xref: /dragonfly/sys/dev/raid/aac/aac.c (revision 984263bc)
1 /*-
2  * Copyright (c) 2000 Michael Smith
3  * Copyright (c) 2001 Scott Long
4  * Copyright (c) 2000 BSDi
5  * Copyright (c) 2001 Adaptec, Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	$FreeBSD: src/sys/dev/aac/aac.c,v 1.9.2.14 2003/04/08 13:22:08 scottl Exp $
30  */
31 
32 /*
33  * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
34  */
35 
36 #include "opt_aac.h"
37 
38 /* #include <stddef.h> */
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/malloc.h>
42 #include <sys/kernel.h>
43 #include <sys/kthread.h>
44 #include <sys/sysctl.h>
45 #include <sys/poll.h>
46 #if __FreeBSD_version >= 500005
47 #include <sys/selinfo.h>
48 #else
49 #include <sys/select.h>
50 #endif
51 
52 #include <dev/aac/aac_compat.h>
53 
54 #include <sys/bus.h>
55 #include <sys/conf.h>
56 #include <sys/devicestat.h>
57 #include <sys/disk.h>
58 #include <sys/signalvar.h>
59 #include <sys/time.h>
60 #include <sys/eventhandler.h>
61 
62 #include <machine/bus_memio.h>
63 #include <machine/bus.h>
64 #include <machine/resource.h>
65 
66 #include <dev/aac/aacreg.h>
67 #include <dev/aac/aac_ioctl.h>
68 #include <dev/aac/aacvar.h>
69 #include <dev/aac/aac_tables.h>
70 #include <dev/aac/aac_cam.h>
71 
72 static void	aac_startup(void *arg);
73 static void	aac_add_container(struct aac_softc *sc,
74 				  struct aac_mntinforesp *mir, int f);
75 static void	aac_get_bus_info(struct aac_softc *sc);
76 
77 /* Command Processing */
78 static void	aac_timeout(struct aac_softc *sc);
79 static int	aac_start(struct aac_command *cm);
80 static void	aac_complete(void *context, int pending);
81 static int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
82 static void	aac_bio_complete(struct aac_command *cm);
83 static int	aac_wait_command(struct aac_command *cm, int timeout);
84 static void	aac_host_command(struct aac_softc *sc);
85 static void	aac_host_response(struct aac_softc *sc);
86 
87 /* Command Buffer Management */
88 static void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
89 				       int nseg, int error);
90 static int	aac_alloc_commands(struct aac_softc *sc);
91 static void	aac_free_commands(struct aac_softc *sc);
92 static void	aac_map_command(struct aac_command *cm);
93 static void	aac_unmap_command(struct aac_command *cm);
94 
95 /* Hardware Interface */
96 static void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
97 			       int error);
98 static int	aac_check_firmware(struct aac_softc *sc);
99 static int	aac_init(struct aac_softc *sc);
100 static int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
101 				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
102 				 u_int32_t arg3, u_int32_t *sp);
103 static int	aac_enqueue_fib(struct aac_softc *sc, int queue,
104 				struct aac_command *cm);
105 static int	aac_dequeue_fib(struct aac_softc *sc, int queue,
106 				u_int32_t *fib_size, struct aac_fib **fib_addr);
107 static int	aac_enqueue_response(struct aac_softc *sc, int queue,
108 				     struct aac_fib *fib);
109 
110 /* Falcon/PPC interface */
111 static int	aac_fa_get_fwstatus(struct aac_softc *sc);
112 static void	aac_fa_qnotify(struct aac_softc *sc, int qbit);
113 static int	aac_fa_get_istatus(struct aac_softc *sc);
114 static void	aac_fa_clear_istatus(struct aac_softc *sc, int mask);
115 static void	aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
116 				   u_int32_t arg0, u_int32_t arg1,
117 				   u_int32_t arg2, u_int32_t arg3);
118 static int	aac_fa_get_mailbox(struct aac_softc *sc, int mb);
119 static void	aac_fa_set_interrupts(struct aac_softc *sc, int enable);
120 
121 struct aac_interface aac_fa_interface = {
122 	aac_fa_get_fwstatus,
123 	aac_fa_qnotify,
124 	aac_fa_get_istatus,
125 	aac_fa_clear_istatus,
126 	aac_fa_set_mailbox,
127 	aac_fa_get_mailbox,
128 	aac_fa_set_interrupts
129 };
130 
131 /* StrongARM interface */
132 static int	aac_sa_get_fwstatus(struct aac_softc *sc);
133 static void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
134 static int	aac_sa_get_istatus(struct aac_softc *sc);
135 static void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
136 static void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
137 				   u_int32_t arg0, u_int32_t arg1,
138 				   u_int32_t arg2, u_int32_t arg3);
139 static int	aac_sa_get_mailbox(struct aac_softc *sc, int mb);
140 static void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
141 
142 struct aac_interface aac_sa_interface = {
143 	aac_sa_get_fwstatus,
144 	aac_sa_qnotify,
145 	aac_sa_get_istatus,
146 	aac_sa_clear_istatus,
147 	aac_sa_set_mailbox,
148 	aac_sa_get_mailbox,
149 	aac_sa_set_interrupts
150 };
151 
152 /* i960Rx interface */
153 static int	aac_rx_get_fwstatus(struct aac_softc *sc);
154 static void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
155 static int	aac_rx_get_istatus(struct aac_softc *sc);
156 static void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
157 static void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
158 				   u_int32_t arg0, u_int32_t arg1,
159 				   u_int32_t arg2, u_int32_t arg3);
160 static int	aac_rx_get_mailbox(struct aac_softc *sc, int mb);
161 static void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
162 
163 struct aac_interface aac_rx_interface = {
164 	aac_rx_get_fwstatus,
165 	aac_rx_qnotify,
166 	aac_rx_get_istatus,
167 	aac_rx_clear_istatus,
168 	aac_rx_set_mailbox,
169 	aac_rx_get_mailbox,
170 	aac_rx_set_interrupts
171 };
172 
173 /* Debugging and Diagnostics */
174 static void	aac_describe_controller(struct aac_softc *sc);
175 static char	*aac_describe_code(struct aac_code_lookup *table,
176 				   u_int32_t code);
177 
178 /* Management Interface */
179 static d_open_t		aac_open;
180 static d_close_t	aac_close;
181 static d_ioctl_t	aac_ioctl;
182 static d_poll_t		aac_poll;
183 static int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
184 static void		aac_handle_aif(struct aac_softc *sc,
185 					   struct aac_fib *fib);
186 static int		aac_rev_check(struct aac_softc *sc, caddr_t udata);
187 static int		aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
188 static int		aac_return_aif(struct aac_softc *sc, caddr_t uptr);
189 static int		aac_query_disk(struct aac_softc *sc, caddr_t uptr);
190 
191 #define AAC_CDEV_MAJOR	150
192 
193 static struct cdevsw aac_cdevsw = {
194 	aac_open,		/* open */
195 	aac_close,		/* close */
196 	noread,			/* read */
197 	nowrite,		/* write */
198 	aac_ioctl,		/* ioctl */
199 	aac_poll,		/* poll */
200 	nommap,			/* mmap */
201 	nostrategy,		/* strategy */
202 	"aac",			/* name */
203 	AAC_CDEV_MAJOR,		/* major */
204 	nodump,			/* dump */
205 	nopsize,		/* psize */
206 	0,			/* flags */
207 #if __FreeBSD_version < 500005
208 	-1,			/* bmaj */
209 #endif
210 };
211 
212 MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
213 
214 /* sysctl node */
215 SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
216 
217 /*
218  * Device Interface
219  */
220 
221 /*
222  * Initialise the controller and softc
223  */
224 int
225 aac_attach(struct aac_softc *sc)
226 {
227 	int error, unit;
228 
229 	debug_called(1);
230 
231 	/*
232 	 * Initialise per-controller queues.
233 	 */
234 	aac_initq_free(sc);
235 	aac_initq_ready(sc);
236 	aac_initq_busy(sc);
237 	aac_initq_complete(sc);
238 	aac_initq_bio(sc);
239 
240 #if __FreeBSD_version >= 500005
241 	/*
242 	 * Initialise command-completion task.
243 	 */
244 	TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
245 #endif
246 
247 	/* disable interrupts before we enable anything */
248 	AAC_MASK_INTERRUPTS(sc);
249 
250 	/* mark controller as suspended until we get ourselves organised */
251 	sc->aac_state |= AAC_STATE_SUSPEND;
252 
253 	/*
254 	 * Check that the firmware on the card is supported.
255 	 */
256 	if ((error = aac_check_firmware(sc)) != 0)
257 		return(error);
258 
259 	/* Init the sync fib lock */
260 	AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock");
261 
262 	/*
263 	 * Initialise the adapter.
264 	 */
265 	if ((error = aac_init(sc)) != 0)
266 		return(error);
267 
268 	/*
269 	 * Print a little information about the controller.
270 	 */
271 	aac_describe_controller(sc);
272 
273 	/*
274 	 * Register to probe our containers later.
275 	 */
276 	TAILQ_INIT(&sc->aac_container_tqh);
277 	AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
278 
279 	/*
280 	 * Lock for the AIF queue
281 	 */
282 	AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
283 
284 	sc->aac_ich.ich_func = aac_startup;
285 	sc->aac_ich.ich_arg = sc;
286 	if (config_intrhook_establish(&sc->aac_ich) != 0) {
287 		device_printf(sc->aac_dev,
288 			      "can't establish configuration hook\n");
289 		return(ENXIO);
290 	}
291 
292 	/*
293 	 * Make the control device.
294 	 */
295 	unit = device_get_unit(sc->aac_dev);
296 	sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_WHEEL, 0644,
297 				 "aac%d", unit);
298 #if __FreeBSD_version > 500005
299 	(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
300 	(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
301 #endif
302 	sc->aac_dev_t->si_drv1 = sc;
303 
304 	/* Create the AIF thread */
305 #if __FreeBSD_version > 500005
306 	if (kthread_create((void(*)(void *))aac_host_command, sc,
307 			   &sc->aifthread, 0, "aac%daif", unit))
308 #else
309 	if (kthread_create((void(*)(void *))aac_host_command, sc,
310 			   &sc->aifthread, "aac%daif", unit))
311 #endif
312 		panic("Could not create AIF thread\n");
313 
314 	/* Register the shutdown method to only be called post-dump */
315 	if ((EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown, sc->aac_dev,
316 				   SHUTDOWN_PRI_DEFAULT)) == NULL)
317 	device_printf(sc->aac_dev, "shutdown event registration failed\n");
318 
319 	/* Register with CAM for the non-DASD devices */
320 	if ((sc->flags & AAC_FLAGS_ENABLE_CAM) != 0)
321 		aac_get_bus_info(sc);
322 
323 	return(0);
324 }
325 
326 /*
327  * Probe for containers, create disks.
328  */
329 static void
330 aac_startup(void *arg)
331 {
332 	struct aac_softc *sc;
333 	struct aac_fib *fib;
334 	struct aac_mntinfo *mi;
335 	struct aac_mntinforesp *mir = NULL;
336 	int i = 0;
337 
338 	debug_called(1);
339 
340 	sc = (struct aac_softc *)arg;
341 
342 	/* disconnect ourselves from the intrhook chain */
343 	config_intrhook_disestablish(&sc->aac_ich);
344 
345 	aac_alloc_sync_fib(sc, &fib, 0);
346 	mi = (struct aac_mntinfo *)&fib->data[0];
347 
348 	/* loop over possible containers */
349 	do {
350 		/* request information on this container */
351 		bzero(mi, sizeof(struct aac_mntinfo));
352 		mi->Command = VM_NameServe;
353 		mi->MntType = FT_FILESYS;
354 		mi->MntCount = i;
355 		if (aac_sync_fib(sc, ContainerCommand, 0, fib,
356 				 sizeof(struct aac_mntinfo))) {
357 			debug(2, "error probing container %d", i);
358 			continue;
359 		}
360 
361 		mir = (struct aac_mntinforesp *)&fib->data[0];
362 		aac_add_container(sc, mir, 0);
363 		i++;
364 	} while ((i < mir->MntRespCount) && (i < AAC_MAX_CONTAINERS));
365 
366 	aac_release_sync_fib(sc);
367 
368 	/* poke the bus to actually attach the child devices */
369 	if (bus_generic_attach(sc->aac_dev))
370 		device_printf(sc->aac_dev, "bus_generic_attach failed\n");
371 
372 	/* mark the controller up */
373 	sc->aac_state &= ~AAC_STATE_SUSPEND;
374 
375 	/* enable interrupts now */
376 	AAC_UNMASK_INTERRUPTS(sc);
377 
378 	/* enable the timeout watchdog */
379 	timeout((timeout_t*)aac_timeout, sc, AAC_PERIODIC_INTERVAL * hz);
380 }
381 
382 /*
383  * Create a device to respresent a new container
384  */
385 static void
386 aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
387 {
388 	struct aac_container *co;
389 	device_t child;
390 
391 	/*
392 	 * Check container volume type for validity.  Note that many of
393 	 * the possible types may never show up.
394 	 */
395 	if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
396 		MALLOC(co, struct aac_container *, sizeof *co, M_AACBUF,
397 		       M_NOWAIT);
398 		if (co == NULL)
399 			panic("Out of memory?!\n");
400 		debug(1, "id %x  name '%.16s'  size %u  type %d",
401 		      mir->MntTable[0].ObjectId,
402 		      mir->MntTable[0].FileSystemName,
403 		      mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
404 
405 		if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
406 			device_printf(sc->aac_dev, "device_add_child failed\n");
407 		else
408 			device_set_ivars(child, co);
409 		device_set_desc(child, aac_describe_code(aac_container_types,
410 				mir->MntTable[0].VolType));
411 		co->co_disk = child;
412 		co->co_found = f;
413 		bcopy(&mir->MntTable[0], &co->co_mntobj,
414 		      sizeof(struct aac_mntobj));
415 		AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
416 		TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
417 		AAC_LOCK_RELEASE(&sc->aac_container_lock);
418 	}
419 }
420 
421 /*
422  * Free all of the resources associated with (sc)
423  *
424  * Should not be called if the controller is active.
425  */
426 void
427 aac_free(struct aac_softc *sc)
428 {
429 	debug_called(1);
430 
431 	/* remove the control device */
432 	if (sc->aac_dev_t != NULL)
433 		destroy_dev(sc->aac_dev_t);
434 
435 	/* throw away any FIB buffers, discard the FIB DMA tag */
436 	if (sc->aac_fibs != NULL)
437 		aac_free_commands(sc);
438 	if (sc->aac_fib_dmat)
439 		bus_dma_tag_destroy(sc->aac_fib_dmat);
440 
441 	/* destroy the common area */
442 	if (sc->aac_common) {
443 		bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
444 		bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
445 				sc->aac_common_dmamap);
446 	}
447 	if (sc->aac_common_dmat)
448 		bus_dma_tag_destroy(sc->aac_common_dmat);
449 
450 	/* disconnect the interrupt handler */
451 	if (sc->aac_intr)
452 		bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
453 	if (sc->aac_irq != NULL)
454 		bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
455 				     sc->aac_irq);
456 
457 	/* destroy data-transfer DMA tag */
458 	if (sc->aac_buffer_dmat)
459 		bus_dma_tag_destroy(sc->aac_buffer_dmat);
460 
461 	/* destroy the parent DMA tag */
462 	if (sc->aac_parent_dmat)
463 		bus_dma_tag_destroy(sc->aac_parent_dmat);
464 
465 	/* release the register window mapping */
466 	if (sc->aac_regs_resource != NULL)
467 		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
468 				     sc->aac_regs_rid, sc->aac_regs_resource);
469 }
470 
471 /*
472  * Disconnect from the controller completely, in preparation for unload.
473  */
474 int
475 aac_detach(device_t dev)
476 {
477 	struct aac_softc *sc;
478 #if AAC_BROKEN
479 	int error;
480 #endif
481 
482 	debug_called(1);
483 
484 	sc = device_get_softc(dev);
485 
486 	if (sc->aac_state & AAC_STATE_OPEN)
487 	return(EBUSY);
488 
489 #if AAC_BROKEN
490 	if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
491 		sc->aifflags |= AAC_AIFFLAGS_EXIT;
492 		wakeup(sc->aifthread);
493 		tsleep(sc->aac_dev, PUSER | PCATCH, "aacdch", 30 * hz);
494 	}
495 
496 	if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
497 		panic("Cannot shutdown AIF thread\n");
498 
499 	if ((error = aac_shutdown(dev)))
500 		return(error);
501 
502 	aac_free(sc);
503 
504 	return(0);
505 #else
506 	return (EBUSY);
507 #endif
508 }
509 
510 /*
511  * Bring the controller down to a dormant state and detach all child devices.
512  *
513  * This function is called before detach or system shutdown.
514  *
515  * Note that we can assume that the bioq on the controller is empty, as we won't
516  * allow shutdown if any device is open.
517  */
518 int
519 aac_shutdown(device_t dev)
520 {
521 	struct aac_softc *sc;
522 	struct aac_fib *fib;
523 	struct aac_close_command *cc;
524 	int s;
525 
526 	debug_called(1);
527 
528 	sc = device_get_softc(dev);
529 
530 	s = splbio();
531 
532 	sc->aac_state |= AAC_STATE_SUSPEND;
533 
534 	/*
535 	 * Send a Container shutdown followed by a HostShutdown FIB to the
536 	 * controller to convince it that we don't want to talk to it anymore.
537 	 * We've been closed and all I/O completed already
538 	 */
539 	device_printf(sc->aac_dev, "shutting down controller...");
540 
541 	aac_alloc_sync_fib(sc, &fib, AAC_SYNC_LOCK_FORCE);
542 	cc = (struct aac_close_command *)&fib->data[0];
543 
544 	bzero(cc, sizeof(struct aac_close_command));
545 	cc->Command = VM_CloseAll;
546 	cc->ContainerId = 0xffffffff;
547 	if (aac_sync_fib(sc, ContainerCommand, 0, fib,
548 	    sizeof(struct aac_close_command)))
549 		printf("FAILED.\n");
550 	else {
551 		fib->data[0] = 0;
552 		/*
553 		 * XXX Issuing this command to the controller makes it shut down
554 		 * but also keeps it from coming back up without a reset of the
555 		 * PCI bus.  This is not desirable if you are just unloading the
556 		 * driver module with the intent to reload it later.
557 		 */
558 		if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
559 		    fib, 1)) {
560 			printf("FAILED.\n");
561 		} else {
562 			printf("done.\n");
563 		}
564 	}
565 
566 	AAC_MASK_INTERRUPTS(sc);
567 
568 	splx(s);
569 	return(0);
570 }
571 
572 /*
573  * Bring the controller to a quiescent state, ready for system suspend.
574  */
575 int
576 aac_suspend(device_t dev)
577 {
578 	struct aac_softc *sc;
579 	int s;
580 
581 	debug_called(1);
582 
583 	sc = device_get_softc(dev);
584 
585 	s = splbio();
586 
587 	sc->aac_state |= AAC_STATE_SUSPEND;
588 
589 	AAC_MASK_INTERRUPTS(sc);
590 	splx(s);
591 	return(0);
592 }
593 
594 /*
595  * Bring the controller back to a state ready for operation.
596  */
597 int
598 aac_resume(device_t dev)
599 {
600 	struct aac_softc *sc;
601 
602 	debug_called(1);
603 
604 	sc = device_get_softc(dev);
605 
606 	sc->aac_state &= ~AAC_STATE_SUSPEND;
607 	AAC_UNMASK_INTERRUPTS(sc);
608 	return(0);
609 }
610 
611 /*
612  * Take an interrupt.
613  */
614 void
615 aac_intr(void *arg)
616 {
617 	struct aac_softc *sc;
618 	u_int16_t reason;
619 	u_int32_t *resp_queue;
620 
621 	debug_called(2);
622 
623 	sc = (struct aac_softc *)arg;
624 
625 	/*
626 	 * Optimize the common case of adapter response interrupts.
627 	 * We must read from the card prior to processing the responses
628 	 * to ensure the clear is flushed prior to accessing the queues.
629 	 * Reading the queues from local memory might save us a PCI read.
630 	 */
631 	resp_queue = sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE];
632 	if (resp_queue[AAC_PRODUCER_INDEX] != resp_queue[AAC_CONSUMER_INDEX])
633 		reason = AAC_DB_RESPONSE_READY;
634 	else
635 		reason = AAC_GET_ISTATUS(sc);
636 	AAC_CLEAR_ISTATUS(sc, reason);
637 	(void)AAC_GET_ISTATUS(sc);
638 
639 	/* It's not ok to return here because of races with the previous step */
640 	if (reason & AAC_DB_RESPONSE_READY)
641 		aac_host_response(sc);
642 
643 	/* controller wants to talk to the log */
644 	if (reason & AAC_DB_PRINTF)
645 		aac_print_printf(sc);
646 
647 	/* controller has a message for us? */
648 	if (reason & AAC_DB_COMMAND_READY) {
649 		/* XXX What happens if the thread is already awake? */
650 		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
651 			sc->aifflags |= AAC_AIFFLAGS_PENDING;
652 			wakeup(sc->aifthread);
653 		}
654 	}
655 }
656 
657 /*
658  * Command Processing
659  */
660 
661 /*
662  * Start as much queued I/O as possible on the controller
663  */
664 void
665 aac_startio(struct aac_softc *sc)
666 {
667 	struct aac_command *cm;
668 
669 	debug_called(2);
670 
671 	for (;;) {
672 		/*
673 		 * Try to get a command that's been put off for lack of
674 		 * resources
675 		 */
676 		cm = aac_dequeue_ready(sc);
677 
678 		/*
679 		 * Try to build a command off the bio queue (ignore error
680 		 * return)
681 		 */
682 		if (cm == NULL)
683 			aac_bio_command(sc, &cm);
684 
685 		/* nothing to do? */
686 		if (cm == NULL)
687 			break;
688 
689 		/* try to give the command to the controller */
690 		if (aac_start(cm) == EBUSY) {
691 			/* put it on the ready queue for later */
692 			aac_requeue_ready(cm);
693 			break;
694 		}
695 	}
696 }
697 
698 /*
699  * Deliver a command to the controller; allocate controller resources at the
700  * last moment when possible.
701  */
702 static int
703 aac_start(struct aac_command *cm)
704 {
705 	struct aac_softc *sc;
706 	int error;
707 
708 	debug_called(2);
709 
710 	sc = cm->cm_sc;
711 
712 	/* get the command mapped */
713 	aac_map_command(cm);
714 
715 	/* fix up the address values in the FIB */
716 	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
717 	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
718 
719 	/* save a pointer to the command for speedy reverse-lookup */
720 	cm->cm_fib->Header.SenderData = (u_int32_t)cm;	/* XXX 64-bit physical
721 							 * address issue */
722 	/* put the FIB on the outbound queue */
723 	error = aac_enqueue_fib(sc, cm->cm_queue, cm);
724 	return(error);
725 }
726 
727 /*
728  * Handle notification of one or more FIBs coming from the controller.
729  */
730 static void
731 aac_host_command(struct aac_softc *sc)
732 {
733 	struct aac_fib *fib;
734 	u_int32_t fib_size;
735 	int size;
736 
737 	debug_called(2);
738 
739 	sc->aifflags |= AAC_AIFFLAGS_RUNNING;
740 
741 	while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) {
742 		if (!(sc->aifflags & AAC_AIFFLAGS_PENDING))
743 			tsleep(sc->aifthread, PRIBIO, "aifthd", 15 * hz);
744 
745 		sc->aifflags &= ~AAC_AIFFLAGS_PENDING;
746 		for (;;) {
747 			if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
748 					    &fib_size, &fib))
749 				break;	/* nothing to do */
750 
751 			AAC_PRINT_FIB(sc, fib);
752 
753 			switch (fib->Header.Command) {
754 			case AifRequest:
755 				aac_handle_aif(sc, fib);
756 				break;
757 			default:
758 				device_printf(sc->aac_dev, "unknown command "
759 					      "from controller\n");
760 				break;
761 			}
762 
763 			/* Return the AIF to the controller. */
764 			if ((fib->Header.XferState == 0) ||
765 			    (fib->Header.StructType != AAC_FIBTYPE_TFIB))
766 				break;
767 
768 			if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
769 				fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
770 				*(AAC_FSAStatus*)fib->data = ST_OK;
771 
772 				/* XXX Compute the Size field? */
773 				size = fib->Header.Size;
774 				if (size > sizeof(struct aac_fib)) {
775 					size = sizeof(struct aac_fib);
776 					fib->Header.Size = size;
777 				}
778 				/*
779 				 * Since we did not generate this command, it
780 				 * cannot go through the normal
781 				 * enqueue->startio chain.
782 				 */
783 				aac_enqueue_response(sc,
784 						     AAC_ADAP_NORM_RESP_QUEUE,
785 						     fib);
786 			}
787 		}
788 	}
789 	sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
790 	wakeup(sc->aac_dev);
791 
792 #if __FreeBSD_version > 500005
793 	mtx_lock(&Giant);
794 #endif
795 	kthread_exit(0);
796 }
797 
798 /*
799  * Handle notification of one or more FIBs completed by the controller
800  */
801 static void
802 aac_host_response(struct aac_softc *sc)
803 {
804 	struct aac_command *cm;
805 	struct aac_fib *fib;
806 	u_int32_t fib_size;
807 
808 	debug_called(2);
809 
810 	for (;;) {
811 		/* look for completed FIBs on our queue */
812 		if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
813 				    &fib))
814 			break;	/* nothing to do */
815 
816 		/* get the command, unmap and queue for later processing */
817 		cm = (struct aac_command *)fib->Header.SenderData;
818 		if (cm == NULL) {
819 			AAC_PRINT_FIB(sc, fib);
820 		} else {
821 			aac_remove_busy(cm);
822 			aac_unmap_command(cm);		/* XXX defer? */
823 			aac_enqueue_complete(cm);
824 		}
825 	}
826 
827 	/* handle completion processing */
828 #if __FreeBSD_version >= 500005
829 	taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete);
830 #else
831 	aac_complete(sc, 0);
832 #endif
833 }
834 
835 /*
836  * Process completed commands.
837  */
838 static void
839 aac_complete(void *context, int pending)
840 {
841 	struct aac_softc *sc;
842 	struct aac_command *cm;
843 
844 	debug_called(2);
845 
846 	sc = (struct aac_softc *)context;
847 
848 	/* pull completed commands off the queue */
849 	for (;;) {
850 		cm = aac_dequeue_complete(sc);
851 		if (cm == NULL)
852 			break;
853 		cm->cm_flags |= AAC_CMD_COMPLETED;
854 
855 		/* is there a completion handler? */
856 		if (cm->cm_complete != NULL) {
857 			cm->cm_complete(cm);
858 		} else {
859 			/* assume that someone is sleeping on this command */
860 			wakeup(cm);
861 		}
862 	}
863 
864 	/* see if we can start some more I/O */
865 	aac_startio(sc);
866 }
867 
868 /*
869  * Handle a bio submitted from a disk device.
870  */
871 void
872 aac_submit_bio(struct bio *bp)
873 {
874 	struct aac_disk *ad;
875 	struct aac_softc *sc;
876 
877 	debug_called(2);
878 
879 	ad = (struct aac_disk *)bp->bio_dev->si_drv1;
880 	sc = ad->ad_controller;
881 
882 	/* queue the BIO and try to get some work done */
883 	aac_enqueue_bio(sc, bp);
884 	aac_startio(sc);
885 }
886 
887 /*
888  * Get a bio and build a command to go with it.
889  */
890 static int
891 aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
892 {
893 	struct aac_command *cm;
894 	struct aac_fib *fib;
895 	struct aac_blockread *br;
896 	struct aac_blockwrite *bw;
897 	struct aac_disk *ad;
898 	struct bio *bp;
899 
900 	debug_called(2);
901 
902 	/* get the resources we will need */
903 	cm = NULL;
904 	if ((bp = aac_dequeue_bio(sc)) == NULL)
905 		goto fail;
906 	if (aac_alloc_command(sc, &cm))	/* get a command */
907 		goto fail;
908 
909 	/* fill out the command */
910 	cm->cm_data = (void *)bp->bio_data;
911 	cm->cm_datalen = bp->bio_bcount;
912 	cm->cm_complete = aac_bio_complete;
913 	cm->cm_private = bp;
914 	cm->cm_timestamp = time_second;
915 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
916 
917 	/* build the FIB */
918 	fib = cm->cm_fib;
919 	fib->Header.XferState =
920 		AAC_FIBSTATE_HOSTOWNED   |
921 		AAC_FIBSTATE_INITIALISED |
922 		AAC_FIBSTATE_EMPTY	 |
923 		AAC_FIBSTATE_FROMHOST	 |
924 		AAC_FIBSTATE_REXPECTED   |
925 		AAC_FIBSTATE_NORM	 |
926 		AAC_FIBSTATE_ASYNC	 |
927 		AAC_FIBSTATE_FAST_RESPONSE;
928 	fib->Header.Command = ContainerCommand;
929 	fib->Header.Size = sizeof(struct aac_fib_header);
930 
931 	/* build the read/write request */
932 	ad = (struct aac_disk *)bp->bio_dev->si_drv1;
933 	if (BIO_IS_READ(bp)) {
934 		br = (struct aac_blockread *)&fib->data[0];
935 		br->Command = VM_CtBlockRead;
936 		br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
937 		br->BlockNumber = bp->bio_pblkno;
938 		br->ByteCount = bp->bio_bcount;
939 		fib->Header.Size += sizeof(struct aac_blockread);
940 		cm->cm_sgtable = &br->SgMap;
941 		cm->cm_flags |= AAC_CMD_DATAIN;
942 	} else {
943 		bw = (struct aac_blockwrite *)&fib->data[0];
944 		bw->Command = VM_CtBlockWrite;
945 		bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
946 		bw->BlockNumber = bp->bio_pblkno;
947 		bw->ByteCount = bp->bio_bcount;
948 		bw->Stable = CUNSTABLE;	/* XXX what's appropriate here? */
949 		fib->Header.Size += sizeof(struct aac_blockwrite);
950 		cm->cm_flags |= AAC_CMD_DATAOUT;
951 		cm->cm_sgtable = &bw->SgMap;
952 	}
953 
954 	*cmp = cm;
955 	return(0);
956 
957 fail:
958 	if (bp != NULL)
959 		aac_enqueue_bio(sc, bp);
960 	if (cm != NULL)
961 		aac_release_command(cm);
962 	return(ENOMEM);
963 }
964 
965 /*
966  * Handle a bio-instigated command that has been completed.
967  */
968 static void
969 aac_bio_complete(struct aac_command *cm)
970 {
971 	struct aac_blockread_response *brr;
972 	struct aac_blockwrite_response *bwr;
973 	struct bio *bp;
974 	AAC_FSAStatus status;
975 
976 	/* fetch relevant status and then release the command */
977 	bp = (struct bio *)cm->cm_private;
978 	if (BIO_IS_READ(bp)) {
979 		brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
980 		status = brr->Status;
981 	} else {
982 		bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
983 		status = bwr->Status;
984 	}
985 	aac_release_command(cm);
986 
987 	/* fix up the bio based on status */
988 	if (status == ST_OK) {
989 		bp->bio_resid = 0;
990 	} else {
991 		bp->bio_error = EIO;
992 		bp->bio_flags |= BIO_ERROR;
993 		/* pass an error string out to the disk layer */
994 		bp->bio_driver1 = aac_describe_code(aac_command_status_table,
995 						    status);
996 	}
997 	aac_biodone(bp);
998 }
999 
1000 /*
1001  * Dump a block of data to the controller.  If the queue is full, tell the
1002  * caller to hold off and wait for the queue to drain.
1003  */
1004 int
1005 aac_dump_enqueue(struct aac_disk *ad, u_int32_t lba, void *data, int dumppages)
1006 {
1007 	struct aac_softc *sc;
1008 	struct aac_command *cm;
1009 	struct aac_fib *fib;
1010 	struct aac_blockwrite *bw;
1011 
1012 	sc = ad->ad_controller;
1013 	cm = NULL;
1014 
1015 	if (aac_alloc_command(sc, &cm))
1016 		return (EBUSY);
1017 
1018 	/* fill out the command */
1019 	cm->cm_data = data;
1020 	cm->cm_datalen = dumppages * PAGE_SIZE;
1021 	cm->cm_complete = NULL;
1022 	cm->cm_private = NULL;
1023 	cm->cm_timestamp = time_second;
1024 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1025 
1026 	/* build the FIB */
1027 	fib = cm->cm_fib;
1028 	fib->Header.XferState =
1029 	AAC_FIBSTATE_HOSTOWNED   |
1030 	AAC_FIBSTATE_INITIALISED |
1031 	AAC_FIBSTATE_FROMHOST	 |
1032 	AAC_FIBSTATE_REXPECTED   |
1033 	AAC_FIBSTATE_NORM;
1034 	fib->Header.Command = ContainerCommand;
1035 	fib->Header.Size = sizeof(struct aac_fib_header);
1036 
1037 	bw = (struct aac_blockwrite *)&fib->data[0];
1038 	bw->Command = VM_CtBlockWrite;
1039 	bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
1040 	bw->BlockNumber = lba;
1041 	bw->ByteCount = dumppages * PAGE_SIZE;
1042 	bw->Stable = CUNSTABLE;		/* XXX what's appropriate here? */
1043 	fib->Header.Size += sizeof(struct aac_blockwrite);
1044 	cm->cm_flags |= AAC_CMD_DATAOUT;
1045 	cm->cm_sgtable = &bw->SgMap;
1046 
1047 	return (aac_start(cm));
1048 }
1049 
1050 /*
1051  * Wait for the card's queue to drain when dumping.  Also check for monitor
1052  * printf's
1053  */
1054 void
1055 aac_dump_complete(struct aac_softc *sc)
1056 {
1057 	struct aac_fib *fib;
1058 	struct aac_command *cm;
1059 	u_int16_t reason;
1060 	u_int32_t pi, ci, fib_size;
1061 
1062 	do {
1063 		reason = AAC_GET_ISTATUS(sc);
1064 		if (reason & AAC_DB_RESPONSE_READY) {
1065 			AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY);
1066 			for (;;) {
1067 				if (aac_dequeue_fib(sc,
1068 						    AAC_HOST_NORM_RESP_QUEUE,
1069 						    &fib_size, &fib))
1070 					break;
1071 				cm = (struct aac_command *)
1072 					fib->Header.SenderData;
1073 				if (cm == NULL)
1074 					AAC_PRINT_FIB(sc, fib);
1075 				else {
1076 					aac_remove_busy(cm);
1077 					aac_unmap_command(cm);
1078 					aac_enqueue_complete(cm);
1079 					aac_release_command(cm);
1080 				}
1081 			}
1082 		}
1083 		if (reason & AAC_DB_PRINTF) {
1084 			AAC_CLEAR_ISTATUS(sc, AAC_DB_PRINTF);
1085 			aac_print_printf(sc);
1086 		}
1087 		pi = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][
1088 			AAC_PRODUCER_INDEX];
1089 		ci = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][
1090 			AAC_CONSUMER_INDEX];
1091 	} while (ci != pi);
1092 
1093 	return;
1094 }
1095 
1096 /*
1097  * Submit a command to the controller, return when it completes.
1098  * XXX This is very dangerous!  If the card has gone out to lunch, we could
1099  *     be stuck here forever.  At the same time, signals are not caught
1100  *     because there is a risk that a signal could wakeup the tsleep before
1101  *     the card has a chance to complete the command.  The passed in timeout
1102  *     is ignored for the same reason.  Since there is no way to cancel a
1103  *     command in progress, we should probably create a 'dead' queue where
1104  *     commands go that have been interrupted/timed-out/etc, that keeps them
1105  *     out of the free pool.  That way, if the card is just slow, it won't
1106  *     spam the memory of a command that has been recycled.
1107  */
1108 static int
1109 aac_wait_command(struct aac_command *cm, int timeout)
1110 {
1111 	int s, error = 0;
1112 
1113 	debug_called(2);
1114 
1115 	/* Put the command on the ready queue and get things going */
1116 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1117 	aac_enqueue_ready(cm);
1118 	aac_startio(cm->cm_sc);
1119 	s = splbio();
1120 	while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
1121 		error = tsleep(cm, PRIBIO, "aacwait", 0);
1122 	}
1123 	splx(s);
1124 	return(error);
1125 }
1126 
1127 /*
1128  *Command Buffer Management
1129  */
1130 
1131 /*
1132  * Allocate a command.
1133  */
1134 int
1135 aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1136 {
1137 	struct aac_command *cm;
1138 
1139 	debug_called(3);
1140 
1141 	if ((cm = aac_dequeue_free(sc)) == NULL)
1142 		return(ENOMEM);
1143 
1144 	*cmp = cm;
1145 	return(0);
1146 }
1147 
1148 /*
1149  * Release a command back to the freelist.
1150  */
1151 void
1152 aac_release_command(struct aac_command *cm)
1153 {
1154 	debug_called(3);
1155 
1156 	/* (re)initialise the command/FIB */
1157 	cm->cm_sgtable = NULL;
1158 	cm->cm_flags = 0;
1159 	cm->cm_complete = NULL;
1160 	cm->cm_private = NULL;
1161 	cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1162 	cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1163 	cm->cm_fib->Header.Flags = 0;
1164 	cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1165 
1166 	/*
1167 	 * These are duplicated in aac_start to cover the case where an
1168 	 * intermediate stage may have destroyed them.  They're left
1169 	 * initialised here for debugging purposes only.
1170 	 */
1171 	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
1172 	cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1173 	cm->cm_fib->Header.SenderData = 0;
1174 
1175 	aac_enqueue_free(cm);
1176 }
1177 
1178 /*
1179  * Map helper for command/FIB allocation.
1180  */
1181 static void
1182 aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1183 {
1184 	struct aac_softc *sc;
1185 
1186 	sc = (struct aac_softc *)arg;
1187 
1188 	debug_called(3);
1189 
1190 	sc->aac_fibphys = segs[0].ds_addr;
1191 }
1192 
1193 /*
1194  * Allocate and initialise commands/FIBs for this adapter.
1195  */
1196 static int
1197 aac_alloc_commands(struct aac_softc *sc)
1198 {
1199 	struct aac_command *cm;
1200 	int i;
1201 
1202 	debug_called(1);
1203 
1204 	/* allocate the FIBs in DMAable memory and load them */
1205 	if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&sc->aac_fibs,
1206 			 BUS_DMA_NOWAIT, &sc->aac_fibmap)) {
1207 		return(ENOMEM);
1208 	}
1209 
1210 	bus_dmamap_load(sc->aac_fib_dmat, sc->aac_fibmap, sc->aac_fibs,
1211 			AAC_FIB_COUNT * sizeof(struct aac_fib),
1212 			aac_map_command_helper, sc, 0);
1213 
1214 	/* initialise constant fields in the command structure */
1215 	bzero(sc->aac_fibs, AAC_FIB_COUNT * sizeof(struct aac_fib));
1216 	for (i = 0; i < AAC_FIB_COUNT; i++) {
1217 		cm = &sc->aac_command[i];
1218 		cm->cm_sc = sc;
1219 		cm->cm_fib = sc->aac_fibs + i;
1220 		cm->cm_fibphys = sc->aac_fibphys + (i * sizeof(struct aac_fib));
1221 
1222 		if (!bus_dmamap_create(sc->aac_buffer_dmat, 0, &cm->cm_datamap))
1223 			aac_release_command(cm);
1224 	}
1225 	return(0);
1226 }
1227 
1228 /*
1229  * Free FIBs owned by this adapter.
1230  */
1231 static void
1232 aac_free_commands(struct aac_softc *sc)
1233 {
1234 	int i;
1235 
1236 	debug_called(1);
1237 
1238 	for (i = 0; i < AAC_FIB_COUNT; i++)
1239 		bus_dmamap_destroy(sc->aac_buffer_dmat,
1240 				   sc->aac_command[i].cm_datamap);
1241 
1242 	bus_dmamap_unload(sc->aac_fib_dmat, sc->aac_fibmap);
1243 	bus_dmamem_free(sc->aac_fib_dmat, sc->aac_fibs, sc->aac_fibmap);
1244 }
1245 
1246 /*
1247  * Command-mapping helper function - populate this command's s/g table.
1248  */
1249 static void
1250 aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1251 {
1252 	struct aac_command *cm;
1253 	struct aac_fib *fib;
1254 	struct aac_sg_table *sg;
1255 	int i;
1256 
1257 	debug_called(3);
1258 
1259 	cm = (struct aac_command *)arg;
1260 	fib = cm->cm_fib;
1261 
1262 	/* find the s/g table */
1263 	sg = cm->cm_sgtable;
1264 
1265 	/* copy into the FIB */
1266 	if (sg != NULL) {
1267 		sg->SgCount = nseg;
1268 		for (i = 0; i < nseg; i++) {
1269 			sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1270 			sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1271 		}
1272 		/* update the FIB size for the s/g count */
1273 		fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1274 	}
1275 
1276 }
1277 
1278 /*
1279  * Map a command into controller-visible space.
1280  */
1281 static void
1282 aac_map_command(struct aac_command *cm)
1283 {
1284 	struct aac_softc *sc;
1285 
1286 	debug_called(2);
1287 
1288 	sc = cm->cm_sc;
1289 
1290 	/* don't map more than once */
1291 	if (cm->cm_flags & AAC_CMD_MAPPED)
1292 		return;
1293 
1294 	if (cm->cm_datalen != 0) {
1295 		bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap,
1296 				cm->cm_data, cm->cm_datalen,
1297 				aac_map_command_sg, cm, 0);
1298 
1299 		if (cm->cm_flags & AAC_CMD_DATAIN)
1300 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1301 					BUS_DMASYNC_PREREAD);
1302 		if (cm->cm_flags & AAC_CMD_DATAOUT)
1303 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1304 					BUS_DMASYNC_PREWRITE);
1305 	}
1306 	cm->cm_flags |= AAC_CMD_MAPPED;
1307 }
1308 
1309 /*
1310  * Unmap a command from controller-visible space.
1311  */
1312 static void
1313 aac_unmap_command(struct aac_command *cm)
1314 {
1315 	struct aac_softc *sc;
1316 
1317 	debug_called(2);
1318 
1319 	sc = cm->cm_sc;
1320 
1321 	if (!(cm->cm_flags & AAC_CMD_MAPPED))
1322 		return;
1323 
1324 	if (cm->cm_datalen != 0) {
1325 		if (cm->cm_flags & AAC_CMD_DATAIN)
1326 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1327 					BUS_DMASYNC_POSTREAD);
1328 		if (cm->cm_flags & AAC_CMD_DATAOUT)
1329 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1330 					BUS_DMASYNC_POSTWRITE);
1331 
1332 		bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1333 	}
1334 	cm->cm_flags &= ~AAC_CMD_MAPPED;
1335 }
1336 
1337 /*
1338  * Hardware Interface
1339  */
1340 
1341 /*
1342  * Initialise the adapter.
1343  */
1344 static void
1345 aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1346 {
1347 	struct aac_softc *sc;
1348 
1349 	debug_called(1);
1350 
1351 	sc = (struct aac_softc *)arg;
1352 
1353 	sc->aac_common_busaddr = segs[0].ds_addr;
1354 }
1355 
1356 static int
1357 aac_check_firmware(struct aac_softc *sc)
1358 {
1359 	u_int32_t major, minor, options;
1360 
1361 	debug_called(1);
1362 
1363 	/*
1364 	 * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1365 	 * firmware version 1.x are not compatible with this driver.
1366 	 */
1367 	if (sc->flags & AAC_FLAGS_PERC2QC) {
1368 		if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1369 				     NULL)) {
1370 			device_printf(sc->aac_dev,
1371 				      "Error reading firmware version\n");
1372 			return (EIO);
1373 		}
1374 
1375 		/* These numbers are stored as ASCII! */
1376 		major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30;
1377 		minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30;
1378 		if (major == 1) {
1379 			device_printf(sc->aac_dev,
1380 			    "Firmware version %d.%d is not supported.\n",
1381 			    major, minor);
1382 			return (EINVAL);
1383 		}
1384 	}
1385 
1386 	/*
1387 	 * Retrieve the capabilities/supported options word so we know what
1388 	 * work-arounds to enable.
1389 	 */
1390 	if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, NULL)) {
1391 		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
1392 		return (EIO);
1393 	}
1394 	options = AAC_GET_MAILBOX(sc, 1);
1395 	sc->supported_options = options;
1396 
1397 	if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 &&
1398 	    (sc->flags & AAC_FLAGS_NO4GB) == 0)
1399 		sc->flags |= AAC_FLAGS_4GB_WINDOW;
1400 	if (options & AAC_SUPPORTED_NONDASD)
1401 		sc->flags |= AAC_FLAGS_ENABLE_CAM;
1402 
1403 	return (0);
1404 }
1405 
1406 static int
1407 aac_init(struct aac_softc *sc)
1408 {
1409 	struct aac_adapter_init	*ip;
1410 	time_t then;
1411 	u_int32_t code;
1412 	u_int8_t *qaddr;
1413 	int error;
1414 
1415 	debug_called(1);
1416 
1417 	/*
1418 	 * First wait for the adapter to come ready.
1419 	 */
1420 	then = time_second;
1421 	do {
1422 		code = AAC_GET_FWSTATUS(sc);
1423 		if (code & AAC_SELF_TEST_FAILED) {
1424 			device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1425 			return(ENXIO);
1426 		}
1427 		if (code & AAC_KERNEL_PANIC) {
1428 			device_printf(sc->aac_dev,
1429 				      "FATAL: controller kernel panic\n");
1430 			return(ENXIO);
1431 		}
1432 		if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1433 			device_printf(sc->aac_dev,
1434 				      "FATAL: controller not coming ready, "
1435 					   "status %x\n", code);
1436 			return(ENXIO);
1437 		}
1438 	} while (!(code & AAC_UP_AND_RUNNING));
1439 
1440  	error = ENOMEM;
1441  	/*
1442  	 * Create DMA tag for mapping buffers into controller-addressable space.
1443  	 */
1444  	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1445  			       1, 0, 			/* algnmnt, boundary */
1446  			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1447  			       BUS_SPACE_MAXADDR, 	/* highaddr */
1448  			       NULL, NULL, 		/* filter, filterarg */
1449  			       MAXBSIZE,		/* maxsize */
1450  			       AAC_MAXSGENTRIES,	/* nsegments */
1451  			       MAXBSIZE,		/* maxsegsize */
1452  			       BUS_DMA_ALLOCNOW,	/* flags */
1453  			       &sc->aac_buffer_dmat)) {
1454  		device_printf(sc->aac_dev, "can't allocate buffer DMA tag\n");
1455  		goto out;
1456  	}
1457 
1458  	/*
1459  	 * Create DMA tag for mapping FIBs into controller-addressable space..
1460  	 */
1461  	if (bus_dma_tag_create(sc->aac_parent_dmat,	/* parent */
1462  			       1, 0, 			/* algnmnt, boundary */
1463  			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1464  			       BUS_SPACE_MAXADDR_32BIT :
1465  			       0x7fffffff,		/* lowaddr */
1466  			       BUS_SPACE_MAXADDR, 	/* highaddr */
1467  			       NULL, NULL, 		/* filter, filterarg */
1468  			       AAC_FIB_COUNT *
1469  			       sizeof(struct aac_fib),  /* maxsize */
1470  			       1,			/* nsegments */
1471  			       AAC_FIB_COUNT *
1472  			       sizeof(struct aac_fib),	/* maxsegsize */
1473  			       BUS_DMA_ALLOCNOW,	/* flags */
1474  			       &sc->aac_fib_dmat)) {
1475  		device_printf(sc->aac_dev, "can't allocate FIB DMA tag\n");;
1476  		goto out;
1477  	}
1478 
1479 	/*
1480 	 * Create DMA tag for the common structure and allocate it.
1481 	 */
1482 	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1483 			       1, 0,			/* algnmnt, boundary */
1484 			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1485 			       BUS_SPACE_MAXADDR_32BIT :
1486 			       0x7fffffff,		/* lowaddr */
1487 			       BUS_SPACE_MAXADDR, 	/* highaddr */
1488 			       NULL, NULL, 		/* filter, filterarg */
1489 			       8192 + sizeof(struct aac_common), /* maxsize */
1490 			       1,			/* nsegments */
1491 			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1492 			       BUS_DMA_ALLOCNOW,	/* flags */
1493 			       &sc->aac_common_dmat)) {
1494 		device_printf(sc->aac_dev,
1495 			      "can't allocate common structure DMA tag\n");
1496 		goto out;
1497 	}
1498 	if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1499 			     BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1500 		device_printf(sc->aac_dev, "can't allocate common structure\n");
1501 		goto out;
1502 	}
1503 	/*
1504 	 * Work around a bug in the 2120 and 2200 that cannot DMA commands
1505 	 * below address 8192 in physical memory.
1506 	 * XXX If the padding is not needed, can it be put to use instead
1507 	 * of ignored?
1508 	 */
1509 	bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1510 			sc->aac_common, 8192 + sizeof(*sc->aac_common),
1511 			aac_common_map, sc, 0);
1512 
1513 	if (sc->aac_common_busaddr < 8192) {
1514 		(uint8_t *)sc->aac_common += 8192;
1515 		sc->aac_common_busaddr += 8192;
1516 	}
1517 	bzero(sc->aac_common, sizeof(*sc->aac_common));
1518 
1519 	/* Allocate some FIBs and associated command structs */
1520 	if (aac_alloc_commands(sc) != 0)
1521 		goto out;
1522 
1523 	/*
1524 	 * Fill in the init structure.  This tells the adapter about the
1525 	 * physical location of various important shared data structures.
1526 	 */
1527 	ip = &sc->aac_common->ac_init;
1528 	ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1529 	ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION;
1530 
1531 	ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1532 					 offsetof(struct aac_common, ac_fibs);
1533 	ip->AdapterFibsVirtualAddress = &sc->aac_common->ac_fibs[0];
1534 	ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1535 	ip->AdapterFibAlign = sizeof(struct aac_fib);
1536 
1537 	ip->PrintfBufferAddress = sc->aac_common_busaddr +
1538 				  offsetof(struct aac_common, ac_printf);
1539 	ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1540 
1541 	/* The adapter assumes that pages are 4K in size */
1542 	ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE;
1543 	ip->HostElapsedSeconds = time_second;	/* reset later if invalid */
1544 
1545 	/*
1546 	 * Initialise FIB queues.  Note that it appears that the layout of the
1547 	 * indexes and the segmentation of the entries may be mandated by the
1548 	 * adapter, which is only told about the base of the queue index fields.
1549 	 *
1550 	 * The initial values of the indices are assumed to inform the adapter
1551 	 * of the sizes of the respective queues, and theoretically it could
1552 	 * work out the entire layout of the queue structures from this.  We
1553 	 * take the easy route and just lay this area out like everyone else
1554 	 * does.
1555 	 *
1556 	 * The Linux driver uses a much more complex scheme whereby several
1557 	 * header records are kept for each queue.  We use a couple of generic
1558 	 * list manipulation functions which 'know' the size of each list by
1559 	 * virtue of a table.
1560 	 */
1561 	qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN;
1562 	qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN;
1563 	sc->aac_queues = (struct aac_queue_table *)qaddr;
1564 	ip->CommHeaderAddress = sc->aac_common_busaddr +
1565 				((u_int32_t)sc->aac_queues -
1566 				(u_int32_t)sc->aac_common);
1567 	bzero(sc->aac_queues, sizeof(struct aac_queue_table));
1568 
1569 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1570 		AAC_HOST_NORM_CMD_ENTRIES;
1571 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1572 		AAC_HOST_NORM_CMD_ENTRIES;
1573 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1574 		AAC_HOST_HIGH_CMD_ENTRIES;
1575 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1576 		AAC_HOST_HIGH_CMD_ENTRIES;
1577 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1578 		AAC_ADAP_NORM_CMD_ENTRIES;
1579 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1580 		AAC_ADAP_NORM_CMD_ENTRIES;
1581 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1582 		AAC_ADAP_HIGH_CMD_ENTRIES;
1583 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1584 		AAC_ADAP_HIGH_CMD_ENTRIES;
1585 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1586 		AAC_HOST_NORM_RESP_ENTRIES;
1587 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1588 		AAC_HOST_NORM_RESP_ENTRIES;
1589 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1590 		AAC_HOST_HIGH_RESP_ENTRIES;
1591 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1592 		AAC_HOST_HIGH_RESP_ENTRIES;
1593 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1594 		AAC_ADAP_NORM_RESP_ENTRIES;
1595 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1596 		AAC_ADAP_NORM_RESP_ENTRIES;
1597 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1598 		AAC_ADAP_HIGH_RESP_ENTRIES;
1599 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1600 		AAC_ADAP_HIGH_RESP_ENTRIES;
1601 	sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1602 		&sc->aac_queues->qt_HostNormCmdQueue[0];
1603 	sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1604 		&sc->aac_queues->qt_HostHighCmdQueue[0];
1605 	sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1606 		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1607 	sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1608 		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1609 	sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1610 		&sc->aac_queues->qt_HostNormRespQueue[0];
1611 	sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1612 		&sc->aac_queues->qt_HostHighRespQueue[0];
1613 	sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1614 		&sc->aac_queues->qt_AdapNormRespQueue[0];
1615 	sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1616 		&sc->aac_queues->qt_AdapHighRespQueue[0];
1617 
1618 	/*
1619 	 * Do controller-type-specific initialisation
1620 	 */
1621 	switch (sc->aac_hwif) {
1622 	case AAC_HWIF_I960RX:
1623 		AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1624 		break;
1625 	}
1626 
1627 	/*
1628 	 * Give the init structure to the controller.
1629 	 */
1630 	if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1631 			     sc->aac_common_busaddr +
1632 			     offsetof(struct aac_common, ac_init), 0, 0, 0,
1633 			     NULL)) {
1634 		device_printf(sc->aac_dev,
1635 			      "error establishing init structure\n");
1636 		error = EIO;
1637 		goto out;
1638 	}
1639 
1640 	error = 0;
1641 out:
1642 	return(error);
1643 }
1644 
1645 /*
1646  * Send a synchronous command to the controller and wait for a result.
1647  */
1648 static int
1649 aac_sync_command(struct aac_softc *sc, u_int32_t command,
1650 		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1651 		 u_int32_t *sp)
1652 {
1653 	time_t then;
1654 	u_int32_t status;
1655 
1656 	debug_called(3);
1657 
1658 	/* populate the mailbox */
1659 	AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1660 
1661 	/* ensure the sync command doorbell flag is cleared */
1662 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1663 
1664 	/* then set it to signal the adapter */
1665 	AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1666 
1667 	/* spin waiting for the command to complete */
1668 	then = time_second;
1669 	do {
1670 		if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1671 			debug(1, "timed out");
1672 			return(EIO);
1673 		}
1674 	} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1675 
1676 	/* clear the completion flag */
1677 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1678 
1679 	/* get the command status */
1680 	status = AAC_GET_MAILBOX(sc, 0);
1681 	if (sp != NULL)
1682 		*sp = status;
1683 	return(0);
1684 }
1685 
1686 /*
1687  * Grab the sync fib area.
1688  */
1689 int
1690 aac_alloc_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags)
1691 {
1692 
1693 	/*
1694 	 * If the force flag is set, the system is shutting down, or in
1695 	 * trouble.  Ignore the mutex.
1696 	 */
1697 	if (!(flags & AAC_SYNC_LOCK_FORCE))
1698 		AAC_LOCK_ACQUIRE(&sc->aac_sync_lock);
1699 
1700 	*fib = &sc->aac_common->ac_sync_fib;
1701 
1702 	return (1);
1703 }
1704 
1705 /*
1706  * Release the sync fib area.
1707  */
1708 void
1709 aac_release_sync_fib(struct aac_softc *sc)
1710 {
1711 
1712 	AAC_LOCK_RELEASE(&sc->aac_sync_lock);
1713 }
1714 
1715 /*
1716  * Send a synchronous FIB to the controller and wait for a result.
1717  */
1718 int
1719 aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
1720 		 struct aac_fib *fib, u_int16_t datasize)
1721 {
1722 	debug_called(3);
1723 
1724 	if (datasize > AAC_FIB_DATASIZE)
1725 		return(EINVAL);
1726 
1727 	/*
1728 	 * Set up the sync FIB
1729 	 */
1730 	fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1731 				AAC_FIBSTATE_INITIALISED |
1732 				AAC_FIBSTATE_EMPTY;
1733 	fib->Header.XferState |= xferstate;
1734 	fib->Header.Command = command;
1735 	fib->Header.StructType = AAC_FIBTYPE_TFIB;
1736 	fib->Header.Size = sizeof(struct aac_fib) + datasize;
1737 	fib->Header.SenderSize = sizeof(struct aac_fib);
1738 	fib->Header.SenderFibAddress = (u_int32_t)fib;
1739 	fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1740 					 offsetof(struct aac_common,
1741 						  ac_sync_fib);
1742 
1743 	/*
1744 	 * Give the FIB to the controller, wait for a response.
1745 	 */
1746 	if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1747 			     fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1748 		debug(2, "IO error");
1749 		return(EIO);
1750 	}
1751 
1752 	return (0);
1753 }
1754 
1755 /*
1756  * Adapter-space FIB queue manipulation
1757  *
1758  * Note that the queue implementation here is a little funky; neither the PI or
1759  * CI will ever be zero.  This behaviour is a controller feature.
1760  */
1761 static struct {
1762 	int		size;
1763 	int		notify;
1764 } aac_qinfo[] = {
1765 	{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1766 	{AAC_HOST_HIGH_CMD_ENTRIES, 0},
1767 	{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1768 	{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1769 	{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1770 	{AAC_HOST_HIGH_RESP_ENTRIES, 0},
1771 	{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1772 	{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1773 };
1774 
1775 /*
1776  * Atomically insert an entry into the nominated queue, returns 0 on success or
1777  * EBUSY if the queue is full.
1778  *
1779  * Note: it would be more efficient to defer notifying the controller in
1780  *	 the case where we may be inserting several entries in rapid succession,
1781  *	 but implementing this usefully may be difficult (it would involve a
1782  *	 separate queue/notify interface).
1783  */
1784 static int
1785 aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1786 {
1787 	u_int32_t pi, ci;
1788 	int s, error;
1789 	u_int32_t fib_size;
1790 	u_int32_t fib_addr;
1791 
1792 	debug_called(3);
1793 
1794 	fib_size = cm->cm_fib->Header.Size;
1795 	fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1796 
1797 	s = splbio();
1798 
1799 	/* get the producer/consumer indices */
1800 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1801 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1802 
1803 	/* wrap the queue? */
1804 	if (pi >= aac_qinfo[queue].size)
1805 		pi = 0;
1806 
1807 	/* check for queue full */
1808 	if ((pi + 1) == ci) {
1809 		error = EBUSY;
1810 		goto out;
1811 	}
1812 
1813 	/* populate queue entry */
1814 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1815 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1816 
1817 	/* update producer index */
1818 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1819 
1820 	/*
1821 	 * To avoid a race with its completion interrupt, place this command on
1822 	 * the busy queue prior to advertising it to the controller.
1823 	 */
1824 	aac_enqueue_busy(cm);
1825 
1826 	/* notify the adapter if we know how */
1827 	if (aac_qinfo[queue].notify != 0)
1828 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1829 
1830 	error = 0;
1831 
1832 out:
1833 	splx(s);
1834 	return(error);
1835 }
1836 
1837 /*
1838  * Atomically remove one entry from the nominated queue, returns 0 on
1839  * success or ENOENT if the queue is empty.
1840  */
1841 static int
1842 aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1843 		struct aac_fib **fib_addr)
1844 {
1845 	u_int32_t pi, ci;
1846 	int s, error;
1847 	int notify;
1848 
1849 	debug_called(3);
1850 
1851 	s = splbio();
1852 
1853 	/* get the producer/consumer indices */
1854 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1855 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1856 
1857 	/* check for queue empty */
1858 	if (ci == pi) {
1859 		error = ENOENT;
1860 		goto out;
1861 	}
1862 
1863 	notify = 0;
1864 	if (ci == pi + 1)
1865 		notify++;
1866 
1867 	/* wrap the queue? */
1868 	if (ci >= aac_qinfo[queue].size)
1869 		ci = 0;
1870 
1871 	/* fetch the entry */
1872 	*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1873 	*fib_addr = (struct aac_fib *)(sc->aac_qentries[queue] +
1874 				       ci)->aq_fib_addr;
1875 
1876 	/*
1877 	 * Is this a fast response? If it is, update the fib fields in
1878 	 * local memory so the whole fib doesn't have to be DMA'd back up.
1879 	 */
1880 	if (*(uintptr_t *)fib_addr & 0x01) {
1881 		*(uintptr_t *)fib_addr &= ~0x01;
1882 		(*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP;
1883 		*((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL;
1884 	}
1885 	/* update consumer index */
1886 	sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1887 
1888 	/* if we have made the queue un-full, notify the adapter */
1889 	if (notify && (aac_qinfo[queue].notify != 0))
1890 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1891 	error = 0;
1892 
1893 out:
1894 	splx(s);
1895 	return(error);
1896 }
1897 
1898 /*
1899  * Put our response to an Adapter Initialed Fib on the response queue
1900  */
1901 static int
1902 aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1903 {
1904 	u_int32_t pi, ci;
1905 	int s, error;
1906 	u_int32_t fib_size;
1907 	u_int32_t fib_addr;
1908 
1909 	debug_called(1);
1910 
1911 	/* Tell the adapter where the FIB is */
1912 	fib_size = fib->Header.Size;
1913 	fib_addr = fib->Header.SenderFibAddress;
1914 	fib->Header.ReceiverFibAddress = fib_addr;
1915 
1916 	s = splbio();
1917 
1918 	/* get the producer/consumer indices */
1919 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1920 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1921 
1922 	/* wrap the queue? */
1923 	if (pi >= aac_qinfo[queue].size)
1924 		pi = 0;
1925 
1926 	/* check for queue full */
1927 	if ((pi + 1) == ci) {
1928 		error = EBUSY;
1929 		goto out;
1930 	}
1931 
1932 	/* populate queue entry */
1933 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1934 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1935 
1936 	/* update producer index */
1937 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1938 
1939 	/* notify the adapter if we know how */
1940 	if (aac_qinfo[queue].notify != 0)
1941 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1942 
1943 	error = 0;
1944 
1945 out:
1946 	splx(s);
1947 	return(error);
1948 }
1949 
1950 /*
1951  * Check for commands that have been outstanding for a suspiciously long time,
1952  * and complain about them.
1953  */
1954 static void
1955 aac_timeout(struct aac_softc *sc)
1956 {
1957 	int s;
1958 	struct aac_command *cm;
1959 	time_t deadline;
1960 
1961 #if 0
1962 	/* simulate an interrupt to handle possibly-missed interrupts */
1963 	/*
1964 	 * XXX This was done to work around another bug which has since been
1965 	 * fixed.  It is dangerous anyways because you don't want multiple
1966 	 * threads in the interrupt handler at the same time!  If calling
1967 	 * is deamed neccesary in the future, proper mutexes must be used.
1968 	 */
1969 	s = splbio();
1970 	aac_intr(sc);
1971 	splx(s);
1972 
1973 	/* kick the I/O queue to restart it in the case of deadlock */
1974 	aac_startio(sc);
1975 #endif
1976 
1977 	/*
1978 	 * traverse the busy command list, bitch about late commands once
1979 	 * only.
1980 	 */
1981 	deadline = time_second - AAC_CMD_TIMEOUT;
1982 	s = splbio();
1983 	TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
1984 		if ((cm->cm_timestamp  < deadline)
1985 			/* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
1986 			cm->cm_flags |= AAC_CMD_TIMEDOUT;
1987 			device_printf(sc->aac_dev,
1988 				      "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
1989 				      cm, (int)(time_second-cm->cm_timestamp));
1990 			AAC_PRINT_FIB(sc, cm->cm_fib);
1991 		}
1992 	}
1993 	splx(s);
1994 
1995 	/* reset the timer for next time */
1996 	timeout((timeout_t*)aac_timeout, sc, AAC_PERIODIC_INTERVAL * hz);
1997 	return;
1998 }
1999 
2000 /*
2001  * Interface Function Vectors
2002  */
2003 
2004 /*
2005  * Read the current firmware status word.
2006  */
2007 static int
2008 aac_sa_get_fwstatus(struct aac_softc *sc)
2009 {
2010 	debug_called(3);
2011 
2012 	return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
2013 }
2014 
2015 static int
2016 aac_rx_get_fwstatus(struct aac_softc *sc)
2017 {
2018 	debug_called(3);
2019 
2020 	return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
2021 }
2022 
2023 static int
2024 aac_fa_get_fwstatus(struct aac_softc *sc)
2025 {
2026 	int val;
2027 
2028 	debug_called(3);
2029 
2030 	val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
2031 	return (val);
2032 }
2033 
2034 /*
2035  * Notify the controller of a change in a given queue
2036  */
2037 
2038 static void
2039 aac_sa_qnotify(struct aac_softc *sc, int qbit)
2040 {
2041 	debug_called(3);
2042 
2043 	AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
2044 }
2045 
2046 static void
2047 aac_rx_qnotify(struct aac_softc *sc, int qbit)
2048 {
2049 	debug_called(3);
2050 
2051 	AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
2052 }
2053 
2054 static void
2055 aac_fa_qnotify(struct aac_softc *sc, int qbit)
2056 {
2057 	debug_called(3);
2058 
2059 	AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
2060 	AAC_FA_HACK(sc);
2061 }
2062 
2063 /*
2064  * Get the interrupt reason bits
2065  */
2066 static int
2067 aac_sa_get_istatus(struct aac_softc *sc)
2068 {
2069 	debug_called(3);
2070 
2071 	return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
2072 }
2073 
2074 static int
2075 aac_rx_get_istatus(struct aac_softc *sc)
2076 {
2077 	debug_called(3);
2078 
2079 	return(AAC_GETREG4(sc, AAC_RX_ODBR));
2080 }
2081 
2082 static int
2083 aac_fa_get_istatus(struct aac_softc *sc)
2084 {
2085 	int val;
2086 
2087 	debug_called(3);
2088 
2089 	val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
2090 	return (val);
2091 }
2092 
2093 /*
2094  * Clear some interrupt reason bits
2095  */
2096 static void
2097 aac_sa_clear_istatus(struct aac_softc *sc, int mask)
2098 {
2099 	debug_called(3);
2100 
2101 	AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
2102 }
2103 
2104 static void
2105 aac_rx_clear_istatus(struct aac_softc *sc, int mask)
2106 {
2107 	debug_called(3);
2108 
2109 	AAC_SETREG4(sc, AAC_RX_ODBR, mask);
2110 }
2111 
2112 static void
2113 aac_fa_clear_istatus(struct aac_softc *sc, int mask)
2114 {
2115 	debug_called(3);
2116 
2117 	AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
2118 	AAC_FA_HACK(sc);
2119 }
2120 
2121 /*
2122  * Populate the mailbox and set the command word
2123  */
2124 static void
2125 aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2126 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2127 {
2128 	debug_called(4);
2129 
2130 	AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
2131 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2132 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2133 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2134 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2135 }
2136 
2137 static void
2138 aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2139 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2140 {
2141 	debug_called(4);
2142 
2143 	AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
2144 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2145 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2146 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2147 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2148 }
2149 
2150 static void
2151 aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2152 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2153 {
2154 	debug_called(4);
2155 
2156 	AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2157 	AAC_FA_HACK(sc);
2158 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2159 	AAC_FA_HACK(sc);
2160 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2161 	AAC_FA_HACK(sc);
2162 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2163 	AAC_FA_HACK(sc);
2164 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2165 	AAC_FA_HACK(sc);
2166 }
2167 
2168 /*
2169  * Fetch the immediate command status word
2170  */
2171 static int
2172 aac_sa_get_mailbox(struct aac_softc *sc, int mb)
2173 {
2174 	debug_called(4);
2175 
2176 	return(AAC_GETREG4(sc, AAC_SA_MAILBOX + (mb * 4)));
2177 }
2178 
2179 static int
2180 aac_rx_get_mailbox(struct aac_softc *sc, int mb)
2181 {
2182 	debug_called(4);
2183 
2184 	return(AAC_GETREG4(sc, AAC_RX_MAILBOX + (mb * 4)));
2185 }
2186 
2187 static int
2188 aac_fa_get_mailbox(struct aac_softc *sc, int mb)
2189 {
2190 	int val;
2191 
2192 	debug_called(4);
2193 
2194 	val = AAC_GETREG4(sc, AAC_FA_MAILBOX + (mb * 4));
2195 	return (val);
2196 }
2197 
2198 /*
2199  * Set/clear interrupt masks
2200  */
2201 static void
2202 aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2203 {
2204 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2205 
2206 	if (enable) {
2207 		AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2208 	} else {
2209 		AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2210 	}
2211 }
2212 
2213 static void
2214 aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2215 {
2216 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2217 
2218 	if (enable) {
2219 		AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2220 	} else {
2221 		AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2222 	}
2223 }
2224 
2225 static void
2226 aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2227 {
2228 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2229 
2230 	if (enable) {
2231 		AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2232 		AAC_FA_HACK(sc);
2233 	} else {
2234 		AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2235 		AAC_FA_HACK(sc);
2236 	}
2237 }
2238 
2239 /*
2240  * Debugging and Diagnostics
2241  */
2242 
2243 /*
2244  * Print some information about the controller.
2245  */
2246 static void
2247 aac_describe_controller(struct aac_softc *sc)
2248 {
2249 	struct aac_fib *fib;
2250 	struct aac_adapter_info	*info;
2251 
2252 	debug_called(2);
2253 
2254 	aac_alloc_sync_fib(sc, &fib, 0);
2255 
2256 	fib->data[0] = 0;
2257 	if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2258 		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2259 		aac_release_sync_fib(sc);
2260 		return;
2261 	}
2262 	info = (struct aac_adapter_info *)&fib->data[0];
2263 
2264 	device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n",
2265 		      aac_describe_code(aac_cpu_variant, info->CpuVariant),
2266 		      info->ClockSpeed, info->BufferMem / (1024 * 1024),
2267 		      aac_describe_code(aac_battery_platform,
2268 					info->batteryPlatform));
2269 
2270 	/* save the kernel revision structure for later use */
2271 	sc->aac_revision = info->KernelRevision;
2272 	device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2273 		      info->KernelRevision.external.comp.major,
2274 		      info->KernelRevision.external.comp.minor,
2275 		      info->KernelRevision.external.comp.dash,
2276 		      info->KernelRevision.buildNumber,
2277 		      (u_int32_t)(info->SerialNumber & 0xffffff));
2278 
2279 	aac_release_sync_fib(sc);
2280 
2281 	if (1 || bootverbose) {
2282 		device_printf(sc->aac_dev, "Supported Options=%b\n",
2283 			      sc->supported_options,
2284 			      "\20"
2285 			      "\1SNAPSHOT"
2286 			      "\2CLUSTERS"
2287 			      "\3WCACHE"
2288 			      "\4DATA64"
2289 			      "\5HOSTTIME"
2290 			      "\6RAID50"
2291 			      "\7WINDOW4GB"
2292 			      "\10SCSIUPGD"
2293 			      "\11SOFTERR"
2294 			      "\12NORECOND"
2295 			      "\13SGMAP64"
2296 			      "\14ALARM"
2297 			      "\15NONDASD");
2298 	}
2299 }
2300 
2301 /*
2302  * Look up a text description of a numeric error code and return a pointer to
2303  * same.
2304  */
2305 static char *
2306 aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2307 {
2308 	int i;
2309 
2310 	for (i = 0; table[i].string != NULL; i++)
2311 		if (table[i].code == code)
2312 			return(table[i].string);
2313 	return(table[i + 1].string);
2314 }
2315 
2316 /*
2317  * Management Interface
2318  */
2319 
2320 static int
2321 aac_open(dev_t dev, int flags, int fmt, d_thread_t *td)
2322 {
2323 	struct aac_softc *sc;
2324 
2325 	debug_called(2);
2326 
2327 	sc = dev->si_drv1;
2328 
2329 	/* Check to make sure the device isn't already open */
2330 	if (sc->aac_state & AAC_STATE_OPEN) {
2331 		return EBUSY;
2332 	}
2333 	sc->aac_state |= AAC_STATE_OPEN;
2334 
2335 	return 0;
2336 }
2337 
2338 static int
2339 aac_close(dev_t dev, int flags, int fmt, d_thread_t *td)
2340 {
2341 	struct aac_softc *sc;
2342 
2343 	debug_called(2);
2344 
2345 	sc = dev->si_drv1;
2346 
2347 	/* Mark this unit as no longer open  */
2348 	sc->aac_state &= ~AAC_STATE_OPEN;
2349 
2350 	return 0;
2351 }
2352 
2353 static int
2354 aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2355 {
2356 	union aac_statrequest *as;
2357 	struct aac_softc *sc;
2358 	int error = 0;
2359 	int i;
2360 
2361 	debug_called(2);
2362 
2363 	as = (union aac_statrequest *)arg;
2364 	sc = dev->si_drv1;
2365 
2366 	switch (cmd) {
2367 	case AACIO_STATS:
2368 		switch (as->as_item) {
2369 		case AACQ_FREE:
2370 		case AACQ_BIO:
2371 		case AACQ_READY:
2372 		case AACQ_BUSY:
2373 		case AACQ_COMPLETE:
2374 			bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2375 			      sizeof(struct aac_qstat));
2376 			break;
2377 		default:
2378 			error = ENOENT;
2379 			break;
2380 		}
2381 	break;
2382 
2383 	case FSACTL_SENDFIB:
2384 		arg = *(caddr_t*)arg;
2385 	case FSACTL_LNX_SENDFIB:
2386 		debug(1, "FSACTL_SENDFIB");
2387 		error = aac_ioctl_sendfib(sc, arg);
2388 		break;
2389 	case FSACTL_AIF_THREAD:
2390 	case FSACTL_LNX_AIF_THREAD:
2391 		debug(1, "FSACTL_AIF_THREAD");
2392 		error = EINVAL;
2393 		break;
2394 	case FSACTL_OPEN_GET_ADAPTER_FIB:
2395 		arg = *(caddr_t*)arg;
2396 	case FSACTL_LNX_OPEN_GET_ADAPTER_FIB:
2397 		debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2398 		/*
2399 		 * Pass the caller out an AdapterFibContext.
2400 		 *
2401 		 * Note that because we only support one opener, we
2402 		 * basically ignore this.  Set the caller's context to a magic
2403 		 * number just in case.
2404 		 *
2405 		 * The Linux code hands the driver a pointer into kernel space,
2406 		 * and then trusts it when the caller hands it back.  Aiee!
2407 		 * Here, we give it the proc pointer of the per-adapter aif
2408 		 * thread. It's only used as a sanity check in other calls.
2409 		 */
2410 		i = (int)sc->aifthread;
2411 		error = copyout(&i, arg, sizeof(i));
2412 		break;
2413 	case FSACTL_GET_NEXT_ADAPTER_FIB:
2414 		arg = *(caddr_t*)arg;
2415 	case FSACTL_LNX_GET_NEXT_ADAPTER_FIB:
2416 		debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2417 		error = aac_getnext_aif(sc, arg);
2418 		break;
2419 	case FSACTL_CLOSE_GET_ADAPTER_FIB:
2420 	case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB:
2421 		debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2422 		/* don't do anything here */
2423 		break;
2424 	case FSACTL_MINIPORT_REV_CHECK:
2425 		arg = *(caddr_t*)arg;
2426 	case FSACTL_LNX_MINIPORT_REV_CHECK:
2427 		debug(1, "FSACTL_MINIPORT_REV_CHECK");
2428 		error = aac_rev_check(sc, arg);
2429 		break;
2430 	case FSACTL_QUERY_DISK:
2431 		arg = *(caddr_t*)arg;
2432 	case FSACTL_LNX_QUERY_DISK:
2433 		debug(1, "FSACTL_QUERY_DISK");
2434 		error = aac_query_disk(sc, arg);
2435 			break;
2436 	case FSACTL_DELETE_DISK:
2437 	case FSACTL_LNX_DELETE_DISK:
2438 		/*
2439 		 * We don't trust the underland to tell us when to delete a
2440 		 * container, rather we rely on an AIF coming from the
2441 		 * controller
2442 		 */
2443 		error = 0;
2444 		break;
2445 	default:
2446 		debug(1, "unsupported cmd 0x%lx\n", cmd);
2447 		error = EINVAL;
2448 		break;
2449 	}
2450 	return(error);
2451 }
2452 
2453 static int
2454 aac_poll(dev_t dev, int poll_events, d_thread_t *td)
2455 {
2456 	struct aac_softc *sc;
2457 	int revents;
2458 
2459 	sc = dev->si_drv1;
2460 	revents = 0;
2461 
2462 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2463 	if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2464 		if (sc->aac_aifq_tail != sc->aac_aifq_head)
2465 			revents |= poll_events & (POLLIN | POLLRDNORM);
2466 	}
2467 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2468 
2469 	if (revents == 0) {
2470 		if (poll_events & (POLLIN | POLLRDNORM))
2471 			selrecord(td, &sc->rcv_select);
2472 	}
2473 
2474 	return (revents);
2475 }
2476 
2477 /*
2478  * Send a FIB supplied from userspace
2479  */
2480 static int
2481 aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2482 {
2483 	struct aac_command *cm;
2484 	int size, error;
2485 
2486 	debug_called(2);
2487 
2488 	cm = NULL;
2489 
2490 	/*
2491 	 * Get a command
2492 	 */
2493 	if (aac_alloc_command(sc, &cm)) {
2494 		error = EBUSY;
2495 		goto out;
2496 	}
2497 
2498 	/*
2499 	 * Fetch the FIB header, then re-copy to get data as well.
2500 	 */
2501 	if ((error = copyin(ufib, cm->cm_fib,
2502 			    sizeof(struct aac_fib_header))) != 0)
2503 		goto out;
2504 	size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2505 	if (size > sizeof(struct aac_fib)) {
2506 		device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n",
2507 			      size, sizeof(struct aac_fib));
2508 		size = sizeof(struct aac_fib);
2509 	}
2510 	if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2511 		goto out;
2512 	cm->cm_fib->Header.Size = size;
2513 	cm->cm_timestamp = time_second;
2514 
2515 	/*
2516 	 * Pass the FIB to the controller, wait for it to complete.
2517 	 */
2518 	if ((error = aac_wait_command(cm, 30)) != 0) {	/* XXX user timeout? */
2519 		printf("aac_wait_command return %d\n", error);
2520 		goto out;
2521 	}
2522 
2523 	/*
2524 	 * Copy the FIB and data back out to the caller.
2525 	 */
2526 	size = cm->cm_fib->Header.Size;
2527 	if (size > sizeof(struct aac_fib)) {
2528 		device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n",
2529 			      size, sizeof(struct aac_fib));
2530 		size = sizeof(struct aac_fib);
2531 	}
2532 	error = copyout(cm->cm_fib, ufib, size);
2533 
2534 out:
2535 	if (cm != NULL) {
2536 		aac_release_command(cm);
2537 	}
2538 	return(error);
2539 }
2540 
2541 /*
2542  * Handle an AIF sent to us by the controller; queue it for later reference.
2543  * If the queue fills up, then drop the older entries.
2544  */
2545 static void
2546 aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2547 {
2548 	struct aac_aif_command *aif;
2549 	struct aac_container *co, *co_next;
2550 	struct aac_mntinfo *mi;
2551 	struct aac_mntinforesp *mir = NULL;
2552 	u_int16_t rsize;
2553 	int next, found;
2554 	int added = 0, i = 0;
2555 
2556 	debug_called(2);
2557 
2558 	aif = (struct aac_aif_command*)&fib->data[0];
2559 	aac_print_aif(sc, aif);
2560 
2561 	/* Is it an event that we should care about? */
2562 	switch (aif->command) {
2563 	case AifCmdEventNotify:
2564 		switch (aif->data.EN.type) {
2565 		case AifEnAddContainer:
2566 		case AifEnDeleteContainer:
2567 			/*
2568 			 * A container was added or deleted, but the message
2569 			 * doesn't tell us anything else!  Re-enumerate the
2570 			 * containers and sort things out.
2571 			 */
2572 			aac_alloc_sync_fib(sc, &fib, 0);
2573 			mi = (struct aac_mntinfo *)&fib->data[0];
2574 			do {
2575 				/*
2576 				 * Ask the controller for its containers one at
2577 				 * a time.
2578 				 * XXX What if the controller's list changes
2579 				 * midway through this enumaration?
2580 				 * XXX This should be done async.
2581 				 */
2582 				bzero(mi, sizeof(struct aac_mntinfo));
2583 				mi->Command = VM_NameServe;
2584 				mi->MntType = FT_FILESYS;
2585 				mi->MntCount = i;
2586 				rsize = sizeof(mir);
2587 				if (aac_sync_fib(sc, ContainerCommand, 0, fib,
2588 						 sizeof(struct aac_mntinfo))) {
2589 					debug(2, "Error probing container %d\n",
2590 					      i);
2591 					continue;
2592 				}
2593 				mir = (struct aac_mntinforesp *)&fib->data[0];
2594 				/*
2595 				 * Check the container against our list.
2596 				 * co->co_found was already set to 0 in a
2597 				 * previous run.
2598 				 */
2599 				if ((mir->Status == ST_OK) &&
2600 				    (mir->MntTable[0].VolType != CT_NONE)) {
2601 					found = 0;
2602 					TAILQ_FOREACH(co,
2603 						      &sc->aac_container_tqh,
2604 						      co_link) {
2605 						if (co->co_mntobj.ObjectId ==
2606 						    mir->MntTable[0].ObjectId) {
2607 							co->co_found = 1;
2608 							found = 1;
2609 							break;
2610 						}
2611 					}
2612 					/*
2613 					 * If the container matched, continue
2614 					 * in the list.
2615 					 */
2616 					if (found) {
2617 						i++;
2618 						continue;
2619 					}
2620 
2621 					/*
2622 					 * This is a new container.  Do all the
2623 					 * appropriate things to set it up.						 */
2624 					aac_add_container(sc, mir, 1);
2625 					added = 1;
2626 				}
2627 				i++;
2628 			} while ((i < mir->MntRespCount) &&
2629 				 (i < AAC_MAX_CONTAINERS));
2630 			aac_release_sync_fib(sc);
2631 
2632 			/*
2633 			 * Go through our list of containers and see which ones
2634 			 * were not marked 'found'.  Since the controller didn't
2635 			 * list them they must have been deleted.  Do the
2636 			 * appropriate steps to destroy the device.  Also reset
2637 			 * the co->co_found field.
2638 			 */
2639 			co = TAILQ_FIRST(&sc->aac_container_tqh);
2640 			while (co != NULL) {
2641 				if (co->co_found == 0) {
2642 					device_delete_child(sc->aac_dev,
2643 							    co->co_disk);
2644 					co_next = TAILQ_NEXT(co, co_link);
2645 					AAC_LOCK_ACQUIRE(&sc->
2646 							aac_container_lock);
2647 					TAILQ_REMOVE(&sc->aac_container_tqh, co,
2648 						     co_link);
2649 					AAC_LOCK_RELEASE(&sc->
2650 							 aac_container_lock);
2651 					FREE(co, M_AACBUF);
2652 					co = co_next;
2653 				} else {
2654 					co->co_found = 0;
2655 					co = TAILQ_NEXT(co, co_link);
2656 				}
2657 			}
2658 
2659 			/* Attach the newly created containers */
2660 			if (added)
2661 				bus_generic_attach(sc->aac_dev);
2662 
2663 				break;
2664 
2665 		default:
2666 			break;
2667 		}
2668 
2669 	default:
2670 		break;
2671 	}
2672 
2673 	/* Copy the AIF data to the AIF queue for ioctl retrieval */
2674 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2675 	next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2676 	if (next != sc->aac_aifq_tail) {
2677 		bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2678 		sc->aac_aifq_head = next;
2679 
2680 		/* On the off chance that someone is sleeping for an aif... */
2681 		if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2682 			wakeup(sc->aac_aifq);
2683 		/* Wakeup any poll()ers */
2684 		selwakeup(&sc->rcv_select);
2685 	}
2686 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2687 
2688 	return;
2689 }
2690 
2691 /*
2692  * Return the Revision of the driver to userspace and check to see if the
2693  * userspace app is possibly compatible.  This is extremely bogus since
2694  * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2695  * returning what the card reported.
2696  */
2697 static int
2698 aac_rev_check(struct aac_softc *sc, caddr_t udata)
2699 {
2700 	struct aac_rev_check rev_check;
2701 	struct aac_rev_check_resp rev_check_resp;
2702 	int error = 0;
2703 
2704 	debug_called(2);
2705 
2706 	/*
2707 	 * Copyin the revision struct from userspace
2708 	 */
2709 	if ((error = copyin(udata, (caddr_t)&rev_check,
2710 			sizeof(struct aac_rev_check))) != 0) {
2711 		return error;
2712 	}
2713 
2714 	debug(2, "Userland revision= %d\n",
2715 	      rev_check.callingRevision.buildNumber);
2716 
2717 	/*
2718 	 * Doctor up the response struct.
2719 	 */
2720 	rev_check_resp.possiblyCompatible = 1;
2721 	rev_check_resp.adapterSWRevision.external.ul =
2722 	    sc->aac_revision.external.ul;
2723 	rev_check_resp.adapterSWRevision.buildNumber =
2724 	    sc->aac_revision.buildNumber;
2725 
2726 	return(copyout((caddr_t)&rev_check_resp, udata,
2727 			sizeof(struct aac_rev_check_resp)));
2728 }
2729 
2730 /*
2731  * Pass the caller the next AIF in their queue
2732  */
2733 static int
2734 aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2735 {
2736 	struct get_adapter_fib_ioctl agf;
2737 	int error, s;
2738 
2739 	debug_called(2);
2740 
2741 	if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2742 
2743 		/*
2744 		 * Check the magic number that we gave the caller.
2745 		 */
2746 		if (agf.AdapterFibContext != (int)sc->aifthread) {
2747 			error = EFAULT;
2748 		} else {
2749 
2750 			s = splbio();
2751 			error = aac_return_aif(sc, agf.AifFib);
2752 
2753 			if ((error == EAGAIN) && (agf.Wait)) {
2754 				sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2755 				while (error == EAGAIN) {
2756 					error = tsleep(sc->aac_aifq, PRIBIO |
2757 						       PCATCH, "aacaif", 0);
2758 					if (error == 0)
2759 						error = aac_return_aif(sc,
2760 						    agf.AifFib);
2761 				}
2762 				sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2763 			}
2764 		splx(s);
2765 		}
2766 	}
2767 	return(error);
2768 }
2769 
2770 /*
2771  * Hand the next AIF off the top of the queue out to userspace.
2772  */
2773 static int
2774 aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2775 {
2776 	int error;
2777 
2778 	debug_called(2);
2779 
2780 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2781 	if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2782 		error = EAGAIN;
2783 	} else {
2784 		error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr,
2785 				sizeof(struct aac_aif_command));
2786 		if (error)
2787 			printf("aac_return_aif: copyout returned %d\n", error);
2788 		if (!error)
2789 			sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) %
2790 					    AAC_AIFQ_LENGTH;
2791 	}
2792 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2793 	return(error);
2794 }
2795 
2796 /*
2797  * Give the userland some information about the container.  The AAC arch
2798  * expects the driver to be a SCSI passthrough type driver, so it expects
2799  * the containers to have b:t:l numbers.  Fake it.
2800  */
2801 static int
2802 aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2803 {
2804 	struct aac_query_disk query_disk;
2805 	struct aac_container *co;
2806 	struct aac_disk	*disk;
2807 	int error, id;
2808 
2809 	debug_called(2);
2810 
2811 	disk = NULL;
2812 
2813 	error = copyin(uptr, (caddr_t)&query_disk,
2814 		       sizeof(struct aac_query_disk));
2815 	if (error)
2816 		return (error);
2817 
2818 	id = query_disk.ContainerNumber;
2819 	if (id == -1)
2820 		return (EINVAL);
2821 
2822 	AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2823 	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2824 		if (co->co_mntobj.ObjectId == id)
2825 			break;
2826 		}
2827 
2828 		if (co == NULL) {
2829 			query_disk.Valid = 0;
2830 			query_disk.Locked = 0;
2831 			query_disk.Deleted = 1;		/* XXX is this right? */
2832 		} else {
2833 			disk = device_get_softc(co->co_disk);
2834 			query_disk.Valid = 1;
2835 			query_disk.Locked =
2836 			    (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2837 			query_disk.Deleted = 0;
2838 			query_disk.Bus = device_get_unit(sc->aac_dev);
2839 			query_disk.Target = disk->unit;
2840 			query_disk.Lun = 0;
2841 			query_disk.UnMapped = 0;
2842 			bcopy(disk->ad_dev_t->si_name,
2843 			      &query_disk.diskDeviceName[0], 10);
2844 		}
2845 	AAC_LOCK_RELEASE(&sc->aac_container_lock);
2846 
2847 	error = copyout((caddr_t)&query_disk, uptr,
2848 			sizeof(struct aac_query_disk));
2849 
2850 	return (error);
2851 }
2852 
2853 static void
2854 aac_get_bus_info(struct aac_softc *sc)
2855 {
2856 	struct aac_fib *fib;
2857 	struct aac_ctcfg *c_cmd;
2858 	struct aac_ctcfg_resp *c_resp;
2859 	struct aac_vmioctl *vmi;
2860 	struct aac_vmi_businf_resp *vmi_resp;
2861 	struct aac_getbusinf businfo;
2862 	struct aac_cam_inf *caminf;
2863 	device_t child;
2864 	int i, found, error;
2865 
2866 	aac_alloc_sync_fib(sc, &fib, 0);
2867 	c_cmd = (struct aac_ctcfg *)&fib->data[0];
2868 	bzero(c_cmd, sizeof(struct aac_ctcfg));
2869 
2870 	c_cmd->Command = VM_ContainerConfig;
2871 	c_cmd->cmd = CT_GET_SCSI_METHOD;
2872 	c_cmd->param = 0;
2873 
2874 	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2875 	    sizeof(struct aac_ctcfg));
2876 	if (error) {
2877 		device_printf(sc->aac_dev, "Error %d sending "
2878 		    "VM_ContainerConfig command\n", error);
2879 		aac_release_sync_fib(sc);
2880 		return;
2881 	}
2882 
2883 	c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
2884 	if (c_resp->Status != ST_OK) {
2885 		device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
2886 		    c_resp->Status);
2887 		aac_release_sync_fib(sc);
2888 		return;
2889 	}
2890 
2891 	sc->scsi_method_id = c_resp->param;
2892 
2893 	vmi = (struct aac_vmioctl *)&fib->data[0];
2894 	bzero(vmi, sizeof(struct aac_vmioctl));
2895 
2896 	vmi->Command = VM_Ioctl;
2897 	vmi->ObjType = FT_DRIVE;
2898 	vmi->MethId = sc->scsi_method_id;
2899 	vmi->ObjId = 0;
2900 	vmi->IoctlCmd = GetBusInfo;
2901 
2902 	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2903 	    sizeof(struct aac_vmioctl));
2904 	if (error) {
2905 		device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
2906 		    error);
2907 		aac_release_sync_fib(sc);
2908 		return;
2909 	}
2910 
2911 	vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
2912 	if (vmi_resp->Status != ST_OK) {
2913 		debug(1, "VM_Ioctl returned %d\n", vmi_resp->Status);
2914 		aac_release_sync_fib(sc);
2915 		return;
2916 	}
2917 
2918 	bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
2919 	aac_release_sync_fib(sc);
2920 
2921 	found = 0;
2922 	for (i = 0; i < businfo.BusCount; i++) {
2923 		if (businfo.BusValid[i] != AAC_BUS_VALID)
2924 			continue;
2925 
2926 		MALLOC(caminf, struct aac_cam_inf *,
2927 		    sizeof(struct aac_cam_inf), M_AACBUF, M_NOWAIT | M_ZERO);
2928 		if (caminf == NULL)
2929 			continue;
2930 
2931 		child = device_add_child(sc->aac_dev, "aacp", -1);
2932 		if (child == NULL) {
2933 			device_printf(sc->aac_dev, "device_add_child failed\n");
2934 			continue;
2935 		}
2936 
2937 		caminf->TargetsPerBus = businfo.TargetsPerBus;
2938 		caminf->BusNumber = i;
2939 		caminf->InitiatorBusId = businfo.InitiatorBusId[i];
2940 		caminf->aac_sc = sc;
2941 
2942 		device_set_ivars(child, caminf);
2943 		device_set_desc(child, "SCSI Passthrough Bus");
2944 
2945 		found = 1;
2946 	}
2947 
2948 	if (found)
2949 		bus_generic_attach(sc->aac_dev);
2950 
2951 	return;
2952 }
2953