xref: /dragonfly/sys/dev/raid/mly/mly.c (revision 1558c73f)
1 /*-
2  * Copyright (c) 2000, 2001 Michael Smith
3  * Copyright (c) 2000 BSDi
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  *	$FreeBSD: src/sys/dev/mly/mly.c,v 1.3.2.3 2001/03/05 20:17:24 msmith Exp $
28  *	$DragonFly: src/sys/dev/raid/mly/mly.c,v 1.20 2008/02/10 00:01:03 pavalos Exp $
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/malloc.h>
34 #include <sys/kernel.h>
35 #include <sys/bus.h>
36 #include <sys/conf.h>
37 #include <sys/device.h>
38 #include <sys/ctype.h>
39 #include <sys/ioccom.h>
40 #include <sys/stat.h>
41 #include <sys/rman.h>
42 #include <sys/thread2.h>
43 
44 #include <bus/cam/cam.h>
45 #include <bus/cam/cam_ccb.h>
46 #include <bus/cam/cam_periph.h>
47 #include <bus/cam/cam_sim.h>
48 #include <bus/cam/cam_xpt_sim.h>
49 #include <bus/cam/scsi/scsi_all.h>
50 #include <bus/cam/scsi/scsi_message.h>
51 
52 #include <bus/pci/pcireg.h>
53 #include <bus/pci/pcivar.h>
54 
55 #include "mlyreg.h"
56 #include "mlyio.h"
57 #include "mlyvar.h"
58 #include "mly_tables.h"
59 
60 static int	mly_probe(device_t dev);
61 static int	mly_attach(device_t dev);
62 static int	mly_pci_attach(struct mly_softc *sc);
63 static int	mly_detach(device_t dev);
64 static int	mly_shutdown(device_t dev);
65 static void	mly_intr(void *arg);
66 
67 static int	mly_sg_map(struct mly_softc *sc);
68 static void	mly_sg_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error);
69 static int	mly_mmbox_map(struct mly_softc *sc);
70 static void	mly_mmbox_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error);
71 static void	mly_free(struct mly_softc *sc);
72 
73 static int	mly_get_controllerinfo(struct mly_softc *sc);
74 static void	mly_scan_devices(struct mly_softc *sc);
75 static void	mly_rescan_btl(struct mly_softc *sc, int bus, int target);
76 static void	mly_complete_rescan(struct mly_command *mc);
77 static int	mly_get_eventstatus(struct mly_softc *sc);
78 static int	mly_enable_mmbox(struct mly_softc *sc);
79 static int	mly_flush(struct mly_softc *sc);
80 static int	mly_ioctl(struct mly_softc *sc, struct mly_command_ioctl *ioctl, void **data,
81 			  size_t datasize, u_int8_t *status, void *sense_buffer, size_t *sense_length);
82 static void	mly_check_event(struct mly_softc *sc);
83 static void	mly_fetch_event(struct mly_softc *sc);
84 static void	mly_complete_event(struct mly_command *mc);
85 static void	mly_process_event(struct mly_softc *sc, struct mly_event *me);
86 static void	mly_periodic(void *data);
87 
88 static int	mly_immediate_command(struct mly_command *mc);
89 static int	mly_start(struct mly_command *mc);
90 static void	mly_done(struct mly_softc *sc);
91 static void	mly_complete(void *context, int pending);
92 
93 static int	mly_alloc_command(struct mly_softc *sc, struct mly_command **mcp);
94 static void	mly_release_command(struct mly_command *mc);
95 static void	mly_alloc_commands_map(void *arg, bus_dma_segment_t *segs, int nseg, int error);
96 static int	mly_alloc_commands(struct mly_softc *sc);
97 static void	mly_release_commands(struct mly_softc *sc);
98 static void	mly_map_command(struct mly_command *mc);
99 static void	mly_unmap_command(struct mly_command *mc);
100 
101 static int	mly_cam_attach(struct mly_softc *sc);
102 static void	mly_cam_detach(struct mly_softc *sc);
103 static void	mly_cam_rescan_btl(struct mly_softc *sc, int bus, int target);
104 static void	mly_cam_rescan_callback(struct cam_periph *periph, union ccb *ccb);
105 static void	mly_cam_action(struct cam_sim *sim, union ccb *ccb);
106 static int	mly_cam_action_io(struct cam_sim *sim, struct ccb_scsiio *csio);
107 static void	mly_cam_poll(struct cam_sim *sim);
108 static void	mly_cam_complete(struct mly_command *mc);
109 static struct cam_periph *mly_find_periph(struct mly_softc *sc, int bus, int target);
110 static int	mly_name_device(struct mly_softc *sc, int bus, int target);
111 
112 static int	mly_fwhandshake(struct mly_softc *sc);
113 
114 static void	mly_describe_controller(struct mly_softc *sc);
115 #ifdef MLY_DEBUG
116 static void	mly_printstate(struct mly_softc *sc);
117 static void	mly_print_command(struct mly_command *mc);
118 static void	mly_print_packet(struct mly_command *mc);
119 static void	mly_panic(struct mly_softc *sc, char *reason);
120 #endif
121 void		mly_print_controller(int controller);
122 static int	mly_timeout(struct mly_softc *sc);
123 
124 
125 static d_open_t		mly_user_open;
126 static d_close_t	mly_user_close;
127 static d_ioctl_t	mly_user_ioctl;
128 static int	mly_user_command(struct mly_softc *sc, struct mly_user_command *uc);
129 static int	mly_user_health(struct mly_softc *sc, struct mly_user_health *uh);
130 
131 #define MLY_CMD_TIMEOUT		20
132 
133 static device_method_t mly_methods[] = {
134     /* Device interface */
135     DEVMETHOD(device_probe,	mly_probe),
136     DEVMETHOD(device_attach,	mly_attach),
137     DEVMETHOD(device_detach,	mly_detach),
138     DEVMETHOD(device_shutdown,	mly_shutdown),
139     { 0, 0 }
140 };
141 
142 static driver_t mly_pci_driver = {
143 	"mly",
144 	mly_methods,
145 	sizeof(struct mly_softc)
146 };
147 
148 static devclass_t	mly_devclass;
149 DRIVER_MODULE(mly, pci, mly_pci_driver, mly_devclass, 0, 0);
150 
151 #define MLY_CDEV_MAJOR  158
152 
153 static struct dev_ops mly_ops = {
154     { "mly", MLY_CDEV_MAJOR, 0 },
155     .d_open =	mly_user_open,
156     .d_close =	mly_user_close,
157     .d_ioctl =	mly_user_ioctl,
158 };
159 
160 /********************************************************************************
161  ********************************************************************************
162                                                                  Device Interface
163  ********************************************************************************
164  ********************************************************************************/
165 
166 static struct mly_ident
167 {
168     u_int16_t		vendor;
169     u_int16_t		device;
170     u_int16_t		subvendor;
171     u_int16_t		subdevice;
172     int			hwif;
173     char		*desc;
174 } mly_identifiers[] = {
175     {0x1069, 0xba56, 0x1069, 0x0040, MLY_HWIF_STRONGARM, "Mylex eXtremeRAID 2000"},
176     {0x1069, 0xba56, 0x1069, 0x0030, MLY_HWIF_STRONGARM, "Mylex eXtremeRAID 3000"},
177     {0x1069, 0x0050, 0x1069, 0x0050, MLY_HWIF_I960RX,    "Mylex AcceleRAID 352"},
178     {0x1069, 0x0050, 0x1069, 0x0052, MLY_HWIF_I960RX,    "Mylex AcceleRAID 170"},
179     {0x1069, 0x0050, 0x1069, 0x0054, MLY_HWIF_I960RX,    "Mylex AcceleRAID 160"},
180     {0, 0, 0, 0, 0, 0}
181 };
182 
183 /********************************************************************************
184  * Compare the provided PCI device with the list we support.
185  */
186 static int
187 mly_probe(device_t dev)
188 {
189     struct mly_ident	*m;
190 
191     debug_called(1);
192 
193     for (m = mly_identifiers; m->vendor != 0; m++) {
194 	if ((m->vendor == pci_get_vendor(dev)) &&
195 	    (m->device == pci_get_device(dev)) &&
196 	    ((m->subvendor == 0) || ((m->subvendor == pci_get_subvendor(dev)) &&
197 				     (m->subdevice == pci_get_subdevice(dev))))) {
198 
199 	    device_set_desc(dev, m->desc);
200 	    return(BUS_PROBE_DEFAULT);	/* allow room to be overridden */
201 	}
202     }
203     return(ENXIO);
204 }
205 
206 /********************************************************************************
207  * Initialise the controller and softc
208  */
209 static int
210 mly_attach(device_t dev)
211 {
212     struct mly_softc	*sc = device_get_softc(dev);
213     int			error;
214 
215     debug_called(1);
216 
217     sc->mly_dev = dev;
218 
219 #ifdef MLY_DEBUG
220     if (device_get_unit(sc->mly_dev) == 0)
221 	mly_softc0 = sc;
222 #endif
223 
224     /*
225      * Do PCI-specific initialisation.
226      */
227     if ((error = mly_pci_attach(sc)) != 0)
228 	goto out;
229 
230     callout_init(&sc->mly_periodic);
231     callout_init(&sc->mly_timeout);
232 
233     /*
234      * Initialise per-controller queues.
235      */
236     mly_initq_free(sc);
237     mly_initq_busy(sc);
238     mly_initq_complete(sc);
239 
240     /*
241      * Initialise command-completion task.
242      */
243     TASK_INIT(&sc->mly_task_complete, 0, mly_complete, sc);
244 
245     /* disable interrupts before we start talking to the controller */
246     MLY_MASK_INTERRUPTS(sc);
247 
248     /*
249      * Wait for the controller to come ready, handshake with the firmware if required.
250      * This is typically only necessary on platforms where the controller BIOS does not
251      * run.
252      */
253     if ((error = mly_fwhandshake(sc)))
254 	goto out;
255 
256     /*
257      * Allocate initial command buffers.
258      */
259     if ((error = mly_alloc_commands(sc)))
260 	goto out;
261 
262     /*
263      * Obtain controller feature information
264      */
265     if ((error = mly_get_controllerinfo(sc)))
266 	goto out;
267 
268     /*
269      * Reallocate command buffers now we know how many we want.
270      */
271     mly_release_commands(sc);
272     if ((error = mly_alloc_commands(sc)))
273 	goto out;
274 
275     /*
276      * Get the current event counter for health purposes, populate the initial
277      * health status buffer.
278      */
279     if ((error = mly_get_eventstatus(sc)))
280 	goto out;
281 
282     /*
283      * Enable memory-mailbox mode.
284      */
285     if ((error = mly_enable_mmbox(sc)))
286 	goto out;
287 
288     /*
289      * Attach to CAM.
290      */
291     if ((error = mly_cam_attach(sc)))
292 	goto out;
293 
294     /*
295      * Print a little information about the controller
296      */
297     mly_describe_controller(sc);
298 
299     /*
300      * Mark all attached devices for rescan.
301      */
302     mly_scan_devices(sc);
303 
304     /*
305      * Instigate the first status poll immediately.  Rescan completions won't
306      * happen until interrupts are enabled, which should still be before
307      * the SCSI subsystem gets to us, courtesy of the "SCSI settling delay".
308      */
309     mly_periodic((void *)sc);
310 
311     /*
312      * Create the control device.
313      */
314     dev_ops_add(&mly_ops, -1, device_get_unit(sc->mly_dev));
315     sc->mly_dev_t = make_dev(&mly_ops, device_get_unit(sc->mly_dev),
316     				UID_ROOT, GID_OPERATOR, S_IRUSR | S_IWUSR,
317 				"mly%d", device_get_unit(sc->mly_dev));
318     sc->mly_dev_t->si_drv1 = sc;
319 
320     /* enable interrupts now */
321     MLY_UNMASK_INTERRUPTS(sc);
322 
323 #ifdef MLY_DEBUG
324     callout_reset(&sc->mly_timeout, MLY_CMD_TIMEOUT * hz,
325 		  (timeout_t *)mly_timeout, sc);
326 #endif
327 
328  out:
329     if (error != 0)
330 	mly_free(sc);
331     return(error);
332 }
333 
334 /********************************************************************************
335  * Perform PCI-specific initialisation.
336  */
337 static int
338 mly_pci_attach(struct mly_softc *sc)
339 {
340     int			i, error;
341     u_int32_t		command;
342 
343     debug_called(1);
344 
345     /* assume failure is 'not configured' */
346     error = ENXIO;
347 
348     /*
349      * Verify that the adapter is correctly set up in PCI space.
350      *
351      * XXX we shouldn't do this; the PCI code should.
352      */
353     command = pci_read_config(sc->mly_dev, PCIR_COMMAND, 2);
354     command |= PCIM_CMD_BUSMASTEREN;
355     pci_write_config(sc->mly_dev, PCIR_COMMAND, command, 2);
356     command = pci_read_config(sc->mly_dev, PCIR_COMMAND, 2);
357     if (!(command & PCIM_CMD_BUSMASTEREN)) {
358 	mly_printf(sc, "can't enable busmaster feature\n");
359 	goto fail;
360     }
361     if ((command & PCIM_CMD_MEMEN) == 0) {
362 	mly_printf(sc, "memory window not available\n");
363 	goto fail;
364     }
365 
366     /*
367      * Allocate the PCI register window.
368      */
369     sc->mly_regs_rid = PCIR_BAR(0);	/* first base address register */
370     if ((sc->mly_regs_resource = bus_alloc_resource_any(sc->mly_dev,
371 	    SYS_RES_MEMORY, &sc->mly_regs_rid, RF_ACTIVE)) == NULL) {
372 	mly_printf(sc, "can't allocate register window\n");
373 	goto fail;
374     }
375     sc->mly_btag = rman_get_bustag(sc->mly_regs_resource);
376     sc->mly_bhandle = rman_get_bushandle(sc->mly_regs_resource);
377 
378     /*
379      * Allocate and connect our interrupt.
380      */
381     sc->mly_irq_rid = 0;
382     if ((sc->mly_irq = bus_alloc_resource_any(sc->mly_dev, SYS_RES_IRQ,
383 		    &sc->mly_irq_rid, RF_SHAREABLE | RF_ACTIVE)) == NULL) {
384 	mly_printf(sc, "can't allocate interrupt\n");
385 	goto fail;
386     }
387     error = bus_setup_intr(sc->mly_dev, sc->mly_irq, 0,
388 			   mly_intr, sc, &sc->mly_intr, NULL);
389     if (error) {
390 	mly_printf(sc, "can't set up interrupt\n");
391 	goto fail;
392     }
393 
394     /* assume failure is 'out of memory' */
395     error = ENOMEM;
396 
397     /*
398      * Allocate the parent bus DMA tag appropriate for our PCI interface.
399      *
400      * Note that all of these controllers are 64-bit capable.
401      */
402     if (bus_dma_tag_create(NULL, 			/* parent */
403 			   1, 0, 			/* alignment, boundary */
404 			   BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
405 			   BUS_SPACE_MAXADDR, 		/* highaddr */
406 			   NULL, NULL, 			/* filter, filterarg */
407 			   MAXBSIZE, MLY_MAX_SGENTRIES,	/* maxsize, nsegments */
408 			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
409 			   BUS_DMA_ALLOCNOW,		/* flags */
410 			   &sc->mly_parent_dmat)) {
411 	mly_printf(sc, "can't allocate parent DMA tag\n");
412 	goto fail;
413     }
414 
415     /*
416      * Create DMA tag for mapping buffers into controller-addressable space.
417      */
418     if (bus_dma_tag_create(sc->mly_parent_dmat, 	/* parent */
419 			   1, 0, 			/* alignment, boundary */
420 			   BUS_SPACE_MAXADDR,		/* lowaddr */
421 			   BUS_SPACE_MAXADDR, 		/* highaddr */
422 			   NULL, NULL, 			/* filter, filterarg */
423 			   MAXBSIZE, MLY_MAX_SGENTRIES,	/* maxsize, nsegments */
424 			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
425 			   0,				/* flags */
426 			   &sc->mly_buffer_dmat)) {
427 	mly_printf(sc, "can't allocate buffer DMA tag\n");
428 	goto fail;
429     }
430 
431     /*
432      * Initialise the DMA tag for command packets.
433      */
434     if (bus_dma_tag_create(sc->mly_parent_dmat,		/* parent */
435 			   1, 0, 			/* alignment, boundary */
436 			   BUS_SPACE_MAXADDR,		/* lowaddr */
437 			   BUS_SPACE_MAXADDR, 		/* highaddr */
438 			   NULL, NULL, 			/* filter, filterarg */
439 			   sizeof(union mly_command_packet) * MLY_MAX_COMMANDS, 1,	/* maxsize, nsegments */
440 			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
441 			   BUS_DMA_ALLOCNOW,		/* flags */
442 			   &sc->mly_packet_dmat)) {
443 	mly_printf(sc, "can't allocate command packet DMA tag\n");
444 	goto fail;
445     }
446 
447     /*
448      * Detect the hardware interface version
449      */
450     for (i = 0; mly_identifiers[i].vendor != 0; i++) {
451 	if ((mly_identifiers[i].vendor == pci_get_vendor(sc->mly_dev)) &&
452 	    (mly_identifiers[i].device == pci_get_device(sc->mly_dev))) {
453 	    sc->mly_hwif = mly_identifiers[i].hwif;
454 	    switch(sc->mly_hwif) {
455 	    case MLY_HWIF_I960RX:
456 		debug(1, "set hardware up for i960RX");
457 		sc->mly_doorbell_true = 0x00;
458 		sc->mly_command_mailbox =  MLY_I960RX_COMMAND_MAILBOX;
459 		sc->mly_status_mailbox =   MLY_I960RX_STATUS_MAILBOX;
460 		sc->mly_idbr =             MLY_I960RX_IDBR;
461 		sc->mly_odbr =             MLY_I960RX_ODBR;
462 		sc->mly_error_status =     MLY_I960RX_ERROR_STATUS;
463 		sc->mly_interrupt_status = MLY_I960RX_INTERRUPT_STATUS;
464 		sc->mly_interrupt_mask =   MLY_I960RX_INTERRUPT_MASK;
465 		break;
466 	    case MLY_HWIF_STRONGARM:
467 		debug(1, "set hardware up for StrongARM");
468 		sc->mly_doorbell_true = 0xff;		/* doorbell 'true' is 0 */
469 		sc->mly_command_mailbox =  MLY_STRONGARM_COMMAND_MAILBOX;
470 		sc->mly_status_mailbox =   MLY_STRONGARM_STATUS_MAILBOX;
471 		sc->mly_idbr =             MLY_STRONGARM_IDBR;
472 		sc->mly_odbr =             MLY_STRONGARM_ODBR;
473 		sc->mly_error_status =     MLY_STRONGARM_ERROR_STATUS;
474 		sc->mly_interrupt_status = MLY_STRONGARM_INTERRUPT_STATUS;
475 		sc->mly_interrupt_mask =   MLY_STRONGARM_INTERRUPT_MASK;
476 		break;
477 	    }
478 	    break;
479 	}
480     }
481 
482     /*
483      * Create the scatter/gather mappings.
484      */
485     if ((error = mly_sg_map(sc)))
486 	goto fail;
487 
488     /*
489      * Allocate and map the memory mailbox
490      */
491     if ((error = mly_mmbox_map(sc)))
492 	goto fail;
493 
494     error = 0;
495 
496 fail:
497     return(error);
498 }
499 
500 /********************************************************************************
501  * Shut the controller down and detach all our resources.
502  */
503 static int
504 mly_detach(device_t dev)
505 {
506     int			error;
507 
508     if ((error = mly_shutdown(dev)) != 0)
509 	return(error);
510 
511     mly_free(device_get_softc(dev));
512     return(0);
513 }
514 
515 /********************************************************************************
516  * Bring the controller to a state where it can be safely left alone.
517  *
518  * Note that it should not be necessary to wait for any outstanding commands,
519  * as they should be completed prior to calling here.
520  *
521  * XXX this applies for I/O, but not status polls; we should beware of
522  *     the case where a status command is running while we detach.
523  */
524 static int
525 mly_shutdown(device_t dev)
526 {
527     struct mly_softc	*sc = device_get_softc(dev);
528 
529     debug_called(1);
530 
531     if (sc->mly_state & MLY_STATE_OPEN)
532 	return(EBUSY);
533 
534     /* kill the periodic event */
535     callout_stop(&sc->mly_periodic);
536 
537     /* flush controller */
538     mly_printf(sc, "flushing cache...");
539     kprintf("%s\n", mly_flush(sc) ? "failed" : "done");
540 
541     MLY_MASK_INTERRUPTS(sc);
542 
543     return(0);
544 }
545 
546 /*******************************************************************************
547  * Take an interrupt, or be poked by other code to look for interrupt-worthy
548  * status.
549  */
550 static void
551 mly_intr(void *arg)
552 {
553     struct mly_softc	*sc = (struct mly_softc *)arg;
554 
555     debug_called(2);
556 
557     mly_done(sc);
558 };
559 
560 /********************************************************************************
561  ********************************************************************************
562                                                 Bus-dependant Resource Management
563  ********************************************************************************
564  ********************************************************************************/
565 
566 /********************************************************************************
567  * Allocate memory for the scatter/gather tables
568  */
569 static int
570 mly_sg_map(struct mly_softc *sc)
571 {
572     size_t	segsize;
573 
574     debug_called(1);
575 
576     /*
577      * Create a single tag describing a region large enough to hold all of
578      * the s/g lists we will need.
579      */
580     segsize = sizeof(struct mly_sg_entry) * MLY_MAX_COMMANDS *MLY_MAX_SGENTRIES;
581     if (bus_dma_tag_create(sc->mly_parent_dmat,		/* parent */
582 			   1, 0, 			/* alignment,boundary */
583 			   BUS_SPACE_MAXADDR,		/* lowaddr */
584 			   BUS_SPACE_MAXADDR, 		/* highaddr */
585 			   NULL, NULL, 			/* filter, filterarg */
586 			   segsize, 1,			/* maxsize, nsegments */
587 			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
588 			   BUS_DMA_ALLOCNOW,		/* flags */
589 			   &sc->mly_sg_dmat)) {
590 	mly_printf(sc, "can't allocate scatter/gather DMA tag\n");
591 	return(ENOMEM);
592     }
593 
594     /*
595      * Allocate enough s/g maps for all commands and permanently map them into
596      * controller-visible space.
597      *
598      * XXX this assumes we can get enough space for all the s/g maps in one
599      * contiguous slab.
600      */
601     if (bus_dmamem_alloc(sc->mly_sg_dmat, (void **)&sc->mly_sg_table,
602 			 BUS_DMA_NOWAIT, &sc->mly_sg_dmamap)) {
603 	mly_printf(sc, "can't allocate s/g table\n");
604 	return(ENOMEM);
605     }
606     if (bus_dmamap_load(sc->mly_sg_dmat, sc->mly_sg_dmamap, sc->mly_sg_table,
607 			segsize, mly_sg_map_helper, sc, BUS_DMA_NOWAIT) != 0)
608 	return (ENOMEM);
609     return(0);
610 }
611 
612 /********************************************************************************
613  * Save the physical address of the base of the s/g table.
614  */
615 static void
616 mly_sg_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
617 {
618     struct mly_softc	*sc = (struct mly_softc *)arg;
619 
620     debug_called(1);
621 
622     /* save base of s/g table's address in bus space */
623     sc->mly_sg_busaddr = segs->ds_addr;
624 }
625 
626 /********************************************************************************
627  * Allocate memory for the memory-mailbox interface
628  */
629 static int
630 mly_mmbox_map(struct mly_softc *sc)
631 {
632 
633     /*
634      * Create a DMA tag for a single contiguous region large enough for the
635      * memory mailbox structure.
636      */
637     if (bus_dma_tag_create(sc->mly_parent_dmat,		/* parent */
638 			   1, 0, 			/* alignment,boundary */
639 			   BUS_SPACE_MAXADDR,		/* lowaddr */
640 			   BUS_SPACE_MAXADDR, 		/* highaddr */
641 			   NULL, NULL, 			/* filter, filterarg */
642 			   sizeof(struct mly_mmbox), 1,	/* maxsize, nsegments */
643 			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
644 			   BUS_DMA_ALLOCNOW,		/* flags */
645 			   &sc->mly_mmbox_dmat)) {
646 	mly_printf(sc, "can't allocate memory mailbox DMA tag\n");
647 	return(ENOMEM);
648     }
649 
650     /*
651      * Allocate the buffer
652      */
653     if (bus_dmamem_alloc(sc->mly_mmbox_dmat, (void **)&sc->mly_mmbox, BUS_DMA_NOWAIT, &sc->mly_mmbox_dmamap)) {
654 	mly_printf(sc, "can't allocate memory mailbox\n");
655 	return(ENOMEM);
656     }
657     if (bus_dmamap_load(sc->mly_mmbox_dmat, sc->mly_mmbox_dmamap, sc->mly_mmbox,
658 			sizeof(struct mly_mmbox), mly_mmbox_map_helper, sc,
659 			BUS_DMA_NOWAIT) != 0)
660 	return (ENOMEM);
661     bzero(sc->mly_mmbox, sizeof(*sc->mly_mmbox));
662     return(0);
663 
664 }
665 
666 /********************************************************************************
667  * Save the physical address of the memory mailbox
668  */
669 static void
670 mly_mmbox_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
671 {
672     struct mly_softc	*sc = (struct mly_softc *)arg;
673 
674     debug_called(1);
675 
676     sc->mly_mmbox_busaddr = segs->ds_addr;
677 }
678 
679 /********************************************************************************
680  * Free all of the resources associated with (sc)
681  *
682  * Should not be called if the controller is active.
683  */
684 static void
685 mly_free(struct mly_softc *sc)
686 {
687 
688     debug_called(1);
689 
690     /* Remove the management device */
691     destroy_dev(sc->mly_dev_t);
692 
693     /* detach from CAM */
694     mly_cam_detach(sc);
695 
696     /* release command memory */
697     mly_release_commands(sc);
698 
699     /* throw away the controllerinfo structure */
700     if (sc->mly_controllerinfo != NULL)
701 	kfree(sc->mly_controllerinfo, M_DEVBUF);
702 
703     /* throw away the controllerparam structure */
704     if (sc->mly_controllerparam != NULL)
705 	kfree(sc->mly_controllerparam, M_DEVBUF);
706 
707     /* destroy data-transfer DMA tag */
708     if (sc->mly_buffer_dmat)
709 	bus_dma_tag_destroy(sc->mly_buffer_dmat);
710 
711     /* free and destroy DMA memory and tag for s/g lists */
712     if (sc->mly_sg_table) {
713 	bus_dmamap_unload(sc->mly_sg_dmat, sc->mly_sg_dmamap);
714 	bus_dmamem_free(sc->mly_sg_dmat, sc->mly_sg_table, sc->mly_sg_dmamap);
715     }
716     if (sc->mly_sg_dmat)
717 	bus_dma_tag_destroy(sc->mly_sg_dmat);
718 
719     /* free and destroy DMA memory and tag for memory mailbox */
720     if (sc->mly_mmbox) {
721 	bus_dmamap_unload(sc->mly_mmbox_dmat, sc->mly_mmbox_dmamap);
722 	bus_dmamem_free(sc->mly_mmbox_dmat, sc->mly_mmbox, sc->mly_mmbox_dmamap);
723     }
724     if (sc->mly_mmbox_dmat)
725 	bus_dma_tag_destroy(sc->mly_mmbox_dmat);
726 
727     /* disconnect the interrupt handler */
728     if (sc->mly_intr)
729 	bus_teardown_intr(sc->mly_dev, sc->mly_irq, sc->mly_intr);
730     if (sc->mly_irq != NULL)
731 	bus_release_resource(sc->mly_dev, SYS_RES_IRQ, sc->mly_irq_rid, sc->mly_irq);
732 
733     /* destroy the parent DMA tag */
734     if (sc->mly_parent_dmat)
735 	bus_dma_tag_destroy(sc->mly_parent_dmat);
736 
737     /* release the register window mapping */
738     if (sc->mly_regs_resource != NULL)
739 	bus_release_resource(sc->mly_dev, SYS_RES_MEMORY, sc->mly_regs_rid, sc->mly_regs_resource);
740 }
741 
742 /********************************************************************************
743  ********************************************************************************
744                                                                  Command Wrappers
745  ********************************************************************************
746  ********************************************************************************/
747 
748 /********************************************************************************
749  * Fill in the mly_controllerinfo and mly_controllerparam fields in the softc.
750  */
751 static int
752 mly_get_controllerinfo(struct mly_softc *sc)
753 {
754     struct mly_command_ioctl	mci;
755     u_int8_t			status;
756     int				error;
757 
758     debug_called(1);
759 
760     if (sc->mly_controllerinfo != NULL)
761 	kfree(sc->mly_controllerinfo, M_DEVBUF);
762 
763     /* build the getcontrollerinfo ioctl and send it */
764     bzero(&mci, sizeof(mci));
765     sc->mly_controllerinfo = NULL;
766     mci.sub_ioctl = MDACIOCTL_GETCONTROLLERINFO;
767     if ((error = mly_ioctl(sc, &mci, (void **)&sc->mly_controllerinfo, sizeof(*sc->mly_controllerinfo),
768 			   &status, NULL, NULL)))
769 	return(error);
770     if (status != 0)
771 	return(EIO);
772 
773     if (sc->mly_controllerparam != NULL)
774 	kfree(sc->mly_controllerparam, M_DEVBUF);
775 
776     /* build the getcontrollerparameter ioctl and send it */
777     bzero(&mci, sizeof(mci));
778     sc->mly_controllerparam = NULL;
779     mci.sub_ioctl = MDACIOCTL_GETCONTROLLERPARAMETER;
780     if ((error = mly_ioctl(sc, &mci, (void **)&sc->mly_controllerparam, sizeof(*sc->mly_controllerparam),
781 			   &status, NULL, NULL)))
782 	return(error);
783     if (status != 0)
784 	return(EIO);
785 
786     return(0);
787 }
788 
789 /********************************************************************************
790  * Schedule all possible devices for a rescan.
791  *
792  */
793 static void
794 mly_scan_devices(struct mly_softc *sc)
795 {
796     int		bus, target;
797 
798     debug_called(1);
799 
800     /*
801      * Clear any previous BTL information.
802      */
803     bzero(&sc->mly_btl, sizeof(sc->mly_btl));
804 
805     /*
806      * Mark all devices as requiring a rescan, and let the next
807      * periodic scan collect them.
808      */
809     for (bus = 0; bus < sc->mly_cam_channels; bus++)
810 	if (MLY_BUS_IS_VALID(sc, bus))
811 	    for (target = 0; target < MLY_MAX_TARGETS; target++)
812 		sc->mly_btl[bus][target].mb_flags = MLY_BTL_RESCAN;
813 
814 }
815 
816 /********************************************************************************
817  * Rescan a device, possibly as a consequence of getting an event which suggests
818  * that it may have changed.
819  *
820  * If we suffer resource starvation, we can abandon the rescan as we'll be
821  * retried.
822  */
823 static void
824 mly_rescan_btl(struct mly_softc *sc, int bus, int target)
825 {
826     struct mly_command		*mc;
827     struct mly_command_ioctl	*mci;
828 
829     debug_called(1);
830 
831     /* check that this bus is valid */
832     if (!MLY_BUS_IS_VALID(sc, bus))
833 	return;
834 
835     /* get a command */
836     if (mly_alloc_command(sc, &mc))
837 	return;
838 
839     /* set up the data buffer */
840     mc->mc_data = kmalloc(sizeof(union mly_devinfo), M_DEVBUF, M_INTWAIT | M_ZERO);
841     mc->mc_flags |= MLY_CMD_DATAIN;
842     mc->mc_complete = mly_complete_rescan;
843 
844     /*
845      * Build the ioctl.
846      */
847     mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
848     mci->opcode = MDACMD_IOCTL;
849     mci->addr.phys.controller = 0;
850     mci->timeout.value = 30;
851     mci->timeout.scale = MLY_TIMEOUT_SECONDS;
852     if (MLY_BUS_IS_VIRTUAL(sc, bus)) {
853 	mc->mc_length = mci->data_size = sizeof(struct mly_ioctl_getlogdevinfovalid);
854 	mci->sub_ioctl = MDACIOCTL_GETLOGDEVINFOVALID;
855 	mci->addr.log.logdev = MLY_LOGDEV_ID(sc, bus, target);
856 	debug(1, "logical device %d", mci->addr.log.logdev);
857     } else {
858 	mc->mc_length = mci->data_size = sizeof(struct mly_ioctl_getphysdevinfovalid);
859 	mci->sub_ioctl = MDACIOCTL_GETPHYSDEVINFOVALID;
860 	mci->addr.phys.lun = 0;
861 	mci->addr.phys.target = target;
862 	mci->addr.phys.channel = bus;
863 	debug(1, "physical device %d:%d", mci->addr.phys.channel, mci->addr.phys.target);
864     }
865 
866     /*
867      * Dispatch the command.  If we successfully send the command, clear the rescan
868      * bit.
869      */
870     if (mly_start(mc) != 0) {
871 	mly_release_command(mc);
872     } else {
873 	sc->mly_btl[bus][target].mb_flags &= ~MLY_BTL_RESCAN;	/* success */
874     }
875 }
876 
877 /********************************************************************************
878  * Handle the completion of a rescan operation
879  */
880 static void
881 mly_complete_rescan(struct mly_command *mc)
882 {
883     struct mly_softc				*sc = mc->mc_sc;
884     struct mly_ioctl_getlogdevinfovalid		*ldi;
885     struct mly_ioctl_getphysdevinfovalid	*pdi;
886     struct mly_command_ioctl			*mci;
887     struct mly_btl				btl, *btlp;
888     int						bus, target, rescan;
889 
890     debug_called(1);
891 
892     /*
893      * Recover the bus and target from the command.  We need these even in
894      * the case where we don't have a useful response.
895      */
896     mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
897     if (mci->sub_ioctl == MDACIOCTL_GETLOGDEVINFOVALID) {
898 	bus = MLY_LOGDEV_BUS(sc, mci->addr.log.logdev);
899 	target = MLY_LOGDEV_TARGET(sc, mci->addr.log.logdev);
900     } else {
901 	bus = mci->addr.phys.channel;
902 	target = mci->addr.phys.target;
903     }
904     /* XXX validate bus/target? */
905 
906     /* the default result is 'no device' */
907     bzero(&btl, sizeof(btl));
908 
909     /* if the rescan completed OK, we have possibly-new BTL data */
910     if (mc->mc_status == 0) {
911 	if (mc->mc_length == sizeof(*ldi)) {
912 	    ldi = (struct mly_ioctl_getlogdevinfovalid *)mc->mc_data;
913 	    if ((MLY_LOGDEV_BUS(sc, ldi->logical_device_number) != bus) ||
914 		(MLY_LOGDEV_TARGET(sc, ldi->logical_device_number) != target)) {
915 		mly_printf(sc, "WARNING: BTL rescan for %d:%d returned data for %d:%d instead\n",
916 			   bus, target, MLY_LOGDEV_BUS(sc, ldi->logical_device_number),
917 			   MLY_LOGDEV_TARGET(sc, ldi->logical_device_number));
918 		/* XXX what can we do about this? */
919 	    }
920 	    btl.mb_flags = MLY_BTL_LOGICAL;
921 	    btl.mb_type = ldi->raid_level;
922 	    btl.mb_state = ldi->state;
923 	    debug(1, "BTL rescan for %d returns %s, %s", ldi->logical_device_number,
924 		  mly_describe_code(mly_table_device_type, ldi->raid_level),
925 		  mly_describe_code(mly_table_device_state, ldi->state));
926 	} else if (mc->mc_length == sizeof(*pdi)) {
927 	    pdi = (struct mly_ioctl_getphysdevinfovalid *)mc->mc_data;
928 	    if ((pdi->channel != bus) || (pdi->target != target)) {
929 		mly_printf(sc, "WARNING: BTL rescan for %d:%d returned data for %d:%d instead\n",
930 			   bus, target, pdi->channel, pdi->target);
931 		/* XXX what can we do about this? */
932 	    }
933 	    btl.mb_flags = MLY_BTL_PHYSICAL;
934 	    btl.mb_type = MLY_DEVICE_TYPE_PHYSICAL;
935 	    btl.mb_state = pdi->state;
936 	    btl.mb_speed = pdi->speed;
937 	    btl.mb_width = pdi->width;
938 	    if (pdi->state != MLY_DEVICE_STATE_UNCONFIGURED)
939 		sc->mly_btl[bus][target].mb_flags |= MLY_BTL_PROTECTED;
940 	    debug(1, "BTL rescan for %d:%d returns %s", bus, target,
941 		  mly_describe_code(mly_table_device_state, pdi->state));
942 	} else {
943 	    mly_printf(sc, "BTL rescan result invalid\n");
944 	}
945     }
946 
947     kfree(mc->mc_data, M_DEVBUF);
948     mly_release_command(mc);
949 
950     /*
951      * Decide whether we need to rescan the device.
952      */
953     rescan = 0;
954 
955     /* device type changes (usually between 'nothing' and 'something') */
956     btlp = &sc->mly_btl[bus][target];
957     if (btl.mb_flags != btlp->mb_flags) {
958 	debug(1, "flags changed, rescanning");
959 	rescan = 1;
960     }
961 
962     /* XXX other reasons? */
963 
964     /*
965      * Update BTL information.
966      */
967     *btlp = btl;
968 
969     /*
970      * Perform CAM rescan if required.
971      */
972     if (rescan)
973 	mly_cam_rescan_btl(sc, bus, target);
974 }
975 
976 /********************************************************************************
977  * Get the current health status and set the 'next event' counter to suit.
978  */
979 static int
980 mly_get_eventstatus(struct mly_softc *sc)
981 {
982     struct mly_command_ioctl	mci;
983     struct mly_health_status	*mh;
984     u_int8_t			status;
985     int				error;
986 
987     /* build the gethealthstatus ioctl and send it */
988     bzero(&mci, sizeof(mci));
989     mh = NULL;
990     mci.sub_ioctl = MDACIOCTL_GETHEALTHSTATUS;
991 
992     if ((error = mly_ioctl(sc, &mci, (void **)&mh, sizeof(*mh), &status, NULL, NULL)))
993 	return(error);
994     if (status != 0)
995 	return(EIO);
996 
997     /* get the event counter */
998     sc->mly_event_change = mh->change_counter;
999     sc->mly_event_waiting = mh->next_event;
1000     sc->mly_event_counter = mh->next_event;
1001 
1002     /* save the health status into the memory mailbox */
1003     bcopy(mh, &sc->mly_mmbox->mmm_health.status, sizeof(*mh));
1004 
1005     debug(1, "initial change counter %d, event counter %d", mh->change_counter, mh->next_event);
1006 
1007     kfree(mh, M_DEVBUF);
1008     return(0);
1009 }
1010 
1011 /********************************************************************************
1012  * Enable the memory mailbox mode.
1013  */
1014 static int
1015 mly_enable_mmbox(struct mly_softc *sc)
1016 {
1017     struct mly_command_ioctl	mci;
1018     u_int8_t			*sp, status;
1019     int				error;
1020 
1021     debug_called(1);
1022 
1023     /* build the ioctl and send it */
1024     bzero(&mci, sizeof(mci));
1025     mci.sub_ioctl = MDACIOCTL_SETMEMORYMAILBOX;
1026     /* set buffer addresses */
1027     mci.param.setmemorymailbox.command_mailbox_physaddr =
1028 	sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_command);
1029     mci.param.setmemorymailbox.status_mailbox_physaddr =
1030 	sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_status);
1031     mci.param.setmemorymailbox.health_buffer_physaddr =
1032 	sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_health);
1033 
1034     /* set buffer sizes - abuse of data_size field is revolting */
1035     sp = (u_int8_t *)&mci.data_size;
1036     sp[0] = ((sizeof(union mly_command_packet) * MLY_MMBOX_COMMANDS) / 1024);
1037     sp[1] = (sizeof(union mly_status_packet) * MLY_MMBOX_STATUS) / 1024;
1038     mci.param.setmemorymailbox.health_buffer_size = sizeof(union mly_health_region) / 1024;
1039 
1040     debug(1, "memory mailbox at %p (0x%llx/%d 0x%llx/%d 0x%llx/%d", sc->mly_mmbox,
1041 	  mci.param.setmemorymailbox.command_mailbox_physaddr, sp[0],
1042 	  mci.param.setmemorymailbox.status_mailbox_physaddr, sp[1],
1043 	  mci.param.setmemorymailbox.health_buffer_physaddr,
1044 	  mci.param.setmemorymailbox.health_buffer_size);
1045 
1046     if ((error = mly_ioctl(sc, &mci, NULL, 0, &status, NULL, NULL)))
1047 	return(error);
1048     if (status != 0)
1049 	return(EIO);
1050     sc->mly_state |= MLY_STATE_MMBOX_ACTIVE;
1051     debug(1, "memory mailbox active");
1052     return(0);
1053 }
1054 
1055 /********************************************************************************
1056  * Flush all pending I/O from the controller.
1057  */
1058 static int
1059 mly_flush(struct mly_softc *sc)
1060 {
1061     struct mly_command_ioctl	mci;
1062     u_int8_t			status;
1063     int				error;
1064 
1065     debug_called(1);
1066 
1067     /* build the ioctl */
1068     bzero(&mci, sizeof(mci));
1069     mci.sub_ioctl = MDACIOCTL_FLUSHDEVICEDATA;
1070     mci.param.deviceoperation.operation_device = MLY_OPDEVICE_PHYSICAL_CONTROLLER;
1071 
1072     /* pass it off to the controller */
1073     if ((error = mly_ioctl(sc, &mci, NULL, 0, &status, NULL, NULL)))
1074 	return(error);
1075 
1076     return((status == 0) ? 0 : EIO);
1077 }
1078 
1079 /********************************************************************************
1080  * Perform an ioctl command.
1081  *
1082  * If (data) is not NULL, the command requires data transfer.  If (*data) is NULL
1083  * the command requires data transfer from the controller, and we will allocate
1084  * a buffer for it.  If (*data) is not NULL, the command requires data transfer
1085  * to the controller.
1086  *
1087  * XXX passing in the whole ioctl structure is ugly.  Better ideas?
1088  *
1089  * XXX we don't even try to handle the case where datasize > 4k.  We should.
1090  */
1091 static int
1092 mly_ioctl(struct mly_softc *sc, struct mly_command_ioctl *ioctl, void **data, size_t datasize,
1093 	  u_int8_t *status, void *sense_buffer, size_t *sense_length)
1094 {
1095     struct mly_command		*mc;
1096     struct mly_command_ioctl	*mci;
1097     int				error;
1098 
1099     debug_called(1);
1100 
1101     mc = NULL;
1102     if (mly_alloc_command(sc, &mc)) {
1103 	error = ENOMEM;
1104 	goto out;
1105     }
1106 
1107     /* copy the ioctl structure, but save some important fields and then fixup */
1108     mci = &mc->mc_packet->ioctl;
1109     ioctl->sense_buffer_address = mci->sense_buffer_address;
1110     ioctl->maximum_sense_size = mci->maximum_sense_size;
1111     *mci = *ioctl;
1112     mci->opcode = MDACMD_IOCTL;
1113     mci->timeout.value = 30;
1114     mci->timeout.scale = MLY_TIMEOUT_SECONDS;
1115 
1116     /* handle the data buffer */
1117     if (data != NULL) {
1118 	if (*data == NULL) {
1119 	    /* allocate data buffer */
1120 	    mc->mc_data = kmalloc(datasize, M_DEVBUF, M_INTWAIT);
1121 	    mc->mc_flags |= MLY_CMD_DATAIN;
1122 	} else {
1123 	    mc->mc_data = *data;
1124 	    mc->mc_flags |= MLY_CMD_DATAOUT;
1125 	}
1126 	mc->mc_length = datasize;
1127 	mc->mc_packet->generic.data_size = datasize;
1128     }
1129 
1130     /* run the command */
1131     if ((error = mly_immediate_command(mc)))
1132 	goto out;
1133 
1134     /* clean up and return any data */
1135     *status = mc->mc_status;
1136     if ((mc->mc_sense > 0) && (sense_buffer != NULL)) {
1137 	bcopy(mc->mc_packet, sense_buffer, mc->mc_sense);
1138 	*sense_length = mc->mc_sense;
1139 	goto out;
1140     }
1141 
1142     /* should we return a data pointer? */
1143     if ((data != NULL) && (*data == NULL))
1144 	*data = mc->mc_data;
1145 
1146     /* command completed OK */
1147     error = 0;
1148 
1149 out:
1150     if (mc != NULL) {
1151 	/* do we need to free a data buffer we allocated? */
1152 	if (error && (mc->mc_data != NULL) && (*data == NULL))
1153 	    kfree(mc->mc_data, M_DEVBUF);
1154 	mly_release_command(mc);
1155     }
1156     return(error);
1157 }
1158 
1159 /********************************************************************************
1160  * Check for event(s) outstanding in the controller.
1161  */
1162 static void
1163 mly_check_event(struct mly_softc *sc)
1164 {
1165 
1166     /*
1167      * The controller may have updated the health status information,
1168      * so check for it here.  Note that the counters are all in host memory,
1169      * so this check is very cheap.  Also note that we depend on checking on
1170      * completion
1171      */
1172     if (sc->mly_mmbox->mmm_health.status.change_counter != sc->mly_event_change) {
1173 	sc->mly_event_change = sc->mly_mmbox->mmm_health.status.change_counter;
1174 	debug(1, "event change %d, event status update, %d -> %d", sc->mly_event_change,
1175 	      sc->mly_event_waiting, sc->mly_mmbox->mmm_health.status.next_event);
1176 	sc->mly_event_waiting = sc->mly_mmbox->mmm_health.status.next_event;
1177 
1178 	/* wake up anyone that might be interested in this */
1179 	wakeup(&sc->mly_event_change);
1180     }
1181     if (sc->mly_event_counter != sc->mly_event_waiting)
1182     mly_fetch_event(sc);
1183 }
1184 
1185 /********************************************************************************
1186  * Fetch one event from the controller.
1187  *
1188  * If we fail due to resource starvation, we'll be retried the next time a
1189  * command completes.
1190  */
1191 static void
1192 mly_fetch_event(struct mly_softc *sc)
1193 {
1194     struct mly_command		*mc;
1195     struct mly_command_ioctl	*mci;
1196     u_int32_t			event;
1197 
1198     debug_called(1);
1199 
1200     /* get a command */
1201     if (mly_alloc_command(sc, &mc))
1202 	return;
1203 
1204     /* set up the data buffer */
1205     mc->mc_data = kmalloc(sizeof(struct mly_event), M_DEVBUF, M_INTWAIT|M_ZERO);
1206     mc->mc_length = sizeof(struct mly_event);
1207     mc->mc_flags |= MLY_CMD_DATAIN;
1208     mc->mc_complete = mly_complete_event;
1209 
1210     /*
1211      * Get an event number to fetch.  It's possible that we've raced with another
1212      * context for the last event, in which case there will be no more events.
1213      */
1214     crit_enter();
1215     if (sc->mly_event_counter == sc->mly_event_waiting) {
1216 	mly_release_command(mc);
1217 	crit_exit();
1218 	return;
1219     }
1220     event = sc->mly_event_counter++;
1221     crit_exit();
1222 
1223     /*
1224      * Build the ioctl.
1225      *
1226      * At this point we are committed to sending this request, as it
1227      * will be the only one constructed for this particular event number.
1228      */
1229     mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
1230     mci->opcode = MDACMD_IOCTL;
1231     mci->data_size = sizeof(struct mly_event);
1232     mci->addr.phys.lun = (event >> 16) & 0xff;
1233     mci->addr.phys.target = (event >> 24) & 0xff;
1234     mci->addr.phys.channel = 0;
1235     mci->addr.phys.controller = 0;
1236     mci->timeout.value = 30;
1237     mci->timeout.scale = MLY_TIMEOUT_SECONDS;
1238     mci->sub_ioctl = MDACIOCTL_GETEVENT;
1239     mci->param.getevent.sequence_number_low = event & 0xffff;
1240 
1241     debug(1, "fetch event %u", event);
1242 
1243     /*
1244      * Submit the command.
1245      *
1246      * Note that failure of mly_start() will result in this event never being
1247      * fetched.
1248      */
1249     if (mly_start(mc) != 0) {
1250 	mly_printf(sc, "couldn't fetch event %u\n", event);
1251 	mly_release_command(mc);
1252     }
1253 }
1254 
1255 /********************************************************************************
1256  * Handle the completion of an event poll.
1257  */
1258 static void
1259 mly_complete_event(struct mly_command *mc)
1260 {
1261     struct mly_softc	*sc = mc->mc_sc;
1262     struct mly_event	*me = (struct mly_event *)mc->mc_data;
1263 
1264     debug_called(1);
1265 
1266     /*
1267      * If the event was successfully fetched, process it.
1268      */
1269     if (mc->mc_status == SCSI_STATUS_OK) {
1270 	mly_process_event(sc, me);
1271 	kfree(me, M_DEVBUF);
1272     }
1273     mly_release_command(mc);
1274 
1275     /*
1276      * Check for another event.
1277      */
1278     mly_check_event(sc);
1279 }
1280 
1281 /********************************************************************************
1282  * Process a controller event.
1283  */
1284 static void
1285 mly_process_event(struct mly_softc *sc, struct mly_event *me)
1286 {
1287     struct scsi_sense_data	*ssd = (struct scsi_sense_data *)&me->sense[0];
1288     char			*fp, *tp;
1289     int				bus, target, event, class, action;
1290 
1291     /*
1292      * Errors can be reported using vendor-unique sense data.  In this case, the
1293      * event code will be 0x1c (Request sense data present), the sense key will
1294      * be 0x09 (vendor specific), the MSB of the ASC will be set, and the
1295      * actual event code will be a 16-bit value comprised of the ASCQ (low byte)
1296      * and low seven bits of the ASC (low seven bits of the high byte).
1297      */
1298     if ((me->code == 0x1c) &&
1299 	((ssd->flags & SSD_KEY) == SSD_KEY_Vendor_Specific) &&
1300 	(ssd->add_sense_code & 0x80)) {
1301 	event = ((int)(ssd->add_sense_code & ~0x80) << 8) + ssd->add_sense_code_qual;
1302     } else {
1303 	event = me->code;
1304     }
1305 
1306     /* look up event, get codes */
1307     fp = mly_describe_code(mly_table_event, event);
1308 
1309     debug(1, "Event %d  code 0x%x", me->sequence_number, me->code);
1310 
1311     /* quiet event? */
1312     class = fp[0];
1313     if (isupper(class) && bootverbose)
1314 	class = tolower(class);
1315 
1316     /* get action code, text string */
1317     action = fp[1];
1318     tp = &fp[2];
1319 
1320     /*
1321      * Print some information about the event.
1322      *
1323      * This code uses a table derived from the corresponding portion of the Linux
1324      * driver, and thus the parser is very similar.
1325      */
1326     switch(class) {
1327     case 'p':		/* error on physical device */
1328 	mly_printf(sc, "physical device %d:%d %s\n", me->channel, me->target, tp);
1329 	if (action == 'r')
1330 	    sc->mly_btl[me->channel][me->target].mb_flags |= MLY_BTL_RESCAN;
1331 	break;
1332     case 'l':		/* error on logical unit */
1333     case 'm':		/* message about logical unit */
1334 	bus = MLY_LOGDEV_BUS(sc, me->lun);
1335 	target = MLY_LOGDEV_TARGET(sc, me->lun);
1336 	mly_name_device(sc, bus, target);
1337 	mly_printf(sc, "logical device %d (%s) %s\n", me->lun, sc->mly_btl[bus][target].mb_name, tp);
1338 	if (action == 'r')
1339 	    sc->mly_btl[bus][target].mb_flags |= MLY_BTL_RESCAN;
1340 	break;
1341       break;
1342     case 's':		/* report of sense data */
1343 	if (((ssd->flags & SSD_KEY) == SSD_KEY_NO_SENSE) ||
1344 	    (((ssd->flags & SSD_KEY) == SSD_KEY_NOT_READY) &&
1345 	     (ssd->add_sense_code == 0x04) &&
1346 	     ((ssd->add_sense_code_qual == 0x01) || (ssd->add_sense_code_qual == 0x02))))
1347 	    break;	/* ignore NO_SENSE or NOT_READY in one case */
1348 
1349 	mly_printf(sc, "physical device %d:%d %s\n", me->channel, me->target, tp);
1350 	mly_printf(sc, "  sense key %d  asc %02x  ascq %02x\n",
1351 		      ssd->flags & SSD_KEY, ssd->add_sense_code, ssd->add_sense_code_qual);
1352 	mly_printf(sc, "  info %4D  csi %4D\n", ssd->info, "", ssd->cmd_spec_info, "");
1353 	if (action == 'r')
1354 	    sc->mly_btl[me->channel][me->target].mb_flags |= MLY_BTL_RESCAN;
1355 	break;
1356     case 'e':
1357 	mly_printf(sc, tp, me->target, me->lun);
1358 	kprintf("\n");
1359 	break;
1360     case 'c':
1361 	mly_printf(sc, "controller %s\n", tp);
1362 	break;
1363     case '?':
1364 	mly_printf(sc, "%s - %d\n", tp, me->code);
1365 	break;
1366     default:	/* probably a 'noisy' event being ignored */
1367 	break;
1368     }
1369 }
1370 
1371 /********************************************************************************
1372  * Perform periodic activities.
1373  */
1374 static void
1375 mly_periodic(void *data)
1376 {
1377     struct mly_softc	*sc = (struct mly_softc *)data;
1378     int			bus, target;
1379 
1380     debug_called(2);
1381 
1382     /*
1383      * Scan devices.
1384      */
1385     for (bus = 0; bus < sc->mly_cam_channels; bus++) {
1386 	if (MLY_BUS_IS_VALID(sc, bus)) {
1387 	    for (target = 0; target < MLY_MAX_TARGETS; target++) {
1388 
1389 		/* ignore the controller in this scan */
1390 		if (target == sc->mly_controllerparam->initiator_id)
1391 		    continue;
1392 
1393 		/* perform device rescan? */
1394 		if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_RESCAN)
1395 		    mly_rescan_btl(sc, bus, target);
1396 	    }
1397 	}
1398     }
1399 
1400     /* check for controller events */
1401     mly_check_event(sc);
1402 
1403     /* reschedule ourselves */
1404     callout_reset(&sc->mly_periodic, MLY_PERIODIC_INTERVAL * hz, mly_periodic, sc);
1405 }
1406 
1407 /********************************************************************************
1408  ********************************************************************************
1409                                                                Command Processing
1410  ********************************************************************************
1411  ********************************************************************************/
1412 
1413 /********************************************************************************
1414  * Run a command and wait for it to complete.
1415  *
1416  */
1417 static int
1418 mly_immediate_command(struct mly_command *mc)
1419 {
1420     struct mly_softc	*sc = mc->mc_sc;
1421     int			error;
1422 
1423     debug_called(1);
1424 
1425     /* spinning at splcam is ugly, but we're only used during controller init */
1426     crit_enter();
1427     if ((error = mly_start(mc))) {
1428 	crit_exit();
1429 	return(error);
1430     }
1431 
1432     if (sc->mly_state & MLY_STATE_INTERRUPTS_ON) {
1433 	/* sleep on the command */
1434 	while(!(mc->mc_flags & MLY_CMD_COMPLETE)) {
1435 	    tsleep(mc, 0, "mlywait", 0);
1436 	}
1437     } else {
1438 	/* spin and collect status while we do */
1439 	while(!(mc->mc_flags & MLY_CMD_COMPLETE)) {
1440 	    mly_done(mc->mc_sc);
1441 	}
1442     }
1443     crit_exit();
1444     return(0);
1445 }
1446 
1447 /********************************************************************************
1448  * Deliver a command to the controller.
1449  *
1450  * XXX it would be good to just queue commands that we can't submit immediately
1451  *     and send them later, but we probably want a wrapper for that so that
1452  *     we don't hang on a failed submission for an immediate command.
1453  */
1454 static int
1455 mly_start(struct mly_command *mc)
1456 {
1457     struct mly_softc		*sc = mc->mc_sc;
1458     union mly_command_packet	*pkt;
1459 
1460     debug_called(2);
1461 
1462     /*
1463      * Set the command up for delivery to the controller.
1464      */
1465     mly_map_command(mc);
1466     mc->mc_packet->generic.command_id = mc->mc_slot;
1467 
1468 #ifdef MLY_DEBUG
1469     mc->mc_timestamp = time_second;
1470 #endif
1471 
1472     crit_enter();
1473 
1474     /*
1475      * Do we have to use the hardware mailbox?
1476      */
1477     if (!(sc->mly_state & MLY_STATE_MMBOX_ACTIVE)) {
1478 	/*
1479 	 * Check to see if the controller is ready for us.
1480 	 */
1481 	if (MLY_IDBR_TRUE(sc, MLY_HM_CMDSENT)) {
1482 	    crit_exit();
1483 	    return(EBUSY);
1484 	}
1485 	mc->mc_flags |= MLY_CMD_BUSY;
1486 
1487 	/*
1488 	 * It's ready, send the command.
1489 	 */
1490 	MLY_SET_MBOX(sc, sc->mly_command_mailbox, &mc->mc_packetphys);
1491 	MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_CMDSENT);
1492 
1493     } else {	/* use memory-mailbox mode */
1494 
1495 	pkt = &sc->mly_mmbox->mmm_command[sc->mly_mmbox_command_index];
1496 
1497 	/* check to see if the next index is free yet */
1498 	if (pkt->mmbox.flag != 0) {
1499 	    crit_exit();
1500 	    return(EBUSY);
1501 	}
1502 	mc->mc_flags |= MLY_CMD_BUSY;
1503 
1504 	/* copy in new command */
1505 	bcopy(mc->mc_packet->mmbox.data, pkt->mmbox.data, sizeof(pkt->mmbox.data));
1506 	/* barrier to ensure completion of previous write before we write the flag */
1507 	bus_space_barrier(sc->mly_btag, sc->mly_bhandle, 0, 0,
1508 	    BUS_SPACE_BARRIER_WRITE);
1509 	/* copy flag last */
1510 	pkt->mmbox.flag = mc->mc_packet->mmbox.flag;
1511 	/* barrier to ensure completion of previous write before we notify the controller */
1512 	bus_space_barrier(sc->mly_btag, sc->mly_bhandle, 0, 0,
1513 	    BUS_SPACE_BARRIER_WRITE);
1514 
1515 	/* signal controller, update index */
1516 	MLY_SET_REG(sc, sc->mly_idbr, MLY_AM_CMDSENT);
1517 	sc->mly_mmbox_command_index = (sc->mly_mmbox_command_index + 1) % MLY_MMBOX_COMMANDS;
1518     }
1519 
1520     mly_enqueue_busy(mc);
1521     crit_exit();
1522     return(0);
1523 }
1524 
1525 /********************************************************************************
1526  * Pick up command status from the controller, schedule a completion event
1527  */
1528 static void
1529 mly_done(struct mly_softc *sc)
1530 {
1531     struct mly_command		*mc;
1532     union mly_status_packet	*sp;
1533     u_int16_t			slot;
1534     int				worked;
1535 
1536     crit_enter();
1537     worked = 0;
1538 
1539     /* pick up hardware-mailbox commands */
1540     if (MLY_ODBR_TRUE(sc, MLY_HM_STSREADY)) {
1541 	slot = MLY_GET_REG2(sc, sc->mly_status_mailbox);
1542 	if (slot < MLY_SLOT_MAX) {
1543 	    mc = &sc->mly_command[slot - MLY_SLOT_START];
1544 	    mc->mc_status = MLY_GET_REG(sc, sc->mly_status_mailbox + 2);
1545 	    mc->mc_sense = MLY_GET_REG(sc, sc->mly_status_mailbox + 3);
1546 	    mc->mc_resid = MLY_GET_REG4(sc, sc->mly_status_mailbox + 4);
1547 	    mly_remove_busy(mc);
1548 	    mc->mc_flags &= ~MLY_CMD_BUSY;
1549 	    mly_enqueue_complete(mc);
1550 	    worked = 1;
1551 	} else {
1552 	    /* slot 0xffff may mean "extremely bogus command" */
1553 	    mly_printf(sc, "got HM completion for illegal slot %u\n", slot);
1554 	}
1555 	/* unconditionally acknowledge status */
1556 	MLY_SET_REG(sc, sc->mly_odbr, MLY_HM_STSREADY);
1557 	MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_STSACK);
1558     }
1559 
1560     /* pick up memory-mailbox commands */
1561     if (MLY_ODBR_TRUE(sc, MLY_AM_STSREADY)) {
1562 	for (;;) {
1563 	    sp = &sc->mly_mmbox->mmm_status[sc->mly_mmbox_status_index];
1564 
1565 	    /* check for more status */
1566 	    if (sp->mmbox.flag == 0)
1567 		break;
1568 
1569 	    /* get slot number */
1570 	    slot = sp->status.command_id;
1571 	    if (slot < MLY_SLOT_MAX) {
1572 		mc = &sc->mly_command[slot - MLY_SLOT_START];
1573 		mc->mc_status = sp->status.status;
1574 		mc->mc_sense = sp->status.sense_length;
1575 		mc->mc_resid = sp->status.residue;
1576 		mly_remove_busy(mc);
1577 		mc->mc_flags &= ~MLY_CMD_BUSY;
1578 		mly_enqueue_complete(mc);
1579 		worked = 1;
1580 	    } else {
1581 		/* slot 0xffff may mean "extremely bogus command" */
1582 		mly_printf(sc, "got AM completion for illegal slot %u at %d\n",
1583 			   slot, sc->mly_mmbox_status_index);
1584 	    }
1585 
1586 	    /* clear and move to next index */
1587 	    sp->mmbox.flag = 0;
1588 	    sc->mly_mmbox_status_index = (sc->mly_mmbox_status_index + 1) % MLY_MMBOX_STATUS;
1589 	}
1590 	/* acknowledge that we have collected status value(s) */
1591 	MLY_SET_REG(sc, sc->mly_odbr, MLY_AM_STSREADY);
1592     }
1593 
1594     crit_exit();
1595     if (worked) {
1596 	if (sc->mly_state & MLY_STATE_INTERRUPTS_ON)
1597 	    taskqueue_enqueue(taskqueue_swi, &sc->mly_task_complete);
1598 	else
1599 	    mly_complete(sc, 0);
1600     }
1601 }
1602 
1603 /********************************************************************************
1604  * Process completed commands
1605  */
1606 static void
1607 mly_complete(void *context, int pending)
1608 {
1609     struct mly_softc	*sc = (struct mly_softc *)context;
1610     struct mly_command	*mc;
1611     void	        (* mc_complete)(struct mly_command *mc);
1612 
1613 
1614     debug_called(2);
1615 
1616     /*
1617      * Spin pulling commands off the completed queue and processing them.
1618      */
1619     while ((mc = mly_dequeue_complete(sc)) != NULL) {
1620 
1621 	/*
1622 	 * Free controller resources, mark command complete.
1623 	 *
1624 	 * Note that as soon as we mark the command complete, it may be freed
1625 	 * out from under us, so we need to save the mc_complete field in
1626 	 * order to later avoid dereferencing mc.  (We would not expect to
1627 	 * have a polling/sleeping consumer with mc_complete != NULL).
1628 	 */
1629 	mly_unmap_command(mc);
1630 	mc_complete = mc->mc_complete;
1631 	mc->mc_flags |= MLY_CMD_COMPLETE;
1632 
1633 	/*
1634 	 * Call completion handler or wake up sleeping consumer.
1635 	 */
1636 	if (mc_complete != NULL) {
1637 	    mc_complete(mc);
1638 	} else {
1639 	    wakeup(mc);
1640 	}
1641     }
1642 
1643     /*
1644      * XXX if we are deferring commands due to controller-busy status, we should
1645      *     retry submitting them here.
1646      */
1647 }
1648 
1649 /********************************************************************************
1650  ********************************************************************************
1651                                                         Command Buffer Management
1652  ********************************************************************************
1653  ********************************************************************************/
1654 
1655 /********************************************************************************
1656  * Allocate a command.
1657  */
1658 static int
1659 mly_alloc_command(struct mly_softc *sc, struct mly_command **mcp)
1660 {
1661     struct mly_command	*mc;
1662 
1663     debug_called(3);
1664 
1665     if ((mc = mly_dequeue_free(sc)) == NULL)
1666 	return(ENOMEM);
1667 
1668     *mcp = mc;
1669     return(0);
1670 }
1671 
1672 /********************************************************************************
1673  * Release a command back to the freelist.
1674  */
1675 static void
1676 mly_release_command(struct mly_command *mc)
1677 {
1678     debug_called(3);
1679 
1680     /*
1681      * Fill in parts of the command that may cause confusion if
1682      * a consumer doesn't when we are later allocated.
1683      */
1684     mc->mc_data = NULL;
1685     mc->mc_flags = 0;
1686     mc->mc_complete = NULL;
1687     mc->mc_private = NULL;
1688 
1689     /*
1690      * By default, we set up to overwrite the command packet with
1691      * sense information.
1692      */
1693     mc->mc_packet->generic.sense_buffer_address = mc->mc_packetphys;
1694     mc->mc_packet->generic.maximum_sense_size = sizeof(union mly_command_packet);
1695 
1696     mly_enqueue_free(mc);
1697 }
1698 
1699 /********************************************************************************
1700  * Map helper for command allocation.
1701  */
1702 static void
1703 mly_alloc_commands_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1704 {
1705     struct mly_softc	*sc = (struct mly_softc *)arg;
1706 
1707     debug_called(1);
1708 
1709     sc->mly_packetphys = segs[0].ds_addr;
1710 }
1711 
1712 /********************************************************************************
1713  * Allocate and initialise command and packet structures.
1714  *
1715  * If the controller supports fewer than MLY_MAX_COMMANDS commands, limit our
1716  * allocation to that number.  If we don't yet know how many commands the
1717  * controller supports, allocate a very small set (suitable for initialisation
1718  * purposes only).
1719  */
1720 static int
1721 mly_alloc_commands(struct mly_softc *sc)
1722 {
1723     struct mly_command		*mc;
1724     int				i, ncmd;
1725 
1726     if (sc->mly_controllerinfo == NULL) {
1727 	ncmd = 4;
1728     } else {
1729 	ncmd = min(MLY_MAX_COMMANDS, sc->mly_controllerinfo->maximum_parallel_commands);
1730     }
1731 
1732     /*
1733      * Allocate enough space for all the command packets in one chunk and
1734      * map them permanently into controller-visible space.
1735      */
1736     if (bus_dmamem_alloc(sc->mly_packet_dmat, (void **)&sc->mly_packet,
1737 			 BUS_DMA_NOWAIT, &sc->mly_packetmap)) {
1738 	return(ENOMEM);
1739     }
1740     if (bus_dmamap_load(sc->mly_packet_dmat, sc->mly_packetmap, sc->mly_packet,
1741 			ncmd * sizeof(union mly_command_packet),
1742 			mly_alloc_commands_map, sc, BUS_DMA_NOWAIT) != 0)
1743 	return (ENOMEM);
1744 
1745     for (i = 0; i < ncmd; i++) {
1746 	mc = &sc->mly_command[i];
1747 	bzero(mc, sizeof(*mc));
1748 	mc->mc_sc = sc;
1749 	mc->mc_slot = MLY_SLOT_START + i;
1750 	mc->mc_packet = sc->mly_packet + i;
1751 	mc->mc_packetphys = sc->mly_packetphys + (i * sizeof(union mly_command_packet));
1752 	if (!bus_dmamap_create(sc->mly_buffer_dmat, 0, &mc->mc_datamap))
1753 	    mly_release_command(mc);
1754     }
1755     return(0);
1756 }
1757 
1758 /********************************************************************************
1759  * Free all the storage held by commands.
1760  *
1761  * Must be called with all commands on the free list.
1762  */
1763 static void
1764 mly_release_commands(struct mly_softc *sc)
1765 {
1766     struct mly_command	*mc;
1767 
1768     /* throw away command buffer DMA maps */
1769     while (mly_alloc_command(sc, &mc) == 0)
1770 	bus_dmamap_destroy(sc->mly_buffer_dmat, mc->mc_datamap);
1771 
1772     /* release the packet storage */
1773     if (sc->mly_packet != NULL) {
1774 	bus_dmamap_unload(sc->mly_packet_dmat, sc->mly_packetmap);
1775 	bus_dmamem_free(sc->mly_packet_dmat, sc->mly_packet, sc->mly_packetmap);
1776 	sc->mly_packet = NULL;
1777     }
1778 }
1779 
1780 
1781 /********************************************************************************
1782  * Command-mapping helper function - populate this command's s/g table
1783  * with the s/g entries for its data.
1784  */
1785 static void
1786 mly_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1787 {
1788     struct mly_command		*mc = (struct mly_command *)arg;
1789     struct mly_softc		*sc = mc->mc_sc;
1790     struct mly_command_generic	*gen = &(mc->mc_packet->generic);
1791     struct mly_sg_entry		*sg;
1792     int				i, tabofs;
1793 
1794     debug_called(2);
1795 
1796     /* can we use the transfer structure directly? */
1797     if (nseg <= 2) {
1798 	sg = &gen->transfer.direct.sg[0];
1799 	gen->command_control.extended_sg_table = 0;
1800     } else {
1801 	tabofs = ((mc->mc_slot - MLY_SLOT_START) * MLY_MAX_SGENTRIES);
1802 	sg = sc->mly_sg_table + tabofs;
1803 	gen->transfer.indirect.entries[0] = nseg;
1804 	gen->transfer.indirect.table_physaddr[0] = sc->mly_sg_busaddr + (tabofs * sizeof(struct mly_sg_entry));
1805 	gen->command_control.extended_sg_table = 1;
1806     }
1807 
1808     /* copy the s/g table */
1809     for (i = 0; i < nseg; i++) {
1810 	sg[i].physaddr = segs[i].ds_addr;
1811 	sg[i].length = segs[i].ds_len;
1812     }
1813 
1814 }
1815 
1816 #if 0
1817 /********************************************************************************
1818  * Command-mapping helper function - save the cdb's physical address.
1819  *
1820  * We don't support 'large' SCSI commands at this time, so this is unused.
1821  */
1822 static void
1823 mly_map_command_cdb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1824 {
1825     struct mly_command			*mc = (struct mly_command *)arg;
1826 
1827     debug_called(2);
1828 
1829     /* XXX can we safely assume that a CDB will never cross a page boundary? */
1830     if ((segs[0].ds_addr % PAGE_SIZE) >
1831 	((segs[0].ds_addr + mc->mc_packet->scsi_large.cdb_length) % PAGE_SIZE))
1832 	panic("cdb crosses page boundary");
1833 
1834     /* fix up fields in the command packet */
1835     mc->mc_packet->scsi_large.cdb_physaddr = segs[0].ds_addr;
1836 }
1837 #endif
1838 
1839 /********************************************************************************
1840  * Map a command into controller-visible space
1841  */
1842 static void
1843 mly_map_command(struct mly_command *mc)
1844 {
1845     struct mly_softc	*sc = mc->mc_sc;
1846 
1847     debug_called(2);
1848 
1849     /* don't map more than once */
1850     if (mc->mc_flags & MLY_CMD_MAPPED)
1851 	return;
1852 
1853     /* does the command have a data buffer? */
1854     if (mc->mc_data != NULL) {
1855 	bus_dmamap_load(sc->mly_buffer_dmat, mc->mc_datamap, mc->mc_data, mc->mc_length,
1856 			mly_map_command_sg, mc, 0);
1857 
1858 	if (mc->mc_flags & MLY_CMD_DATAIN)
1859 	    bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_PREREAD);
1860 	if (mc->mc_flags & MLY_CMD_DATAOUT)
1861 	    bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_PREWRITE);
1862     }
1863     mc->mc_flags |= MLY_CMD_MAPPED;
1864 }
1865 
1866 /********************************************************************************
1867  * Unmap a command from controller-visible space
1868  */
1869 static void
1870 mly_unmap_command(struct mly_command *mc)
1871 {
1872     struct mly_softc	*sc = mc->mc_sc;
1873 
1874     debug_called(2);
1875 
1876     if (!(mc->mc_flags & MLY_CMD_MAPPED))
1877 	return;
1878 
1879     /* does the command have a data buffer? */
1880     if (mc->mc_data != NULL) {
1881 	if (mc->mc_flags & MLY_CMD_DATAIN)
1882 	    bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_POSTREAD);
1883 	if (mc->mc_flags & MLY_CMD_DATAOUT)
1884 	    bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_POSTWRITE);
1885 
1886 	bus_dmamap_unload(sc->mly_buffer_dmat, mc->mc_datamap);
1887     }
1888     mc->mc_flags &= ~MLY_CMD_MAPPED;
1889 }
1890 
1891 
1892 /********************************************************************************
1893  ********************************************************************************
1894                                                                     CAM interface
1895  ********************************************************************************
1896  ********************************************************************************/
1897 
1898 /********************************************************************************
1899  * Attach the physical and virtual SCSI busses to CAM.
1900  *
1901  * Physical bus numbering starts from 0, virtual bus numbering from one greater
1902  * than the highest physical bus.  Physical busses are only registered if
1903  * the kernel environment variable "hw.mly.register_physical_channels" is set.
1904  *
1905  * When we refer to a "bus", we are referring to the bus number registered with
1906  * the SIM, wheras a "channel" is a channel number given to the adapter.  In order
1907  * to keep things simple, we map these 1:1, so "bus" and "channel" may be used
1908  * interchangeably.
1909  */
1910 static int
1911 mly_cam_attach(struct mly_softc *sc)
1912 {
1913     struct cam_devq	*devq;
1914     int			chn, i;
1915 
1916     debug_called(1);
1917 
1918     /*
1919      * Allocate a devq for all our channels combined.
1920      */
1921     if ((devq = cam_simq_alloc(sc->mly_controllerinfo->maximum_parallel_commands)) == NULL) {
1922 	mly_printf(sc, "can't allocate CAM SIM queue\n");
1923 	return(ENOMEM);
1924     }
1925 
1926     /*
1927      * If physical channel registration has been requested, register these first.
1928      * Note that we enable tagged command queueing for physical channels.
1929      */
1930     if (ktestenv("hw.mly.register_physical_channels")) {
1931 	chn = 0;
1932 	for (i = 0; i < sc->mly_controllerinfo->physical_channels_present; i++, chn++) {
1933 
1934 	    if ((sc->mly_cam_sim[chn] = cam_sim_alloc(mly_cam_action, mly_cam_poll, "mly", sc,
1935 						      device_get_unit(sc->mly_dev),
1936 						      sc->mly_controllerinfo->maximum_parallel_commands,
1937 						      1, devq)) == NULL) {
1938 		return(ENOMEM);
1939 	    }
1940 	    if (xpt_bus_register(sc->mly_cam_sim[chn], chn)) {
1941 		mly_printf(sc, "CAM XPT phsyical channel registration failed\n");
1942 		return(ENXIO);
1943 	    }
1944 	    debug(1, "registered physical channel %d", chn);
1945 	}
1946     }
1947 
1948     /*
1949      * Register our virtual channels, with bus numbers matching channel numbers.
1950      */
1951     chn = sc->mly_controllerinfo->physical_channels_present;
1952     for (i = 0; i < sc->mly_controllerinfo->virtual_channels_present; i++, chn++) {
1953 	if ((sc->mly_cam_sim[chn] = cam_sim_alloc(mly_cam_action, mly_cam_poll, "mly", sc,
1954 						  device_get_unit(sc->mly_dev),
1955 						  sc->mly_controllerinfo->maximum_parallel_commands,
1956 						  0, devq)) == NULL) {
1957 	    return(ENOMEM);
1958 	}
1959 	if (xpt_bus_register(sc->mly_cam_sim[chn], chn)) {
1960 	    mly_printf(sc, "CAM XPT virtual channel registration failed\n");
1961 	    return(ENXIO);
1962 	}
1963 	debug(1, "registered virtual channel %d", chn);
1964     }
1965 
1966     /*
1967      * This is the total number of channels that (might have been) registered with
1968      * CAM.  Some may not have been; check the mly_cam_sim array to be certain.
1969      */
1970     sc->mly_cam_channels = sc->mly_controllerinfo->physical_channels_present +
1971 	sc->mly_controllerinfo->virtual_channels_present;
1972 
1973     return(0);
1974 }
1975 
1976 /********************************************************************************
1977  * Detach from CAM
1978  */
1979 static void
1980 mly_cam_detach(struct mly_softc *sc)
1981 {
1982     int		i;
1983 
1984     debug_called(1);
1985 
1986     for (i = 0; i < sc->mly_cam_channels; i++) {
1987 	if (sc->mly_cam_sim[i] != NULL) {
1988 	    xpt_bus_deregister(cam_sim_path(sc->mly_cam_sim[i]));
1989 	    cam_sim_free(sc->mly_cam_sim[i]);
1990 	}
1991     }
1992     if (sc->mly_cam_devq != NULL)
1993 	cam_simq_release(sc->mly_cam_devq);
1994 }
1995 
1996 /************************************************************************
1997  * Rescan a device.
1998  */
1999 static void
2000 mly_cam_rescan_btl(struct mly_softc *sc, int bus, int target)
2001 {
2002     union ccb	*ccb;
2003 
2004     debug_called(1);
2005 
2006     ccb = kmalloc(sizeof(union ccb), M_TEMP, M_WAITOK | M_ZERO);
2007 
2008     if (xpt_create_path(&sc->mly_cam_path, xpt_periph,
2009 			cam_sim_path(sc->mly_cam_sim[bus]), target, 0) != CAM_REQ_CMP) {
2010 	mly_printf(sc, "rescan failed (can't create path)\n");
2011 	kfree(ccb, M_TEMP);
2012 	return;
2013     }
2014     xpt_setup_ccb(&ccb->ccb_h, sc->mly_cam_path, 5/*priority (low)*/);
2015     ccb->ccb_h.func_code = XPT_SCAN_LUN;
2016     ccb->ccb_h.cbfcnp = mly_cam_rescan_callback;
2017     ccb->crcn.flags = CAM_FLAG_NONE;
2018     debug(1, "rescan target %d:%d", bus, target);
2019     xpt_action(ccb);
2020 }
2021 
2022 static void
2023 mly_cam_rescan_callback(struct cam_periph *periph, union ccb *ccb)
2024 {
2025     kfree(ccb, M_TEMP);
2026 }
2027 
2028 /********************************************************************************
2029  * Handle an action requested by CAM
2030  */
2031 static void
2032 mly_cam_action(struct cam_sim *sim, union ccb *ccb)
2033 {
2034     struct mly_softc	*sc = cam_sim_softc(sim);
2035 
2036     debug_called(2);
2037 
2038     switch (ccb->ccb_h.func_code) {
2039 
2040 	/* perform SCSI I/O */
2041     case XPT_SCSI_IO:
2042 	if (!mly_cam_action_io(sim, (struct ccb_scsiio *)&ccb->csio))
2043 	    return;
2044 	break;
2045 
2046 	/* perform geometry calculations */
2047     case XPT_CALC_GEOMETRY:
2048     {
2049 	struct ccb_calc_geometry	*ccg = &ccb->ccg;
2050         u_int32_t			secs_per_cylinder;
2051 
2052 	debug(2, "XPT_CALC_GEOMETRY %d:%d:%d", cam_sim_bus(sim), ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
2053 
2054 	if (sc->mly_controllerparam->bios_geometry == MLY_BIOSGEOM_8G) {
2055 	    ccg->heads = 255;
2056             ccg->secs_per_track = 63;
2057 	} else {				/* MLY_BIOSGEOM_2G */
2058 	    ccg->heads = 128;
2059             ccg->secs_per_track = 32;
2060 	}
2061 	secs_per_cylinder = ccg->heads * ccg->secs_per_track;
2062         ccg->cylinders = ccg->volume_size / secs_per_cylinder;
2063         ccb->ccb_h.status = CAM_REQ_CMP;
2064         break;
2065     }
2066 
2067 	/* handle path attribute inquiry */
2068     case XPT_PATH_INQ:
2069     {
2070 	struct ccb_pathinq	*cpi = &ccb->cpi;
2071 
2072 	debug(2, "XPT_PATH_INQ %d:%d:%d", cam_sim_bus(sim), ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
2073 
2074 	cpi->version_num = 1;
2075 	cpi->hba_inquiry = PI_TAG_ABLE;		/* XXX extra flags for physical channels? */
2076 	cpi->target_sprt = 0;
2077 	cpi->hba_misc = 0;
2078 	cpi->max_target = MLY_MAX_TARGETS - 1;
2079 	cpi->max_lun = MLY_MAX_LUNS - 1;
2080 	cpi->initiator_id = sc->mly_controllerparam->initiator_id;
2081 	strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
2082         strncpy(cpi->hba_vid, "FreeBSD", HBA_IDLEN);
2083         strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
2084         cpi->unit_number = cam_sim_unit(sim);
2085         cpi->bus_id = cam_sim_bus(sim);
2086 	cpi->base_transfer_speed = 132 * 1024;	/* XXX what to set this to? */
2087 	cpi->transport = XPORT_SPI;
2088 	cpi->transport_version = 2;
2089 	cpi->protocol = PROTO_SCSI;
2090 	cpi->protocol_version = SCSI_REV_2;
2091 	ccb->ccb_h.status = CAM_REQ_CMP;
2092 	break;
2093     }
2094 
2095     case XPT_GET_TRAN_SETTINGS:
2096     {
2097 	struct ccb_trans_settings	*cts = &ccb->cts;
2098 	int				bus, target;
2099 	struct ccb_trans_settings_scsi *scsi = &cts->proto_specific.scsi;
2100 	struct ccb_trans_settings_spi *spi = &cts->xport_specific.spi;
2101 
2102 	cts->protocol = PROTO_SCSI;
2103 	cts->protocol_version = SCSI_REV_2;
2104 	cts->transport = XPORT_SPI;
2105 	cts->transport_version = 2;
2106 
2107 	scsi->flags = 0;
2108 	scsi->valid = 0;
2109 	spi->flags = 0;
2110 	spi->valid = 0;
2111 
2112 	bus = cam_sim_bus(sim);
2113 	target = cts->ccb_h.target_id;
2114 	debug(2, "XPT_GET_TRAN_SETTINGS %d:%d", bus, target);
2115 	/* logical device? */
2116 	if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_LOGICAL) {
2117 	    /* nothing special for these */
2118 	/* physical device? */
2119 	} else if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_PHYSICAL) {
2120 	    /* allow CAM to try tagged transactions */
2121 	    scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
2122 	    scsi->valid |= CTS_SCSI_VALID_TQ;
2123 
2124 	    /* convert speed (MHz) to usec */
2125 	    if (sc->mly_btl[bus][target].mb_speed == 0) {
2126 		spi->sync_period = 1000000 / 5;
2127 	    } else {
2128 		spi->sync_period = 1000000 / sc->mly_btl[bus][target].mb_speed;
2129 	    }
2130 
2131 	    /* convert bus width to CAM internal encoding */
2132 	    switch (sc->mly_btl[bus][target].mb_width) {
2133 	    case 32:
2134 		spi->bus_width = MSG_EXT_WDTR_BUS_32_BIT;
2135 		break;
2136 	    case 16:
2137 		spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
2138 		break;
2139 	    case 8:
2140 	    default:
2141 		spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
2142 		break;
2143 	    }
2144 	    spi->valid |= CTS_SPI_VALID_SYNC_RATE | CTS_SPI_VALID_BUS_WIDTH;
2145 
2146 	    /* not a device, bail out */
2147 	} else {
2148 	    cts->ccb_h.status = CAM_REQ_CMP_ERR;
2149 	    break;
2150 	}
2151 
2152 	/* disconnect always OK */
2153 	spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
2154 	spi->valid |= CTS_SPI_VALID_DISC;
2155 
2156 	cts->ccb_h.status = CAM_REQ_CMP;
2157 	break;
2158     }
2159 
2160     default:		/* we can't do this */
2161 	debug(2, "unsupported func_code = 0x%x", ccb->ccb_h.func_code);
2162 	ccb->ccb_h.status = CAM_REQ_INVALID;
2163 	break;
2164     }
2165 
2166     xpt_done(ccb);
2167 }
2168 
2169 /********************************************************************************
2170  * Handle an I/O operation requested by CAM
2171  */
2172 static int
2173 mly_cam_action_io(struct cam_sim *sim, struct ccb_scsiio *csio)
2174 {
2175     struct mly_softc			*sc = cam_sim_softc(sim);
2176     struct mly_command			*mc;
2177     struct mly_command_scsi_small	*ss;
2178     int					bus, target;
2179     int					error;
2180 
2181     bus = cam_sim_bus(sim);
2182     target = csio->ccb_h.target_id;
2183 
2184     debug(2, "XPT_SCSI_IO %d:%d:%d", bus, target, csio->ccb_h.target_lun);
2185 
2186     /* validate bus number */
2187     if (!MLY_BUS_IS_VALID(sc, bus)) {
2188 	debug(0, " invalid bus %d", bus);
2189 	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2190     }
2191 
2192     /*  check for I/O attempt to a protected device */
2193     if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_PROTECTED) {
2194 	debug(2, "  device protected");
2195 	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2196     }
2197 
2198     /* check for I/O attempt to nonexistent device */
2199     if (!(sc->mly_btl[bus][target].mb_flags & (MLY_BTL_LOGICAL | MLY_BTL_PHYSICAL))) {
2200 	debug(2, "  device %d:%d does not exist", bus, target);
2201 	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2202     }
2203 
2204     /* XXX increase if/when we support large SCSI commands */
2205     if (csio->cdb_len > MLY_CMD_SCSI_SMALL_CDB) {
2206 	debug(0, "  command too large (%d > %d)", csio->cdb_len, MLY_CMD_SCSI_SMALL_CDB);
2207 	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2208     }
2209 
2210     /* check that the CDB pointer is not to a physical address */
2211     if ((csio->ccb_h.flags & CAM_CDB_POINTER) && (csio->ccb_h.flags & CAM_CDB_PHYS)) {
2212 	debug(0, "  CDB pointer is to physical address");
2213 	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2214     }
2215 
2216     /* if there is data transfer, it must be to/from a virtual address */
2217     if ((csio->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
2218 	if (csio->ccb_h.flags & CAM_DATA_PHYS) {		/* we can't map it */
2219 	    debug(0, "  data pointer is to physical address");
2220 	    csio->ccb_h.status = CAM_REQ_CMP_ERR;
2221 	}
2222 	if (csio->ccb_h.flags & CAM_SCATTER_VALID) {	/* we want to do the s/g setup */
2223 	    debug(0, "  data has premature s/g setup");
2224 	    csio->ccb_h.status = CAM_REQ_CMP_ERR;
2225 	}
2226     }
2227 
2228     /* abandon aborted ccbs or those that have failed validation */
2229     if ((csio->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
2230 	debug(2, "abandoning CCB due to abort/validation failure");
2231 	return(EINVAL);
2232     }
2233 
2234     /*
2235      * Get a command, or push the ccb back to CAM and freeze the queue.
2236      */
2237     if ((error = mly_alloc_command(sc, &mc))) {
2238 	crit_enter();
2239 	xpt_freeze_simq(sim, 1);
2240 	csio->ccb_h.status |= CAM_REQUEUE_REQ;
2241 	sc->mly_qfrzn_cnt++;
2242 	crit_exit();
2243 	return(error);
2244     }
2245 
2246     /* build the command */
2247     mc->mc_data = csio->data_ptr;
2248     mc->mc_length = csio->dxfer_len;
2249     mc->mc_complete = mly_cam_complete;
2250     mc->mc_private = csio;
2251 
2252     /* save the bus number in the ccb for later recovery XXX should be a better way */
2253      csio->ccb_h.sim_priv.entries[0].field = bus;
2254 
2255     /* build the packet for the controller */
2256     ss = &mc->mc_packet->scsi_small;
2257     ss->opcode = MDACMD_SCSI;
2258     if (csio->ccb_h.flags & CAM_DIS_DISCONNECT)
2259 	ss->command_control.disable_disconnect = 1;
2260     if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT)
2261 	ss->command_control.data_direction = MLY_CCB_WRITE;
2262     ss->data_size = csio->dxfer_len;
2263     ss->addr.phys.lun = csio->ccb_h.target_lun;
2264     ss->addr.phys.target = csio->ccb_h.target_id;
2265     ss->addr.phys.channel = bus;
2266     if (csio->ccb_h.timeout < (60 * 1000)) {
2267 	ss->timeout.value = csio->ccb_h.timeout / 1000;
2268 	ss->timeout.scale = MLY_TIMEOUT_SECONDS;
2269     } else if (csio->ccb_h.timeout < (60 * 60 * 1000)) {
2270 	ss->timeout.value = csio->ccb_h.timeout / (60 * 1000);
2271 	ss->timeout.scale = MLY_TIMEOUT_MINUTES;
2272     } else {
2273 	ss->timeout.value = csio->ccb_h.timeout / (60 * 60 * 1000);	/* overflow? */
2274 	ss->timeout.scale = MLY_TIMEOUT_HOURS;
2275     }
2276     ss->maximum_sense_size = csio->sense_len;
2277     ss->cdb_length = csio->cdb_len;
2278     if (csio->ccb_h.flags & CAM_CDB_POINTER) {
2279 	bcopy(csio->cdb_io.cdb_ptr, ss->cdb, csio->cdb_len);
2280     } else {
2281 	bcopy(csio->cdb_io.cdb_bytes, ss->cdb, csio->cdb_len);
2282     }
2283 
2284     /* give the command to the controller */
2285     if ((error = mly_start(mc))) {
2286 	crit_enter();
2287 	xpt_freeze_simq(sim, 1);
2288 	csio->ccb_h.status |= CAM_REQUEUE_REQ;
2289 	sc->mly_qfrzn_cnt++;
2290 	crit_exit();
2291 	return(error);
2292     }
2293 
2294     return(0);
2295 }
2296 
2297 /********************************************************************************
2298  * Check for possibly-completed commands.
2299  */
2300 static void
2301 mly_cam_poll(struct cam_sim *sim)
2302 {
2303     struct mly_softc	*sc = cam_sim_softc(sim);
2304 
2305     debug_called(2);
2306 
2307     mly_done(sc);
2308 }
2309 
2310 /********************************************************************************
2311  * Handle completion of a command - pass results back through the CCB
2312  */
2313 static void
2314 mly_cam_complete(struct mly_command *mc)
2315 {
2316     struct mly_softc		*sc = mc->mc_sc;
2317     struct ccb_scsiio		*csio = (struct ccb_scsiio *)mc->mc_private;
2318     struct scsi_inquiry_data	*inq = (struct scsi_inquiry_data *)csio->data_ptr;
2319     struct mly_btl		*btl;
2320     u_int8_t			cmd;
2321     int				bus, target;
2322 
2323     debug_called(2);
2324 
2325     csio->scsi_status = mc->mc_status;
2326     switch(mc->mc_status) {
2327     case SCSI_STATUS_OK:
2328 	/*
2329 	 * In order to report logical device type and status, we overwrite
2330 	 * the result of the INQUIRY command to logical devices.
2331 	 */
2332 	bus = csio->ccb_h.sim_priv.entries[0].field;
2333 	target = csio->ccb_h.target_id;
2334 	/* XXX validate bus/target? */
2335 	if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_LOGICAL) {
2336 	    if (csio->ccb_h.flags & CAM_CDB_POINTER) {
2337 		cmd = *csio->cdb_io.cdb_ptr;
2338 	    } else {
2339 		cmd = csio->cdb_io.cdb_bytes[0];
2340 	    }
2341 	    if (cmd == INQUIRY) {
2342 		btl = &sc->mly_btl[bus][target];
2343 		padstr(inq->vendor, mly_describe_code(mly_table_device_type, btl->mb_type), 8);
2344 		padstr(inq->product, mly_describe_code(mly_table_device_state, btl->mb_state), 16);
2345 		padstr(inq->revision, "", 4);
2346 	    }
2347 	}
2348 
2349 	debug(2, "SCSI_STATUS_OK");
2350 	csio->ccb_h.status = CAM_REQ_CMP;
2351 	break;
2352 
2353     case SCSI_STATUS_CHECK_COND:
2354 	debug(1, "SCSI_STATUS_CHECK_COND  sense %d  resid %d", mc->mc_sense, mc->mc_resid);
2355 	csio->ccb_h.status = CAM_SCSI_STATUS_ERROR;
2356 	bzero(&csio->sense_data, SSD_FULL_SIZE);
2357 	bcopy(mc->mc_packet, &csio->sense_data, mc->mc_sense);
2358 	csio->sense_len = mc->mc_sense;
2359 	csio->ccb_h.status |= CAM_AUTOSNS_VALID;
2360 	csio->resid = mc->mc_resid;	/* XXX this is a signed value... */
2361 	break;
2362 
2363     case SCSI_STATUS_BUSY:
2364 	debug(1, "SCSI_STATUS_BUSY");
2365 	csio->ccb_h.status = CAM_SCSI_BUSY;
2366 	break;
2367 
2368     default:
2369 	debug(1, "unknown status 0x%x", csio->scsi_status);
2370 	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2371 	break;
2372     }
2373 
2374     crit_enter();
2375     if (sc->mly_qfrzn_cnt) {
2376 	csio->ccb_h.status |= CAM_RELEASE_SIMQ;
2377 	sc->mly_qfrzn_cnt--;
2378     }
2379     crit_exit();
2380 
2381     xpt_done((union ccb *)csio);
2382     mly_release_command(mc);
2383 }
2384 
2385 /********************************************************************************
2386  * Find a peripheral attahed at (bus),(target)
2387  */
2388 static struct cam_periph *
2389 mly_find_periph(struct mly_softc *sc, int bus, int target)
2390 {
2391     struct cam_periph	*periph;
2392     struct cam_path	*path;
2393     int			status;
2394 
2395     status = xpt_create_path(&path, NULL, cam_sim_path(sc->mly_cam_sim[bus]), target, 0);
2396     if (status == CAM_REQ_CMP) {
2397 	periph = cam_periph_find(path, NULL);
2398 	xpt_free_path(path);
2399     } else {
2400 	periph = NULL;
2401     }
2402     return(periph);
2403 }
2404 
2405 /********************************************************************************
2406  * Name the device at (bus)(target)
2407  */
2408 static int
2409 mly_name_device(struct mly_softc *sc, int bus, int target)
2410 {
2411     struct cam_periph	*periph;
2412 
2413     if ((periph = mly_find_periph(sc, bus, target)) != NULL) {
2414 	ksprintf(sc->mly_btl[bus][target].mb_name, "%s%d", periph->periph_name, periph->unit_number);
2415 	return(0);
2416     }
2417     sc->mly_btl[bus][target].mb_name[0] = 0;
2418     return(ENOENT);
2419 }
2420 
2421 /********************************************************************************
2422  ********************************************************************************
2423                                                                  Hardware Control
2424  ********************************************************************************
2425  ********************************************************************************/
2426 
2427 /********************************************************************************
2428  * Handshake with the firmware while the card is being initialised.
2429  */
2430 static int
2431 mly_fwhandshake(struct mly_softc *sc)
2432 {
2433     u_int8_t	error, param0, param1;
2434     int		spinup = 0;
2435 
2436     debug_called(1);
2437 
2438     /* set HM_STSACK and let the firmware initialise */
2439     MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_STSACK);
2440     DELAY(1000);	/* too short? */
2441 
2442     /* if HM_STSACK is still true, the controller is initialising */
2443     if (!MLY_IDBR_TRUE(sc, MLY_HM_STSACK))
2444 	return(0);
2445     mly_printf(sc, "controller initialisation started\n");
2446 
2447     /* spin waiting for initialisation to finish, or for a message to be delivered */
2448     while (MLY_IDBR_TRUE(sc, MLY_HM_STSACK)) {
2449 	/* check for a message */
2450 	if (MLY_ERROR_VALID(sc)) {
2451 	    error = MLY_GET_REG(sc, sc->mly_error_status) & ~MLY_MSG_EMPTY;
2452 	    param0 = MLY_GET_REG(sc, sc->mly_command_mailbox);
2453 	    param1 = MLY_GET_REG(sc, sc->mly_command_mailbox + 1);
2454 
2455 	    switch(error) {
2456 	    case MLY_MSG_SPINUP:
2457 		if (!spinup) {
2458 		    mly_printf(sc, "drive spinup in progress\n");
2459 		    spinup = 1;			/* only print this once (should print drive being spun?) */
2460 		}
2461 		break;
2462 	    case MLY_MSG_RACE_RECOVERY_FAIL:
2463 		mly_printf(sc, "mirror race recovery failed, one or more drives offline\n");
2464 		break;
2465 	    case MLY_MSG_RACE_IN_PROGRESS:
2466 		mly_printf(sc, "mirror race recovery in progress\n");
2467 		break;
2468 	    case MLY_MSG_RACE_ON_CRITICAL:
2469 		mly_printf(sc, "mirror race recovery on a critical drive\n");
2470 		break;
2471 	    case MLY_MSG_PARITY_ERROR:
2472 		mly_printf(sc, "FATAL MEMORY PARITY ERROR\n");
2473 		return(ENXIO);
2474 	    default:
2475 		mly_printf(sc, "unknown initialisation code 0x%x\n", error);
2476 	    }
2477 	}
2478     }
2479     return(0);
2480 }
2481 
2482 /********************************************************************************
2483  ********************************************************************************
2484                                                         Debugging and Diagnostics
2485  ********************************************************************************
2486  ********************************************************************************/
2487 
2488 /********************************************************************************
2489  * Print some information about the controller.
2490  */
2491 static void
2492 mly_describe_controller(struct mly_softc *sc)
2493 {
2494     struct mly_ioctl_getcontrollerinfo	*mi = sc->mly_controllerinfo;
2495 
2496     mly_printf(sc, "%16s, %d channel%s, firmware %d.%02d-%d-%02d (%02d%02d%02d%02d), %dMB RAM\n",
2497 	       mi->controller_name, mi->physical_channels_present, (mi->physical_channels_present) > 1 ? "s" : "",
2498 	       mi->fw_major, mi->fw_minor, mi->fw_turn, mi->fw_build,	/* XXX turn encoding? */
2499 	       mi->fw_century, mi->fw_year, mi->fw_month, mi->fw_day,
2500 	       mi->memory_size);
2501 
2502     if (bootverbose) {
2503 	mly_printf(sc, "%s %s (%x), %dMHz %d-bit %.16s\n",
2504 		   mly_describe_code(mly_table_oemname, mi->oem_information),
2505 		   mly_describe_code(mly_table_controllertype, mi->controller_type), mi->controller_type,
2506 		   mi->interface_speed, mi->interface_width, mi->interface_name);
2507 	mly_printf(sc, "%dMB %dMHz %d-bit %s%s%s, cache %dMB\n",
2508 		   mi->memory_size, mi->memory_speed, mi->memory_width,
2509 		   mly_describe_code(mly_table_memorytype, mi->memory_type),
2510 		   mi->memory_parity ? "+parity": "",mi->memory_ecc ? "+ECC": "",
2511 		   mi->cache_size);
2512 	mly_printf(sc, "CPU: %s @ %dMHZ\n",
2513 		   mly_describe_code(mly_table_cputype, mi->cpu[0].type), mi->cpu[0].speed);
2514 	if (mi->l2cache_size != 0)
2515 	    mly_printf(sc, "%dKB L2 cache\n", mi->l2cache_size);
2516 	if (mi->exmemory_size != 0)
2517 	    mly_printf(sc, "%dMB %dMHz %d-bit private %s%s%s\n",
2518 		       mi->exmemory_size, mi->exmemory_speed, mi->exmemory_width,
2519 		       mly_describe_code(mly_table_memorytype, mi->exmemory_type),
2520 		       mi->exmemory_parity ? "+parity": "",mi->exmemory_ecc ? "+ECC": "");
2521 	mly_printf(sc, "battery backup %s\n", mi->bbu_present ? "present" : "not installed");
2522 	mly_printf(sc, "maximum data transfer %d blocks, maximum sg entries/command %d\n",
2523 		   mi->maximum_block_count, mi->maximum_sg_entries);
2524 	mly_printf(sc, "logical devices present/critical/offline %d/%d/%d\n",
2525 		   mi->logical_devices_present, mi->logical_devices_critical, mi->logical_devices_offline);
2526 	mly_printf(sc, "physical devices present %d\n",
2527 		   mi->physical_devices_present);
2528 	mly_printf(sc, "physical disks present/offline %d/%d\n",
2529 		   mi->physical_disks_present, mi->physical_disks_offline);
2530 	mly_printf(sc, "%d physical channel%s, %d virtual channel%s of %d possible\n",
2531 		   mi->physical_channels_present, mi->physical_channels_present == 1 ? "" : "s",
2532 		   mi->virtual_channels_present, mi->virtual_channels_present == 1 ? "" : "s",
2533 		   mi->virtual_channels_possible);
2534 	mly_printf(sc, "%d parallel commands supported\n", mi->maximum_parallel_commands);
2535 	mly_printf(sc, "%dMB flash ROM, %d of %d maximum cycles\n",
2536 		   mi->flash_size, mi->flash_age, mi->flash_maximum_age);
2537     }
2538 }
2539 
2540 #ifdef MLY_DEBUG
2541 /********************************************************************************
2542  * Print some controller state
2543  */
2544 static void
2545 mly_printstate(struct mly_softc *sc)
2546 {
2547     mly_printf(sc, "IDBR %02x  ODBR %02x  ERROR %02x  (%x %x %x)\n",
2548 		  MLY_GET_REG(sc, sc->mly_idbr),
2549 		  MLY_GET_REG(sc, sc->mly_odbr),
2550 		  MLY_GET_REG(sc, sc->mly_error_status),
2551 		  sc->mly_idbr,
2552 		  sc->mly_odbr,
2553 		  sc->mly_error_status);
2554     mly_printf(sc, "IMASK %02x  ISTATUS %02x\n",
2555 		  MLY_GET_REG(sc, sc->mly_interrupt_mask),
2556 		  MLY_GET_REG(sc, sc->mly_interrupt_status));
2557     mly_printf(sc, "COMMAND %02x %02x %02x %02x %02x %02x %02x %02x\n",
2558 		  MLY_GET_REG(sc, sc->mly_command_mailbox),
2559 		  MLY_GET_REG(sc, sc->mly_command_mailbox + 1),
2560 		  MLY_GET_REG(sc, sc->mly_command_mailbox + 2),
2561 		  MLY_GET_REG(sc, sc->mly_command_mailbox + 3),
2562 		  MLY_GET_REG(sc, sc->mly_command_mailbox + 4),
2563 		  MLY_GET_REG(sc, sc->mly_command_mailbox + 5),
2564 		  MLY_GET_REG(sc, sc->mly_command_mailbox + 6),
2565 		  MLY_GET_REG(sc, sc->mly_command_mailbox + 7));
2566     mly_printf(sc, "STATUS  %02x %02x %02x %02x %02x %02x %02x %02x\n",
2567 		  MLY_GET_REG(sc, sc->mly_status_mailbox),
2568 		  MLY_GET_REG(sc, sc->mly_status_mailbox + 1),
2569 		  MLY_GET_REG(sc, sc->mly_status_mailbox + 2),
2570 		  MLY_GET_REG(sc, sc->mly_status_mailbox + 3),
2571 		  MLY_GET_REG(sc, sc->mly_status_mailbox + 4),
2572 		  MLY_GET_REG(sc, sc->mly_status_mailbox + 5),
2573 		  MLY_GET_REG(sc, sc->mly_status_mailbox + 6),
2574 		  MLY_GET_REG(sc, sc->mly_status_mailbox + 7));
2575     mly_printf(sc, "        %04x        %08x\n",
2576 		  MLY_GET_REG2(sc, sc->mly_status_mailbox),
2577 		  MLY_GET_REG4(sc, sc->mly_status_mailbox + 4));
2578 }
2579 
2580 struct mly_softc	*mly_softc0 = NULL;
2581 void
2582 mly_printstate0(void)
2583 {
2584     if (mly_softc0 != NULL)
2585 	mly_printstate(mly_softc0);
2586 }
2587 
2588 /********************************************************************************
2589  * Print a command
2590  */
2591 static void
2592 mly_print_command(struct mly_command *mc)
2593 {
2594     struct mly_softc	*sc = mc->mc_sc;
2595 
2596     mly_printf(sc, "COMMAND @ %p\n", mc);
2597     mly_printf(sc, "  slot      %d\n", mc->mc_slot);
2598     mly_printf(sc, "  status    0x%x\n", mc->mc_status);
2599     mly_printf(sc, "  sense len %d\n", mc->mc_sense);
2600     mly_printf(sc, "  resid     %d\n", mc->mc_resid);
2601     mly_printf(sc, "  packet    %p/0x%llx\n", mc->mc_packet, mc->mc_packetphys);
2602     if (mc->mc_packet != NULL)
2603 	mly_print_packet(mc);
2604     mly_printf(sc, "  data      %p/%d\n", mc->mc_data, mc->mc_length);
2605     mly_printf(sc, "  flags     %b\n", mc->mc_flags, "\20\1busy\2complete\3slotted\4mapped\5datain\6dataout\n");
2606     mly_printf(sc, "  complete  %p\n", mc->mc_complete);
2607     mly_printf(sc, "  private   %p\n", mc->mc_private);
2608 }
2609 
2610 /********************************************************************************
2611  * Print a command packet
2612  */
2613 static void
2614 mly_print_packet(struct mly_command *mc)
2615 {
2616     struct mly_softc			*sc = mc->mc_sc;
2617     struct mly_command_generic		*ge = (struct mly_command_generic *)mc->mc_packet;
2618     struct mly_command_scsi_small	*ss = (struct mly_command_scsi_small *)mc->mc_packet;
2619     struct mly_command_scsi_large	*sl = (struct mly_command_scsi_large *)mc->mc_packet;
2620     struct mly_command_ioctl		*io = (struct mly_command_ioctl *)mc->mc_packet;
2621     int					transfer;
2622 
2623     mly_printf(sc, "   command_id           %d\n", ge->command_id);
2624     mly_printf(sc, "   opcode               %d\n", ge->opcode);
2625     mly_printf(sc, "   command_control      fua %d  dpo %d  est %d  dd %s  nas %d ddis %d\n",
2626 		  ge->command_control.force_unit_access,
2627 		  ge->command_control.disable_page_out,
2628 		  ge->command_control.extended_sg_table,
2629 		  (ge->command_control.data_direction == MLY_CCB_WRITE) ? "WRITE" : "READ",
2630 		  ge->command_control.no_auto_sense,
2631 		  ge->command_control.disable_disconnect);
2632     mly_printf(sc, "   data_size            %d\n", ge->data_size);
2633     mly_printf(sc, "   sense_buffer_address 0x%llx\n", ge->sense_buffer_address);
2634     mly_printf(sc, "   lun                  %d\n", ge->addr.phys.lun);
2635     mly_printf(sc, "   target               %d\n", ge->addr.phys.target);
2636     mly_printf(sc, "   channel              %d\n", ge->addr.phys.channel);
2637     mly_printf(sc, "   logical device       %d\n", ge->addr.log.logdev);
2638     mly_printf(sc, "   controller           %d\n", ge->addr.phys.controller);
2639     mly_printf(sc, "   timeout              %d %s\n",
2640 		  ge->timeout.value,
2641 		  (ge->timeout.scale == MLY_TIMEOUT_SECONDS) ? "seconds" :
2642 		  ((ge->timeout.scale == MLY_TIMEOUT_MINUTES) ? "minutes" : "hours"));
2643     mly_printf(sc, "   maximum_sense_size   %d\n", ge->maximum_sense_size);
2644     switch(ge->opcode) {
2645     case MDACMD_SCSIPT:
2646     case MDACMD_SCSI:
2647 	mly_printf(sc, "   cdb length           %d\n", ss->cdb_length);
2648 	mly_printf(sc, "   cdb                  %*D\n", ss->cdb_length, ss->cdb, " ");
2649 	transfer = 1;
2650 	break;
2651     case MDACMD_SCSILC:
2652     case MDACMD_SCSILCPT:
2653 	mly_printf(sc, "   cdb length           %d\n", sl->cdb_length);
2654 	mly_printf(sc, "   cdb                  0x%llx\n", sl->cdb_physaddr);
2655 	transfer = 1;
2656 	break;
2657     case MDACMD_IOCTL:
2658 	mly_printf(sc, "   sub_ioctl            0x%x\n", io->sub_ioctl);
2659 	switch(io->sub_ioctl) {
2660 	case MDACIOCTL_SETMEMORYMAILBOX:
2661 	    mly_printf(sc, "   health_buffer_size   %d\n",
2662 			  io->param.setmemorymailbox.health_buffer_size);
2663 	    mly_printf(sc, "   health_buffer_phys   0x%llx\n",
2664 			  io->param.setmemorymailbox.health_buffer_physaddr);
2665 	    mly_printf(sc, "   command_mailbox      0x%llx\n",
2666 			  io->param.setmemorymailbox.command_mailbox_physaddr);
2667 	    mly_printf(sc, "   status_mailbox       0x%llx\n",
2668 			  io->param.setmemorymailbox.status_mailbox_physaddr);
2669 	    transfer = 0;
2670 	    break;
2671 
2672 	case MDACIOCTL_SETREALTIMECLOCK:
2673 	case MDACIOCTL_GETHEALTHSTATUS:
2674 	case MDACIOCTL_GETCONTROLLERINFO:
2675 	case MDACIOCTL_GETLOGDEVINFOVALID:
2676 	case MDACIOCTL_GETPHYSDEVINFOVALID:
2677 	case MDACIOCTL_GETPHYSDEVSTATISTICS:
2678 	case MDACIOCTL_GETLOGDEVSTATISTICS:
2679 	case MDACIOCTL_GETCONTROLLERSTATISTICS:
2680 	case MDACIOCTL_GETBDT_FOR_SYSDRIVE:
2681 	case MDACIOCTL_CREATENEWCONF:
2682 	case MDACIOCTL_ADDNEWCONF:
2683 	case MDACIOCTL_GETDEVCONFINFO:
2684 	case MDACIOCTL_GETFREESPACELIST:
2685 	case MDACIOCTL_MORE:
2686 	case MDACIOCTL_SETPHYSDEVPARAMETER:
2687 	case MDACIOCTL_GETPHYSDEVPARAMETER:
2688 	case MDACIOCTL_GETLOGDEVPARAMETER:
2689 	case MDACIOCTL_SETLOGDEVPARAMETER:
2690 	    mly_printf(sc, "   param                %10D\n", io->param.data.param, " ");
2691 	    transfer = 1;
2692 	    break;
2693 
2694 	case MDACIOCTL_GETEVENT:
2695 	    mly_printf(sc, "   event                %d\n",
2696 		       io->param.getevent.sequence_number_low + ((u_int32_t)io->addr.log.logdev << 16));
2697 	    transfer = 1;
2698 	    break;
2699 
2700 	case MDACIOCTL_SETRAIDDEVSTATE:
2701 	    mly_printf(sc, "   state                %d\n", io->param.setraiddevstate.state);
2702 	    transfer = 0;
2703 	    break;
2704 
2705 	case MDACIOCTL_XLATEPHYSDEVTORAIDDEV:
2706 	    mly_printf(sc, "   raid_device          %d\n", io->param.xlatephysdevtoraiddev.raid_device);
2707 	    mly_printf(sc, "   controller           %d\n", io->param.xlatephysdevtoraiddev.controller);
2708 	    mly_printf(sc, "   channel              %d\n", io->param.xlatephysdevtoraiddev.channel);
2709 	    mly_printf(sc, "   target               %d\n", io->param.xlatephysdevtoraiddev.target);
2710 	    mly_printf(sc, "   lun                  %d\n", io->param.xlatephysdevtoraiddev.lun);
2711 	    transfer = 0;
2712 	    break;
2713 
2714 	case MDACIOCTL_GETGROUPCONFINFO:
2715 	    mly_printf(sc, "   group                %d\n", io->param.getgroupconfinfo.group);
2716 	    transfer = 1;
2717 	    break;
2718 
2719 	case MDACIOCTL_GET_SUBSYSTEM_DATA:
2720 	case MDACIOCTL_SET_SUBSYSTEM_DATA:
2721 	case MDACIOCTL_STARTDISOCVERY:
2722 	case MDACIOCTL_INITPHYSDEVSTART:
2723 	case MDACIOCTL_INITPHYSDEVSTOP:
2724 	case MDACIOCTL_INITRAIDDEVSTART:
2725 	case MDACIOCTL_INITRAIDDEVSTOP:
2726 	case MDACIOCTL_REBUILDRAIDDEVSTART:
2727 	case MDACIOCTL_REBUILDRAIDDEVSTOP:
2728 	case MDACIOCTL_MAKECONSISTENTDATASTART:
2729 	case MDACIOCTL_MAKECONSISTENTDATASTOP:
2730 	case MDACIOCTL_CONSISTENCYCHECKSTART:
2731 	case MDACIOCTL_CONSISTENCYCHECKSTOP:
2732 	case MDACIOCTL_RESETDEVICE:
2733 	case MDACIOCTL_FLUSHDEVICEDATA:
2734 	case MDACIOCTL_PAUSEDEVICE:
2735 	case MDACIOCTL_UNPAUSEDEVICE:
2736 	case MDACIOCTL_LOCATEDEVICE:
2737 	case MDACIOCTL_SETMASTERSLAVEMODE:
2738 	case MDACIOCTL_DELETERAIDDEV:
2739 	case MDACIOCTL_REPLACEINTERNALDEV:
2740 	case MDACIOCTL_CLEARCONF:
2741 	case MDACIOCTL_GETCONTROLLERPARAMETER:
2742 	case MDACIOCTL_SETCONTRLLERPARAMETER:
2743 	case MDACIOCTL_CLEARCONFSUSPMODE:
2744 	case MDACIOCTL_STOREIMAGE:
2745 	case MDACIOCTL_READIMAGE:
2746 	case MDACIOCTL_FLASHIMAGES:
2747 	case MDACIOCTL_RENAMERAIDDEV:
2748 	default:			/* no idea what to print */
2749 	    transfer = 0;
2750 	    break;
2751 	}
2752 	break;
2753 
2754     case MDACMD_IOCTLCHECK:
2755     case MDACMD_MEMCOPY:
2756     default:
2757 	transfer = 0;
2758 	break;	/* print nothing */
2759     }
2760     if (transfer) {
2761 	if (ge->command_control.extended_sg_table) {
2762 	    mly_printf(sc, "   sg table             0x%llx/%d\n",
2763 			  ge->transfer.indirect.table_physaddr[0], ge->transfer.indirect.entries[0]);
2764 	} else {
2765 	    mly_printf(sc, "   0000                 0x%llx/%lld\n",
2766 			  ge->transfer.direct.sg[0].physaddr, ge->transfer.direct.sg[0].length);
2767 	    mly_printf(sc, "   0001                 0x%llx/%lld\n",
2768 			  ge->transfer.direct.sg[1].physaddr, ge->transfer.direct.sg[1].length);
2769 	}
2770     }
2771 }
2772 
2773 /********************************************************************************
2774  * Panic in a slightly informative fashion
2775  */
2776 static void
2777 mly_panic(struct mly_softc *sc, char *reason)
2778 {
2779     mly_printstate(sc);
2780     panic(reason);
2781 }
2782 
2783 /********************************************************************************
2784  * Print queue statistics, callable from DDB.
2785  */
2786 void
2787 mly_print_controller(int controller)
2788 {
2789     struct mly_softc	*sc;
2790 
2791     if ((sc = devclass_get_softc(devclass_find("mly"), controller)) == NULL) {
2792 	kprintf("mly: controller %d invalid\n", controller);
2793     } else {
2794 	device_printf(sc->mly_dev, "queue    curr max\n");
2795 	device_printf(sc->mly_dev, "free     %04d/%04d\n",
2796 		      sc->mly_qstat[MLYQ_FREE].q_length, sc->mly_qstat[MLYQ_FREE].q_max);
2797 	device_printf(sc->mly_dev, "busy     %04d/%04d\n",
2798 		      sc->mly_qstat[MLYQ_BUSY].q_length, sc->mly_qstat[MLYQ_BUSY].q_max);
2799 	device_printf(sc->mly_dev, "complete %04d/%04d\n",
2800 		      sc->mly_qstat[MLYQ_COMPLETE].q_length, sc->mly_qstat[MLYQ_COMPLETE].q_max);
2801     }
2802 }
2803 #endif
2804 
2805 
2806 /********************************************************************************
2807  ********************************************************************************
2808                                                          Control device interface
2809  ********************************************************************************
2810  ********************************************************************************/
2811 
2812 /********************************************************************************
2813  * Accept an open operation on the control device.
2814  */
2815 static int
2816 mly_user_open(struct dev_open_args *ap)
2817 {
2818     cdev_t dev = ap->a_head.a_dev;
2819     int			unit = minor(dev);
2820     struct mly_softc	*sc = devclass_get_softc(devclass_find("mly"), unit);
2821 
2822     sc->mly_state |= MLY_STATE_OPEN;
2823     return(0);
2824 }
2825 
2826 /********************************************************************************
2827  * Accept the last close on the control device.
2828  */
2829 static int
2830 mly_user_close(struct dev_close_args *ap)
2831 {
2832     cdev_t dev = ap->a_head.a_dev;
2833     int			unit = minor(dev);
2834     struct mly_softc	*sc = devclass_get_softc(devclass_find("mly"), unit);
2835 
2836     sc->mly_state &= ~MLY_STATE_OPEN;
2837     return (0);
2838 }
2839 
2840 /********************************************************************************
2841  * Handle controller-specific control operations.
2842  */
2843 static int
2844 mly_user_ioctl(struct dev_ioctl_args *ap)
2845 {
2846     cdev_t dev = ap->a_head.a_dev;
2847     struct mly_softc		*sc = (struct mly_softc *)dev->si_drv1;
2848     struct mly_user_command	*uc = (struct mly_user_command *)ap->a_data;
2849     struct mly_user_health	*uh = (struct mly_user_health *)ap->a_data;
2850 
2851     switch(ap->a_cmd) {
2852     case MLYIO_COMMAND:
2853 	return(mly_user_command(sc, uc));
2854     case MLYIO_HEALTH:
2855 	return(mly_user_health(sc, uh));
2856     default:
2857 	return(ENOIOCTL);
2858     }
2859 }
2860 
2861 /********************************************************************************
2862  * Execute a command passed in from userspace.
2863  *
2864  * The control structure contains the actual command for the controller, as well
2865  * as the user-space data pointer and data size, and an optional sense buffer
2866  * size/pointer.  On completion, the data size is adjusted to the command
2867  * residual, and the sense buffer size to the size of the returned sense data.
2868  *
2869  */
2870 static int
2871 mly_user_command(struct mly_softc *sc, struct mly_user_command *uc)
2872 {
2873     struct mly_command	*mc;
2874     int			error;
2875 
2876     /* allocate a command */
2877     if (mly_alloc_command(sc, &mc)) {
2878 	error = ENOMEM;
2879 	goto out;		/* XXX Linux version will wait for a command */
2880     }
2881 
2882     /* handle data size/direction */
2883     mc->mc_length = (uc->DataTransferLength >= 0) ? uc->DataTransferLength : -uc->DataTransferLength;
2884     if (mc->mc_length > 0)
2885 	mc->mc_data = kmalloc(mc->mc_length, M_DEVBUF, M_INTWAIT);
2886     if (uc->DataTransferLength > 0) {
2887 	mc->mc_flags |= MLY_CMD_DATAIN;
2888 	bzero(mc->mc_data, mc->mc_length);
2889     }
2890     if (uc->DataTransferLength < 0) {
2891 	mc->mc_flags |= MLY_CMD_DATAOUT;
2892 	if ((error = copyin(uc->DataTransferBuffer, mc->mc_data, mc->mc_length)) != 0)
2893 	    goto out;
2894     }
2895 
2896     /* copy the controller command */
2897     bcopy(&uc->CommandMailbox, mc->mc_packet, sizeof(uc->CommandMailbox));
2898 
2899     /* clear command completion handler so that we get woken up */
2900     mc->mc_complete = NULL;
2901 
2902     /* execute the command */
2903     if ((error = mly_start(mc)) != 0)
2904 	goto out;
2905     crit_enter();
2906     while (!(mc->mc_flags & MLY_CMD_COMPLETE))
2907 	tsleep(mc, 0, "mlyioctl", 0);
2908     crit_exit();
2909 
2910     /* return the data to userspace */
2911     if (uc->DataTransferLength > 0)
2912 	if ((error = copyout(mc->mc_data, uc->DataTransferBuffer, mc->mc_length)) != 0)
2913 	    goto out;
2914 
2915     /* return the sense buffer to userspace */
2916     if ((uc->RequestSenseLength > 0) && (mc->mc_sense > 0)) {
2917 	if ((error = copyout(mc->mc_packet, uc->RequestSenseBuffer,
2918 			     min(uc->RequestSenseLength, mc->mc_sense))) != 0)
2919 	    goto out;
2920     }
2921 
2922     /* return command results to userspace (caller will copy out) */
2923     uc->DataTransferLength = mc->mc_resid;
2924     uc->RequestSenseLength = min(uc->RequestSenseLength, mc->mc_sense);
2925     uc->CommandStatus = mc->mc_status;
2926     error = 0;
2927 
2928  out:
2929     if (mc->mc_data != NULL)
2930 	kfree(mc->mc_data, M_DEVBUF);
2931     if (mc != NULL)
2932 	mly_release_command(mc);
2933     return(error);
2934 }
2935 
2936 /********************************************************************************
2937  * Return health status to userspace.  If the health change index in the user
2938  * structure does not match that currently exported by the controller, we
2939  * return the current status immediately.  Otherwise, we block until either
2940  * interrupted or new status is delivered.
2941  */
2942 static int
2943 mly_user_health(struct mly_softc *sc, struct mly_user_health *uh)
2944 {
2945     struct mly_health_status		mh;
2946     int					error;
2947 
2948     /* fetch the current health status from userspace */
2949     if ((error = copyin(uh->HealthStatusBuffer, &mh, sizeof(mh))) != 0)
2950 	return(error);
2951 
2952     /* spin waiting for a status update */
2953     crit_enter();
2954     error = EWOULDBLOCK;
2955     while ((error != 0) && (sc->mly_event_change == mh.change_counter))
2956 	error = tsleep(&sc->mly_event_change, PCATCH, "mlyhealth", 0);
2957     crit_exit();
2958 
2959     /* copy the controller's health status buffer out (there is a race here if it changes again) */
2960     error = copyout(&sc->mly_mmbox->mmm_health.status, uh->HealthStatusBuffer,
2961 		    sizeof(uh->HealthStatusBuffer));
2962     return(error);
2963 }
2964 
2965 static int
2966 mly_timeout(struct mly_softc *sc)
2967 {
2968 	struct mly_command *mc;
2969 	int deadline;
2970 
2971 	deadline = time_second - MLY_CMD_TIMEOUT;
2972 	TAILQ_FOREACH(mc, &sc->mly_busy, mc_link) {
2973 		if ((mc->mc_timestamp < deadline)) {
2974 			device_printf(sc->mly_dev,
2975 			    "COMMAND %p TIMEOUT AFTER %d SECONDS\n", mc,
2976 			    (int)(time_second - mc->mc_timestamp));
2977 		}
2978 	}
2979 
2980 	callout_reset(&sc->mly_timeout, MLY_CMD_TIMEOUT * hz,
2981 		      (timeout_t *)mly_timeout, sc);
2982 
2983 	return (0);
2984 }
2985