_int32_t major, minor, options;
1361 
1362 	debug_called(1);
1363 
1364 	/*
1365 	 * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1366 	 * firmware version 1.x are not compatible with this driver.
1367 	 */
1368 	if (sc->flags & AAC_FLAGS_PERC2QC) {
1369 		if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1370 				     NULL)) {
1371 			device_printf(sc->aac_dev,
1372 				      "Error reading firmware version\n");
1373 			return (EIO);
1374 		}
1375 
1376 		/* These numbers are stored as ASCII! */
1377 		major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30;
1378 		minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30;
1379 		if (major == 1) {
1380 			device_printf(sc->aac_dev,
1381 			    "Firmware version %d.%d is not supported.\n",
1382 			    major, minor);
1383 			return (EINVAL);
1384 		}
1385 	}
1386 
1387 	/*
1388 	 * Retrieve the capabilities/supported options word so we know what
1389 	 * work-arounds to enable.
1390 	 */
1391 	if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, NULL)) {
1392 		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
1393 		return (EIO);
1394 	}
1395 	options = AAC_GET_MAILBOX(sc, 1);
1396 	sc->supported_options = options;
1397 
1398 	if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 &&
1399 	    (sc->flags & AAC_FLAGS_NO4GB) == 0)
1400 		sc->flags |= AAC_FLAGS_4GB_WINDOW;
1401 	if (options & AAC_SUPPORTED_NONDASD)
1402 		sc->flags |= AAC_FLAGS_ENABLE_CAM;
1403 
1404 	return (0);
1405 }
1406 
1407 static int
1408 aac_init(struct aac_softc *sc)
1409 {
1410 	struct aac_adapter_init	*ip;
1411 	time_t then;
1412 	u_int32_t code;
1413 	u_int8_t *qaddr;
1414 	int error;
1415 
1416 	debug_called(1);
1417 
1418 	/*
1419 	 * First wait for the adapter to come ready.
1420 	 */
1421 	then = time_second;
1422 	do {
1423 		code = AAC_GET_FWSTATUS(sc);
1424 		if (code & AAC_SELF_TEST_FAILED) {
1425 			device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1426 			return(ENXIO);
1427 		}
1428 		if (code & AAC_KERNEL_PANIC) {
1429 			device_printf(sc->aac_dev,
1430 				      "FATAL: controller kernel panic\n");
1431 			return(ENXIO);
1432 		}
1433 		if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1434 			device_printf(sc->aac_dev,
1435 				      "FATAL: controller not coming ready, "
1436 					   "status %x\n", code);
1437 			return(ENXIO);
1438 		}
1439 	} while (!(code & AAC_UP_AND_RUNNING));
1440 
1441  	error = ENOMEM;
1442  	/*
1443  	 * Create DMA tag for mapping buffers into controller-addressable space.
1444  	 */
1445  	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1446  			       1, 0, 			/* algnmnt, boundary */
1447  			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1448  			       BUS_SPACE_MAXADDR, 	/* highaddr */
1449  			       NULL, NULL, 		/* filter, filterarg */
1450  			       MAXBSIZE,		/* maxsize */
1451  			       AAC_MAXSGENTRIES,	/* nsegments */
1452  			       MAXBSIZE,		/* maxsegsize */
1453  			       BUS_DMA_ALLOCNOW,	/* flags */
1454  			       &sc->aac_buffer_dmat)) {
1455  		device_printf(sc->aac_dev, "can't allocate buffer DMA tag\n");
1456  		goto out;
1457  	}
1458 
1459  	/*
1460  	 * Create DMA tag for mapping FIBs into controller-addressable space..
1461  	 */
1462  	if (bus_dma_tag_create(sc->aac_parent_dmat,	/* parent */
1463  			       1, 0, 			/* algnmnt, boundary */
1464  			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1465  			       BUS_SPACE_MAXADDR_32BIT :
1466  			       0x7fffffff,		/* lowaddr */
1467  			       BUS_SPACE_MAXADDR, 	/* highaddr */
1468  			       NULL, NULL, 		/* filter, filterarg */
1469  			       AAC_FIB_COUNT *
1470  			       sizeof(struct aac_fib),  /* maxsize */
1471  			       1,			/* nsegments */
1472  			       AAC_FIB_COUNT *
1473  			       sizeof(struct aac_fib),	/* maxsegsize */
1474  			       BUS_DMA_ALLOCNOW,	/* flags */
1475  			       &sc->aac_fib_dmat)) {
1476  		device_printf(sc->aac_dev, "can't allocate FIB DMA tag\n");;
1477  		goto out;
1478  	}
1479 
1480 	/*
1481 	 * Create DMA tag for the common structure and allocate it.
1482 	 */
1483 	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1484 			       1, 0,			/* algnmnt, boundary */
1485 			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1486 			       BUS_SPACE_MAXADDR_32BIT :
1487 			       0x7fffffff,		/* lowaddr */
1488 			       BUS_SPACE_MAXADDR, 	/* highaddr */
1489 			       NULL, NULL, 		/* filter, filterarg */
1490 			       8192 + sizeof(struct aac_common), /* maxsize */
1491 			       1,			/* nsegments */
1492 			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1493 			       BUS_DMA_ALLOCNOW,	/* flags */
1494 			       &sc->aac_common_dmat)) {
1495 		device_printf(sc->aac_dev,
1496 			      "can't allocate common structure DMA tag\n");
1497 		goto out;
1498 	}
1499 	if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1500 			     BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1501 		device_printf(sc->aac_dev, "can't allocate common structure\n");
1502 		goto out;
1503 	}
1504 	/*
1505 	 * Work around a bug in the 2120 and 2200 that cannot DMA commands
1506 	 * below address 8192 in physical memory.
1507 	 * XXX If the padding is not needed, can it be put to use instead
1508 	 * of ignored?
1509 	 */
1510 	bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1511 			sc->aac_common, 8192 + sizeof(*sc->aac_common),
1512 			aac_common_map, sc, 0);
1513 
1514 	if (sc->aac_common_busaddr < 8192) {
1515 		(uint8_t *)sc->aac_common += 8192;
1516 		sc->aac_common_busaddr += 8192;
1517 	}
1518 	bzero(sc->aac_common, sizeof(*sc->aac_common));
1519 
1520 	/* Allocate some FIBs and associated command structs */
1521 	if (aac_alloc_commands(sc) != 0)
1522 		goto out;
1523 
1524 	/*
1525 	 * Fill in the init structure.  This tells the adapter about the
1526 	 * physical location of various important shared data structures.
1527 	 */
1528 	ip = &sc->aac_common->ac_init;
1529 	ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1530 	ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION;
1531 
1532 	ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1533 					 offsetof(struct aac_common, ac_fibs);
1534 	ip->AdapterFibsVirtualAddress = (aac_phys_addr_t)&sc->aac_common->ac_fibs[0];
1535 	ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1536 	ip->AdapterFibAlign = sizeof(struct aac_fib);
1537 
1538 	ip->PrintfBufferAddress = sc->aac_common_busaddr +
1539 				  offsetof(struct aac_common, ac_printf);
1540 	ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1541 
1542 	/* The adapter assumes that pages are 4K in size */
1543 	ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE;
1544 	ip->HostElapsedSeconds = time_second;	/* reset later if invalid */
1545 
1546 	/*
1547 	 * Initialise FIB queues.  Note that it appears that the layout of the
1548 	 * indexes and the segmentation of the entries may be mandated by the
1549 	 * adapter, which is only told about the base of the queue index fields.
1550 	 *
1551 	 * The initial values of the indices are assumed to inform the adapter
1552 	 * of the sizes of the respective queues, and theoretically it could
1553 	 * work out the entire layout of the queue structures from this.  We
1554 	 * take the easy route and just lay this area out like everyone else
1555 	 * does.
1556 	 *
1557 	 * The Linux driver uses a much more complex scheme whereby several
1558 	 * header records are kept for each queue.  We use a couple of generic
1559 	 * list manipulation functions which 'know' the size of each list by
1560 	 * virtue of a table.
1561 	 */
1562 	qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN;
1563 	qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN;
1564 	sc->aac_queues = (struct aac_queue_table *)qaddr;
1565 	ip->CommHeaderAddress = sc->aac_common_busaddr +
1566 				((u_int32_t)sc->aac_queues -
1567 				(u_int32_t)sc->aac_common);
1568 	bzero(sc->aac_queues, sizeof(struct aac_queue_table));
1569 
1570 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1571 		AAC_HOST_NORM_CMD_ENTRIES;
1572 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1573 		AAC_HOST_NORM_CMD_ENTRIES;
1574 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1575 		AAC_HOST_HIGH_CMD_ENTRIES;
1576 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1577 		AAC_HOST_HIGH_CMD_ENTRIES;
1578 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1579 		AAC_ADAP_NORM_CMD_ENTRIES;
1580 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1581 		AAC_ADAP_NORM_CMD_ENTRIES;
1582 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1583 		AAC_ADAP_HIGH_CMD_ENTRIES;
1584 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1585 		AAC_ADAP_HIGH_CMD_ENTRIES;
1586 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1587 		AAC_HOST_NORM_RESP_ENTRIES;
1588 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1589 		AAC_HOST_NORM_RESP_ENTRIES;
1590 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1591 		AAC_HOST_HIGH_RESP_ENTRIES;
1592 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1593 		AAC_HOST_HIGH_RESP_ENTRIES;
1594 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1595 		AAC_ADAP_NORM_RESP_ENTRIES;
1596 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1597 		AAC_ADAP_NORM_RESP_ENTRIES;
1598 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1599 		AAC_ADAP_HIGH_RESP_ENTRIES;
1600 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1601 		AAC_ADAP_HIGH_RESP_ENTRIES;
1602 	sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1603 		&sc->aac_queues->qt_HostNormCmdQueue[0];
1604 	sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1605 		&sc->aac_queues->qt_HostHighCmdQueue[0];
1606 	sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1607 		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1608 	sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1609 		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1610 	sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1611 		&sc->aac_queues->qt_HostNormRespQueue[0];
1612 	sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1613 		&sc->aac_queues->qt_HostHighRespQueue[0];
1614 	sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1615 		&sc->aac_queues->qt_AdapNormRespQueue[0];
1616 	sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1617 		&sc->aac_queues->qt_AdapHighRespQueue[0];
1618 
1619 	/*
1620 	 * Do controller-type-specific initialisation
1621 	 */
1622 	switch (sc->aac_hwif) {
1623 	case AAC_HWIF_I960RX:
1624 		AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1625 		break;
1626 	}
1627 
1628 	/*
1629 	 * Give the init structure to the controller.
1630 	 */
1631 	if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1632 			     sc->aac_common_busaddr +
1633 			     offsetof(struct aac_common, ac_init), 0, 0, 0,
1634 			     NULL)) {
1635 		device_printf(sc->aac_dev,
1636 			      "error establishing init structure\n");
1637 		error = EIO;
1638 		goto out;
1639 	}
1640 
1641 	error = 0;
1642 out:
1643 	return(error);
1644 }
1645 
1646 /*
1647  * Send a synchronous command to the controller and wait for a result.
1648  */
1649 static int
1650 aac_sync_command(struct aac_softc *sc, u_int32_t command,
1651 		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1652 		 u_int32_t *sp)
1653 {
1654 	time_t then;
1655 	u_int32_t status;
1656 
1657 	debug_called(3);
1658 
1659 	/* populate the mailbox */
1660 	AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1661 
1662 	/* ensure the sync command doorbell flag is cleared */
1663 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1664 
1665 	/* then set it to signal the adapter */
1666 	AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1667 
1668 	/* spin waiting for the command to complete */
1669 	then = time_second;
1670 	do {
1671 		if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1672 			debug(1, "timed out");
1673 			return(EIO);
1674 		}
1675 	} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1676 
1677 	/* clear the completion flag */
1678 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1679 
1680 	/* get the command status */
1681 	status = AAC_GET_MAILBOX(sc, 0);
1682 	if (sp != NULL)
1683 		*sp = status;
1684 	return(0);
1685 }
1686 
1687 /*
1688  * Grab the sync fib area.
1689  */
1690 int
1691 aac_alloc_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags)
1692 {
1693 
1694 	/*
1695 	 * If the force flag is set, the system is shutting down, or in
1696 	 * trouble.  Ignore the mutex.
1697 	 */
1698 	if (!(flags & AAC_SYNC_LOCK_FORCE))
1699 		AAC_LOCK_ACQUIRE(&sc->aac_sync_lock);
1700 
1701 	*fib = &sc->aac_common->ac_sync_fib;
1702 
1703 	return (1);
1704 }
1705 
1706 /*
1707  * Release the sync fib area.
1708  */
1709 void
1710 aac_release_sync_fib(struct aac_softc *sc)
1711 {
1712 
1713 	AAC_LOCK_RELEASE(&sc->aac_sync_lock);
1714 }
1715 
1716 /*
1717  * Send a synchronous FIB to the controller and wait for a result.
1718  */
1719 int
1720 aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
1721 		 struct aac_fib *fib, u_int16_t datasize)
1722 {
1723 	debug_called(3);
1724 
1725 	if (datasize > AAC_FIB_DATASIZE)
1726 		return(EINVAL);
1727 
1728 	/*
1729 	 * Set up the sync FIB
1730 	 */
1731 	fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1732 				AAC_FIBSTATE_INITIALISED |
1733 				AAC_FIBSTATE_EMPTY;
1734 	fib->Header.XferState |= xferstate;
1735 	fib->Header.Command = command;
1736 	fib->Header.StructType = AAC_FIBTYPE_TFIB;
1737 	fib->Header.Size = sizeof(struct aac_fib) + datasize;
1738 	fib->Header.SenderSize = sizeof(struct aac_fib);
1739 	fib->Header.SenderFibAddress = (u_int32_t)fib;
1740 	fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1741 					 offsetof(struct aac_common,
1742 						  ac_sync_fib);
1743 
1744 	/*
1745 	 * Give the FIB to the controller, wait for a response.
1746 	 */
1747 	if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1748 			     fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1749 		debug(2, "IO error");
1750 		return(EIO);
1751 	}
1752 
1753 	return (0);
1754 }
1755 
1756 /*
1757  * Adapter-space FIB queue manipulation
1758  *
1759  * Note that the queue implementation here is a little funky; neither the PI or
1760  * CI will ever be zero.  This behaviour is a controller feature.
1761  */
1762 static struct {
1763 	int		size;
1764 	int		notify;
1765 } aac_qinfo[] = {
1766 	{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1767 	{AAC_HOST_HIGH_CMD_ENTRIES, 0},
1768 	{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1769 	{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1770 	{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1771 	{AAC_HOST_HIGH_RESP_ENTRIES, 0},
1772 	{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1773 	{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1774 };
1775 
1776 /*
1777  * Atomically insert an entry into the nominated queue, returns 0 on success or
1778  * EBUSY if the queue is full.
1779  *
1780  * Note: it would be more efficient to defer notifying the controller in
1781  *	 the case where we may be inserting several entries in rapid succession,
1782  *	 but implementing this usefully may be difficult (it would involve a
1783  *	 separate queue/notify interface).
1784  */
1785 static int
1786 aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1787 {
1788 	u_int32_t pi, ci;
1789 	int s, error;
1790 	u_int32_t fib_size;
1791 	u_int32_t fib_addr;
1792 
1793 	debug_called(3);
1794 
1795 	fib_size = cm->cm_fib->Header.Size;
1796 	fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1797 
1798 	s = splbio();
1799 
1800 	/* get the producer/consumer indices */
1801 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1802 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1803 
1804 	/* wrap the queue? */
1805 	if (pi >= aac_qinfo[queue].size)
1806 		pi = 0;
1807 
1808 	/* check for queue full */
1809 	if ((pi + 1) == ci) {
1810 		error = EBUSY;
1811 		goto out;
1812 	}
1813 
1814 	/* populate queue entry */
1815 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1816 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1817 
1818 	/* update producer index */
1819 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1820 
1821 	/*
1822 	 * To avoid a race with its completion interrupt, place this command on
1823 	 * the busy queue prior to advertising it to the controller.
1824 	 */
1825 	aac_enqueue_busy(cm);
1826 
1827 	/* notify the adapter if we know how */
1828 	if (aac_qinfo[queue].notify != 0)
1829 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1830 
1831 	error = 0;
1832 
1833 out:
1834 	splx(s);
1835 	return(error);
1836 }
1837 
1838 /*
1839  * Atomically remove one entry from the nominated queue, returns 0 on
1840  * success or ENOENT if the queue is empty.
1841  */
1842 static int
1843 aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1844 		struct aac_fib **fib_addr)
1845 {
1846 	u_int32_t pi, ci;
1847 	int s, error;
1848 	int notify;
1849 
1850 	debug_called(3);
1851 
1852 	s = splbio();
1853 
1854 	/* get the producer/consumer indices */
1855 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1856 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1857 
1858 	/* check for queue empty */
1859 	if (ci == pi) {
1860 		error = ENOENT;
1861 		goto out;
1862 	}
1863 
1864 	notify = 0;
1865 	if (ci == pi + 1)
1866 		notify++;
1867 
1868 	/* wrap the queue? */
1869 	if (ci >= aac_qinfo[queue].size)
1870 		ci = 0;
1871 
1872 	/* fetch the entry */
1873 	*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1874 	*fib_addr = (struct aac_fib *)(sc->aac_qentries[queue] +
1875 				       ci)->aq_fib_addr;
1876 
1877 	/*
1878 	 * Is this a fast response? If it is, update the fib fields in
1879 	 * local memory so the whole fib doesn't have to be DMA'd back up.
1880 	 */
1881 	if (*(uintptr_t *)fib_addr & 0x01) {
1882 		*(uintptr_t *)fib_addr &= ~0x01;
1883 		(*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP;
1884 		*((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL;
1885 	}
1886 	/* update consumer index */
1887 	sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1888 
1889 	/* if we have made the queue un-full, notify the adapter */
1890 	if (notify && (aac_qinfo[queue].notify != 0))
1891 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1892 	error = 0;
1893 
1894 out:
1895 	splx(s);
1896 	return(error);
1897 }
1898 
1899 /*
1900  * Put our response to an Adapter Initialed Fib on the response queue
1901  */
1902 static int
1903 aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1904 {
1905 	u_int32_t pi, ci;
1906 	int s, error;
1907 	u_int32_t fib_size;
1908 	u_int32_t fib_addr;
1909 
1910 	debug_called(1);
1911 
1912 	/* Tell the adapter where the FIB is */
1913 	fib_size = fib->Header.Size;
1914 	fib_addr = fib->Header.SenderFibAddress;
1915 	fib->Header.ReceiverFibAddress = fib_addr;
1916 
1917 	s = splbio();
1918 
1919 	/* get the producer/consumer indices */
1920 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1921 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1922 
1923 	/* wrap the queue? */
1924 	if (pi >= aac_qinfo[queue].size)
1925 		pi = 0;
1926 
1927 	/* check for queue full */
1928 	if ((pi + 1) == ci) {
1929 		error = EBUSY;
1930 		goto out;
1931 	}
1932 
1933 	/* populate queue entry */
1934 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1935 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1936 
1937 	/* update producer index */
1938 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1939 
1940 	/* notify the adapter if we know how */
1941 	if (aac_qinfo[queue].notify != 0)
1942 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1943 
1944 	error = 0;
1945 
1946 out:
1947 	splx(s);
1948 	return(error);
1949 }
1950 
1951 /*
1952  * Check for commands that have been outstanding for a suspiciously long time,
1953  * and complain about them.
1954  */
1955 static void
1956 aac_timeout(struct aac_softc *sc)
1957 {
1958 	int s;
1959 	struct aac_command *cm;
1960 	time_t deadline;
1961 
1962 #if 0
1963 	/* simulate an interrupt to handle possibly-missed interrupts */
1964 	/*
1965 	 * XXX This was done to work around another bug which has since been
1966 	 * fixed.  It is dangerous anyways because you don't want multiple
1967 	 * threads in the interrupt handler at the same time!  If calling
1968 	 * is deamed neccesary in the future, proper mutexes must be used.
1969 	 */
1970 	s = splbio();
1971 	aac_intr(sc);
1972 	splx(s);
1973 
1974 	/* kick the I/O queue to restart it in the case of deadlock */
1975 	aac_startio(sc);
1976 #endif
1977 
1978 	/*
1979 	 * traverse the busy command list, bitch about late commands once
1980 	 * only.
1981 	 */
1982 	deadline = time_second - AAC_CMD_TIMEOUT;
1983 	s = splbio();
1984 	TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
1985 		if ((cm->cm_timestamp  < deadline)
1986 			/* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
1987 			cm->cm_flags |= AAC_CMD_TIMEDOUT;
1988 			device_printf(sc->aac_dev,
1989 				      "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
1990 				      cm, (int)(time_second-cm->cm_timestamp));
1991 			AAC_PRINT_FIB(sc, cm->cm_fib);
1992 		}
1993 	}
1994 	splx(s);
1995 
1996 	/* reset the timer for next time */
1997 	timeout((timeout_t*)aac_timeout, sc, AAC_PERIODIC_INTERVAL * hz);
1998 	return;
1999 }
2000 
2001 /*
2002  * Interface Function Vectors
2003  */
2004 
2005 /*
2006  * Read the current firmware status word.
2007  */
2008 static int
2009 aac_sa_get_fwstatus(struct aac_softc *sc)
2010 {
2011 	debug_called(3);
2012 
2013 	return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
2014 }
2015 
2016 static int
2017 aac_rx_get_fwstatus(struct aac_softc *sc)
2018 {
2019 	debug_called(3);
2020 
2021 	return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
2022 }
2023 
2024 static int
2025 aac_fa_get_fwstatus(struct aac_softc *sc)
2026 {
2027 	int val;
2028 
2029 	debug_called(3);
2030 
2031 	val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
2032 	return (val);
2033 }
2034 
2035 /*
2036  * Notify the controller of a change in a given queue
2037  */
2038 
2039 static void
2040 aac_sa_qnotify(struct aac_softc *sc, int qbit)
2041 {
2042 	debug_called(3);
2043 
2044 	AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
2045 }
2046 
2047 static void
2048 aac_rx_qnotify(struct aac_softc *sc, int qbit)
2049 {
2050 	debug_called(3);
2051 
2052 	AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
2053 }
2054 
2055 static void
2056 aac_fa_qnotify(struct aac_softc *sc, int qbit)
2057 {
2058 	debug_called(3);
2059 
2060 	AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
2061 	AAC_FA_HACK(sc);
2062 }
2063 
2064 /*
2065  * Get the interrupt reason bits
2066  */
2067 static int
2068 aac_sa_get_istatus(struct aac_softc *sc)
2069 {
2070 	debug_called(3);
2071 
2072 	return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
2073 }
2074 
2075 static int
2076 aac_rx_get_istatus(struct aac_softc *sc)
2077 {
2078 	debug_called(3);
2079 
2080 	return(AAC_GETREG4(sc, AAC_RX_ODBR));
2081 }
2082 
2083 static int
2084 aac_fa_get_istatus(struct aac_softc *sc)
2085 {
2086 	int val;
2087 
2088 	debug_called(3);
2089 
2090 	val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
2091 	return (val);
2092 }
2093 
2094 /*
2095  * Clear some interrupt reason bits
2096  */
2097 static void
2098 aac_sa_clear_istatus(struct aac_softc *sc, int mask)
2099 {
2100 	debug_called(3);
2101 
2102 	AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
2103 }
2104 
2105 static void
2106 aac_rx_clear_istatus(struct aac_softc *sc, int mask)
2107 {
2108 	debug_called(3);
2109 
2110 	AAC_SETREG4(sc, AAC_RX_ODBR, mask);
2111 }
2112 
2113 static void
2114 aac_fa_clear_istatus(struct aac_softc *sc, int mask)
2115 {
2116 	debug_called(3);
2117 
2118 	AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
2119 	AAC_FA_HACK(sc);
2120 }
2121 
2122 /*
2123  * Populate the mailbox and set the command word
2124  */
2125 static void
2126 aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2127 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2128 {
2129 	debug_called(4);
2130 
2131 	AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
2132 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2133 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2134 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2135 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2136 }
2137 
2138 static void
2139 aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2140 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2141 {
2142 	debug_called(4);
2143 
2144 	AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
2145 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2146 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2147 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2148 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2149 }
2150 
2151 static void
2152 aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2153 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2154 {
2155 	debug_called(4);
2156 
2157 	AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2158 	AAC_FA_HACK(sc);
2159 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2160 	AAC_FA_HACK(sc);
2161 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2162 	AAC_FA_HACK(sc);
2163 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2164 	AAC_FA_HACK(sc);
2165 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2166 	AAC_FA_HACK(sc);
2167 }
2168 
2169 /*
2170  * Fetch the immediate command status word
2171  */
2172 static int
2173 aac_sa_get_mailbox(struct aac_softc *sc, int mb)
2174 {
2175 	debug_called(4);
2176 
2177 	return(AAC_GETREG4(sc, AAC_SA_MAILBOX + (mb * 4)));
2178 }
2179 
2180 static int
2181 aac_rx_get_mailbox(struct aac_softc *sc, int mb)
2182 {
2183 	debug_called(4);
2184 
2185 	return(AAC_GETREG4(sc, AAC_RX_MAILBOX + (mb * 4)));
2186 }
2187 
2188 static int
2189 aac_fa_get_mailbox(struct aac_softc *sc, int mb)
2190 {
2191 	int val;
2192 
2193 	debug_called(4);
2194 
2195 	val = AAC_GETREG4(sc, AAC_FA_MAILBOX + (mb * 4));
2196 	return (val);
2197 }
2198 
2199 /*
2200  * Set/clear interrupt masks
2201  */
2202 static void
2203 aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2204 {
2205 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2206 
2207 	if (enable) {
2208 		AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2209 	} else {
2210 		AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2211 	}
2212 }
2213 
2214 static void
2215 aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2216 {
2217 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2218 
2219 	if (enable) {
2220 		AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2221 	} else {
2222 		AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2223 	}
2224 }
2225 
2226 static void
2227 aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2228 {
2229 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2230 
2231 	if (enable) {
2232 		AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2233 		AAC_FA_HACK(sc);
2234 	} else {
2235 		AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2236 		AAC_FA_HACK(sc);
2237 	}
2238 }
2239 
2240 /*
2241  * Debugging and Diagnostics
2242  */
2243 
2244 /*
2245  * Print some information about the controller.
2246  */
2247 static void
2248 aac_describe_controller(struct aac_softc *sc)
2249 {
2250 	struct aac_fib *fib;
2251 	struct aac_adapter_info	*info;
2252 
2253 	debug_called(2);
2254 
2255 	aac_alloc_sync_fib(sc, &fib, 0);
2256 
2257 	fib->data[0] = 0;
2258 	if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2259 		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2260 		aac_release_sync_fib(sc);
2261 		return;
2262 	}
2263 	info = (struct aac_adapter_info *)&fib->data[0];
2264 
2265 	device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n",
2266 		      aac_describe_code(aac_cpu_variant, info->CpuVariant),
2267 		      info->ClockSpeed, info->BufferMem / (1024 * 1024),
2268 		      aac_describe_code(aac_battery_platform,
2269 					info->batteryPlatform));
2270 
2271 	/* save the kernel revision structure for later use */
2272 	sc->aac_revision = info->KernelRevision;
2273 	device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2274 		      info->KernelRevision.external.comp.major,
2275 		      info->KernelRevision.external.comp.minor,
2276 		      info->KernelRevision.external.comp.dash,
2277 		      info->KernelRevision.buildNumber,
2278 		      (u_int32_t)(info->SerialNumber & 0xffffff));
2279 
2280 	aac_release_sync_fib(sc);
2281 
2282 	if (1 || bootverbose) {
2283 		device_printf(sc->aac_dev, "Supported Options=%b\n",
2284 			      sc->supported_options,
2285 			      "\20"
2286 			      "\1SNAPSHOT"
2287 			      "\2CLUSTERS"
2288 			      "\3WCACHE"
2289 			      "\4DATA64"
2290 			      "\5HOSTTIME"
2291 			      "\6RAID50"
2292 			      "\7WINDOW4GB"
2293 			      "\10SCSIUPGD"
2294 			      "\11SOFTERR"
2295 			      "\12NORECOND"
2296 			      "\13SGMAP64"
2297 			      "\14ALARM"
2298 			      "\15NONDASD");
2299 	}
2300 }
2301 
2302 /*
2303  * Look up a text description of a numeric error code and return a pointer to
2304  * same.
2305  */
2306 static char *
2307 aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2308 {
2309 	int i;
2310 
2311 	for (i = 0; table[i].string != NULL; i++)
2312 		if (table[i].code == code)
2313 			return(table[i].string);
2314 	return(table[i + 1].string);
2315 }
2316 
2317 /*
2318  * Management Interface
2319  */
2320 
2321 static int
2322 aac_open(dev_t dev, int flags, int fmt, d_thread_t *td)
2323 {
2324 	struct aac_softc *sc;
2325 
2326 	debug_called(2);
2327 
2328 	sc = dev->si_drv1;
2329 
2330 	/* Check to make sure the device isn't already open */
2331 	if (sc->aac_state & AAC_STATE_OPEN) {
2332 		return EBUSY;
2333 	}
2334 	sc->aac_state |= AAC_STATE_OPEN;
2335 
2336 	return 0;
2337 }
2338 
2339 static int
2340 aac_close(dev_t dev, int flags, int fmt, d_thread_t *td)
2341 {
2342 	struct aac_softc *sc;
2343 
2344 	debug_called(2);
2345 
2346 	sc = dev->si_drv1;
2347 
2348 	/* Mark this unit as no longer open  */
2349 	sc->aac_state &= ~AAC_STATE_OPEN;
2350 
2351 	return 0;
2352 }
2353 
2354 static int
2355 aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2356 {
2357 	union aac_statrequest *as;
2358 	struct aac_softc *sc;
2359 	int error = 0;
2360 	int i;
2361 
2362 	debug_called(2);
2363 
2364 	as = (union aac_statrequest *)arg;
2365 	sc = dev->si_drv1;
2366 
2367 	switch (cmd) {
2368 	case AACIO_STATS:
2369 		switch (as->as_item) {
2370 		case AACQ_FREE:
2371 		case AACQ_BIO:
2372 		case AACQ_READY:
2373 		case AACQ_BUSY:
2374 		case AACQ_COMPLETE:
2375 			bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2376 			      sizeof(struct aac_qstat));
2377 			break;
2378 		default:
2379 			error = ENOENT;
2380 			break;
2381 		}
2382 	break;
2383 
2384 	case FSACTL_SENDFIB:
2385 		arg = *(caddr_t*)arg;
2386 	case FSACTL_LNX_SENDFIB:
2387 		debug(1, "FSACTL_SENDFIB");
2388 		error = aac_ioctl_sendfib(sc, arg);
2389 		break;
2390 	case FSACTL_AIF_THREAD:
2391 	case FSACTL_LNX_AIF_THREAD:
2392 		debug(1, "FSACTL_AIF_THREAD");
2393 		error = EINVAL;
2394 		break;
2395 	case FSACTL_OPEN_GET_ADAPTER_FIB:
2396 		arg = *(caddr_t*)arg;
2397 	case FSACTL_LNX_OPEN_GET_ADAPTER_FIB:
2398 		debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2399 		/*
2400 		 * Pass the caller out an AdapterFibContext.
2401 		 *
2402 		 * Note that because we only support one opener, we
2403 		 * basically ignore this.  Set the caller's context to a magic
2404 		 * number just in case.
2405 		 *
2406 		 * The Linux code hands the driver a pointer into kernel space,
2407 		 * and then trusts it when the caller hands it back.  Aiee!
2408 		 * Here, we give it the proc pointer of the per-adapter aif
2409 		 * thread. It's only used as a sanity check in other calls.
2410 		 */
2411 		i = (int)sc->aifthread;
2412 		error = copyout(&i, arg, sizeof(i));
2413 		break;
2414 	case FSACTL_GET_NEXT_ADAPTER_FIB:
2415 		arg = *(caddr_t*)arg;
2416 	case FSACTL_LNX_GET_NEXT_ADAPTER_FIB:
2417 		debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2418 		error = aac_getnext_aif(sc, arg);
2419 		break;
2420 	case FSACTL_CLOSE_GET_ADAPTER_FIB:
2421 	case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB:
2422 		debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2423 		/* don't do anything here */
2424 		break;
2425 	case FSACTL_MINIPORT_REV_CHECK:
2426 		arg = *(caddr_t*)arg;
2427 	case FSACTL_LNX_MINIPORT_REV_CHECK:
2428 		debug(1, "FSACTL_MINIPORT_REV_CHECK");
2429 		error = aac_rev_check(sc, arg);
2430 		break;
2431 	case FSACTL_QUERY_DISK:
2432 		arg = *(caddr_t*)arg;
2433 	case FSACTL_LNX_QUERY_DISK:
2434 		debug(1, "FSACTL_QUERY_DISK");
2435 		error = aac_query_disk(sc, arg);
2436 			break;
2437 	case FSACTL_DELETE_DISK:
2438 	case FSACTL_LNX_DELETE_DISK:
2439 		/*
2440 		 * We don't trust the underland to tell us when to delete a
2441 		 * container, rather we rely on an AIF coming from the
2442 		 * controller
2443 		 */
2444 		error = 0;
2445 		break;
2446 	default:
2447 		debug(1, "unsupported cmd 0x%lx\n", cmd);
2448 		error = EINVAL;
2449 		break;
2450 	}
2451 	return(error);
2452 }
2453 
2454 static int
2455 aac_poll(dev_t dev, int poll_events, d_thread_t *td)
2456 {
2457 	struct aac_softc *sc;
2458 	int revents;
2459 
2460 	sc = dev->si_drv1;
2461 	revents = 0;
2462 
2463 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2464 	if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2465 		if (sc->aac_aifq_tail != sc->aac_aifq_head)
2466 			revents |= poll_events & (POLLIN | POLLRDNORM);
2467 	}
2468 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2469 
2470 	if (revents == 0) {
2471 		if (poll_events & (POLLIN | POLLRDNORM))
2472 			selrecord(td, &sc->rcv_select);
2473 	}
2474 
2475 	return (revents);
2476 }
2477 
2478 /*
2479  * Send a FIB supplied from userspace
2480  */
2481 static int
2482 aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2483 {
2484 	struct aac_command *cm;
2485 	int size, error;
2486 
2487 	debug_called(2);
2488 
2489 	cm = NULL;
2490 
2491 	/*
2492 	 * Get a command
2493 	 */
2494 	if (aac_alloc_command(sc, &cm)) {
2495 		error = EBUSY;
2496 		goto out;
2497 	}
2498 
2499 	/*
2500 	 * Fetch the FIB header, then re-copy to get data as well.
2501 	 */
2502 	if ((error = copyin(ufib, cm->cm_fib,
2503 			    sizeof(struct aac_fib_header))) != 0)
2504 		goto out;
2505 	size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2506 	if (size > sizeof(struct aac_fib)) {
2507 		device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n",
2508 			      size, sizeof(struct aac_fib));
2509 		size = sizeof(struct aac_fib);
2510 	}
2511 	if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2512 		goto out;
2513 	cm->cm_fib->Header.Size = size;
2514 	cm->cm_timestamp = time_second;
2515 
2516 	/*
2517 	 * Pass the FIB to the controller, wait for it to complete.
2518 	 */
2519 	if ((error = aac_wait_command(cm, 30)) != 0) {	/* XXX user timeout? */
2520 		printf("aac_wait_command return %d\n", error);
2521 		goto out;
2522 	}
2523 
2524 	/*
2525 	 * Copy the FIB and data back out to the caller.
2526 	 */
2527 	size = cm->cm_fib->Header.Size;
2528 	if (size > sizeof(struct aac_fib)) {
2529 		device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n",
2530 			      size, sizeof(struct aac_fib));
2531 		size = sizeof(struct aac_fib);
2532 	}
2533 	error = copyout(cm->cm_fib, ufib, size);
2534 
2535 out:
2536 	if (cm != NULL) {
2537 		aac_release_command(cm);
2538 	}
2539 	return(error);
2540 }
2541 
2542 /*
2543  * Handle an AIF sent to us by the controller; queue it for later reference.
2544  * If the queue fills up, then drop the older entries.
2545  */
2546 static void
2547 aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2548 {
2549 	struct aac_aif_command *aif;
2550 	struct aac_container *co, *co_next;
2551 	struct aac_mntinfo *mi;
2552 	struct aac_mntinforesp *mir = NULL;
2553 	u_int16_t rsize;
2554 	int next, found;
2555 	int added = 0, i = 0;
2556 
2557 	debug_called(2);
2558 
2559 	aif = (struct aac_aif_command*)&fib->data[0];
2560 	aac_print_aif(sc, aif);
2561 
2562 	/* Is it an event that we should care about? */
2563 	switch (aif->command) {
2564 	case AifCmdEventNotify:
2565 		switch (aif->data.EN.type) {
2566 		case AifEnAddContainer:
2567 		case AifEnDeleteContainer:
2568 			/*
2569 			 * A container was added or deleted, but the message
2570 			 * doesn't tell us anything else!  Re-enumerate the
2571 			 * containers and sort things out.
2572 			 */
2573 			aac_alloc_sync_fib(sc, &fib, 0);
2574 			mi = (struct aac_mntinfo *)&fib->data[0];
2575 			do {
2576 				/*
2577 				 * Ask the controller for its containers one at
2578 				 * a time.
2579 				 * XXX What if the controller's list changes
2580 				 * midway through this enumaration?
2581 				 * XXX This should be done async.
2582 				 */
2583 				bzero(mi, sizeof(struct aac_mntinfo));
2584 				mi->Command = VM_NameServe;
2585 				mi->MntType = FT_FILESYS;
2586 				mi->MntCount = i;
2587 				rsize = sizeof(mir);
2588 				if (aac_sync_fib(sc, ContainerCommand, 0, fib,
2589 						 sizeof(struct aac_mntinfo))) {
2590 					debug(2, "Error probing container %d\n",
2591 					      i);
2592 					continue;
2593 				}
2594 				mir = (struct aac_mntinforesp *)&fib->data[0];
2595 				/*
2596 				 * Check the container against our list.
2597 				 * co->co_found was already set to 0 in a
2598 				 * previous run.
2599 				 */
2600 				if ((mir->Status == ST_OK) &&
2601 				    (mir->MntTable[0].VolType != CT_NONE)) {
2602 					found = 0;
2603 					TAILQ_FOREACH(co,
2604 						      &sc->aac_container_tqh,
2605 						      co_link) {
2606 						if (co->co_mntobj.ObjectId ==
2607 						    mir->MntTable[0].ObjectId) {
2608 							co->co_found = 1;
2609 							found = 1;
2610 							break;
2611 						}
2612 					}
2613 					/*
2614 					 * If the container matched, continue
2615 					 * in the list.
2616 					 */
2617 					if (found) {
2618 						i++;
2619 						continue;
2620 					}
2621 
2622 					/*
2623 					 * This is a new container.  Do all the
2624 					 * appropriate things to set it up.						 */
2625 					aac_add_container(sc, mir, 1);
2626 					added = 1;
2627 				}
2628 				i++;
2629 			} while ((i < mir->MntRespCount) &&
2630 				 (i < AAC_MAX_CONTAINERS));
2631 			aac_release_sync_fib(sc);
2632 
2633 			/*
2634 			 * Go through our list of containers and see which ones
2635 			 * were not marked 'found'.  Since the controller didn't
2636 			 * list them they must have been deleted.  Do the
2637 			 * appropriate steps to destroy the device.  Also reset
2638 			 * the co->co_found field.
2639 			 */
2640 			co = TAILQ_FIRST(&sc->aac_container_tqh);
2641 			while (co != NULL) {
2642 				if (co->co_found == 0) {
2643 					device_delete_child(sc->aac_dev,
2644 							    co->co_disk);
2645 					co_next = TAILQ_NEXT(co, co_link);
2646 					AAC_LOCK_ACQUIRE(&sc->
2647 							aac_container_lock);
2648 					TAILQ_REMOVE(&sc->aac_container_tqh, co,
2649 						     co_link);
2650 					AAC_LOCK_RELEASE(&sc->
2651 							 aac_container_lock);
2652 					FREE(co, M_AACBUF);
2653 					co = co_next;
2654 				} else {
2655 					co->co_found = 0;
2656 					co = TAILQ_NEXT(co, co_link);
2657 				}
2658 			}
2659 
2660 			/* Attach the newly created containers */
2661 			if (added)
2662 				bus_generic_attach(sc->aac_dev);
2663 
2664 				break;
2665 
2666 		default:
2667 			break;
2668 		}
2669 
2670 	default:
2671 		break;
2672 	}
2673 
2674 	/* Copy the AIF data to the AIF queue for ioctl retrieval */
2675 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2676 	next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2677 	if (next != sc->aac_aifq_tail) {
2678 		bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2679 		sc->aac_aifq_head = next;
2680 
2681 		/* On the off chance that someone is sleeping for an aif... */
2682 		if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2683 			wakeup(sc->aac_aifq);
2684 		/* token may have been lost */
2685 		/* Wakeup any poll()ers */
2686 		selwakeup(&sc->rcv_select);
2687 		/* token may have been lost */
2688 	}
2689 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2690 
2691 	return;
2692 }
2693 
2694 /*
2695  * Return the Revision of the driver to userspace and check to see if the
2696  * userspace app is possibly compatible.  This is extremely bogus since
2697  * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2698  * returning what the card reported.
2699  */
2700 static int
2701 aac_rev_check(struct aac_softc *sc, caddr_t udata)
2702 {
2703 	struct aac_rev_check rev_check;
2704 	struct aac_rev_check_resp rev_check_resp;
2705 	int error = 0;
2706 
2707 	debug_called(2);
2708 
2709 	/*
2710 	 * Copyin the revision struct from userspace
2711 	 */
2712 	if ((error = copyin(udata, (caddr_t)&rev_check,
2713 			sizeof(struct aac_rev_check))) != 0) {
2714 		return error;
2715 	}
2716 
2717 	debug(2, "Userland revision= %d\n",
2718 	      rev_check.callingRevision.buildNumber);
2719 
2720 	/*
2721 	 * Doctor up the response struct.
2722 	 */
2723 	rev_check_resp.possiblyCompatible = 1;
2724 	rev_check_resp.adapterSWRevision.external.ul =
2725 	    sc->aac_revision.external.ul;
2726 	rev_check_resp.adapterSWRevision.buildNumber =
2727 	    sc->aac_revision.buildNumber;
2728 
2729 	return(copyout((caddr_t)&rev_check_resp, udata,
2730 			sizeof(struct aac_rev_check_resp)));
2731 }
2732 
2733 /*
2734  * Pass the caller the next AIF in their queue
2735  */
2736 static int
2737 aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2738 {
2739 	struct get_adapter_fib_ioctl agf;
2740 	int error, s;
2741 
2742 	debug_called(2);
2743 
2744 	if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2745 
2746 		/*
2747 		 * Check the magic number that we gave the caller.
2748 		 */
2749 		if (agf.AdapterFibContext != (int)sc->aifthread) {
2750 			error = EFAULT;
2751 		} else {
2752 
2753 			s = splbio();
2754 			error = aac_return_aif(sc, agf.AifFib);
2755 
2756 			if ((error == EAGAIN) && (agf.Wait)) {
2757 				sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2758 				while (error == EAGAIN) {
2759 					error = tsleep(sc->aac_aifq,
2760 						       PCATCH, "aacaif", 0);
2761 					if (error == 0)
2762 						error = aac_return_aif(sc,
2763 						    agf.AifFib);
2764 				}
2765 				sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2766 			}
2767 		splx(s);
2768 		}
2769 	}
2770 	return(error);
2771 }
2772 
2773 /*
2774  * Hand the next AIF off the top of the queue out to userspace.
2775  *
2776  * YYY token could be lost during copyout
2777  */
2778 static int
2779 aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2780 {
2781 	int error;
2782 
2783 	debug_called(2);
2784 
2785 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2786 	if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2787 		error = EAGAIN;
2788 	} else {
2789 		error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr,
2790 				sizeof(struct aac_aif_command));
2791 		if (error)
2792 			printf("aac_return_aif: copyout returned %d\n", error);
2793 		if (!error)
2794 			sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) %
2795 					    AAC_AIFQ_LENGTH;
2796 	}
2797 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2798 	return(error);
2799 }
2800 
2801 /*
2802  * Give the userland some information about the container.  The AAC arch
2803  * expects the driver to be a SCSI passthrough type driver, so it expects
2804  * the containers to have b:t:l numbers.  Fake it.
2805  */
2806 static int
2807 aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2808 {
2809 	struct aac_query_disk query_disk;
2810 	struct aac_container *co;
2811 	struct aac_disk	*disk;
2812 	int error, id;
2813 
2814 	debug_called(2);
2815 
2816 	disk = NULL;
2817 
2818 	error = copyin(uptr, (caddr_t)&query_disk,
2819 		       sizeof(struct aac_query_disk));
2820 	if (error)
2821 		return (error);
2822 
2823 	id = query_disk.ContainerNumber;
2824 	if (id == -1)
2825 		return (EINVAL);
2826 
2827 	AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2828 	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2829 		if (co->co_mntobj.ObjectId == id)
2830 			break;
2831 		}
2832 
2833 		if (co == NULL) {
2834 			query_disk.Valid = 0;
2835 			query_disk.Locked = 0;
2836 			query_disk.Deleted = 1;		/* XXX is this right? */
2837 		} else {
2838 			disk = device_get_softc(co->co_disk);
2839 			query_disk.Valid = 1;
2840 			query_disk.Locked =
2841 			    (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2842 			query_disk.Deleted = 0;
2843 			query_disk.Bus = device_get_unit(sc->aac_dev);
2844 			query_disk.Target = disk->unit;
2845 			query_disk.Lun = 0;
2846 			query_disk.UnMapped = 0;
2847 			bcopy(disk->ad_dev_t->si_name,
2848 			      &query_disk.diskDeviceName[0], 10);
2849 		}
2850 	AAC_LOCK_RELEASE(&sc->aac_container_lock);
2851 
2852 	error = copyout((caddr_t)&query_disk, uptr,
2853 			sizeof(struct aac_query_disk));
2854 
2855 	return (error);
2856 }
2857 
2858 static void
2859 aac_get_bus_info(struct aac_softc *sc)
2860 {
2861 	struct aac_fib *fib;
2862 	struct aac_ctcfg *c_cmd;
2863 	struct aac_ctcfg_resp *c_resp;
2864 	struct aac_vmioctl *vmi;
2865 	struct aac_vmi_businf_resp *vmi_resp;
2866 	struct aac_getbusinf businfo;
2867 	struct aac_cam_inf *caminf;
2868 	device_t child;
2869 	int i, found, error;
2870 
2871 	aac_alloc_sync_fib(sc, &fib, 0);
2872 	c_cmd = (struct aac_ctcfg *)&fib->data[0];
2873 	bzero(c_cmd, sizeof(struct aac_ctcfg));
2874 
2875 	c_cmd->Command = VM_ContainerConfig;
2876 	c_cmd->cmd = CT_GET_SCSI_METHOD;
2877 	c_cmd->param = 0;
2878 
2879 	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2880 	    sizeof(struct aac_ctcfg));
2881 	if (error) {
2882 		device_printf(sc->aac_dev, "Error %d sending "
2883 		    "VM_ContainerConfig command\n", error);
2884 		aac_release_sync_fib(sc);
2885 		return;
2886 	}
2887 
2888 	c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
2889 	if (c_resp->Status != ST_OK) {
2890 		device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
2891 		    c_resp->Status);
2892 		aac_release_sync_fib(sc);
2893 		return;
2894 	}
2895 
2896 	sc->scsi_method_id = c_resp->param;
2897 
2898 	vmi = (struct aac_vmioctl *)&fib->data[0];
2899 	bzero(vmi, sizeof(struct aac_vmioctl));
2900 
2901 	vmi->Command = VM_Ioctl;
2902 	vmi->ObjType = FT_DRIVE;
2903 	vmi->MethId = sc->scsi_method_id;
2904 	vmi->ObjId = 0;
2905 	vmi->IoctlCmd = GetBusInfo;
2906 
2907 	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2908 	    sizeof(struct aac_vmioctl));
2909 	if (error) {
2910 		device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
2911 		    error);
2912 		aac_release_sync_fib(sc);
2913 		return;
2914 	}
2915 
2916 	vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
2917 	if (vmi_resp->Status != ST_OK) {
2918 		debug(1, "VM_Ioctl returned %d\n", vmi_resp->Status);
2919 		aac_release_sync_fib(sc);
2920 		return;
2921 	}
2922 
2923 	bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
2924 	aac_release_sync_fib(sc);
2925 
2926 	found = 0;
2927 	for (i = 0; i < businfo.BusCount; i++) {
2928 		if (businfo.BusValid[i] != AAC_BUS_VALID)
2929 			continue;
2930 
2931 		MALLOC(caminf, struct aac_cam_inf *,
2932 		    sizeof(struct aac_cam_inf), M_AACBUF, M_NOWAIT | M_ZERO);
2933 		if (caminf == NULL)
2934 			continue;
2935 
2936 		child = device_add_child(sc->aac_dev, "aacp", -1);
2937 		if (child == NULL) {
2938 			device_printf(sc->aac_dev, "device_add_child failed\n");
2939 			continue;
2940 		}
2941 
2942 		caminf->TargetsPerBus = businfo.TargetsPerBus;
2943 		caminf->BusNumber = i;
2944 		caminf->InitiatorBusId = businfo.InitiatorBusId[i];
2945 		caminf->aac_sc = sc;
2946 
2947 		device_set_ivars(child, caminf);
2948 		device_set_desc(child, "SCSI Passthrough Bus");
2949 
2950 		found = 1;
2951 	}
2952 
2953 	if (found)
2954 		bus_generic_attach(sc->aac_dev);
2955 
2956 	return;
2957 }
2958