xref: /dragonfly/sys/dev/raid/aac/aac.c (revision 86fe9e07)
1 /*-
2  * Copyright (c) 2000 Michael Smith
3  * Copyright (c) 2001 Scott Long
4  * Copyright (c) 2000 BSDi
5  * Copyright (c) 2001 Adaptec, Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	$FreeBSD: src/sys/dev/aac/aac.c,v 1.9.2.14 2003/04/08 13:22:08 scottl Exp $
30  *	$DragonFly: src/sys/dev/raid/aac/aac.c,v 1.15 2004/08/15 14:15:00 joerg Exp $
31  */
32 
33 /*
34  * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
35  */
36 
37 #include "opt_aac.h"
38 
39 /* #include <stddef.h> */
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/malloc.h>
43 #include <sys/kernel.h>
44 #include <sys/kthread.h>
45 #include <sys/sysctl.h>
46 #include <sys/poll.h>
47 #if defined(__FreeBSD__) && __FreeBSD_version >= 500005
48 #include <sys/selinfo.h>
49 #else
50 #include <sys/select.h>
51 #endif
52 
53 #include "aac_compat.h"
54 
55 #include <sys/bus.h>
56 #include <sys/conf.h>
57 #include <sys/devicestat.h>
58 #include <sys/disk.h>
59 #include <sys/signalvar.h>
60 #include <sys/time.h>
61 #include <sys/eventhandler.h>
62 
63 #include <machine/bus_memio.h>
64 #include <machine/bus.h>
65 #include <machine/resource.h>
66 
67 #include "aacreg.h"
68 #include "aac_ioctl.h"
69 #include "aacvar.h"
70 #include "aac_tables.h"
71 #include "aac_cam.h"
72 
73 static void	aac_startup(void *arg);
74 static void	aac_add_container(struct aac_softc *sc,
75 				  struct aac_mntinforesp *mir, int f);
76 static void	aac_get_bus_info(struct aac_softc *sc);
77 
78 /* Command Processing */
79 static void	aac_timeout(struct aac_softc *sc);
80 static int	aac_start(struct aac_command *cm);
81 static void	aac_complete(void *context, int pending);
82 static int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
83 static void	aac_bio_complete(struct aac_command *cm);
84 static int	aac_wait_command(struct aac_command *cm, int timeout);
85 static void	aac_host_command(struct aac_softc *sc);
86 static void	aac_host_response(struct aac_softc *sc);
87 
88 /* Command Buffer Management */
89 static void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
90 				       int nseg, int error);
91 static int	aac_alloc_commands(struct aac_softc *sc);
92 static void	aac_free_commands(struct aac_softc *sc);
93 static void	aac_map_command(struct aac_command *cm);
94 static void	aac_unmap_command(struct aac_command *cm);
95 
96 /* Hardware Interface */
97 static void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
98 			       int error);
99 static int	aac_check_firmware(struct aac_softc *sc);
100 static int	aac_init(struct aac_softc *sc);
101 static int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
102 				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
103 				 u_int32_t arg3, u_int32_t *sp);
104 static int	aac_enqueue_fib(struct aac_softc *sc, int queue,
105 				struct aac_command *cm);
106 static int	aac_dequeue_fib(struct aac_softc *sc, int queue,
107 				u_int32_t *fib_size, struct aac_fib **fib_addr);
108 static int	aac_enqueue_response(struct aac_softc *sc, int queue,
109 				     struct aac_fib *fib);
110 
111 /* Falcon/PPC interface */
112 static int	aac_fa_get_fwstatus(struct aac_softc *sc);
113 static void	aac_fa_qnotify(struct aac_softc *sc, int qbit);
114 static int	aac_fa_get_istatus(struct aac_softc *sc);
115 static void	aac_fa_clear_istatus(struct aac_softc *sc, int mask);
116 static void	aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
117 				   u_int32_t arg0, u_int32_t arg1,
118 				   u_int32_t arg2, u_int32_t arg3);
119 static int	aac_fa_get_mailbox(struct aac_softc *sc, int mb);
120 static void	aac_fa_set_interrupts(struct aac_softc *sc, int enable);
121 
122 struct aac_interface aac_fa_interface = {
123 	aac_fa_get_fwstatus,
124 	aac_fa_qnotify,
125 	aac_fa_get_istatus,
126 	aac_fa_clear_istatus,
127 	aac_fa_set_mailbox,
128 	aac_fa_get_mailbox,
129 	aac_fa_set_interrupts
130 };
131 
132 /* StrongARM interface */
133 static int	aac_sa_get_fwstatus(struct aac_softc *sc);
134 static void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
135 static int	aac_sa_get_istatus(struct aac_softc *sc);
136 static void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
137 static void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
138 				   u_int32_t arg0, u_int32_t arg1,
139 				   u_int32_t arg2, u_int32_t arg3);
140 static int	aac_sa_get_mailbox(struct aac_softc *sc, int mb);
141 static void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
142 
143 struct aac_interface aac_sa_interface = {
144 	aac_sa_get_fwstatus,
145 	aac_sa_qnotify,
146 	aac_sa_get_istatus,
147 	aac_sa_clear_istatus,
148 	aac_sa_set_mailbox,
149 	aac_sa_get_mailbox,
150 	aac_sa_set_interrupts
151 };
152 
153 /* i960Rx interface */
154 static int	aac_rx_get_fwstatus(struct aac_softc *sc);
155 static void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
156 static int	aac_rx_get_istatus(struct aac_softc *sc);
157 static void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
158 static void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
159 				   u_int32_t arg0, u_int32_t arg1,
160 				   u_int32_t arg2, u_int32_t arg3);
161 static int	aac_rx_get_mailbox(struct aac_softc *sc, int mb);
162 static void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
163 
164 struct aac_interface aac_rx_interface = {
165 	aac_rx_get_fwstatus,
166 	aac_rx_qnotify,
167 	aac_rx_get_istatus,
168 	aac_rx_clear_istatus,
169 	aac_rx_set_mailbox,
170 	aac_rx_get_mailbox,
171 	aac_rx_set_interrupts
172 };
173 
174 /* Debugging and Diagnostics */
175 static void	aac_describe_controller(struct aac_softc *sc);
176 static char	*aac_describe_code(struct aac_code_lookup *table,
177 				   u_int32_t code);
178 
179 /* Management Interface */
180 static d_open_t		aac_open;
181 static d_close_t	aac_close;
182 static d_ioctl_t	aac_ioctl;
183 static d_poll_t		aac_poll;
184 static int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
185 static void		aac_handle_aif(struct aac_softc *sc,
186 					   struct aac_fib *fib);
187 static int		aac_rev_check(struct aac_softc *sc, caddr_t udata);
188 static int		aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
189 static int		aac_return_aif(struct aac_softc *sc, caddr_t uptr);
190 static int		aac_query_disk(struct aac_softc *sc, caddr_t uptr);
191 
192 #define AAC_CDEV_MAJOR	150
193 
194 static struct cdevsw aac_cdevsw = {
195 	"aac",			/* name */
196 	AAC_CDEV_MAJOR,		/* major */
197 	0,			/* flags */
198 	NULL,			/* port */
199 	NULL,			/* clone */
200 
201 	aac_open,		/* open */
202 	aac_close,		/* close */
203 	noread,			/* read */
204 	nowrite,		/* write */
205 	aac_ioctl,		/* ioctl */
206 	aac_poll,		/* poll */
207 	nommap,			/* mmap */
208 	nostrategy,		/* strategy */
209 	nodump,			/* dump */
210 	nopsize			/* psize */
211 };
212 
213 DECLARE_DUMMY_MODULE(aac);
214 
215 MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
216 
217 /* sysctl node */
218 SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
219 
220 /*
221  * Device Interface
222  */
223 
224 /*
225  * Initialise the controller and softc
226  */
227 int
228 aac_attach(struct aac_softc *sc)
229 {
230 	int error, unit;
231 
232 	debug_called(1);
233 
234 	/*
235 	 * Initialise per-controller queues.
236 	 */
237 	aac_initq_free(sc);
238 	aac_initq_ready(sc);
239 	aac_initq_busy(sc);
240 	aac_initq_complete(sc);
241 	aac_initq_bio(sc);
242 
243 #if defined(__FreeBSD__) && __FreeBSD_version >= 500005
244 	/*
245 	 * Initialise command-completion task.
246 	 */
247 	TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
248 #endif
249 
250 	/* disable interrupts before we enable anything */
251 	AAC_MASK_INTERRUPTS(sc);
252 
253 	/* mark controller as suspended until we get ourselves organised */
254 	sc->aac_state |= AAC_STATE_SUSPEND;
255 
256 	/*
257 	 * Check that the firmware on the card is supported.
258 	 */
259 	if ((error = aac_check_firmware(sc)) != 0)
260 		return(error);
261 
262 	/* Init the sync fib lock */
263 	AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock");
264 
265 	/*
266 	 * Initialise the adapter.
267 	 */
268 	if ((error = aac_init(sc)) != 0)
269 		return(error);
270 
271 	/*
272 	 * Print a little information about the controller.
273 	 */
274 	aac_describe_controller(sc);
275 
276 	/*
277 	 * Register to probe our containers later.
278 	 */
279 	TAILQ_INIT(&sc->aac_container_tqh);
280 	AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
281 
282 	/*
283 	 * Lock for the AIF queue
284 	 */
285 	AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
286 
287 	sc->aac_ich.ich_func = aac_startup;
288 	sc->aac_ich.ich_arg = sc;
289 	if (config_intrhook_establish(&sc->aac_ich) != 0) {
290 		device_printf(sc->aac_dev,
291 			      "can't establish configuration hook\n");
292 		return(ENXIO);
293 	}
294 
295 	/*
296 	 * Make the control device.
297 	 */
298 	unit = device_get_unit(sc->aac_dev);
299 	cdevsw_add(&aac_cdevsw, -1, unit);
300 	sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_WHEEL, 0644,
301 				 "aac%d", unit);
302 #if defined(__FreeBSD__) && __FreeBSD_version > 500005
303 	(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
304 	(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
305 #endif
306 	sc->aac_dev_t->si_drv1 = sc;
307 	reference_dev(sc->aac_dev_t);
308 
309 	/* Create the AIF thread */
310 #if defined(__FreeBSD__) && __FreeBSD_version > 500005
311 	if (kthread_create((void(*)(void *))aac_host_command, sc,
312 			   &sc->aifthread, 0, "aac%daif", unit))
313 #else
314 	if (kthread_create((void(*)(void *))aac_host_command, sc,
315 			   &sc->aifthread, "aac%daif", unit))
316 #endif
317 		panic("Could not create AIF thread\n");
318 
319 	/* Register the shutdown method to only be called post-dump */
320 	if ((EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown, sc->aac_dev,
321 				   SHUTDOWN_PRI_DEFAULT)) == NULL)
322 	device_printf(sc->aac_dev, "shutdown event registration failed\n");
323 
324 	/* Register with CAM for the non-DASD devices */
325 	if ((sc->flags & AAC_FLAGS_ENABLE_CAM) != 0)
326 		aac_get_bus_info(sc);
327 
328 	return(0);
329 }
330 
331 /*
332  * Probe for containers, create disks.
333  */
334 static void
335 aac_startup(void *arg)
336 {
337 	struct aac_softc *sc;
338 	struct aac_fib *fib;
339 	struct aac_mntinfo *mi;
340 	struct aac_mntinforesp *mir = NULL;
341 	int i = 0;
342 
343 	debug_called(1);
344 
345 	sc = (struct aac_softc *)arg;
346 
347 	/* disconnect ourselves from the intrhook chain */
348 	config_intrhook_disestablish(&sc->aac_ich);
349 
350 	aac_alloc_sync_fib(sc, &fib, 0);
351 	mi = (struct aac_mntinfo *)&fib->data[0];
352 
353 	/* loop over possible containers */
354 	do {
355 		/* request information on this container */
356 		bzero(mi, sizeof(struct aac_mntinfo));
357 		mi->Command = VM_NameServe;
358 		mi->MntType = FT_FILESYS;
359 		mi->MntCount = i;
360 		if (aac_sync_fib(sc, ContainerCommand, 0, fib,
361 				 sizeof(struct aac_mntinfo))) {
362 			debug(2, "error probing container %d", i);
363 			continue;
364 		}
365 
366 		mir = (struct aac_mntinforesp *)&fib->data[0];
367 		aac_add_container(sc, mir, 0);
368 		i++;
369 	} while ((i < mir->MntRespCount) && (i < AAC_MAX_CONTAINERS));
370 
371 	aac_release_sync_fib(sc);
372 
373 	/* poke the bus to actually attach the child devices */
374 	if (bus_generic_attach(sc->aac_dev))
375 		device_printf(sc->aac_dev, "bus_generic_attach failed\n");
376 
377 	/* mark the controller up */
378 	sc->aac_state &= ~AAC_STATE_SUSPEND;
379 
380 	/* enable interrupts now */
381 	AAC_UNMASK_INTERRUPTS(sc);
382 
383 	/* enable the timeout watchdog */
384 	timeout((timeout_t*)aac_timeout, sc, AAC_PERIODIC_INTERVAL * hz);
385 }
386 
387 /*
388  * Create a device to respresent a new container
389  */
390 static void
391 aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
392 {
393 	struct aac_container *co;
394 	device_t child;
395 
396 	/*
397 	 * Check container volume type for validity.  Note that many of
398 	 * the possible types may never show up.
399 	 */
400 	if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
401 		MALLOC(co, struct aac_container *, sizeof *co, M_AACBUF,
402 		       M_INTWAIT);
403 		debug(1, "id %x  name '%.16s'  size %u  type %d",
404 		      mir->MntTable[0].ObjectId,
405 		      mir->MntTable[0].FileSystemName,
406 		      mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
407 
408 		if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
409 			device_printf(sc->aac_dev, "device_add_child failed\n");
410 		else
411 			device_set_ivars(child, co);
412 		device_set_desc(child, aac_describe_code(aac_container_types,
413 				mir->MntTable[0].VolType));
414 		co->co_disk = child;
415 		co->co_found = f;
416 		bcopy(&mir->MntTable[0], &co->co_mntobj,
417 		      sizeof(struct aac_mntobj));
418 		AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
419 		TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
420 		AAC_LOCK_RELEASE(&sc->aac_container_lock);
421 	}
422 }
423 
424 /*
425  * Free all of the resources associated with (sc)
426  *
427  * Should not be called if the controller is active.
428  */
429 void
430 aac_free(struct aac_softc *sc)
431 {
432 	debug_called(1);
433 
434 	/* remove the control device */
435 	if (sc->aac_dev_t != NULL)
436 		destroy_dev(sc->aac_dev_t);
437 
438 	/* throw away any FIB buffers, discard the FIB DMA tag */
439 	if (sc->aac_fibs != NULL)
440 		aac_free_commands(sc);
441 	if (sc->aac_fib_dmat)
442 		bus_dma_tag_destroy(sc->aac_fib_dmat);
443 
444 	/* destroy the common area */
445 	if (sc->aac_common) {
446 		bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
447 		bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
448 				sc->aac_common_dmamap);
449 	}
450 	if (sc->aac_common_dmat)
451 		bus_dma_tag_destroy(sc->aac_common_dmat);
452 
453 	/* disconnect the interrupt handler */
454 	if (sc->aac_intr)
455 		bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
456 	if (sc->aac_irq != NULL)
457 		bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
458 				     sc->aac_irq);
459 
460 	/* destroy data-transfer DMA tag */
461 	if (sc->aac_buffer_dmat)
462 		bus_dma_tag_destroy(sc->aac_buffer_dmat);
463 
464 	/* destroy the parent DMA tag */
465 	if (sc->aac_parent_dmat)
466 		bus_dma_tag_destroy(sc->aac_parent_dmat);
467 
468 	/* release the register window mapping */
469 	if (sc->aac_regs_resource != NULL) {
470 		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
471 				     sc->aac_regs_rid, sc->aac_regs_resource);
472 	}
473 	cdevsw_remove(&aac_cdevsw, -1, device_get_unit(sc->aac_dev));
474 }
475 
476 /*
477  * Disconnect from the controller completely, in preparation for unload.
478  */
479 int
480 aac_detach(device_t dev)
481 {
482 	struct aac_softc *sc;
483 #if AAC_BROKEN
484 	int error;
485 #endif
486 
487 	debug_called(1);
488 
489 	sc = device_get_softc(dev);
490 
491 	if (sc->aac_state & AAC_STATE_OPEN)
492 	return(EBUSY);
493 
494 #if AAC_BROKEN
495 	if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
496 		sc->aifflags |= AAC_AIFFLAGS_EXIT;
497 		wakeup(sc->aifthread);
498 		tsleep(sc->aac_dev, PCATCH, "aacdch", 30 * hz);
499 	}
500 
501 	if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
502 		panic("Cannot shutdown AIF thread\n");
503 
504 	if ((error = aac_shutdown(dev)))
505 		return(error);
506 
507 	aac_free(sc);
508 
509 	return(0);
510 #else
511 	return (EBUSY);
512 #endif
513 }
514 
515 /*
516  * Bring the controller down to a dormant state and detach all child devices.
517  *
518  * This function is called before detach or system shutdown.
519  *
520  * Note that we can assume that the bioq on the controller is empty, as we won't
521  * allow shutdown if any device is open.
522  */
523 int
524 aac_shutdown(device_t dev)
525 {
526 	struct aac_softc *sc;
527 	struct aac_fib *fib;
528 	struct aac_close_command *cc;
529 	int s;
530 
531 	debug_called(1);
532 
533 	sc = device_get_softc(dev);
534 
535 	s = splbio();
536 
537 	sc->aac_state |= AAC_STATE_SUSPEND;
538 
539 	/*
540 	 * Send a Container shutdown followed by a HostShutdown FIB to the
541 	 * controller to convince it that we don't want to talk to it anymore.
542 	 * We've been closed and all I/O completed already
543 	 */
544 	device_printf(sc->aac_dev, "shutting down controller...");
545 
546 	aac_alloc_sync_fib(sc, &fib, AAC_SYNC_LOCK_FORCE);
547 	cc = (struct aac_close_command *)&fib->data[0];
548 
549 	bzero(cc, sizeof(struct aac_close_command));
550 	cc->Command = VM_CloseAll;
551 	cc->ContainerId = 0xffffffff;
552 	if (aac_sync_fib(sc, ContainerCommand, 0, fib,
553 	    sizeof(struct aac_close_command)))
554 		printf("FAILED.\n");
555 	else {
556 		fib->data[0] = 0;
557 		/*
558 		 * XXX Issuing this command to the controller makes it shut down
559 		 * but also keeps it from coming back up without a reset of the
560 		 * PCI bus.  This is not desirable if you are just unloading the
561 		 * driver module with the intent to reload it later.
562 		 */
563 		if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
564 		    fib, 1)) {
565 			printf("FAILED.\n");
566 		} else {
567 			printf("done.\n");
568 		}
569 	}
570 
571 	AAC_MASK_INTERRUPTS(sc);
572 
573 	splx(s);
574 	return(0);
575 }
576 
577 /*
578  * Bring the controller to a quiescent state, ready for system suspend.
579  */
580 int
581 aac_suspend(device_t dev)
582 {
583 	struct aac_softc *sc;
584 	int s;
585 
586 	debug_called(1);
587 
588 	sc = device_get_softc(dev);
589 
590 	s = splbio();
591 
592 	sc->aac_state |= AAC_STATE_SUSPEND;
593 
594 	AAC_MASK_INTERRUPTS(sc);
595 	splx(s);
596 	return(0);
597 }
598 
599 /*
600  * Bring the controller back to a state ready for operation.
601  */
602 int
603 aac_resume(device_t dev)
604 {
605 	struct aac_softc *sc;
606 
607 	debug_called(1);
608 
609 	sc = device_get_softc(dev);
610 
611 	sc->aac_state &= ~AAC_STATE_SUSPEND;
612 	AAC_UNMASK_INTERRUPTS(sc);
613 	return(0);
614 }
615 
616 /*
617  * Take an interrupt.
618  */
619 void
620 aac_intr(void *arg)
621 {
622 	struct aac_softc *sc;
623 	u_int16_t reason;
624 	u_int32_t *resp_queue;
625 
626 	debug_called(2);
627 
628 	sc = (struct aac_softc *)arg;
629 
630 	/*
631 	 * Optimize the common case of adapter response interrupts.
632 	 * We must read from the card prior to processing the responses
633 	 * to ensure the clear is flushed prior to accessing the queues.
634 	 * Reading the queues from local memory might save us a PCI read.
635 	 */
636 	resp_queue = sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE];
637 	if (resp_queue[AAC_PRODUCER_INDEX] != resp_queue[AAC_CONSUMER_INDEX])
638 		reason = AAC_DB_RESPONSE_READY;
639 	else
640 		reason = AAC_GET_ISTATUS(sc);
641 	AAC_CLEAR_ISTATUS(sc, reason);
642 	(void)AAC_GET_ISTATUS(sc);
643 
644 	/* It's not ok to return here because of races with the previous step */
645 	if (reason & AAC_DB_RESPONSE_READY)
646 		aac_host_response(sc);
647 
648 	/* controller wants to talk to the log */
649 	if (reason & AAC_DB_PRINTF)
650 		aac_print_printf(sc);
651 
652 	/* controller has a message for us? */
653 	if (reason & AAC_DB_COMMAND_READY) {
654 		/* XXX What happens if the thread is already awake? */
655 		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
656 			sc->aifflags |= AAC_AIFFLAGS_PENDING;
657 			wakeup(sc->aifthread);
658 		}
659 	}
660 }
661 
662 /*
663  * Command Processing
664  */
665 
666 /*
667  * Start as much queued I/O as possible on the controller
668  */
669 void
670 aac_startio(struct aac_softc *sc)
671 {
672 	struct aac_command *cm;
673 
674 	debug_called(2);
675 
676 	for (;;) {
677 		/*
678 		 * Try to get a command that's been put off for lack of
679 		 * resources
680 		 */
681 		cm = aac_dequeue_ready(sc);
682 
683 		/*
684 		 * Try to build a command off the bio queue (ignore error
685 		 * return)
686 		 */
687 		if (cm == NULL)
688 			aac_bio_command(sc, &cm);
689 
690 		/* nothing to do? */
691 		if (cm == NULL)
692 			break;
693 
694 		/* try to give the command to the controller */
695 		if (aac_start(cm) == EBUSY) {
696 			/* put it on the ready queue for later */
697 			aac_requeue_ready(cm);
698 			break;
699 		}
700 	}
701 }
702 
703 /*
704  * Deliver a command to the controller; allocate controller resources at the
705  * last moment when possible.
706  */
707 static int
708 aac_start(struct aac_command *cm)
709 {
710 	struct aac_softc *sc;
711 	int error;
712 
713 	debug_called(2);
714 
715 	sc = cm->cm_sc;
716 
717 	/* get the command mapped */
718 	aac_map_command(cm);
719 
720 	/* fix up the address values in the FIB */
721 	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
722 	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
723 
724 	/* save a pointer to the command for speedy reverse-lookup */
725 	cm->cm_fib->Header.SenderData = (u_int32_t)cm;	/* XXX 64-bit physical
726 							 * address issue */
727 	/* put the FIB on the outbound queue */
728 	error = aac_enqueue_fib(sc, cm->cm_queue, cm);
729 	return(error);
730 }
731 
732 /*
733  * Handle notification of one or more FIBs coming from the controller.
734  */
735 static void
736 aac_host_command(struct aac_softc *sc)
737 {
738 	struct aac_fib *fib;
739 	u_int32_t fib_size;
740 	int size;
741 
742 	debug_called(2);
743 
744 	sc->aifflags |= AAC_AIFFLAGS_RUNNING;
745 
746 	while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) {
747 		if (!(sc->aifflags & AAC_AIFFLAGS_PENDING))
748 			tsleep(sc->aifthread, 0, "aifthd", 15 * hz);
749 
750 		sc->aifflags &= ~AAC_AIFFLAGS_PENDING;
751 		for (;;) {
752 			if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
753 					    &fib_size, &fib))
754 				break;	/* nothing to do */
755 
756 			AAC_PRINT_FIB(sc, fib);
757 
758 			switch (fib->Header.Command) {
759 			case AifRequest:
760 				aac_handle_aif(sc, fib);
761 				break;
762 			default:
763 				device_printf(sc->aac_dev, "unknown command "
764 					      "from controller\n");
765 				break;
766 			}
767 
768 			/* Return the AIF to the controller. */
769 			if ((fib->Header.XferState == 0) ||
770 			    (fib->Header.StructType != AAC_FIBTYPE_TFIB))
771 				break;
772 
773 			if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
774 				fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
775 				*(AAC_FSAStatus*)fib->data = ST_OK;
776 
777 				/* XXX Compute the Size field? */
778 				size = fib->Header.Size;
779 				if (size > sizeof(struct aac_fib)) {
780 					size = sizeof(struct aac_fib);
781 					fib->Header.Size = size;
782 				}
783 				/*
784 				 * Since we did not generate this command, it
785 				 * cannot go through the normal
786 				 * enqueue->startio chain.
787 				 */
788 				aac_enqueue_response(sc,
789 						     AAC_ADAP_NORM_RESP_QUEUE,
790 						     fib);
791 			}
792 		}
793 	}
794 	sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
795 	wakeup(sc->aac_dev);
796 
797 #if defined(__FreeBSD__) && __FreeBSD_version > 500005
798 	mtx_lock(&Giant);
799 #endif
800 	kthread_exit();
801 }
802 
803 /*
804  * Handle notification of one or more FIBs completed by the controller
805  */
806 static void
807 aac_host_response(struct aac_softc *sc)
808 {
809 	struct aac_command *cm;
810 	struct aac_fib *fib;
811 	u_int32_t fib_size;
812 
813 	debug_called(2);
814 
815 	for (;;) {
816 		/* look for completed FIBs on our queue */
817 		if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
818 				    &fib))
819 			break;	/* nothing to do */
820 
821 		/* get the command, unmap and queue for later processing */
822 		cm = (struct aac_command *)fib->Header.SenderData;
823 		if (cm == NULL) {
824 			AAC_PRINT_FIB(sc, fib);
825 		} else {
826 			aac_remove_busy(cm);
827 			aac_unmap_command(cm);		/* XXX defer? */
828 			aac_enqueue_complete(cm);
829 		}
830 	}
831 
832 	/* handle completion processing */
833 #if defined(__FreeBSD__) && __FreeBSD_version >= 500005
834 	taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete);
835 #else
836 	aac_complete(sc, 0);
837 #endif
838 }
839 
840 /*
841  * Process completed commands.
842  */
843 static void
844 aac_complete(void *context, int pending)
845 {
846 	struct aac_softc *sc;
847 	struct aac_command *cm;
848 
849 	debug_called(2);
850 
851 	sc = (struct aac_softc *)context;
852 
853 	/* pull completed commands off the queue */
854 	for (;;) {
855 		cm = aac_dequeue_complete(sc);
856 		if (cm == NULL)
857 			break;
858 		cm->cm_flags |= AAC_CMD_COMPLETED;
859 
860 		/* is there a completion handler? */
861 		if (cm->cm_complete != NULL) {
862 			cm->cm_complete(cm);
863 		} else {
864 			/* assume that someone is sleeping on this command */
865 			wakeup(cm);
866 		}
867 	}
868 
869 	/* see if we can start some more I/O */
870 	aac_startio(sc);
871 }
872 
873 /*
874  * Handle a bio submitted from a disk device.
875  */
876 void
877 aac_submit_bio(struct bio *bp)
878 {
879 	struct aac_disk *ad;
880 	struct aac_softc *sc;
881 
882 	debug_called(2);
883 
884 	ad = (struct aac_disk *)bp->bio_dev->si_drv1;
885 	sc = ad->ad_controller;
886 
887 	/* queue the BIO and try to get some work done */
888 	aac_enqueue_bio(sc, bp);
889 	aac_startio(sc);
890 }
891 
892 /*
893  * Get a bio and build a command to go with it.
894  */
895 static int
896 aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
897 {
898 	struct aac_command *cm;
899 	struct aac_fib *fib;
900 	struct aac_blockread *br;
901 	struct aac_blockwrite *bw;
902 	struct aac_disk *ad;
903 	struct bio *bp;
904 
905 	debug_called(2);
906 
907 	/* get the resources we will need */
908 	cm = NULL;
909 	if ((bp = aac_dequeue_bio(sc)) == NULL)
910 		goto fail;
911 	if (aac_alloc_command(sc, &cm))	/* get a command */
912 		goto fail;
913 
914 	/* fill out the command */
915 	cm->cm_data = (void *)bp->bio_data;
916 	cm->cm_datalen = bp->bio_bcount;
917 	cm->cm_complete = aac_bio_complete;
918 	cm->cm_private = bp;
919 	cm->cm_timestamp = time_second;
920 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
921 
922 	/* build the FIB */
923 	fib = cm->cm_fib;
924 	fib->Header.XferState =
925 		AAC_FIBSTATE_HOSTOWNED   |
926 		AAC_FIBSTATE_INITIALISED |
927 		AAC_FIBSTATE_EMPTY	 |
928 		AAC_FIBSTATE_FROMHOST	 |
929 		AAC_FIBSTATE_REXPECTED   |
930 		AAC_FIBSTATE_NORM	 |
931 		AAC_FIBSTATE_ASYNC	 |
932 		AAC_FIBSTATE_FAST_RESPONSE;
933 	fib->Header.Command = ContainerCommand;
934 	fib->Header.Size = sizeof(struct aac_fib_header);
935 
936 	/* build the read/write request */
937 	ad = (struct aac_disk *)bp->bio_dev->si_drv1;
938 	if (BIO_IS_READ(bp)) {
939 		br = (struct aac_blockread *)&fib->data[0];
940 		br->Command = VM_CtBlockRead;
941 		br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
942 		br->BlockNumber = bp->bio_pblkno;
943 		br->ByteCount = bp->bio_bcount;
944 		fib->Header.Size += sizeof(struct aac_blockread);
945 		cm->cm_sgtable = &br->SgMap;
946 		cm->cm_flags |= AAC_CMD_DATAIN;
947 	} else {
948 		bw = (struct aac_blockwrite *)&fib->data[0];
949 		bw->Command = VM_CtBlockWrite;
950 		bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
951 		bw->BlockNumber = bp->bio_pblkno;
952 		bw->ByteCount = bp->bio_bcount;
953 		bw->Stable = CUNSTABLE;	/* XXX what's appropriate here? */
954 		fib->Header.Size += sizeof(struct aac_blockwrite);
955 		cm->cm_flags |= AAC_CMD_DATAOUT;
956 		cm->cm_sgtable = &bw->SgMap;
957 	}
958 
959 	*cmp = cm;
960 	return(0);
961 
962 fail:
963 	if (bp != NULL)
964 		aac_enqueue_bio(sc, bp);
965 	if (cm != NULL)
966 		aac_release_command(cm);
967 	return(ENOMEM);
968 }
969 
970 /*
971  * Handle a bio-instigated command that has been completed.
972  */
973 static void
974 aac_bio_complete(struct aac_command *cm)
975 {
976 	struct aac_blockread_response *brr;
977 	struct aac_blockwrite_response *bwr;
978 	struct bio *bp;
979 	AAC_FSAStatus status;
980 
981 	/* fetch relevant status and then release the command */
982 	bp = (struct bio *)cm->cm_private;
983 	if (BIO_IS_READ(bp)) {
984 		brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
985 		status = brr->Status;
986 	} else {
987 		bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
988 		status = bwr->Status;
989 	}
990 	aac_release_command(cm);
991 
992 	/* fix up the bio based on status */
993 	if (status == ST_OK) {
994 		bp->bio_resid = 0;
995 	} else {
996 		bp->bio_error = EIO;
997 		bp->bio_flags |= BIO_ERROR;
998 		/* pass an error string out to the disk layer */
999 		bp->bio_driver1 = aac_describe_code(aac_command_status_table,
1000 						    status);
1001 	}
1002 	aac_biodone(bp);
1003 }
1004 
1005 /*
1006  * Dump a block of data to the controller.  If the queue is full, tell the
1007  * caller to hold off and wait for the queue to drain.
1008  */
1009 int
1010 aac_dump_enqueue(struct aac_disk *ad, u_int32_t lba, void *data, int dumppages)
1011 {
1012 	struct aac_softc *sc;
1013 	struct aac_command *cm;
1014 	struct aac_fib *fib;
1015 	struct aac_blockwrite *bw;
1016 
1017 	sc = ad->ad_controller;
1018 	cm = NULL;
1019 
1020 	if (aac_alloc_command(sc, &cm))
1021 		return (EBUSY);
1022 
1023 	/* fill out the command */
1024 	cm->cm_data = data;
1025 	cm->cm_datalen = dumppages * PAGE_SIZE;
1026 	cm->cm_complete = NULL;
1027 	cm->cm_private = NULL;
1028 	cm->cm_timestamp = time_second;
1029 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1030 
1031 	/* build the FIB */
1032 	fib = cm->cm_fib;
1033 	fib->Header.XferState =
1034 	AAC_FIBSTATE_HOSTOWNED   |
1035 	AAC_FIBSTATE_INITIALISED |
1036 	AAC_FIBSTATE_FROMHOST	 |
1037 	AAC_FIBSTATE_REXPECTED   |
1038 	AAC_FIBSTATE_NORM;
1039 	fib->Header.Command = ContainerCommand;
1040 	fib->Header.Size = sizeof(struct aac_fib_header);
1041 
1042 	bw = (struct aac_blockwrite *)&fib->data[0];
1043 	bw->Command = VM_CtBlockWrite;
1044 	bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
1045 	bw->BlockNumber = lba;
1046 	bw->ByteCount = dumppages * PAGE_SIZE;
1047 	bw->Stable = CUNSTABLE;		/* XXX what's appropriate here? */
1048 	fib->Header.Size += sizeof(struct aac_blockwrite);
1049 	cm->cm_flags |= AAC_CMD_DATAOUT;
1050 	cm->cm_sgtable = &bw->SgMap;
1051 
1052 	return (aac_start(cm));
1053 }
1054 
1055 /*
1056  * Wait for the card's queue to drain when dumping.  Also check for monitor
1057  * printf's
1058  */
1059 void
1060 aac_dump_complete(struct aac_softc *sc)
1061 {
1062 	struct aac_fib *fib;
1063 	struct aac_command *cm;
1064 	u_int16_t reason;
1065 	u_int32_t pi, ci, fib_size;
1066 
1067 	do {
1068 		reason = AAC_GET_ISTATUS(sc);
1069 		if (reason & AAC_DB_RESPONSE_READY) {
1070 			AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY);
1071 			for (;;) {
1072 				if (aac_dequeue_fib(sc,
1073 						    AAC_HOST_NORM_RESP_QUEUE,
1074 						    &fib_size, &fib))
1075 					break;
1076 				cm = (struct aac_command *)
1077 					fib->Header.SenderData;
1078 				if (cm == NULL)
1079 					AAC_PRINT_FIB(sc, fib);
1080 				else {
1081 					aac_remove_busy(cm);
1082 					aac_unmap_command(cm);
1083 					aac_enqueue_complete(cm);
1084 					aac_release_command(cm);
1085 				}
1086 			}
1087 		}
1088 		if (reason & AAC_DB_PRINTF) {
1089 			AAC_CLEAR_ISTATUS(sc, AAC_DB_PRINTF);
1090 			aac_print_printf(sc);
1091 		}
1092 		pi = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][
1093 			AAC_PRODUCER_INDEX];
1094 		ci = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][
1095 			AAC_CONSUMER_INDEX];
1096 	} while (ci != pi);
1097 
1098 	return;
1099 }
1100 
1101 /*
1102  * Submit a command to the controller, return when it completes.
1103  * XXX This is very dangerous!  If the card has gone out to lunch, we could
1104  *     be stuck here forever.  At the same time, signals are not caught
1105  *     because there is a risk that a signal could wakeup the tsleep before
1106  *     the card has a chance to complete the command.  The passed in timeout
1107  *     is ignored for the same reason.  Since there is no way to cancel a
1108  *     command in progress, we should probably create a 'dead' queue where
1109  *     commands go that have been interrupted/timed-out/etc, that keeps them
1110  *     out of the free pool.  That way, if the card is just slow, it won't
1111  *     spam the memory of a command that has been recycled.
1112  */
1113 static int
1114 aac_wait_command(struct aac_command *cm, int timeout)
1115 {
1116 	int s, error = 0;
1117 
1118 	debug_called(2);
1119 
1120 	/* Put the command on the ready queue and get things going */
1121 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1122 	aac_enqueue_ready(cm);
1123 	aac_startio(cm->cm_sc);
1124 	s = splbio();
1125 	while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
1126 		error = tsleep(cm, 0, "aacwait", 0);
1127 	}
1128 	splx(s);
1129 	return(error);
1130 }
1131 
1132 /*
1133  *Command Buffer Management
1134  */
1135 
1136 /*
1137  * Allocate a command.
1138  */
1139 int
1140 aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1141 {
1142 	struct aac_command *cm;
1143 
1144 	debug_called(3);
1145 
1146 	if ((cm = aac_dequeue_free(sc)) == NULL)
1147 		return(ENOMEM);
1148 
1149 	*cmp = cm;
1150 	return(0);
1151 }
1152 
1153 /*
1154  * Release a command back to the freelist.
1155  */
1156 void
1157 aac_release_command(struct aac_command *cm)
1158 {
1159 	debug_called(3);
1160 
1161 	/* (re)initialise the command/FIB */
1162 	cm->cm_sgtable = NULL;
1163 	cm->cm_flags = 0;
1164 	cm->cm_complete = NULL;
1165 	cm->cm_private = NULL;
1166 	cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1167 	cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1168 	cm->cm_fib->Header.Flags = 0;
1169 	cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1170 
1171 	/*
1172 	 * These are duplicated in aac_start to cover the case where an
1173 	 * intermediate stage may have destroyed them.  They're left
1174 	 * initialised here for debugging purposes only.
1175 	 */
1176 	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
1177 	cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1178 	cm->cm_fib->Header.SenderData = 0;
1179 
1180 	aac_enqueue_free(cm);
1181 }
1182 
1183 /*
1184  * Map helper for command/FIB allocation.
1185  */
1186 static void
1187 aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1188 {
1189 	struct aac_softc *sc;
1190 
1191 	sc = (struct aac_softc *)arg;
1192 
1193 	debug_called(3);
1194 
1195 	sc->aac_fibphys = segs[0].ds_addr;
1196 }
1197 
1198 /*
1199  * Allocate and initialise commands/FIBs for this adapter.
1200  */
1201 static int
1202 aac_alloc_commands(struct aac_softc *sc)
1203 {
1204 	struct aac_command *cm;
1205 	int i;
1206 
1207 	debug_called(1);
1208 
1209 	/* allocate the FIBs in DMAable memory and load them */
1210 	if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&sc->aac_fibs,
1211 			 BUS_DMA_NOWAIT, &sc->aac_fibmap)) {
1212 		return(ENOMEM);
1213 	}
1214 
1215 	bus_dmamap_load(sc->aac_fib_dmat, sc->aac_fibmap, sc->aac_fibs,
1216 			AAC_FIB_COUNT * sizeof(struct aac_fib),
1217 			aac_map_command_helper, sc, 0);
1218 
1219 	/* initialise constant fields in the command structure */
1220 	bzero(sc->aac_fibs, AAC_FIB_COUNT * sizeof(struct aac_fib));
1221 	for (i = 0; i < AAC_FIB_COUNT; i++) {
1222 		cm = &sc->aac_command[i];
1223 		cm->cm_sc = sc;
1224 		cm->cm_fib = sc->aac_fibs + i;
1225 		cm->cm_fibphys = sc->aac_fibphys + (i * sizeof(struct aac_fib));
1226 
1227 		if (!bus_dmamap_create(sc->aac_buffer_dmat, 0, &cm->cm_datamap))
1228 			aac_release_command(cm);
1229 	}
1230 	return(0);
1231 }
1232 
1233 /*
1234  * Free FIBs owned by this adapter.
1235  */
1236 static void
1237 aac_free_commands(struct aac_softc *sc)
1238 {
1239 	int i;
1240 
1241 	debug_called(1);
1242 
1243 	for (i = 0; i < AAC_FIB_COUNT; i++)
1244 		bus_dmamap_destroy(sc->aac_buffer_dmat,
1245 				   sc->aac_command[i].cm_datamap);
1246 
1247 	bus_dmamap_unload(sc->aac_fib_dmat, sc->aac_fibmap);
1248 	bus_dmamem_free(sc->aac_fib_dmat, sc->aac_fibs, sc->aac_fibmap);
1249 }
1250 
1251 /*
1252  * Command-mapping helper function - populate this command's s/g table.
1253  */
1254 static void
1255 aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1256 {
1257 	struct aac_command *cm;
1258 	struct aac_fib *fib;
1259 	struct aac_sg_table *sg;
1260 	int i;
1261 
1262 	debug_called(3);
1263 
1264 	cm = (struct aac_command *)arg;
1265 	fib = cm->cm_fib;
1266 
1267 	/* find the s/g table */
1268 	sg = cm->cm_sgtable;
1269 
1270 	/* copy into the FIB */
1271 	if (sg != NULL) {
1272 		sg->SgCount = nseg;
1273 		for (i = 0; i < nseg; i++) {
1274 			sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1275 			sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1276 		}
1277 		/* update the FIB size for the s/g count */
1278 		fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1279 	}
1280 
1281 }
1282 
1283 /*
1284  * Map a command into controller-visible space.
1285  */
1286 static void
1287 aac_map_command(struct aac_command *cm)
1288 {
1289 	struct aac_softc *sc;
1290 
1291 	debug_called(2);
1292 
1293 	sc = cm->cm_sc;
1294 
1295 	/* don't map more than once */
1296 	if (cm->cm_flags & AAC_CMD_MAPPED)
1297 		return;
1298 
1299 	if (cm->cm_datalen != 0) {
1300 		bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap,
1301 				cm->cm_data, cm->cm_datalen,
1302 				aac_map_command_sg, cm, 0);
1303 
1304 		if (cm->cm_flags & AAC_CMD_DATAIN)
1305 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1306 					BUS_DMASYNC_PREREAD);
1307 		if (cm->cm_flags & AAC_CMD_DATAOUT)
1308 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1309 					BUS_DMASYNC_PREWRITE);
1310 	}
1311 	cm->cm_flags |= AAC_CMD_MAPPED;
1312 }
1313 
1314 /*
1315  * Unmap a command from controller-visible space.
1316  */
1317 static void
1318 aac_unmap_command(struct aac_command *cm)
1319 {
1320 	struct aac_softc *sc;
1321 
1322 	debug_called(2);
1323 
1324 	sc = cm->cm_sc;
1325 
1326 	if (!(cm->cm_flags & AAC_CMD_MAPPED))
1327 		return;
1328 
1329 	if (cm->cm_datalen != 0) {
1330 		if (cm->cm_flags & AAC_CMD_DATAIN)
1331 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1332 					BUS_DMASYNC_POSTREAD);
1333 		if (cm->cm_flags & AAC_CMD_DATAOUT)
1334 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1335 					BUS_DMASYNC_POSTWRITE);
1336 
1337 		bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1338 	}
1339 	cm->cm_flags &= ~AAC_CMD_MAPPED;
1340 }
1341 
1342 /*
1343  * Hardware Interface
1344  */
1345 
1346 /*
1347  * Initialise the adapter.
1348  */
1349 static void
1350 aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1351 {
1352 	struct aac_softc *sc;
1353 
1354 	debug_called(1);
1355 
1356 	sc = (struct aac_softc *)arg;
1357 
1358 	sc->aac_common_busaddr = segs[0].ds_addr;
1359 }
1360 
1361 static int
1362 aac_check_firmware(struct aac_softc *sc)
1363 {
1364 	u_int32_t major, minor, options;
1365 
1366 	debug_called(1);
1367 
1368 	/*
1369 	 * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1370 	 * firmware version 1.x are not compatible with this driver.
1371 	 */
1372 	if (sc->flags & AAC_FLAGS_PERC2QC) {
1373 		if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1374 				     NULL)) {
1375 			device_printf(sc->aac_dev,
1376 				      "Error reading firmware version\n");
1377 			return (EIO);
1378 		}
1379 
1380 		/* These numbers are stored as ASCII! */
1381 		major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30;
1382 		minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30;
1383 		if (major == 1) {
1384 			device_printf(sc->aac_dev,
1385 			    "Firmware version %d.%d is not supported.\n",
1386 			    major, minor);
1387 			return (EINVAL);
1388 		}
1389 	}
1390 
1391 	/*
1392 	 * Retrieve the capabilities/supported options word so we know what
1393 	 * work-arounds to enable.
1394 	 */
1395 	if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, NULL)) {
1396 		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
1397 		return (EIO);
1398 	}
1399 	options = AAC_GET_MAILBOX(sc, 1);
1400 	sc->supported_options = options;
1401 
1402 	if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 &&
1403 	    (sc->flags & AAC_FLAGS_NO4GB) == 0)
1404 		sc->flags |= AAC_FLAGS_4GB_WINDOW;
1405 	if (options & AAC_SUPPORTED_NONDASD)
1406 		sc->flags |= AAC_FLAGS_ENABLE_CAM;
1407 
1408 	return (0);
1409 }
1410 
1411 static int
1412 aac_init(struct aac_softc *sc)
1413 {
1414 	struct aac_adapter_init	*ip;
1415 	time_t then;
1416 	u_int32_t code;
1417 	u_int8_t *qaddr;
1418 	int error;
1419 
1420 	debug_called(1);
1421 
1422 	/*
1423 	 * First wait for the adapter to come ready.
1424 	 */
1425 	then = time_second;
1426 	do {
1427 		code = AAC_GET_FWSTATUS(sc);
1428 		if (code & AAC_SELF_TEST_FAILED) {
1429 			device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1430 			return(ENXIO);
1431 		}
1432 		if (code & AAC_KERNEL_PANIC) {
1433 			device_printf(sc->aac_dev,
1434 				      "FATAL: controller kernel panic\n");
1435 			return(ENXIO);
1436 		}
1437 		if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1438 			device_printf(sc->aac_dev,
1439 				      "FATAL: controller not coming ready, "
1440 					   "status %x\n", code);
1441 			return(ENXIO);
1442 		}
1443 	} while (!(code & AAC_UP_AND_RUNNING));
1444 
1445  	error = ENOMEM;
1446  	/*
1447  	 * Create DMA tag for mapping buffers into controller-addressable space.
1448  	 */
1449  	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1450  			       1, 0, 			/* algnmnt, boundary */
1451  			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1452  			       BUS_SPACE_MAXADDR, 	/* highaddr */
1453  			       NULL, NULL, 		/* filter, filterarg */
1454  			       MAXBSIZE,		/* maxsize */
1455  			       AAC_MAXSGENTRIES,	/* nsegments */
1456  			       MAXBSIZE,		/* maxsegsize */
1457  			       BUS_DMA_ALLOCNOW,	/* flags */
1458  			       &sc->aac_buffer_dmat)) {
1459  		device_printf(sc->aac_dev, "can't allocate buffer DMA tag\n");
1460  		goto out;
1461  	}
1462 
1463  	/*
1464  	 * Create DMA tag for mapping FIBs into controller-addressable space..
1465  	 */
1466  	if (bus_dma_tag_create(sc->aac_parent_dmat,	/* parent */
1467  			       1, 0, 			/* algnmnt, boundary */
1468  			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1469  			       BUS_SPACE_MAXADDR_32BIT :
1470  			       0x7fffffff,		/* lowaddr */
1471  			       BUS_SPACE_MAXADDR, 	/* highaddr */
1472  			       NULL, NULL, 		/* filter, filterarg */
1473  			       AAC_FIB_COUNT *
1474  			       sizeof(struct aac_fib),  /* maxsize */
1475  			       1,			/* nsegments */
1476  			       AAC_FIB_COUNT *
1477  			       sizeof(struct aac_fib),	/* maxsegsize */
1478  			       BUS_DMA_ALLOCNOW,	/* flags */
1479  			       &sc->aac_fib_dmat)) {
1480  		device_printf(sc->aac_dev, "can't allocate FIB DMA tag\n");;
1481  		goto out;
1482  	}
1483 
1484 	/*
1485 	 * Create DMA tag for the common structure and allocate it.
1486 	 */
1487 	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1488 			       1, 0,			/* algnmnt, boundary */
1489 			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1490 			       BUS_SPACE_MAXADDR_32BIT :
1491 			       0x7fffffff,		/* lowaddr */
1492 			       BUS_SPACE_MAXADDR, 	/* highaddr */
1493 			       NULL, NULL, 		/* filter, filterarg */
1494 			       8192 + sizeof(struct aac_common), /* maxsize */
1495 			       1,			/* nsegments */
1496 			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1497 			       BUS_DMA_ALLOCNOW,	/* flags */
1498 			       &sc->aac_common_dmat)) {
1499 		device_printf(sc->aac_dev,
1500 			      "can't allocate common structure DMA tag\n");
1501 		goto out;
1502 	}
1503 	if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1504 			     BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1505 		device_printf(sc->aac_dev, "can't allocate common structure\n");
1506 		goto out;
1507 	}
1508 	/*
1509 	 * Work around a bug in the 2120 and 2200 that cannot DMA commands
1510 	 * below address 8192 in physical memory.
1511 	 * XXX If the padding is not needed, can it be put to use instead
1512 	 * of ignored?
1513 	 */
1514 	bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1515 			sc->aac_common, 8192 + sizeof(*sc->aac_common),
1516 			aac_common_map, sc, 0);
1517 
1518 	if (sc->aac_common_busaddr < 8192) {
1519 		sc->aac_common =
1520 		    (struct aac_common *)((uint8_t *)sc->aac_common + 8192);
1521 		sc->aac_common_busaddr += 8192;
1522 	}
1523 	bzero(sc->aac_common, sizeof(*sc->aac_common));
1524 
1525 	/* Allocate some FIBs and associated command structs */
1526 	if (aac_alloc_commands(sc) != 0)
1527 		goto out;
1528 
1529 	/*
1530 	 * Fill in the init structure.  This tells the adapter about the
1531 	 * physical location of various important shared data structures.
1532 	 */
1533 	ip = &sc->aac_common->ac_init;
1534 	ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1535 	ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION;
1536 
1537 	ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1538 					 offsetof(struct aac_common, ac_fibs);
1539 	ip->AdapterFibsVirtualAddress = (aac_phys_addr_t)&sc->aac_common->ac_fibs[0];
1540 	ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1541 	ip->AdapterFibAlign = sizeof(struct aac_fib);
1542 
1543 	ip->PrintfBufferAddress = sc->aac_common_busaddr +
1544 				  offsetof(struct aac_common, ac_printf);
1545 	ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1546 
1547 	/* The adapter assumes that pages are 4K in size */
1548 	ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE;
1549 	ip->HostElapsedSeconds = time_second;	/* reset later if invalid */
1550 
1551 	/*
1552 	 * Initialise FIB queues.  Note that it appears that the layout of the
1553 	 * indexes and the segmentation of the entries may be mandated by the
1554 	 * adapter, which is only told about the base of the queue index fields.
1555 	 *
1556 	 * The initial values of the indices are assumed to inform the adapter
1557 	 * of the sizes of the respective queues, and theoretically it could
1558 	 * work out the entire layout of the queue structures from this.  We
1559 	 * take the easy route and just lay this area out like everyone else
1560 	 * does.
1561 	 *
1562 	 * The Linux driver uses a much more complex scheme whereby several
1563 	 * header records are kept for each queue.  We use a couple of generic
1564 	 * list manipulation functions which 'know' the size of each list by
1565 	 * virtue of a table.
1566 	 */
1567 	qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN;
1568 	qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN;
1569 	sc->aac_queues = (struct aac_queue_table *)qaddr;
1570 	ip->CommHeaderAddress = sc->aac_common_busaddr +
1571 				((u_int32_t)sc->aac_queues -
1572 				(u_int32_t)sc->aac_common);
1573 	bzero(sc->aac_queues, sizeof(struct aac_queue_table));
1574 
1575 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1576 		AAC_HOST_NORM_CMD_ENTRIES;
1577 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1578 		AAC_HOST_NORM_CMD_ENTRIES;
1579 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1580 		AAC_HOST_HIGH_CMD_ENTRIES;
1581 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1582 		AAC_HOST_HIGH_CMD_ENTRIES;
1583 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1584 		AAC_ADAP_NORM_CMD_ENTRIES;
1585 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1586 		AAC_ADAP_NORM_CMD_ENTRIES;
1587 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1588 		AAC_ADAP_HIGH_CMD_ENTRIES;
1589 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1590 		AAC_ADAP_HIGH_CMD_ENTRIES;
1591 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1592 		AAC_HOST_NORM_RESP_ENTRIES;
1593 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1594 		AAC_HOST_NORM_RESP_ENTRIES;
1595 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1596 		AAC_HOST_HIGH_RESP_ENTRIES;
1597 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1598 		AAC_HOST_HIGH_RESP_ENTRIES;
1599 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1600 		AAC_ADAP_NORM_RESP_ENTRIES;
1601 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1602 		AAC_ADAP_NORM_RESP_ENTRIES;
1603 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1604 		AAC_ADAP_HIGH_RESP_ENTRIES;
1605 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1606 		AAC_ADAP_HIGH_RESP_ENTRIES;
1607 	sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1608 		&sc->aac_queues->qt_HostNormCmdQueue[0];
1609 	sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1610 		&sc->aac_queues->qt_HostHighCmdQueue[0];
1611 	sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1612 		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1613 	sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1614 		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1615 	sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1616 		&sc->aac_queues->qt_HostNormRespQueue[0];
1617 	sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1618 		&sc->aac_queues->qt_HostHighRespQueue[0];
1619 	sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1620 		&sc->aac_queues->qt_AdapNormRespQueue[0];
1621 	sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1622 		&sc->aac_queues->qt_AdapHighRespQueue[0];
1623 
1624 	/*
1625 	 * Do controller-type-specific initialisation
1626 	 */
1627 	switch (sc->aac_hwif) {
1628 	case AAC_HWIF_I960RX:
1629 		AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1630 		break;
1631 	}
1632 
1633 	/*
1634 	 * Give the init structure to the controller.
1635 	 */
1636 	if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1637 			     sc->aac_common_busaddr +
1638 			     offsetof(struct aac_common, ac_init), 0, 0, 0,
1639 			     NULL)) {
1640 		device_printf(sc->aac_dev,
1641 			      "error establishing init structure\n");
1642 		error = EIO;
1643 		goto out;
1644 	}
1645 
1646 	error = 0;
1647 out:
1648 	return(error);
1649 }
1650 
1651 /*
1652  * Send a synchronous command to the controller and wait for a result.
1653  */
1654 static int
1655 aac_sync_command(struct aac_softc *sc, u_int32_t command,
1656 		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1657 		 u_int32_t *sp)
1658 {
1659 	time_t then;
1660 	u_int32_t status;
1661 
1662 	debug_called(3);
1663 
1664 	/* populate the mailbox */
1665 	AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1666 
1667 	/* ensure the sync command doorbell flag is cleared */
1668 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1669 
1670 	/* then set it to signal the adapter */
1671 	AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1672 
1673 	/* spin waiting for the command to complete */
1674 	then = time_second;
1675 	do {
1676 		if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1677 			debug(1, "timed out");
1678 			return(EIO);
1679 		}
1680 	} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1681 
1682 	/* clear the completion flag */
1683 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1684 
1685 	/* get the command status */
1686 	status = AAC_GET_MAILBOX(sc, 0);
1687 	if (sp != NULL)
1688 		*sp = status;
1689 	return(0);
1690 }
1691 
1692 /*
1693  * Grab the sync fib area.
1694  */
1695 int
1696 aac_alloc_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags)
1697 {
1698 
1699 	/*
1700 	 * If the force flag is set, the system is shutting down, or in
1701 	 * trouble.  Ignore the mutex.
1702 	 */
1703 	if (!(flags & AAC_SYNC_LOCK_FORCE))
1704 		AAC_LOCK_ACQUIRE(&sc->aac_sync_lock);
1705 
1706 	*fib = &sc->aac_common->ac_sync_fib;
1707 
1708 	return (1);
1709 }
1710 
1711 /*
1712  * Release the sync fib area.
1713  */
1714 void
1715 aac_release_sync_fib(struct aac_softc *sc)
1716 {
1717 
1718 	AAC_LOCK_RELEASE(&sc->aac_sync_lock);
1719 }
1720 
1721 /*
1722  * Send a synchronous FIB to the controller and wait for a result.
1723  */
1724 int
1725 aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
1726 		 struct aac_fib *fib, u_int16_t datasize)
1727 {
1728 	debug_called(3);
1729 
1730 	if (datasize > AAC_FIB_DATASIZE)
1731 		return(EINVAL);
1732 
1733 	/*
1734 	 * Set up the sync FIB
1735 	 */
1736 	fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1737 				AAC_FIBSTATE_INITIALISED |
1738 				AAC_FIBSTATE_EMPTY;
1739 	fib->Header.XferState |= xferstate;
1740 	fib->Header.Command = command;
1741 	fib->Header.StructType = AAC_FIBTYPE_TFIB;
1742 	fib->Header.Size = sizeof(struct aac_fib) + datasize;
1743 	fib->Header.SenderSize = sizeof(struct aac_fib);
1744 	fib->Header.SenderFibAddress = (u_int32_t)fib;
1745 	fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1746 					 offsetof(struct aac_common,
1747 						  ac_sync_fib);
1748 
1749 	/*
1750 	 * Give the FIB to the controller, wait for a response.
1751 	 */
1752 	if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1753 			     fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1754 		debug(2, "IO error");
1755 		return(EIO);
1756 	}
1757 
1758 	return (0);
1759 }
1760 
1761 /*
1762  * Adapter-space FIB queue manipulation
1763  *
1764  * Note that the queue implementation here is a little funky; neither the PI or
1765  * CI will ever be zero.  This behaviour is a controller feature.
1766  */
1767 static struct {
1768 	int		size;
1769 	int		notify;
1770 } aac_qinfo[] = {
1771 	{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1772 	{AAC_HOST_HIGH_CMD_ENTRIES, 0},
1773 	{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1774 	{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1775 	{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1776 	{AAC_HOST_HIGH_RESP_ENTRIES, 0},
1777 	{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1778 	{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1779 };
1780 
1781 /*
1782  * Atomically insert an entry into the nominated queue, returns 0 on success or
1783  * EBUSY if the queue is full.
1784  *
1785  * Note: it would be more efficient to defer notifying the controller in
1786  *	 the case where we may be inserting several entries in rapid succession,
1787  *	 but implementing this usefully may be difficult (it would involve a
1788  *	 separate queue/notify interface).
1789  */
1790 static int
1791 aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1792 {
1793 	u_int32_t pi, ci;
1794 	int s, error;
1795 	u_int32_t fib_size;
1796 	u_int32_t fib_addr;
1797 
1798 	debug_called(3);
1799 
1800 	fib_size = cm->cm_fib->Header.Size;
1801 	fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1802 
1803 	s = splbio();
1804 
1805 	/* get the producer/consumer indices */
1806 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1807 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1808 
1809 	/* wrap the queue? */
1810 	if (pi >= aac_qinfo[queue].size)
1811 		pi = 0;
1812 
1813 	/* check for queue full */
1814 	if ((pi + 1) == ci) {
1815 		error = EBUSY;
1816 		goto out;
1817 	}
1818 
1819 	/* populate queue entry */
1820 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1821 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1822 
1823 	/* update producer index */
1824 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1825 
1826 	/*
1827 	 * To avoid a race with its completion interrupt, place this command on
1828 	 * the busy queue prior to advertising it to the controller.
1829 	 */
1830 	aac_enqueue_busy(cm);
1831 
1832 	/* notify the adapter if we know how */
1833 	if (aac_qinfo[queue].notify != 0)
1834 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1835 
1836 	error = 0;
1837 
1838 out:
1839 	splx(s);
1840 	return(error);
1841 }
1842 
1843 /*
1844  * Atomically remove one entry from the nominated queue, returns 0 on
1845  * success or ENOENT if the queue is empty.
1846  */
1847 static int
1848 aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1849 		struct aac_fib **fib_addr)
1850 {
1851 	u_int32_t pi, ci;
1852 	int s, error;
1853 	int notify;
1854 
1855 	debug_called(3);
1856 
1857 	s = splbio();
1858 
1859 	/* get the producer/consumer indices */
1860 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1861 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1862 
1863 	/* check for queue empty */
1864 	if (ci == pi) {
1865 		error = ENOENT;
1866 		goto out;
1867 	}
1868 
1869 	notify = 0;
1870 	if (ci == pi + 1)
1871 		notify++;
1872 
1873 	/* wrap the queue? */
1874 	if (ci >= aac_qinfo[queue].size)
1875 		ci = 0;
1876 
1877 	/* fetch the entry */
1878 	*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1879 	*fib_addr = (struct aac_fib *)(sc->aac_qentries[queue] +
1880 				       ci)->aq_fib_addr;
1881 
1882 	/*
1883 	 * Is this a fast response? If it is, update the fib fields in
1884 	 * local memory so the whole fib doesn't have to be DMA'd back up.
1885 	 */
1886 	if (*(uintptr_t *)fib_addr & 0x01) {
1887 		*(uintptr_t *)fib_addr &= ~0x01;
1888 		(*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP;
1889 		*((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL;
1890 	}
1891 	/* update consumer index */
1892 	sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1893 
1894 	/* if we have made the queue un-full, notify the adapter */
1895 	if (notify && (aac_qinfo[queue].notify != 0))
1896 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1897 	error = 0;
1898 
1899 out:
1900 	splx(s);
1901 	return(error);
1902 }
1903 
1904 /*
1905  * Put our response to an Adapter Initialed Fib on the response queue
1906  */
1907 static int
1908 aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1909 {
1910 	u_int32_t pi, ci;
1911 	int s, error;
1912 	u_int32_t fib_size;
1913 	u_int32_t fib_addr;
1914 
1915 	debug_called(1);
1916 
1917 	/* Tell the adapter where the FIB is */
1918 	fib_size = fib->Header.Size;
1919 	fib_addr = fib->Header.SenderFibAddress;
1920 	fib->Header.ReceiverFibAddress = fib_addr;
1921 
1922 	s = splbio();
1923 
1924 	/* get the producer/consumer indices */
1925 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1926 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1927 
1928 	/* wrap the queue? */
1929 	if (pi >= aac_qinfo[queue].size)
1930 		pi = 0;
1931 
1932 	/* check for queue full */
1933 	if ((pi + 1) == ci) {
1934 		error = EBUSY;
1935 		goto out;
1936 	}
1937 
1938 	/* populate queue entry */
1939 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1940 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1941 
1942 	/* update producer index */
1943 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1944 
1945 	/* notify the adapter if we know how */
1946 	if (aac_qinfo[queue].notify != 0)
1947 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1948 
1949 	error = 0;
1950 
1951 out:
1952 	splx(s);
1953 	return(error);
1954 }
1955 
1956 /*
1957  * Check for commands that have been outstanding for a suspiciously long time,
1958  * and complain about them.
1959  */
1960 static void
1961 aac_timeout(struct aac_softc *sc)
1962 {
1963 	int s;
1964 	struct aac_command *cm;
1965 	time_t deadline;
1966 
1967 #if 0
1968 	/* simulate an interrupt to handle possibly-missed interrupts */
1969 	/*
1970 	 * XXX This was done to work around another bug which has since been
1971 	 * fixed.  It is dangerous anyways because you don't want multiple
1972 	 * threads in the interrupt handler at the same time!  If calling
1973 	 * is deamed neccesary in the future, proper mutexes must be used.
1974 	 */
1975 	s = splbio();
1976 	aac_intr(sc);
1977 	splx(s);
1978 
1979 	/* kick the I/O queue to restart it in the case of deadlock */
1980 	aac_startio(sc);
1981 #endif
1982 
1983 	/*
1984 	 * traverse the busy command list, bitch about late commands once
1985 	 * only.
1986 	 */
1987 	deadline = time_second - AAC_CMD_TIMEOUT;
1988 	s = splbio();
1989 	TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
1990 		if ((cm->cm_timestamp  < deadline)
1991 			/* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
1992 			cm->cm_flags |= AAC_CMD_TIMEDOUT;
1993 			device_printf(sc->aac_dev,
1994 				      "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
1995 				      cm, (int)(time_second-cm->cm_timestamp));
1996 			AAC_PRINT_FIB(sc, cm->cm_fib);
1997 		}
1998 	}
1999 	splx(s);
2000 
2001 	/* reset the timer for next time */
2002 	timeout((timeout_t*)aac_timeout, sc, AAC_PERIODIC_INTERVAL * hz);
2003 	return;
2004 }
2005 
2006 /*
2007  * Interface Function Vectors
2008  */
2009 
2010 /*
2011  * Read the current firmware status word.
2012  */
2013 static int
2014 aac_sa_get_fwstatus(struct aac_softc *sc)
2015 {
2016 	debug_called(3);
2017 
2018 	return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
2019 }
2020 
2021 static int
2022 aac_rx_get_fwstatus(struct aac_softc *sc)
2023 {
2024 	debug_called(3);
2025 
2026 	return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
2027 }
2028 
2029 static int
2030 aac_fa_get_fwstatus(struct aac_softc *sc)
2031 {
2032 	int val;
2033 
2034 	debug_called(3);
2035 
2036 	val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
2037 	return (val);
2038 }
2039 
2040 /*
2041  * Notify the controller of a change in a given queue
2042  */
2043 
2044 static void
2045 aac_sa_qnotify(struct aac_softc *sc, int qbit)
2046 {
2047 	debug_called(3);
2048 
2049 	AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
2050 }
2051 
2052 static void
2053 aac_rx_qnotify(struct aac_softc *sc, int qbit)
2054 {
2055 	debug_called(3);
2056 
2057 	AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
2058 }
2059 
2060 static void
2061 aac_fa_qnotify(struct aac_softc *sc, int qbit)
2062 {
2063 	debug_called(3);
2064 
2065 	AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
2066 	AAC_FA_HACK(sc);
2067 }
2068 
2069 /*
2070  * Get the interrupt reason bits
2071  */
2072 static int
2073 aac_sa_get_istatus(struct aac_softc *sc)
2074 {
2075 	debug_called(3);
2076 
2077 	return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
2078 }
2079 
2080 static int
2081 aac_rx_get_istatus(struct aac_softc *sc)
2082 {
2083 	debug_called(3);
2084 
2085 	return(AAC_GETREG4(sc, AAC_RX_ODBR));
2086 }
2087 
2088 static int
2089 aac_fa_get_istatus(struct aac_softc *sc)
2090 {
2091 	int val;
2092 
2093 	debug_called(3);
2094 
2095 	val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
2096 	return (val);
2097 }
2098 
2099 /*
2100  * Clear some interrupt reason bits
2101  */
2102 static void
2103 aac_sa_clear_istatus(struct aac_softc *sc, int mask)
2104 {
2105 	debug_called(3);
2106 
2107 	AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
2108 }
2109 
2110 static void
2111 aac_rx_clear_istatus(struct aac_softc *sc, int mask)
2112 {
2113 	debug_called(3);
2114 
2115 	AAC_SETREG4(sc, AAC_RX_ODBR, mask);
2116 }
2117 
2118 static void
2119 aac_fa_clear_istatus(struct aac_softc *sc, int mask)
2120 {
2121 	debug_called(3);
2122 
2123 	AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
2124 	AAC_FA_HACK(sc);
2125 }
2126 
2127 /*
2128  * Populate the mailbox and set the command word
2129  */
2130 static void
2131 aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2132 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2133 {
2134 	debug_called(4);
2135 
2136 	AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
2137 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2138 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2139 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2140 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2141 }
2142 
2143 static void
2144 aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2145 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2146 {
2147 	debug_called(4);
2148 
2149 	AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
2150 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2151 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2152 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2153 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2154 }
2155 
2156 static void
2157 aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2158 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2159 {
2160 	debug_called(4);
2161 
2162 	AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2163 	AAC_FA_HACK(sc);
2164 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2165 	AAC_FA_HACK(sc);
2166 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2167 	AAC_FA_HACK(sc);
2168 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2169 	AAC_FA_HACK(sc);
2170 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2171 	AAC_FA_HACK(sc);
2172 }
2173 
2174 /*
2175  * Fetch the immediate command status word
2176  */
2177 static int
2178 aac_sa_get_mailbox(struct aac_softc *sc, int mb)
2179 {
2180 	debug_called(4);
2181 
2182 	return(AAC_GETREG4(sc, AAC_SA_MAILBOX + (mb * 4)));
2183 }
2184 
2185 static int
2186 aac_rx_get_mailbox(struct aac_softc *sc, int mb)
2187 {
2188 	debug_called(4);
2189 
2190 	return(AAC_GETREG4(sc, AAC_RX_MAILBOX + (mb * 4)));
2191 }
2192 
2193 static int
2194 aac_fa_get_mailbox(struct aac_softc *sc, int mb)
2195 {
2196 	int val;
2197 
2198 	debug_called(4);
2199 
2200 	val = AAC_GETREG4(sc, AAC_FA_MAILBOX + (mb * 4));
2201 	return (val);
2202 }
2203 
2204 /*
2205  * Set/clear interrupt masks
2206  */
2207 static void
2208 aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2209 {
2210 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2211 
2212 	if (enable) {
2213 		AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2214 	} else {
2215 		AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2216 	}
2217 }
2218 
2219 static void
2220 aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2221 {
2222 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2223 
2224 	if (enable) {
2225 		AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2226 	} else {
2227 		AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2228 	}
2229 }
2230 
2231 static void
2232 aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2233 {
2234 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2235 
2236 	if (enable) {
2237 		AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2238 		AAC_FA_HACK(sc);
2239 	} else {
2240 		AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2241 		AAC_FA_HACK(sc);
2242 	}
2243 }
2244 
2245 /*
2246  * Debugging and Diagnostics
2247  */
2248 
2249 /*
2250  * Print some information about the controller.
2251  */
2252 static void
2253 aac_describe_controller(struct aac_softc *sc)
2254 {
2255 	struct aac_fib *fib;
2256 	struct aac_adapter_info	*info;
2257 
2258 	debug_called(2);
2259 
2260 	aac_alloc_sync_fib(sc, &fib, 0);
2261 
2262 	fib->data[0] = 0;
2263 	if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2264 		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2265 		aac_release_sync_fib(sc);
2266 		return;
2267 	}
2268 	info = (struct aac_adapter_info *)&fib->data[0];
2269 
2270 	device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n",
2271 		      aac_describe_code(aac_cpu_variant, info->CpuVariant),
2272 		      info->ClockSpeed, info->BufferMem / (1024 * 1024),
2273 		      aac_describe_code(aac_battery_platform,
2274 					info->batteryPlatform));
2275 
2276 	/* save the kernel revision structure for later use */
2277 	sc->aac_revision = info->KernelRevision;
2278 	device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2279 		      info->KernelRevision.external.comp.major,
2280 		      info->KernelRevision.external.comp.minor,
2281 		      info->KernelRevision.external.comp.dash,
2282 		      info->KernelRevision.buildNumber,
2283 		      (u_int32_t)(info->SerialNumber & 0xffffff));
2284 
2285 	aac_release_sync_fib(sc);
2286 
2287 	if (1 || bootverbose) {
2288 		device_printf(sc->aac_dev, "Supported Options=%b\n",
2289 			      sc->supported_options,
2290 			      "\20"
2291 			      "\1SNAPSHOT"
2292 			      "\2CLUSTERS"
2293 			      "\3WCACHE"
2294 			      "\4DATA64"
2295 			      "\5HOSTTIME"
2296 			      "\6RAID50"
2297 			      "\7WINDOW4GB"
2298 			      "\10SCSIUPGD"
2299 			      "\11SOFTERR"
2300 			      "\12NORECOND"
2301 			      "\13SGMAP64"
2302 			      "\14ALARM"
2303 			      "\15NONDASD");
2304 	}
2305 }
2306 
2307 /*
2308  * Look up a text description of a numeric error code and return a pointer to
2309  * same.
2310  */
2311 static char *
2312 aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2313 {
2314 	int i;
2315 
2316 	for (i = 0; table[i].string != NULL; i++)
2317 		if (table[i].code == code)
2318 			return(table[i].string);
2319 	return(table[i + 1].string);
2320 }
2321 
2322 /*
2323  * Management Interface
2324  */
2325 
2326 static int
2327 aac_open(dev_t dev, int flags, int fmt, d_thread_t *td)
2328 {
2329 	struct aac_softc *sc;
2330 
2331 	debug_called(2);
2332 
2333 	sc = dev->si_drv1;
2334 
2335 	/* Check to make sure the device isn't already open */
2336 	if (sc->aac_state & AAC_STATE_OPEN) {
2337 		return EBUSY;
2338 	}
2339 	sc->aac_state |= AAC_STATE_OPEN;
2340 
2341 	return 0;
2342 }
2343 
2344 static int
2345 aac_close(dev_t dev, int flags, int fmt, d_thread_t *td)
2346 {
2347 	struct aac_softc *sc;
2348 
2349 	debug_called(2);
2350 
2351 	sc = dev->si_drv1;
2352 
2353 	/* Mark this unit as no longer open  */
2354 	sc->aac_state &= ~AAC_STATE_OPEN;
2355 
2356 	return 0;
2357 }
2358 
2359 static int
2360 aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2361 {
2362 	struct aac_softc *sc = dev->si_drv1;
2363 	int error = 0;
2364 	int i;
2365 
2366 	debug_called(2);
2367 
2368 	if (cmd == AACIO_STATS) {
2369 		union aac_statrequest *as = (union aac_statrequest *)arg;
2370 
2371 		switch (as->as_item) {
2372 		case AACQ_FREE:
2373 		case AACQ_BIO:
2374 		case AACQ_READY:
2375 		case AACQ_BUSY:
2376 		case AACQ_COMPLETE:
2377 			bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2378 			      sizeof(struct aac_qstat));
2379 			break;
2380 		default:
2381 			error = ENOENT;
2382 			break;
2383 		}
2384 		return(error);
2385 	}
2386 
2387 	arg = *(caddr_t *)arg;
2388 
2389 	switch (cmd) {
2390 	/* AACIO_STATS already handled above */
2391 	case FSACTL_SENDFIB:
2392 		debug(1, "FSACTL_SENDFIB");
2393 		error = aac_ioctl_sendfib(sc, arg);
2394 		break;
2395 	case FSACTL_AIF_THREAD:
2396 		debug(1, "FSACTL_AIF_THREAD");
2397 		error = EINVAL;
2398 		break;
2399 	case FSACTL_OPEN_GET_ADAPTER_FIB:
2400 		debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2401 		/*
2402 		 * Pass the caller out an AdapterFibContext.
2403 		 *
2404 		 * Note that because we only support one opener, we
2405 		 * basically ignore this.  Set the caller's context to a magic
2406 		 * number just in case.
2407 		 *
2408 		 * The Linux code hands the driver a pointer into kernel space,
2409 		 * and then trusts it when the caller hands it back.  Aiee!
2410 		 * Here, we give it the proc pointer of the per-adapter aif
2411 		 * thread. It's only used as a sanity check in other calls.
2412 		 */
2413 		i = (int)sc->aifthread;
2414 		error = copyout(&i, arg, sizeof(i));
2415 		break;
2416 	case FSACTL_GET_NEXT_ADAPTER_FIB:
2417 		debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2418 		error = aac_getnext_aif(sc, arg);
2419 		break;
2420 	case FSACTL_CLOSE_GET_ADAPTER_FIB:
2421 		debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2422 		/* don't do anything here */
2423 		break;
2424 	case FSACTL_MINIPORT_REV_CHECK:
2425 		debug(1, "FSACTL_MINIPORT_REV_CHECK");
2426 		error = aac_rev_check(sc, arg);
2427 		break;
2428 	case FSACTL_QUERY_DISK:
2429 		debug(1, "FSACTL_QUERY_DISK");
2430 		error = aac_query_disk(sc, arg);
2431 			break;
2432 	case FSACTL_DELETE_DISK:
2433 		/*
2434 		 * We don't trust the underland to tell us when to delete a
2435 		 * container, rather we rely on an AIF coming from the
2436 		 * controller
2437 		 */
2438 		error = 0;
2439 		break;
2440 	default:
2441 		debug(1, "unsupported cmd 0x%lx\n", cmd);
2442 		error = EINVAL;
2443 		break;
2444 	}
2445 	return(error);
2446 }
2447 
2448 static int
2449 aac_poll(dev_t dev, int poll_events, d_thread_t *td)
2450 {
2451 	struct aac_softc *sc;
2452 	int revents;
2453 
2454 	sc = dev->si_drv1;
2455 	revents = 0;
2456 
2457 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2458 	if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2459 		if (sc->aac_aifq_tail != sc->aac_aifq_head)
2460 			revents |= poll_events & (POLLIN | POLLRDNORM);
2461 	}
2462 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2463 
2464 	if (revents == 0) {
2465 		if (poll_events & (POLLIN | POLLRDNORM))
2466 			selrecord(td, &sc->rcv_select);
2467 	}
2468 
2469 	return (revents);
2470 }
2471 
2472 /*
2473  * Send a FIB supplied from userspace
2474  */
2475 static int
2476 aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2477 {
2478 	struct aac_command *cm;
2479 	int size, error;
2480 
2481 	debug_called(2);
2482 
2483 	cm = NULL;
2484 
2485 	/*
2486 	 * Get a command
2487 	 */
2488 	if (aac_alloc_command(sc, &cm)) {
2489 		error = EBUSY;
2490 		goto out;
2491 	}
2492 
2493 	/*
2494 	 * Fetch the FIB header, then re-copy to get data as well.
2495 	 */
2496 	if ((error = copyin(ufib, cm->cm_fib,
2497 			    sizeof(struct aac_fib_header))) != 0)
2498 		goto out;
2499 	size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2500 	if (size > sizeof(struct aac_fib)) {
2501 		device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n",
2502 			      size, sizeof(struct aac_fib));
2503 		size = sizeof(struct aac_fib);
2504 	}
2505 	if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2506 		goto out;
2507 	cm->cm_fib->Header.Size = size;
2508 	cm->cm_timestamp = time_second;
2509 
2510 	/*
2511 	 * Pass the FIB to the controller, wait for it to complete.
2512 	 */
2513 	if ((error = aac_wait_command(cm, 30)) != 0) {	/* XXX user timeout? */
2514 		printf("aac_wait_command return %d\n", error);
2515 		goto out;
2516 	}
2517 
2518 	/*
2519 	 * Copy the FIB and data back out to the caller.
2520 	 */
2521 	size = cm->cm_fib->Header.Size;
2522 	if (size > sizeof(struct aac_fib)) {
2523 		device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n",
2524 			      size, sizeof(struct aac_fib));
2525 		size = sizeof(struct aac_fib);
2526 	}
2527 	error = copyout(cm->cm_fib, ufib, size);
2528 
2529 out:
2530 	if (cm != NULL) {
2531 		aac_release_command(cm);
2532 	}
2533 	return(error);
2534 }
2535 
2536 /*
2537  * Handle an AIF sent to us by the controller; queue it for later reference.
2538  * If the queue fills up, then drop the older entries.
2539  */
2540 static void
2541 aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2542 {
2543 	struct aac_aif_command *aif;
2544 	struct aac_container *co, *co_next;
2545 	struct aac_mntinfo *mi;
2546 	struct aac_mntinforesp *mir = NULL;
2547 	u_int16_t rsize;
2548 	int next, found;
2549 	int added = 0, i = 0;
2550 
2551 	debug_called(2);
2552 
2553 	aif = (struct aac_aif_command*)&fib->data[0];
2554 	aac_print_aif(sc, aif);
2555 
2556 	/* Is it an event that we should care about? */
2557 	switch (aif->command) {
2558 	case AifCmdEventNotify:
2559 		switch (aif->data.EN.type) {
2560 		case AifEnAddContainer:
2561 		case AifEnDeleteContainer:
2562 			/*
2563 			 * A container was added or deleted, but the message
2564 			 * doesn't tell us anything else!  Re-enumerate the
2565 			 * containers and sort things out.
2566 			 */
2567 			aac_alloc_sync_fib(sc, &fib, 0);
2568 			mi = (struct aac_mntinfo *)&fib->data[0];
2569 			do {
2570 				/*
2571 				 * Ask the controller for its containers one at
2572 				 * a time.
2573 				 * XXX What if the controller's list changes
2574 				 * midway through this enumaration?
2575 				 * XXX This should be done async.
2576 				 */
2577 				bzero(mi, sizeof(struct aac_mntinfo));
2578 				mi->Command = VM_NameServe;
2579 				mi->MntType = FT_FILESYS;
2580 				mi->MntCount = i;
2581 				rsize = sizeof(mir);
2582 				if (aac_sync_fib(sc, ContainerCommand, 0, fib,
2583 						 sizeof(struct aac_mntinfo))) {
2584 					debug(2, "Error probing container %d\n",
2585 					      i);
2586 					continue;
2587 				}
2588 				mir = (struct aac_mntinforesp *)&fib->data[0];
2589 				/*
2590 				 * Check the container against our list.
2591 				 * co->co_found was already set to 0 in a
2592 				 * previous run.
2593 				 */
2594 				if ((mir->Status == ST_OK) &&
2595 				    (mir->MntTable[0].VolType != CT_NONE)) {
2596 					found = 0;
2597 					TAILQ_FOREACH(co,
2598 						      &sc->aac_container_tqh,
2599 						      co_link) {
2600 						if (co->co_mntobj.ObjectId ==
2601 						    mir->MntTable[0].ObjectId) {
2602 							co->co_found = 1;
2603 							found = 1;
2604 							break;
2605 						}
2606 					}
2607 					/*
2608 					 * If the container matched, continue
2609 					 * in the list.
2610 					 */
2611 					if (found) {
2612 						i++;
2613 						continue;
2614 					}
2615 
2616 					/*
2617 					 * This is a new container.  Do all the
2618 					 * appropriate things to set it up.						 */
2619 					aac_add_container(sc, mir, 1);
2620 					added = 1;
2621 				}
2622 				i++;
2623 			} while ((i < mir->MntRespCount) &&
2624 				 (i < AAC_MAX_CONTAINERS));
2625 			aac_release_sync_fib(sc);
2626 
2627 			/*
2628 			 * Go through our list of containers and see which ones
2629 			 * were not marked 'found'.  Since the controller didn't
2630 			 * list them they must have been deleted.  Do the
2631 			 * appropriate steps to destroy the device.  Also reset
2632 			 * the co->co_found field.
2633 			 */
2634 			co = TAILQ_FIRST(&sc->aac_container_tqh);
2635 			while (co != NULL) {
2636 				if (co->co_found == 0) {
2637 					device_delete_child(sc->aac_dev,
2638 							    co->co_disk);
2639 					co_next = TAILQ_NEXT(co, co_link);
2640 					AAC_LOCK_ACQUIRE(&sc->
2641 							aac_container_lock);
2642 					TAILQ_REMOVE(&sc->aac_container_tqh, co,
2643 						     co_link);
2644 					AAC_LOCK_RELEASE(&sc->
2645 							 aac_container_lock);
2646 					FREE(co, M_AACBUF);
2647 					co = co_next;
2648 				} else {
2649 					co->co_found = 0;
2650 					co = TAILQ_NEXT(co, co_link);
2651 				}
2652 			}
2653 
2654 			/* Attach the newly created containers */
2655 			if (added)
2656 				bus_generic_attach(sc->aac_dev);
2657 
2658 				break;
2659 
2660 		default:
2661 			break;
2662 		}
2663 
2664 	default:
2665 		break;
2666 	}
2667 
2668 	/* Copy the AIF data to the AIF queue for ioctl retrieval */
2669 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2670 	next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2671 	if (next != sc->aac_aifq_tail) {
2672 		bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2673 		sc->aac_aifq_head = next;
2674 
2675 		/* On the off chance that someone is sleeping for an aif... */
2676 		if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2677 			wakeup(sc->aac_aifq);
2678 		/* token may have been lost */
2679 		/* Wakeup any poll()ers */
2680 		selwakeup(&sc->rcv_select);
2681 		/* token may have been lost */
2682 	}
2683 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2684 
2685 	return;
2686 }
2687 
2688 /*
2689  * Return the Revision of the driver to userspace and check to see if the
2690  * userspace app is possibly compatible.  This is extremely bogus since
2691  * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2692  * returning what the card reported.
2693  */
2694 static int
2695 aac_rev_check(struct aac_softc *sc, caddr_t udata)
2696 {
2697 	struct aac_rev_check rev_check;
2698 	struct aac_rev_check_resp rev_check_resp;
2699 	int error = 0;
2700 
2701 	debug_called(2);
2702 
2703 	/*
2704 	 * Copyin the revision struct from userspace
2705 	 */
2706 	if ((error = copyin(udata, (caddr_t)&rev_check,
2707 			sizeof(struct aac_rev_check))) != 0) {
2708 		return error;
2709 	}
2710 
2711 	debug(2, "Userland revision= %d\n",
2712 	      rev_check.callingRevision.buildNumber);
2713 
2714 	/*
2715 	 * Doctor up the response struct.
2716 	 */
2717 	rev_check_resp.possiblyCompatible = 1;
2718 	rev_check_resp.adapterSWRevision.external.ul =
2719 	    sc->aac_revision.external.ul;
2720 	rev_check_resp.adapterSWRevision.buildNumber =
2721 	    sc->aac_revision.buildNumber;
2722 
2723 	return(copyout((caddr_t)&rev_check_resp, udata,
2724 			sizeof(struct aac_rev_check_resp)));
2725 }
2726 
2727 /*
2728  * Pass the caller the next AIF in their queue
2729  */
2730 static int
2731 aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2732 {
2733 	struct get_adapter_fib_ioctl agf;
2734 	int error, s;
2735 
2736 	debug_called(2);
2737 
2738 	if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2739 
2740 		/*
2741 		 * Check the magic number that we gave the caller.
2742 		 */
2743 		if (agf.AdapterFibContext != (int)sc->aifthread) {
2744 			error = EFAULT;
2745 		} else {
2746 
2747 			s = splbio();
2748 			error = aac_return_aif(sc, agf.AifFib);
2749 
2750 			if ((error == EAGAIN) && (agf.Wait)) {
2751 				sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2752 				while (error == EAGAIN) {
2753 					error = tsleep(sc->aac_aifq,
2754 						       PCATCH, "aacaif", 0);
2755 					if (error == 0)
2756 						error = aac_return_aif(sc,
2757 						    agf.AifFib);
2758 				}
2759 				sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2760 			}
2761 		splx(s);
2762 		}
2763 	}
2764 	return(error);
2765 }
2766 
2767 /*
2768  * Hand the next AIF off the top of the queue out to userspace.
2769  *
2770  * YYY token could be lost during copyout
2771  */
2772 static int
2773 aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2774 {
2775 	int error;
2776 
2777 	debug_called(2);
2778 
2779 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2780 	if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2781 		error = EAGAIN;
2782 	} else {
2783 		error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr,
2784 				sizeof(struct aac_aif_command));
2785 		if (error)
2786 			printf("aac_return_aif: copyout returned %d\n", error);
2787 		if (!error)
2788 			sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) %
2789 					    AAC_AIFQ_LENGTH;
2790 	}
2791 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2792 	return(error);
2793 }
2794 
2795 /*
2796  * Give the userland some information about the container.  The AAC arch
2797  * expects the driver to be a SCSI passthrough type driver, so it expects
2798  * the containers to have b:t:l numbers.  Fake it.
2799  */
2800 static int
2801 aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2802 {
2803 	struct aac_query_disk query_disk;
2804 	struct aac_container *co;
2805 	struct aac_disk	*disk;
2806 	int error, id;
2807 
2808 	debug_called(2);
2809 
2810 	disk = NULL;
2811 
2812 	error = copyin(uptr, (caddr_t)&query_disk,
2813 		       sizeof(struct aac_query_disk));
2814 	if (error)
2815 		return (error);
2816 
2817 	id = query_disk.ContainerNumber;
2818 	if (id == -1)
2819 		return (EINVAL);
2820 
2821 	AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2822 	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2823 		if (co->co_mntobj.ObjectId == id)
2824 			break;
2825 		}
2826 
2827 		if (co == NULL) {
2828 			query_disk.Valid = 0;
2829 			query_disk.Locked = 0;
2830 			query_disk.Deleted = 1;		/* XXX is this right? */
2831 		} else {
2832 			disk = device_get_softc(co->co_disk);
2833 			query_disk.Valid = 1;
2834 			query_disk.Locked =
2835 			    (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2836 			query_disk.Deleted = 0;
2837 			query_disk.Bus = device_get_unit(sc->aac_dev);
2838 			query_disk.Target = disk->unit;
2839 			query_disk.Lun = 0;
2840 			query_disk.UnMapped = 0;
2841 			bcopy(disk->ad_dev_t->si_name,
2842 			      &query_disk.diskDeviceName[0], 10);
2843 		}
2844 	AAC_LOCK_RELEASE(&sc->aac_container_lock);
2845 
2846 	error = copyout((caddr_t)&query_disk, uptr,
2847 			sizeof(struct aac_query_disk));
2848 
2849 	return (error);
2850 }
2851 
2852 static void
2853 aac_get_bus_info(struct aac_softc *sc)
2854 {
2855 	struct aac_fib *fib;
2856 	struct aac_ctcfg *c_cmd;
2857 	struct aac_ctcfg_resp *c_resp;
2858 	struct aac_vmioctl *vmi;
2859 	struct aac_vmi_businf_resp *vmi_resp;
2860 	struct aac_getbusinf businfo;
2861 	struct aac_cam_inf *caminf;
2862 	device_t child;
2863 	int i, found, error;
2864 
2865 	aac_alloc_sync_fib(sc, &fib, 0);
2866 	c_cmd = (struct aac_ctcfg *)&fib->data[0];
2867 	bzero(c_cmd, sizeof(struct aac_ctcfg));
2868 
2869 	c_cmd->Command = VM_ContainerConfig;
2870 	c_cmd->cmd = CT_GET_SCSI_METHOD;
2871 	c_cmd->param = 0;
2872 
2873 	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2874 	    sizeof(struct aac_ctcfg));
2875 	if (error) {
2876 		device_printf(sc->aac_dev, "Error %d sending "
2877 		    "VM_ContainerConfig command\n", error);
2878 		aac_release_sync_fib(sc);
2879 		return;
2880 	}
2881 
2882 	c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
2883 	if (c_resp->Status != ST_OK) {
2884 		device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
2885 		    c_resp->Status);
2886 		aac_release_sync_fib(sc);
2887 		return;
2888 	}
2889 
2890 	sc->scsi_method_id = c_resp->param;
2891 
2892 	vmi = (struct aac_vmioctl *)&fib->data[0];
2893 	bzero(vmi, sizeof(struct aac_vmioctl));
2894 
2895 	vmi->Command = VM_Ioctl;
2896 	vmi->ObjType = FT_DRIVE;
2897 	vmi->MethId = sc->scsi_method_id;
2898 	vmi->ObjId = 0;
2899 	vmi->IoctlCmd = GetBusInfo;
2900 
2901 	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2902 	    sizeof(struct aac_vmioctl));
2903 	if (error) {
2904 		device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
2905 		    error);
2906 		aac_release_sync_fib(sc);
2907 		return;
2908 	}
2909 
2910 	vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
2911 	if (vmi_resp->Status != ST_OK) {
2912 		debug(1, "VM_Ioctl returned %d\n", vmi_resp->Status);
2913 		aac_release_sync_fib(sc);
2914 		return;
2915 	}
2916 
2917 	bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
2918 	aac_release_sync_fib(sc);
2919 
2920 	found = 0;
2921 	for (i = 0; i < businfo.BusCount; i++) {
2922 		if (businfo.BusValid[i] != AAC_BUS_VALID)
2923 			continue;
2924 
2925 		MALLOC(caminf, struct aac_cam_inf *,
2926 		    sizeof(struct aac_cam_inf), M_AACBUF, M_INTWAIT | M_ZERO);
2927 
2928 		child = device_add_child(sc->aac_dev, "aacp", -1);
2929 		if (child == NULL) {
2930 			device_printf(sc->aac_dev, "device_add_child failed\n");
2931 			continue;
2932 		}
2933 
2934 		caminf->TargetsPerBus = businfo.TargetsPerBus;
2935 		caminf->BusNumber = i;
2936 		caminf->InitiatorBusId = businfo.InitiatorBusId[i];
2937 		caminf->aac_sc = sc;
2938 
2939 		device_set_ivars(child, caminf);
2940 		device_set_desc(child, "SCSI Passthrough Bus");
2941 
2942 		found = 1;
2943 	}
2944 
2945 	if (found)
2946 		bus_generic_attach(sc->aac_dev);
2947 
2948 	return;
2949 }
2950