xref: /dragonfly/sys/dev/raid/mly/mly.c (revision fcf53d9b)
1 /*-
2  * Copyright (c) 2000, 2001 Michael Smith
3  * Copyright (c) 2000 BSDi
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  *	$FreeBSD: src/sys/dev/mly/mly.c,v 1.3.2.3 2001/03/05 20:17:24 msmith Exp $
28  */
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/malloc.h>
33 #include <sys/kernel.h>
34 #include <sys/bus.h>
35 #include <sys/conf.h>
36 #include <sys/device.h>
37 #include <sys/ctype.h>
38 #include <sys/stat.h>
39 #include <sys/rman.h>
40 #include <sys/thread2.h>
41 
42 #include <bus/cam/cam.h>
43 #include <bus/cam/cam_ccb.h>
44 #include <bus/cam/cam_periph.h>
45 #include <bus/cam/cam_sim.h>
46 #include <bus/cam/cam_xpt_sim.h>
47 #include <bus/cam/scsi/scsi_all.h>
48 #include <bus/cam/scsi/scsi_message.h>
49 
50 #include <bus/pci/pcireg.h>
51 #include <bus/pci/pcivar.h>
52 
53 #include "mlyreg.h"
54 #include "mlyio.h"
55 #include "mlyvar.h"
56 #include "mly_tables.h"
57 
58 static int	mly_probe(device_t dev);
59 static int	mly_attach(device_t dev);
60 static int	mly_pci_attach(struct mly_softc *sc);
61 static int	mly_detach(device_t dev);
62 static int	mly_shutdown(device_t dev);
63 static void	mly_intr(void *arg);
64 
65 static int	mly_sg_map(struct mly_softc *sc);
66 static void	mly_sg_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error);
67 static int	mly_mmbox_map(struct mly_softc *sc);
68 static void	mly_mmbox_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error);
69 static void	mly_free(struct mly_softc *sc);
70 
71 static int	mly_get_controllerinfo(struct mly_softc *sc);
72 static void	mly_scan_devices(struct mly_softc *sc);
73 static void	mly_rescan_btl(struct mly_softc *sc, int bus, int target);
74 static void	mly_complete_rescan(struct mly_command *mc);
75 static int	mly_get_eventstatus(struct mly_softc *sc);
76 static int	mly_enable_mmbox(struct mly_softc *sc);
77 static int	mly_flush(struct mly_softc *sc);
78 static int	mly_ioctl(struct mly_softc *sc, struct mly_command_ioctl *ioctl, void **data,
79 			  size_t datasize, u_int8_t *status, void *sense_buffer, size_t *sense_length);
80 static void	mly_check_event(struct mly_softc *sc);
81 static void	mly_fetch_event(struct mly_softc *sc);
82 static void	mly_complete_event(struct mly_command *mc);
83 static void	mly_process_event(struct mly_softc *sc, struct mly_event *me);
84 static void	mly_periodic(void *data);
85 
86 static int	mly_immediate_command(struct mly_command *mc);
87 static int	mly_start(struct mly_command *mc);
88 static void	mly_done(struct mly_softc *sc);
89 static void	mly_complete(void *context, int pending);
90 
91 static int	mly_alloc_command(struct mly_softc *sc, struct mly_command **mcp);
92 static void	mly_release_command(struct mly_command *mc);
93 static void	mly_alloc_commands_map(void *arg, bus_dma_segment_t *segs, int nseg, int error);
94 static int	mly_alloc_commands(struct mly_softc *sc);
95 static void	mly_release_commands(struct mly_softc *sc);
96 static void	mly_map_command(struct mly_command *mc);
97 static void	mly_unmap_command(struct mly_command *mc);
98 
99 static int	mly_cam_attach(struct mly_softc *sc);
100 static void	mly_cam_detach(struct mly_softc *sc);
101 static void	mly_cam_rescan_btl(struct mly_softc *sc, int bus, int target);
102 static void	mly_cam_rescan_callback(struct cam_periph *periph, union ccb *ccb);
103 static void	mly_cam_action(struct cam_sim *sim, union ccb *ccb);
104 static int	mly_cam_action_io(struct cam_sim *sim, struct ccb_scsiio *csio);
105 static void	mly_cam_poll(struct cam_sim *sim);
106 static void	mly_cam_complete(struct mly_command *mc);
107 static struct cam_periph *mly_find_periph(struct mly_softc *sc, int bus, int target);
108 static int	mly_name_device(struct mly_softc *sc, int bus, int target);
109 
110 static int	mly_fwhandshake(struct mly_softc *sc);
111 
112 static void	mly_describe_controller(struct mly_softc *sc);
113 #ifdef MLY_DEBUG
114 static void	mly_printstate(struct mly_softc *sc);
115 static void	mly_print_command(struct mly_command *mc);
116 static void	mly_print_packet(struct mly_command *mc);
117 static void	mly_panic(struct mly_softc *sc, char *reason);
118 static int	mly_timeout(struct mly_softc *sc);
119 #endif
120 void		mly_print_controller(int controller);
121 
122 
123 static d_open_t		mly_user_open;
124 static d_close_t	mly_user_close;
125 static d_ioctl_t	mly_user_ioctl;
126 static int	mly_user_command(struct mly_softc *sc, struct mly_user_command *uc);
127 static int	mly_user_health(struct mly_softc *sc, struct mly_user_health *uh);
128 
129 #define MLY_CMD_TIMEOUT		20
130 
131 static device_method_t mly_methods[] = {
132     /* Device interface */
133     DEVMETHOD(device_probe,	mly_probe),
134     DEVMETHOD(device_attach,	mly_attach),
135     DEVMETHOD(device_detach,	mly_detach),
136     DEVMETHOD(device_shutdown,	mly_shutdown),
137     { 0, 0 }
138 };
139 
140 static driver_t mly_pci_driver = {
141 	"mly",
142 	mly_methods,
143 	sizeof(struct mly_softc)
144 };
145 
146 static devclass_t	mly_devclass;
147 DRIVER_MODULE(mly, pci, mly_pci_driver, mly_devclass, 0, 0);
148 
149 static struct dev_ops mly_ops = {
150     { "mly", 0, 0 },
151     .d_open =	mly_user_open,
152     .d_close =	mly_user_close,
153     .d_ioctl =	mly_user_ioctl,
154 };
155 
156 /********************************************************************************
157  ********************************************************************************
158                                                                  Device Interface
159  ********************************************************************************
160  ********************************************************************************/
161 
162 static struct mly_ident
163 {
164     u_int16_t		vendor;
165     u_int16_t		device;
166     u_int16_t		subvendor;
167     u_int16_t		subdevice;
168     int			hwif;
169     char		*desc;
170 } mly_identifiers[] = {
171     {0x1069, 0xba56, 0x1069, 0x0040, MLY_HWIF_STRONGARM, "Mylex eXtremeRAID 2000"},
172     {0x1069, 0xba56, 0x1069, 0x0030, MLY_HWIF_STRONGARM, "Mylex eXtremeRAID 3000"},
173     {0x1069, 0x0050, 0x1069, 0x0050, MLY_HWIF_I960RX,    "Mylex AcceleRAID 352"},
174     {0x1069, 0x0050, 0x1069, 0x0052, MLY_HWIF_I960RX,    "Mylex AcceleRAID 170"},
175     {0x1069, 0x0050, 0x1069, 0x0054, MLY_HWIF_I960RX,    "Mylex AcceleRAID 160"},
176     {0, 0, 0, 0, 0, 0}
177 };
178 
179 /********************************************************************************
180  * Compare the provided PCI device with the list we support.
181  */
182 static int
183 mly_probe(device_t dev)
184 {
185     struct mly_ident	*m;
186 
187     debug_called(1);
188 
189     for (m = mly_identifiers; m->vendor != 0; m++) {
190 	if ((m->vendor == pci_get_vendor(dev)) &&
191 	    (m->device == pci_get_device(dev)) &&
192 	    ((m->subvendor == 0) || ((m->subvendor == pci_get_subvendor(dev)) &&
193 				     (m->subdevice == pci_get_subdevice(dev))))) {
194 
195 	    device_set_desc(dev, m->desc);
196 	    return(BUS_PROBE_DEFAULT);	/* allow room to be overridden */
197 	}
198     }
199     return(ENXIO);
200 }
201 
202 /********************************************************************************
203  * Initialise the controller and softc
204  */
205 static int
206 mly_attach(device_t dev)
207 {
208     struct mly_softc	*sc = device_get_softc(dev);
209     int			error;
210 
211     debug_called(1);
212 
213     sc->mly_dev = dev;
214 
215 #ifdef MLY_DEBUG
216     if (device_get_unit(sc->mly_dev) == 0)
217 	mly_softc0 = sc;
218 #endif
219 
220     /*
221      * Do PCI-specific initialisation.
222      */
223     if ((error = mly_pci_attach(sc)) != 0)
224 	goto out;
225 
226     callout_init(&sc->mly_periodic);
227     callout_init(&sc->mly_timeout);
228 
229     /*
230      * Initialise per-controller queues.
231      */
232     mly_initq_free(sc);
233     mly_initq_busy(sc);
234     mly_initq_complete(sc);
235 
236     /*
237      * Initialise command-completion task.
238      */
239     TASK_INIT(&sc->mly_task_complete, 0, mly_complete, sc);
240 
241     /* disable interrupts before we start talking to the controller */
242     MLY_MASK_INTERRUPTS(sc);
243 
244     /*
245      * Wait for the controller to come ready, handshake with the firmware if required.
246      * This is typically only necessary on platforms where the controller BIOS does not
247      * run.
248      */
249     if ((error = mly_fwhandshake(sc)))
250 	goto out;
251 
252     /*
253      * Allocate initial command buffers.
254      */
255     if ((error = mly_alloc_commands(sc)))
256 	goto out;
257 
258     /*
259      * Obtain controller feature information
260      */
261     if ((error = mly_get_controllerinfo(sc)))
262 	goto out;
263 
264     /*
265      * Reallocate command buffers now we know how many we want.
266      */
267     mly_release_commands(sc);
268     if ((error = mly_alloc_commands(sc)))
269 	goto out;
270 
271     /*
272      * Get the current event counter for health purposes, populate the initial
273      * health status buffer.
274      */
275     if ((error = mly_get_eventstatus(sc)))
276 	goto out;
277 
278     /*
279      * Enable memory-mailbox mode.
280      */
281     if ((error = mly_enable_mmbox(sc)))
282 	goto out;
283 
284     /*
285      * Attach to CAM.
286      */
287     if ((error = mly_cam_attach(sc)))
288 	goto out;
289 
290     /*
291      * Print a little information about the controller
292      */
293     mly_describe_controller(sc);
294 
295     /*
296      * Mark all attached devices for rescan.
297      */
298     mly_scan_devices(sc);
299 
300     /*
301      * Instigate the first status poll immediately.  Rescan completions won't
302      * happen until interrupts are enabled, which should still be before
303      * the SCSI subsystem gets to us, courtesy of the "SCSI settling delay".
304      */
305     mly_periodic((void *)sc);
306 
307     /*
308      * Create the control device.
309      */
310     sc->mly_dev_t = make_dev(&mly_ops, device_get_unit(sc->mly_dev),
311 			     UID_ROOT, GID_OPERATOR, S_IRUSR | S_IWUSR,
312 			     "mly%d", device_get_unit(sc->mly_dev));
313     sc->mly_dev_t->si_drv1 = sc;
314 
315     /* enable interrupts now */
316     MLY_UNMASK_INTERRUPTS(sc);
317 
318 #ifdef MLY_DEBUG
319     callout_reset(&sc->mly_timeout, MLY_CMD_TIMEOUT * hz,
320 		  (timeout_t *)mly_timeout, sc);
321 #endif
322 
323  out:
324     if (error != 0)
325 	mly_free(sc);
326     return(error);
327 }
328 
329 /********************************************************************************
330  * Perform PCI-specific initialisation.
331  */
332 static int
333 mly_pci_attach(struct mly_softc *sc)
334 {
335     int			i, error;
336     u_int32_t		command;
337 
338     debug_called(1);
339 
340     /* assume failure is 'not configured' */
341     error = ENXIO;
342 
343     /*
344      * Verify that the adapter is correctly set up in PCI space.
345      *
346      * XXX we shouldn't do this; the PCI code should.
347      */
348     command = pci_read_config(sc->mly_dev, PCIR_COMMAND, 2);
349     command |= PCIM_CMD_BUSMASTEREN;
350     pci_write_config(sc->mly_dev, PCIR_COMMAND, command, 2);
351     command = pci_read_config(sc->mly_dev, PCIR_COMMAND, 2);
352     if (!(command & PCIM_CMD_BUSMASTEREN)) {
353 	mly_printf(sc, "can't enable busmaster feature\n");
354 	goto fail;
355     }
356     if ((command & PCIM_CMD_MEMEN) == 0) {
357 	mly_printf(sc, "memory window not available\n");
358 	goto fail;
359     }
360 
361     /*
362      * Allocate the PCI register window.
363      */
364     sc->mly_regs_rid = PCIR_BAR(0);	/* first base address register */
365     if ((sc->mly_regs_resource = bus_alloc_resource_any(sc->mly_dev,
366 	    SYS_RES_MEMORY, &sc->mly_regs_rid, RF_ACTIVE)) == NULL) {
367 	mly_printf(sc, "can't allocate register window\n");
368 	goto fail;
369     }
370     sc->mly_btag = rman_get_bustag(sc->mly_regs_resource);
371     sc->mly_bhandle = rman_get_bushandle(sc->mly_regs_resource);
372 
373     /*
374      * Allocate and connect our interrupt.
375      */
376     sc->mly_irq_rid = 0;
377     if ((sc->mly_irq = bus_alloc_resource_any(sc->mly_dev, SYS_RES_IRQ,
378 		    &sc->mly_irq_rid, RF_SHAREABLE | RF_ACTIVE)) == NULL) {
379 	mly_printf(sc, "can't allocate interrupt\n");
380 	goto fail;
381     }
382     error = bus_setup_intr(sc->mly_dev, sc->mly_irq, 0,
383 			   mly_intr, sc, &sc->mly_intr, NULL);
384     if (error) {
385 	mly_printf(sc, "can't set up interrupt\n");
386 	goto fail;
387     }
388 
389     /* assume failure is 'out of memory' */
390     error = ENOMEM;
391 
392     /*
393      * Allocate the parent bus DMA tag appropriate for our PCI interface.
394      *
395      * Note that all of these controllers are 64-bit capable.
396      */
397     if (bus_dma_tag_create(NULL, 			/* parent */
398 			   1, 0, 			/* alignment, boundary */
399 			   BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
400 			   BUS_SPACE_MAXADDR, 		/* highaddr */
401 			   NULL, NULL, 			/* filter, filterarg */
402 			   MAXBSIZE, MLY_MAX_SGENTRIES,	/* maxsize, nsegments */
403 			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
404 			   BUS_DMA_ALLOCNOW,		/* flags */
405 			   &sc->mly_parent_dmat)) {
406 	mly_printf(sc, "can't allocate parent DMA tag\n");
407 	goto fail;
408     }
409 
410     /*
411      * Create DMA tag for mapping buffers into controller-addressable space.
412      */
413     if (bus_dma_tag_create(sc->mly_parent_dmat, 	/* parent */
414 			   1, 0, 			/* alignment, boundary */
415 			   BUS_SPACE_MAXADDR,		/* lowaddr */
416 			   BUS_SPACE_MAXADDR, 		/* highaddr */
417 			   NULL, NULL, 			/* filter, filterarg */
418 			   MAXBSIZE, MLY_MAX_SGENTRIES,	/* maxsize, nsegments */
419 			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
420 			   0,				/* flags */
421 			   &sc->mly_buffer_dmat)) {
422 	mly_printf(sc, "can't allocate buffer DMA tag\n");
423 	goto fail;
424     }
425 
426     /*
427      * Initialise the DMA tag for command packets.
428      */
429     if (bus_dma_tag_create(sc->mly_parent_dmat,		/* parent */
430 			   1, 0, 			/* alignment, boundary */
431 			   BUS_SPACE_MAXADDR,		/* lowaddr */
432 			   BUS_SPACE_MAXADDR, 		/* highaddr */
433 			   NULL, NULL, 			/* filter, filterarg */
434 			   sizeof(union mly_command_packet) * MLY_MAX_COMMANDS, 1,	/* maxsize, nsegments */
435 			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
436 			   BUS_DMA_ALLOCNOW,		/* flags */
437 			   &sc->mly_packet_dmat)) {
438 	mly_printf(sc, "can't allocate command packet DMA tag\n");
439 	goto fail;
440     }
441 
442     /*
443      * Detect the hardware interface version
444      */
445     for (i = 0; mly_identifiers[i].vendor != 0; i++) {
446 	if ((mly_identifiers[i].vendor == pci_get_vendor(sc->mly_dev)) &&
447 	    (mly_identifiers[i].device == pci_get_device(sc->mly_dev))) {
448 	    sc->mly_hwif = mly_identifiers[i].hwif;
449 	    switch(sc->mly_hwif) {
450 	    case MLY_HWIF_I960RX:
451 		debug(1, "set hardware up for i960RX");
452 		sc->mly_doorbell_true = 0x00;
453 		sc->mly_command_mailbox =  MLY_I960RX_COMMAND_MAILBOX;
454 		sc->mly_status_mailbox =   MLY_I960RX_STATUS_MAILBOX;
455 		sc->mly_idbr =             MLY_I960RX_IDBR;
456 		sc->mly_odbr =             MLY_I960RX_ODBR;
457 		sc->mly_error_status =     MLY_I960RX_ERROR_STATUS;
458 		sc->mly_interrupt_status = MLY_I960RX_INTERRUPT_STATUS;
459 		sc->mly_interrupt_mask =   MLY_I960RX_INTERRUPT_MASK;
460 		break;
461 	    case MLY_HWIF_STRONGARM:
462 		debug(1, "set hardware up for StrongARM");
463 		sc->mly_doorbell_true = 0xff;		/* doorbell 'true' is 0 */
464 		sc->mly_command_mailbox =  MLY_STRONGARM_COMMAND_MAILBOX;
465 		sc->mly_status_mailbox =   MLY_STRONGARM_STATUS_MAILBOX;
466 		sc->mly_idbr =             MLY_STRONGARM_IDBR;
467 		sc->mly_odbr =             MLY_STRONGARM_ODBR;
468 		sc->mly_error_status =     MLY_STRONGARM_ERROR_STATUS;
469 		sc->mly_interrupt_status = MLY_STRONGARM_INTERRUPT_STATUS;
470 		sc->mly_interrupt_mask =   MLY_STRONGARM_INTERRUPT_MASK;
471 		break;
472 	    }
473 	    break;
474 	}
475     }
476 
477     /*
478      * Create the scatter/gather mappings.
479      */
480     if ((error = mly_sg_map(sc)))
481 	goto fail;
482 
483     /*
484      * Allocate and map the memory mailbox
485      */
486     if ((error = mly_mmbox_map(sc)))
487 	goto fail;
488 
489     error = 0;
490 
491 fail:
492     return(error);
493 }
494 
495 /********************************************************************************
496  * Shut the controller down and detach all our resources.
497  */
498 static int
499 mly_detach(device_t dev)
500 {
501     int			error;
502 
503     if ((error = mly_shutdown(dev)) != 0)
504 	return(error);
505 
506     mly_free(device_get_softc(dev));
507     return(0);
508 }
509 
510 /********************************************************************************
511  * Bring the controller to a state where it can be safely left alone.
512  *
513  * Note that it should not be necessary to wait for any outstanding commands,
514  * as they should be completed prior to calling here.
515  *
516  * XXX this applies for I/O, but not status polls; we should beware of
517  *     the case where a status command is running while we detach.
518  */
519 static int
520 mly_shutdown(device_t dev)
521 {
522     struct mly_softc	*sc = device_get_softc(dev);
523 
524     debug_called(1);
525 
526     if (sc->mly_state & MLY_STATE_OPEN)
527 	return(EBUSY);
528 
529     /* kill the periodic event */
530     callout_stop(&sc->mly_periodic);
531 
532     /* flush controller */
533     mly_printf(sc, "flushing cache...");
534     kprintf("%s\n", mly_flush(sc) ? "failed" : "done");
535 
536     MLY_MASK_INTERRUPTS(sc);
537 
538     return(0);
539 }
540 
541 /*******************************************************************************
542  * Take an interrupt, or be poked by other code to look for interrupt-worthy
543  * status.
544  */
545 static void
546 mly_intr(void *arg)
547 {
548     struct mly_softc	*sc = (struct mly_softc *)arg;
549 
550     debug_called(2);
551 
552     mly_done(sc);
553 };
554 
555 /********************************************************************************
556  ********************************************************************************
557                                                 Bus-dependant Resource Management
558  ********************************************************************************
559  ********************************************************************************/
560 
561 /********************************************************************************
562  * Allocate memory for the scatter/gather tables
563  */
564 static int
565 mly_sg_map(struct mly_softc *sc)
566 {
567     size_t	segsize;
568 
569     debug_called(1);
570 
571     /*
572      * Create a single tag describing a region large enough to hold all of
573      * the s/g lists we will need.
574      */
575     segsize = sizeof(struct mly_sg_entry) * MLY_MAX_COMMANDS *MLY_MAX_SGENTRIES;
576     if (bus_dma_tag_create(sc->mly_parent_dmat,		/* parent */
577 			   1, 0, 			/* alignment,boundary */
578 			   BUS_SPACE_MAXADDR,		/* lowaddr */
579 			   BUS_SPACE_MAXADDR, 		/* highaddr */
580 			   NULL, NULL, 			/* filter, filterarg */
581 			   segsize, 1,			/* maxsize, nsegments */
582 			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
583 			   BUS_DMA_ALLOCNOW,		/* flags */
584 			   &sc->mly_sg_dmat)) {
585 	mly_printf(sc, "can't allocate scatter/gather DMA tag\n");
586 	return(ENOMEM);
587     }
588 
589     /*
590      * Allocate enough s/g maps for all commands and permanently map them into
591      * controller-visible space.
592      *
593      * XXX this assumes we can get enough space for all the s/g maps in one
594      * contiguous slab.
595      */
596     if (bus_dmamem_alloc(sc->mly_sg_dmat, (void **)&sc->mly_sg_table,
597 			 BUS_DMA_NOWAIT, &sc->mly_sg_dmamap)) {
598 	mly_printf(sc, "can't allocate s/g table\n");
599 	return(ENOMEM);
600     }
601     if (bus_dmamap_load(sc->mly_sg_dmat, sc->mly_sg_dmamap, sc->mly_sg_table,
602 			segsize, mly_sg_map_helper, sc, BUS_DMA_NOWAIT) != 0)
603 	return (ENOMEM);
604     return(0);
605 }
606 
607 /********************************************************************************
608  * Save the physical address of the base of the s/g table.
609  */
610 static void
611 mly_sg_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
612 {
613     struct mly_softc	*sc = (struct mly_softc *)arg;
614 
615     debug_called(1);
616 
617     /* save base of s/g table's address in bus space */
618     sc->mly_sg_busaddr = segs->ds_addr;
619 }
620 
621 /********************************************************************************
622  * Allocate memory for the memory-mailbox interface
623  */
624 static int
625 mly_mmbox_map(struct mly_softc *sc)
626 {
627 
628     /*
629      * Create a DMA tag for a single contiguous region large enough for the
630      * memory mailbox structure.
631      */
632     if (bus_dma_tag_create(sc->mly_parent_dmat,		/* parent */
633 			   1, 0, 			/* alignment,boundary */
634 			   BUS_SPACE_MAXADDR,		/* lowaddr */
635 			   BUS_SPACE_MAXADDR, 		/* highaddr */
636 			   NULL, NULL, 			/* filter, filterarg */
637 			   sizeof(struct mly_mmbox), 1,	/* maxsize, nsegments */
638 			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
639 			   BUS_DMA_ALLOCNOW,		/* flags */
640 			   &sc->mly_mmbox_dmat)) {
641 	mly_printf(sc, "can't allocate memory mailbox DMA tag\n");
642 	return(ENOMEM);
643     }
644 
645     /*
646      * Allocate the buffer
647      */
648     if (bus_dmamem_alloc(sc->mly_mmbox_dmat, (void **)&sc->mly_mmbox, BUS_DMA_NOWAIT, &sc->mly_mmbox_dmamap)) {
649 	mly_printf(sc, "can't allocate memory mailbox\n");
650 	return(ENOMEM);
651     }
652     if (bus_dmamap_load(sc->mly_mmbox_dmat, sc->mly_mmbox_dmamap, sc->mly_mmbox,
653 			sizeof(struct mly_mmbox), mly_mmbox_map_helper, sc,
654 			BUS_DMA_NOWAIT) != 0)
655 	return (ENOMEM);
656     bzero(sc->mly_mmbox, sizeof(*sc->mly_mmbox));
657     return(0);
658 
659 }
660 
661 /********************************************************************************
662  * Save the physical address of the memory mailbox
663  */
664 static void
665 mly_mmbox_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
666 {
667     struct mly_softc	*sc = (struct mly_softc *)arg;
668 
669     debug_called(1);
670 
671     sc->mly_mmbox_busaddr = segs->ds_addr;
672 }
673 
674 /********************************************************************************
675  * Free all of the resources associated with (sc)
676  *
677  * Should not be called if the controller is active.
678  */
679 static void
680 mly_free(struct mly_softc *sc)
681 {
682 
683     debug_called(1);
684 
685     /* Remove the management device */
686     destroy_dev(sc->mly_dev_t);
687 
688     /* detach from CAM */
689     mly_cam_detach(sc);
690 
691     /* release command memory */
692     mly_release_commands(sc);
693 
694     /* throw away the controllerinfo structure */
695     if (sc->mly_controllerinfo != NULL)
696 	kfree(sc->mly_controllerinfo, M_DEVBUF);
697 
698     /* throw away the controllerparam structure */
699     if (sc->mly_controllerparam != NULL)
700 	kfree(sc->mly_controllerparam, M_DEVBUF);
701 
702     /* destroy data-transfer DMA tag */
703     if (sc->mly_buffer_dmat)
704 	bus_dma_tag_destroy(sc->mly_buffer_dmat);
705 
706     /* free and destroy DMA memory and tag for s/g lists */
707     if (sc->mly_sg_table) {
708 	bus_dmamap_unload(sc->mly_sg_dmat, sc->mly_sg_dmamap);
709 	bus_dmamem_free(sc->mly_sg_dmat, sc->mly_sg_table, sc->mly_sg_dmamap);
710     }
711     if (sc->mly_sg_dmat)
712 	bus_dma_tag_destroy(sc->mly_sg_dmat);
713 
714     /* free and destroy DMA memory and tag for memory mailbox */
715     if (sc->mly_mmbox) {
716 	bus_dmamap_unload(sc->mly_mmbox_dmat, sc->mly_mmbox_dmamap);
717 	bus_dmamem_free(sc->mly_mmbox_dmat, sc->mly_mmbox, sc->mly_mmbox_dmamap);
718     }
719     if (sc->mly_mmbox_dmat)
720 	bus_dma_tag_destroy(sc->mly_mmbox_dmat);
721 
722     /* disconnect the interrupt handler */
723     if (sc->mly_intr)
724 	bus_teardown_intr(sc->mly_dev, sc->mly_irq, sc->mly_intr);
725     if (sc->mly_irq != NULL)
726 	bus_release_resource(sc->mly_dev, SYS_RES_IRQ, sc->mly_irq_rid, sc->mly_irq);
727 
728     /* destroy the parent DMA tag */
729     if (sc->mly_parent_dmat)
730 	bus_dma_tag_destroy(sc->mly_parent_dmat);
731 
732     /* release the register window mapping */
733     if (sc->mly_regs_resource != NULL)
734 	bus_release_resource(sc->mly_dev, SYS_RES_MEMORY, sc->mly_regs_rid, sc->mly_regs_resource);
735 }
736 
737 /********************************************************************************
738  ********************************************************************************
739                                                                  Command Wrappers
740  ********************************************************************************
741  ********************************************************************************/
742 
743 /********************************************************************************
744  * Fill in the mly_controllerinfo and mly_controllerparam fields in the softc.
745  */
746 static int
747 mly_get_controllerinfo(struct mly_softc *sc)
748 {
749     struct mly_command_ioctl	mci;
750     u_int8_t			status;
751     int				error;
752 
753     debug_called(1);
754 
755     if (sc->mly_controllerinfo != NULL)
756 	kfree(sc->mly_controllerinfo, M_DEVBUF);
757 
758     /* build the getcontrollerinfo ioctl and send it */
759     bzero(&mci, sizeof(mci));
760     sc->mly_controllerinfo = NULL;
761     mci.sub_ioctl = MDACIOCTL_GETCONTROLLERINFO;
762     if ((error = mly_ioctl(sc, &mci, (void **)&sc->mly_controllerinfo, sizeof(*sc->mly_controllerinfo),
763 			   &status, NULL, NULL)))
764 	return(error);
765     if (status != 0)
766 	return(EIO);
767 
768     if (sc->mly_controllerparam != NULL)
769 	kfree(sc->mly_controllerparam, M_DEVBUF);
770 
771     /* build the getcontrollerparameter ioctl and send it */
772     bzero(&mci, sizeof(mci));
773     sc->mly_controllerparam = NULL;
774     mci.sub_ioctl = MDACIOCTL_GETCONTROLLERPARAMETER;
775     if ((error = mly_ioctl(sc, &mci, (void **)&sc->mly_controllerparam, sizeof(*sc->mly_controllerparam),
776 			   &status, NULL, NULL)))
777 	return(error);
778     if (status != 0)
779 	return(EIO);
780 
781     return(0);
782 }
783 
784 /********************************************************************************
785  * Schedule all possible devices for a rescan.
786  *
787  */
788 static void
789 mly_scan_devices(struct mly_softc *sc)
790 {
791     int		bus, target;
792 
793     debug_called(1);
794 
795     /*
796      * Clear any previous BTL information.
797      */
798     bzero(&sc->mly_btl, sizeof(sc->mly_btl));
799 
800     /*
801      * Mark all devices as requiring a rescan, and let the next
802      * periodic scan collect them.
803      */
804     for (bus = 0; bus < sc->mly_cam_channels; bus++)
805 	if (MLY_BUS_IS_VALID(sc, bus))
806 	    for (target = 0; target < MLY_MAX_TARGETS; target++)
807 		sc->mly_btl[bus][target].mb_flags = MLY_BTL_RESCAN;
808 
809 }
810 
811 /********************************************************************************
812  * Rescan a device, possibly as a consequence of getting an event which suggests
813  * that it may have changed.
814  *
815  * If we suffer resource starvation, we can abandon the rescan as we'll be
816  * retried.
817  */
818 static void
819 mly_rescan_btl(struct mly_softc *sc, int bus, int target)
820 {
821     struct mly_command		*mc;
822     struct mly_command_ioctl	*mci;
823 
824     debug_called(1);
825 
826     /* check that this bus is valid */
827     if (!MLY_BUS_IS_VALID(sc, bus))
828 	return;
829 
830     /* get a command */
831     if (mly_alloc_command(sc, &mc))
832 	return;
833 
834     /* set up the data buffer */
835     mc->mc_data = kmalloc(sizeof(union mly_devinfo), M_DEVBUF, M_INTWAIT | M_ZERO);
836     mc->mc_flags |= MLY_CMD_DATAIN;
837     mc->mc_complete = mly_complete_rescan;
838 
839     /*
840      * Build the ioctl.
841      */
842     mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
843     mci->opcode = MDACMD_IOCTL;
844     mci->addr.phys.controller = 0;
845     mci->timeout.value = 30;
846     mci->timeout.scale = MLY_TIMEOUT_SECONDS;
847     if (MLY_BUS_IS_VIRTUAL(sc, bus)) {
848 	mc->mc_length = mci->data_size = sizeof(struct mly_ioctl_getlogdevinfovalid);
849 	mci->sub_ioctl = MDACIOCTL_GETLOGDEVINFOVALID;
850 	mci->addr.log.logdev = MLY_LOGDEV_ID(sc, bus, target);
851 	debug(1, "logical device %d", mci->addr.log.logdev);
852     } else {
853 	mc->mc_length = mci->data_size = sizeof(struct mly_ioctl_getphysdevinfovalid);
854 	mci->sub_ioctl = MDACIOCTL_GETPHYSDEVINFOVALID;
855 	mci->addr.phys.lun = 0;
856 	mci->addr.phys.target = target;
857 	mci->addr.phys.channel = bus;
858 	debug(1, "physical device %d:%d", mci->addr.phys.channel, mci->addr.phys.target);
859     }
860 
861     /*
862      * Dispatch the command.  If we successfully send the command, clear the rescan
863      * bit.
864      */
865     if (mly_start(mc) != 0) {
866 	mly_release_command(mc);
867     } else {
868 	sc->mly_btl[bus][target].mb_flags &= ~MLY_BTL_RESCAN;	/* success */
869     }
870 }
871 
872 /********************************************************************************
873  * Handle the completion of a rescan operation
874  */
875 static void
876 mly_complete_rescan(struct mly_command *mc)
877 {
878     struct mly_softc				*sc = mc->mc_sc;
879     struct mly_ioctl_getlogdevinfovalid		*ldi;
880     struct mly_ioctl_getphysdevinfovalid	*pdi;
881     struct mly_command_ioctl			*mci;
882     struct mly_btl				btl, *btlp;
883     int						bus, target, rescan;
884 
885     debug_called(1);
886 
887     /*
888      * Recover the bus and target from the command.  We need these even in
889      * the case where we don't have a useful response.
890      */
891     mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
892     if (mci->sub_ioctl == MDACIOCTL_GETLOGDEVINFOVALID) {
893 	bus = MLY_LOGDEV_BUS(sc, mci->addr.log.logdev);
894 	target = MLY_LOGDEV_TARGET(sc, mci->addr.log.logdev);
895     } else {
896 	bus = mci->addr.phys.channel;
897 	target = mci->addr.phys.target;
898     }
899     /* XXX validate bus/target? */
900 
901     /* the default result is 'no device' */
902     bzero(&btl, sizeof(btl));
903 
904     /* if the rescan completed OK, we have possibly-new BTL data */
905     if (mc->mc_status == 0) {
906 	if (mc->mc_length == sizeof(*ldi)) {
907 	    ldi = (struct mly_ioctl_getlogdevinfovalid *)mc->mc_data;
908 	    if ((MLY_LOGDEV_BUS(sc, ldi->logical_device_number) != bus) ||
909 		(MLY_LOGDEV_TARGET(sc, ldi->logical_device_number) != target)) {
910 		mly_printf(sc, "WARNING: BTL rescan for %d:%d returned data for %d:%d instead\n",
911 			   bus, target, MLY_LOGDEV_BUS(sc, ldi->logical_device_number),
912 			   MLY_LOGDEV_TARGET(sc, ldi->logical_device_number));
913 		/* XXX what can we do about this? */
914 	    }
915 	    btl.mb_flags = MLY_BTL_LOGICAL;
916 	    btl.mb_type = ldi->raid_level;
917 	    btl.mb_state = ldi->state;
918 	    debug(1, "BTL rescan for %d returns %s, %s", ldi->logical_device_number,
919 		  mly_describe_code(mly_table_device_type, ldi->raid_level),
920 		  mly_describe_code(mly_table_device_state, ldi->state));
921 	} else if (mc->mc_length == sizeof(*pdi)) {
922 	    pdi = (struct mly_ioctl_getphysdevinfovalid *)mc->mc_data;
923 	    if ((pdi->channel != bus) || (pdi->target != target)) {
924 		mly_printf(sc, "WARNING: BTL rescan for %d:%d returned data for %d:%d instead\n",
925 			   bus, target, pdi->channel, pdi->target);
926 		/* XXX what can we do about this? */
927 	    }
928 	    btl.mb_flags = MLY_BTL_PHYSICAL;
929 	    btl.mb_type = MLY_DEVICE_TYPE_PHYSICAL;
930 	    btl.mb_state = pdi->state;
931 	    btl.mb_speed = pdi->speed;
932 	    btl.mb_width = pdi->width;
933 	    if (pdi->state != MLY_DEVICE_STATE_UNCONFIGURED)
934 		sc->mly_btl[bus][target].mb_flags |= MLY_BTL_PROTECTED;
935 	    debug(1, "BTL rescan for %d:%d returns %s", bus, target,
936 		  mly_describe_code(mly_table_device_state, pdi->state));
937 	} else {
938 	    mly_printf(sc, "BTL rescan result invalid\n");
939 	}
940     }
941 
942     kfree(mc->mc_data, M_DEVBUF);
943     mly_release_command(mc);
944 
945     /*
946      * Decide whether we need to rescan the device.
947      */
948     rescan = 0;
949 
950     /* device type changes (usually between 'nothing' and 'something') */
951     btlp = &sc->mly_btl[bus][target];
952     if (btl.mb_flags != btlp->mb_flags) {
953 	debug(1, "flags changed, rescanning");
954 	rescan = 1;
955     }
956 
957     /* XXX other reasons? */
958 
959     /*
960      * Update BTL information.
961      */
962     *btlp = btl;
963 
964     /*
965      * Perform CAM rescan if required.
966      */
967     if (rescan)
968 	mly_cam_rescan_btl(sc, bus, target);
969 }
970 
971 /********************************************************************************
972  * Get the current health status and set the 'next event' counter to suit.
973  */
974 static int
975 mly_get_eventstatus(struct mly_softc *sc)
976 {
977     struct mly_command_ioctl	mci;
978     struct mly_health_status	*mh;
979     u_int8_t			status;
980     int				error;
981 
982     /* build the gethealthstatus ioctl and send it */
983     bzero(&mci, sizeof(mci));
984     mh = NULL;
985     mci.sub_ioctl = MDACIOCTL_GETHEALTHSTATUS;
986 
987     if ((error = mly_ioctl(sc, &mci, (void **)&mh, sizeof(*mh), &status, NULL, NULL)))
988 	return(error);
989     if (status != 0)
990 	return(EIO);
991 
992     /* get the event counter */
993     sc->mly_event_change = mh->change_counter;
994     sc->mly_event_waiting = mh->next_event;
995     sc->mly_event_counter = mh->next_event;
996 
997     /* save the health status into the memory mailbox */
998     bcopy(mh, &sc->mly_mmbox->mmm_health.status, sizeof(*mh));
999 
1000     debug(1, "initial change counter %d, event counter %d", mh->change_counter, mh->next_event);
1001 
1002     kfree(mh, M_DEVBUF);
1003     return(0);
1004 }
1005 
1006 /********************************************************************************
1007  * Enable the memory mailbox mode.
1008  */
1009 static int
1010 mly_enable_mmbox(struct mly_softc *sc)
1011 {
1012     struct mly_command_ioctl	mci;
1013     u_int8_t			*sp, status;
1014     int				error;
1015 
1016     debug_called(1);
1017 
1018     /* build the ioctl and send it */
1019     bzero(&mci, sizeof(mci));
1020     mci.sub_ioctl = MDACIOCTL_SETMEMORYMAILBOX;
1021     /* set buffer addresses */
1022     mci.param.setmemorymailbox.command_mailbox_physaddr =
1023 	sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_command);
1024     mci.param.setmemorymailbox.status_mailbox_physaddr =
1025 	sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_status);
1026     mci.param.setmemorymailbox.health_buffer_physaddr =
1027 	sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_health);
1028 
1029     /* set buffer sizes - abuse of data_size field is revolting */
1030     sp = (u_int8_t *)&mci.data_size;
1031     sp[0] = ((sizeof(union mly_command_packet) * MLY_MMBOX_COMMANDS) / 1024);
1032     sp[1] = (sizeof(union mly_status_packet) * MLY_MMBOX_STATUS) / 1024;
1033     mci.param.setmemorymailbox.health_buffer_size = sizeof(union mly_health_region) / 1024;
1034 
1035     debug(1, "memory mailbox at %p (0x%llx/%d 0x%llx/%d 0x%llx/%d", sc->mly_mmbox,
1036 	  mci.param.setmemorymailbox.command_mailbox_physaddr, sp[0],
1037 	  mci.param.setmemorymailbox.status_mailbox_physaddr, sp[1],
1038 	  mci.param.setmemorymailbox.health_buffer_physaddr,
1039 	  mci.param.setmemorymailbox.health_buffer_size);
1040 
1041     if ((error = mly_ioctl(sc, &mci, NULL, 0, &status, NULL, NULL)))
1042 	return(error);
1043     if (status != 0)
1044 	return(EIO);
1045     sc->mly_state |= MLY_STATE_MMBOX_ACTIVE;
1046     debug(1, "memory mailbox active");
1047     return(0);
1048 }
1049 
1050 /********************************************************************************
1051  * Flush all pending I/O from the controller.
1052  */
1053 static int
1054 mly_flush(struct mly_softc *sc)
1055 {
1056     struct mly_command_ioctl	mci;
1057     u_int8_t			status;
1058     int				error;
1059 
1060     debug_called(1);
1061 
1062     /* build the ioctl */
1063     bzero(&mci, sizeof(mci));
1064     mci.sub_ioctl = MDACIOCTL_FLUSHDEVICEDATA;
1065     mci.param.deviceoperation.operation_device = MLY_OPDEVICE_PHYSICAL_CONTROLLER;
1066 
1067     /* pass it off to the controller */
1068     if ((error = mly_ioctl(sc, &mci, NULL, 0, &status, NULL, NULL)))
1069 	return(error);
1070 
1071     return((status == 0) ? 0 : EIO);
1072 }
1073 
1074 /********************************************************************************
1075  * Perform an ioctl command.
1076  *
1077  * If (data) is not NULL, the command requires data transfer.  If (*data) is NULL
1078  * the command requires data transfer from the controller, and we will allocate
1079  * a buffer for it.  If (*data) is not NULL, the command requires data transfer
1080  * to the controller.
1081  *
1082  * XXX passing in the whole ioctl structure is ugly.  Better ideas?
1083  *
1084  * XXX we don't even try to handle the case where datasize > 4k.  We should.
1085  */
1086 static int
1087 mly_ioctl(struct mly_softc *sc, struct mly_command_ioctl *ioctl, void **data, size_t datasize,
1088 	  u_int8_t *status, void *sense_buffer, size_t *sense_length)
1089 {
1090     struct mly_command		*mc;
1091     struct mly_command_ioctl	*mci;
1092     int				error;
1093 
1094     debug_called(1);
1095 
1096     mc = NULL;
1097     if (mly_alloc_command(sc, &mc)) {
1098 	error = ENOMEM;
1099 	goto out;
1100     }
1101 
1102     /* copy the ioctl structure, but save some important fields and then fixup */
1103     mci = &mc->mc_packet->ioctl;
1104     ioctl->sense_buffer_address = mci->sense_buffer_address;
1105     ioctl->maximum_sense_size = mci->maximum_sense_size;
1106     *mci = *ioctl;
1107     mci->opcode = MDACMD_IOCTL;
1108     mci->timeout.value = 30;
1109     mci->timeout.scale = MLY_TIMEOUT_SECONDS;
1110 
1111     /* handle the data buffer */
1112     if (data != NULL) {
1113 	if (*data == NULL) {
1114 	    /* allocate data buffer */
1115 	    mc->mc_data = kmalloc(datasize, M_DEVBUF, M_INTWAIT);
1116 	    mc->mc_flags |= MLY_CMD_DATAIN;
1117 	} else {
1118 	    mc->mc_data = *data;
1119 	    mc->mc_flags |= MLY_CMD_DATAOUT;
1120 	}
1121 	mc->mc_length = datasize;
1122 	mc->mc_packet->generic.data_size = datasize;
1123     }
1124 
1125     /* run the command */
1126     if ((error = mly_immediate_command(mc)))
1127 	goto out;
1128 
1129     /* clean up and return any data */
1130     *status = mc->mc_status;
1131     if ((mc->mc_sense > 0) && (sense_buffer != NULL)) {
1132 	bcopy(mc->mc_packet, sense_buffer, mc->mc_sense);
1133 	*sense_length = mc->mc_sense;
1134 	goto out;
1135     }
1136 
1137     /* should we return a data pointer? */
1138     if ((data != NULL) && (*data == NULL))
1139 	*data = mc->mc_data;
1140 
1141     /* command completed OK */
1142     error = 0;
1143 
1144 out:
1145     if (mc != NULL) {
1146 	/* do we need to free a data buffer we allocated? */
1147 	if (error && (mc->mc_data != NULL) && (*data == NULL))
1148 	    kfree(mc->mc_data, M_DEVBUF);
1149 	mly_release_command(mc);
1150     }
1151     return(error);
1152 }
1153 
1154 /********************************************************************************
1155  * Check for event(s) outstanding in the controller.
1156  */
1157 static void
1158 mly_check_event(struct mly_softc *sc)
1159 {
1160 
1161     /*
1162      * The controller may have updated the health status information,
1163      * so check for it here.  Note that the counters are all in host memory,
1164      * so this check is very cheap.  Also note that we depend on checking on
1165      * completion
1166      */
1167     if (sc->mly_mmbox->mmm_health.status.change_counter != sc->mly_event_change) {
1168 	sc->mly_event_change = sc->mly_mmbox->mmm_health.status.change_counter;
1169 	debug(1, "event change %d, event status update, %d -> %d", sc->mly_event_change,
1170 	      sc->mly_event_waiting, sc->mly_mmbox->mmm_health.status.next_event);
1171 	sc->mly_event_waiting = sc->mly_mmbox->mmm_health.status.next_event;
1172 
1173 	/* wake up anyone that might be interested in this */
1174 	wakeup(&sc->mly_event_change);
1175     }
1176     if (sc->mly_event_counter != sc->mly_event_waiting)
1177     mly_fetch_event(sc);
1178 }
1179 
1180 /********************************************************************************
1181  * Fetch one event from the controller.
1182  *
1183  * If we fail due to resource starvation, we'll be retried the next time a
1184  * command completes.
1185  */
1186 static void
1187 mly_fetch_event(struct mly_softc *sc)
1188 {
1189     struct mly_command		*mc;
1190     struct mly_command_ioctl	*mci;
1191     u_int32_t			event;
1192 
1193     debug_called(1);
1194 
1195     /* get a command */
1196     if (mly_alloc_command(sc, &mc))
1197 	return;
1198 
1199     /* set up the data buffer */
1200     mc->mc_data = kmalloc(sizeof(struct mly_event), M_DEVBUF, M_INTWAIT|M_ZERO);
1201     mc->mc_length = sizeof(struct mly_event);
1202     mc->mc_flags |= MLY_CMD_DATAIN;
1203     mc->mc_complete = mly_complete_event;
1204 
1205     /*
1206      * Get an event number to fetch.  It's possible that we've raced with another
1207      * context for the last event, in which case there will be no more events.
1208      */
1209     crit_enter();
1210     if (sc->mly_event_counter == sc->mly_event_waiting) {
1211 	mly_release_command(mc);
1212 	crit_exit();
1213 	return;
1214     }
1215     event = sc->mly_event_counter++;
1216     crit_exit();
1217 
1218     /*
1219      * Build the ioctl.
1220      *
1221      * At this point we are committed to sending this request, as it
1222      * will be the only one constructed for this particular event number.
1223      */
1224     mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
1225     mci->opcode = MDACMD_IOCTL;
1226     mci->data_size = sizeof(struct mly_event);
1227     mci->addr.phys.lun = (event >> 16) & 0xff;
1228     mci->addr.phys.target = (event >> 24) & 0xff;
1229     mci->addr.phys.channel = 0;
1230     mci->addr.phys.controller = 0;
1231     mci->timeout.value = 30;
1232     mci->timeout.scale = MLY_TIMEOUT_SECONDS;
1233     mci->sub_ioctl = MDACIOCTL_GETEVENT;
1234     mci->param.getevent.sequence_number_low = event & 0xffff;
1235 
1236     debug(1, "fetch event %u", event);
1237 
1238     /*
1239      * Submit the command.
1240      *
1241      * Note that failure of mly_start() will result in this event never being
1242      * fetched.
1243      */
1244     if (mly_start(mc) != 0) {
1245 	mly_printf(sc, "couldn't fetch event %u\n", event);
1246 	mly_release_command(mc);
1247     }
1248 }
1249 
1250 /********************************************************************************
1251  * Handle the completion of an event poll.
1252  */
1253 static void
1254 mly_complete_event(struct mly_command *mc)
1255 {
1256     struct mly_softc	*sc = mc->mc_sc;
1257     struct mly_event	*me = (struct mly_event *)mc->mc_data;
1258 
1259     debug_called(1);
1260 
1261     /*
1262      * If the event was successfully fetched, process it.
1263      */
1264     if (mc->mc_status == SCSI_STATUS_OK) {
1265 	mly_process_event(sc, me);
1266 	kfree(me, M_DEVBUF);
1267     }
1268     mly_release_command(mc);
1269 
1270     /*
1271      * Check for another event.
1272      */
1273     mly_check_event(sc);
1274 }
1275 
1276 /********************************************************************************
1277  * Process a controller event.
1278  */
1279 static void
1280 mly_process_event(struct mly_softc *sc, struct mly_event *me)
1281 {
1282     struct scsi_sense_data	*ssd = (struct scsi_sense_data *)&me->sense[0];
1283     char			*fp, *tp;
1284     int				bus, target, event, class, action;
1285 
1286     /*
1287      * Errors can be reported using vendor-unique sense data.  In this case, the
1288      * event code will be 0x1c (Request sense data present), the sense key will
1289      * be 0x09 (vendor specific), the MSB of the ASC will be set, and the
1290      * actual event code will be a 16-bit value comprised of the ASCQ (low byte)
1291      * and low seven bits of the ASC (low seven bits of the high byte).
1292      */
1293     if ((me->code == 0x1c) &&
1294 	((ssd->flags & SSD_KEY) == SSD_KEY_Vendor_Specific) &&
1295 	(ssd->add_sense_code & 0x80)) {
1296 	event = ((int)(ssd->add_sense_code & ~0x80) << 8) + ssd->add_sense_code_qual;
1297     } else {
1298 	event = me->code;
1299     }
1300 
1301     /* look up event, get codes */
1302     fp = mly_describe_code(mly_table_event, event);
1303 
1304     debug(1, "Event %d  code 0x%x", me->sequence_number, me->code);
1305 
1306     /* quiet event? */
1307     class = fp[0];
1308     if (isupper(class) && bootverbose)
1309 	class = tolower(class);
1310 
1311     /* get action code, text string */
1312     action = fp[1];
1313     tp = &fp[2];
1314 
1315     /*
1316      * Print some information about the event.
1317      *
1318      * This code uses a table derived from the corresponding portion of the Linux
1319      * driver, and thus the parser is very similar.
1320      */
1321     switch(class) {
1322     case 'p':		/* error on physical device */
1323 	mly_printf(sc, "physical device %d:%d %s\n", me->channel, me->target, tp);
1324 	if (action == 'r')
1325 	    sc->mly_btl[me->channel][me->target].mb_flags |= MLY_BTL_RESCAN;
1326 	break;
1327     case 'l':		/* error on logical unit */
1328     case 'm':		/* message about logical unit */
1329 	bus = MLY_LOGDEV_BUS(sc, me->lun);
1330 	target = MLY_LOGDEV_TARGET(sc, me->lun);
1331 	mly_name_device(sc, bus, target);
1332 	mly_printf(sc, "logical device %d (%s) %s\n", me->lun, sc->mly_btl[bus][target].mb_name, tp);
1333 	if (action == 'r')
1334 	    sc->mly_btl[bus][target].mb_flags |= MLY_BTL_RESCAN;
1335 	break;
1336       break;
1337     case 's':		/* report of sense data */
1338 	if (((ssd->flags & SSD_KEY) == SSD_KEY_NO_SENSE) ||
1339 	    (((ssd->flags & SSD_KEY) == SSD_KEY_NOT_READY) &&
1340 	     (ssd->add_sense_code == 0x04) &&
1341 	     ((ssd->add_sense_code_qual == 0x01) || (ssd->add_sense_code_qual == 0x02))))
1342 	    break;	/* ignore NO_SENSE or NOT_READY in one case */
1343 
1344 	mly_printf(sc, "physical device %d:%d %s\n", me->channel, me->target, tp);
1345 	mly_printf(sc, "  sense key %d  asc %02x  ascq %02x\n",
1346 		      ssd->flags & SSD_KEY, ssd->add_sense_code, ssd->add_sense_code_qual);
1347 	mly_printf(sc, "  info %4D  csi %4D\n", ssd->info, "", ssd->cmd_spec_info, "");
1348 	if (action == 'r')
1349 	    sc->mly_btl[me->channel][me->target].mb_flags |= MLY_BTL_RESCAN;
1350 	break;
1351     case 'e':
1352 	mly_printf(sc, tp, me->target, me->lun);
1353 	kprintf("\n");
1354 	break;
1355     case 'c':
1356 	mly_printf(sc, "controller %s\n", tp);
1357 	break;
1358     case '?':
1359 	mly_printf(sc, "%s - %d\n", tp, me->code);
1360 	break;
1361     default:	/* probably a 'noisy' event being ignored */
1362 	break;
1363     }
1364 }
1365 
1366 /********************************************************************************
1367  * Perform periodic activities.
1368  */
1369 static void
1370 mly_periodic(void *data)
1371 {
1372     struct mly_softc	*sc = (struct mly_softc *)data;
1373     int			bus, target;
1374 
1375     debug_called(2);
1376 
1377     /*
1378      * Scan devices.
1379      */
1380     for (bus = 0; bus < sc->mly_cam_channels; bus++) {
1381 	if (MLY_BUS_IS_VALID(sc, bus)) {
1382 	    for (target = 0; target < MLY_MAX_TARGETS; target++) {
1383 
1384 		/* ignore the controller in this scan */
1385 		if (target == sc->mly_controllerparam->initiator_id)
1386 		    continue;
1387 
1388 		/* perform device rescan? */
1389 		if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_RESCAN)
1390 		    mly_rescan_btl(sc, bus, target);
1391 	    }
1392 	}
1393     }
1394 
1395     /* check for controller events */
1396     mly_check_event(sc);
1397 
1398     /* reschedule ourselves */
1399     callout_reset(&sc->mly_periodic, MLY_PERIODIC_INTERVAL * hz, mly_periodic, sc);
1400 }
1401 
1402 /********************************************************************************
1403  ********************************************************************************
1404                                                                Command Processing
1405  ********************************************************************************
1406  ********************************************************************************/
1407 
1408 /********************************************************************************
1409  * Run a command and wait for it to complete.
1410  *
1411  */
1412 static int
1413 mly_immediate_command(struct mly_command *mc)
1414 {
1415     struct mly_softc	*sc = mc->mc_sc;
1416     int			error;
1417 
1418     debug_called(1);
1419 
1420     /* spinning at splcam is ugly, but we're only used during controller init */
1421     crit_enter();
1422     if ((error = mly_start(mc))) {
1423 	crit_exit();
1424 	return(error);
1425     }
1426 
1427     if (sc->mly_state & MLY_STATE_INTERRUPTS_ON) {
1428 	/* sleep on the command */
1429 	while(!(mc->mc_flags & MLY_CMD_COMPLETE)) {
1430 	    tsleep(mc, 0, "mlywait", 0);
1431 	}
1432     } else {
1433 	/* spin and collect status while we do */
1434 	while(!(mc->mc_flags & MLY_CMD_COMPLETE)) {
1435 	    mly_done(mc->mc_sc);
1436 	}
1437     }
1438     crit_exit();
1439     return(0);
1440 }
1441 
1442 /********************************************************************************
1443  * Deliver a command to the controller.
1444  *
1445  * XXX it would be good to just queue commands that we can't submit immediately
1446  *     and send them later, but we probably want a wrapper for that so that
1447  *     we don't hang on a failed submission for an immediate command.
1448  */
1449 static int
1450 mly_start(struct mly_command *mc)
1451 {
1452     struct mly_softc		*sc = mc->mc_sc;
1453     union mly_command_packet	*pkt;
1454 
1455     debug_called(2);
1456 
1457     /*
1458      * Set the command up for delivery to the controller.
1459      */
1460     mly_map_command(mc);
1461     mc->mc_packet->generic.command_id = mc->mc_slot;
1462 
1463 #ifdef MLY_DEBUG
1464     mc->mc_timestamp = time_second;
1465 #endif
1466 
1467     crit_enter();
1468 
1469     /*
1470      * Do we have to use the hardware mailbox?
1471      */
1472     if (!(sc->mly_state & MLY_STATE_MMBOX_ACTIVE)) {
1473 	/*
1474 	 * Check to see if the controller is ready for us.
1475 	 */
1476 	if (MLY_IDBR_TRUE(sc, MLY_HM_CMDSENT)) {
1477 	    crit_exit();
1478 	    return(EBUSY);
1479 	}
1480 	mc->mc_flags |= MLY_CMD_BUSY;
1481 
1482 	/*
1483 	 * It's ready, send the command.
1484 	 */
1485 	MLY_SET_MBOX(sc, sc->mly_command_mailbox, &mc->mc_packetphys);
1486 	MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_CMDSENT);
1487 
1488     } else {	/* use memory-mailbox mode */
1489 
1490 	pkt = &sc->mly_mmbox->mmm_command[sc->mly_mmbox_command_index];
1491 
1492 	/* check to see if the next index is free yet */
1493 	if (pkt->mmbox.flag != 0) {
1494 	    crit_exit();
1495 	    return(EBUSY);
1496 	}
1497 	mc->mc_flags |= MLY_CMD_BUSY;
1498 
1499 	/* copy in new command */
1500 	bcopy(mc->mc_packet->mmbox.data, pkt->mmbox.data, sizeof(pkt->mmbox.data));
1501 	/* barrier to ensure completion of previous write before we write the flag */
1502 	bus_space_barrier(sc->mly_btag, sc->mly_bhandle, 0, 0,
1503 	    BUS_SPACE_BARRIER_WRITE);
1504 	/* copy flag last */
1505 	pkt->mmbox.flag = mc->mc_packet->mmbox.flag;
1506 	/* barrier to ensure completion of previous write before we notify the controller */
1507 	bus_space_barrier(sc->mly_btag, sc->mly_bhandle, 0, 0,
1508 	    BUS_SPACE_BARRIER_WRITE);
1509 
1510 	/* signal controller, update index */
1511 	MLY_SET_REG(sc, sc->mly_idbr, MLY_AM_CMDSENT);
1512 	sc->mly_mmbox_command_index = (sc->mly_mmbox_command_index + 1) % MLY_MMBOX_COMMANDS;
1513     }
1514 
1515     mly_enqueue_busy(mc);
1516     crit_exit();
1517     return(0);
1518 }
1519 
1520 /********************************************************************************
1521  * Pick up command status from the controller, schedule a completion event
1522  */
1523 static void
1524 mly_done(struct mly_softc *sc)
1525 {
1526     struct mly_command		*mc;
1527     union mly_status_packet	*sp;
1528     u_int16_t			slot;
1529     int				worked;
1530 
1531     crit_enter();
1532     worked = 0;
1533 
1534     /* pick up hardware-mailbox commands */
1535     if (MLY_ODBR_TRUE(sc, MLY_HM_STSREADY)) {
1536 	slot = MLY_GET_REG2(sc, sc->mly_status_mailbox);
1537 	if (slot < MLY_SLOT_MAX) {
1538 	    mc = &sc->mly_command[slot - MLY_SLOT_START];
1539 	    mc->mc_status = MLY_GET_REG(sc, sc->mly_status_mailbox + 2);
1540 	    mc->mc_sense = MLY_GET_REG(sc, sc->mly_status_mailbox + 3);
1541 	    mc->mc_resid = MLY_GET_REG4(sc, sc->mly_status_mailbox + 4);
1542 	    mly_remove_busy(mc);
1543 	    mc->mc_flags &= ~MLY_CMD_BUSY;
1544 	    mly_enqueue_complete(mc);
1545 	    worked = 1;
1546 	} else {
1547 	    /* slot 0xffff may mean "extremely bogus command" */
1548 	    mly_printf(sc, "got HM completion for illegal slot %u\n", slot);
1549 	}
1550 	/* unconditionally acknowledge status */
1551 	MLY_SET_REG(sc, sc->mly_odbr, MLY_HM_STSREADY);
1552 	MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_STSACK);
1553     }
1554 
1555     /* pick up memory-mailbox commands */
1556     if (MLY_ODBR_TRUE(sc, MLY_AM_STSREADY)) {
1557 	for (;;) {
1558 	    sp = &sc->mly_mmbox->mmm_status[sc->mly_mmbox_status_index];
1559 
1560 	    /* check for more status */
1561 	    if (sp->mmbox.flag == 0)
1562 		break;
1563 
1564 	    /* get slot number */
1565 	    slot = sp->status.command_id;
1566 	    if (slot < MLY_SLOT_MAX) {
1567 		mc = &sc->mly_command[slot - MLY_SLOT_START];
1568 		mc->mc_status = sp->status.status;
1569 		mc->mc_sense = sp->status.sense_length;
1570 		mc->mc_resid = sp->status.residue;
1571 		mly_remove_busy(mc);
1572 		mc->mc_flags &= ~MLY_CMD_BUSY;
1573 		mly_enqueue_complete(mc);
1574 		worked = 1;
1575 	    } else {
1576 		/* slot 0xffff may mean "extremely bogus command" */
1577 		mly_printf(sc, "got AM completion for illegal slot %u at %d\n",
1578 			   slot, sc->mly_mmbox_status_index);
1579 	    }
1580 
1581 	    /* clear and move to next index */
1582 	    sp->mmbox.flag = 0;
1583 	    sc->mly_mmbox_status_index = (sc->mly_mmbox_status_index + 1) % MLY_MMBOX_STATUS;
1584 	}
1585 	/* acknowledge that we have collected status value(s) */
1586 	MLY_SET_REG(sc, sc->mly_odbr, MLY_AM_STSREADY);
1587     }
1588 
1589     crit_exit();
1590     if (worked) {
1591 	if (sc->mly_state & MLY_STATE_INTERRUPTS_ON)
1592 	    taskqueue_enqueue(taskqueue_swi, &sc->mly_task_complete);
1593 	else
1594 	    mly_complete(sc, 0);
1595     }
1596 }
1597 
1598 /********************************************************************************
1599  * Process completed commands
1600  */
1601 static void
1602 mly_complete(void *context, int pending)
1603 {
1604     struct mly_softc	*sc = (struct mly_softc *)context;
1605     struct mly_command	*mc;
1606     void	        (* mc_complete)(struct mly_command *mc);
1607 
1608 
1609     debug_called(2);
1610 
1611     /*
1612      * Spin pulling commands off the completed queue and processing them.
1613      */
1614     while ((mc = mly_dequeue_complete(sc)) != NULL) {
1615 
1616 	/*
1617 	 * Free controller resources, mark command complete.
1618 	 *
1619 	 * Note that as soon as we mark the command complete, it may be freed
1620 	 * out from under us, so we need to save the mc_complete field in
1621 	 * order to later avoid dereferencing mc.  (We would not expect to
1622 	 * have a polling/sleeping consumer with mc_complete != NULL).
1623 	 */
1624 	mly_unmap_command(mc);
1625 	mc_complete = mc->mc_complete;
1626 	mc->mc_flags |= MLY_CMD_COMPLETE;
1627 
1628 	/*
1629 	 * Call completion handler or wake up sleeping consumer.
1630 	 */
1631 	if (mc_complete != NULL) {
1632 	    mc_complete(mc);
1633 	} else {
1634 	    wakeup(mc);
1635 	}
1636     }
1637 
1638     /*
1639      * XXX if we are deferring commands due to controller-busy status, we should
1640      *     retry submitting them here.
1641      */
1642 }
1643 
1644 /********************************************************************************
1645  ********************************************************************************
1646                                                         Command Buffer Management
1647  ********************************************************************************
1648  ********************************************************************************/
1649 
1650 /********************************************************************************
1651  * Allocate a command.
1652  */
1653 static int
1654 mly_alloc_command(struct mly_softc *sc, struct mly_command **mcp)
1655 {
1656     struct mly_command	*mc;
1657 
1658     debug_called(3);
1659 
1660     if ((mc = mly_dequeue_free(sc)) == NULL)
1661 	return(ENOMEM);
1662 
1663     *mcp = mc;
1664     return(0);
1665 }
1666 
1667 /********************************************************************************
1668  * Release a command back to the freelist.
1669  */
1670 static void
1671 mly_release_command(struct mly_command *mc)
1672 {
1673     debug_called(3);
1674 
1675     /*
1676      * Fill in parts of the command that may cause confusion if
1677      * a consumer doesn't when we are later allocated.
1678      */
1679     mc->mc_data = NULL;
1680     mc->mc_flags = 0;
1681     mc->mc_complete = NULL;
1682     mc->mc_private = NULL;
1683 
1684     /*
1685      * By default, we set up to overwrite the command packet with
1686      * sense information.
1687      */
1688     mc->mc_packet->generic.sense_buffer_address = mc->mc_packetphys;
1689     mc->mc_packet->generic.maximum_sense_size = sizeof(union mly_command_packet);
1690 
1691     mly_enqueue_free(mc);
1692 }
1693 
1694 /********************************************************************************
1695  * Map helper for command allocation.
1696  */
1697 static void
1698 mly_alloc_commands_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1699 {
1700     struct mly_softc	*sc = (struct mly_softc *)arg;
1701 
1702     debug_called(1);
1703 
1704     sc->mly_packetphys = segs[0].ds_addr;
1705 }
1706 
1707 /********************************************************************************
1708  * Allocate and initialise command and packet structures.
1709  *
1710  * If the controller supports fewer than MLY_MAX_COMMANDS commands, limit our
1711  * allocation to that number.  If we don't yet know how many commands the
1712  * controller supports, allocate a very small set (suitable for initialisation
1713  * purposes only).
1714  */
1715 static int
1716 mly_alloc_commands(struct mly_softc *sc)
1717 {
1718     struct mly_command		*mc;
1719     int				i, ncmd;
1720 
1721     if (sc->mly_controllerinfo == NULL) {
1722 	ncmd = 4;
1723     } else {
1724 	ncmd = min(MLY_MAX_COMMANDS, sc->mly_controllerinfo->maximum_parallel_commands);
1725     }
1726 
1727     /*
1728      * Allocate enough space for all the command packets in one chunk and
1729      * map them permanently into controller-visible space.
1730      */
1731     if (bus_dmamem_alloc(sc->mly_packet_dmat, (void **)&sc->mly_packet,
1732 			 BUS_DMA_NOWAIT, &sc->mly_packetmap)) {
1733 	return(ENOMEM);
1734     }
1735     if (bus_dmamap_load(sc->mly_packet_dmat, sc->mly_packetmap, sc->mly_packet,
1736 			ncmd * sizeof(union mly_command_packet),
1737 			mly_alloc_commands_map, sc, BUS_DMA_NOWAIT) != 0)
1738 	return (ENOMEM);
1739 
1740     for (i = 0; i < ncmd; i++) {
1741 	mc = &sc->mly_command[i];
1742 	bzero(mc, sizeof(*mc));
1743 	mc->mc_sc = sc;
1744 	mc->mc_slot = MLY_SLOT_START + i;
1745 	mc->mc_packet = sc->mly_packet + i;
1746 	mc->mc_packetphys = sc->mly_packetphys + (i * sizeof(union mly_command_packet));
1747 	if (!bus_dmamap_create(sc->mly_buffer_dmat, 0, &mc->mc_datamap))
1748 	    mly_release_command(mc);
1749     }
1750     return(0);
1751 }
1752 
1753 /********************************************************************************
1754  * Free all the storage held by commands.
1755  *
1756  * Must be called with all commands on the free list.
1757  */
1758 static void
1759 mly_release_commands(struct mly_softc *sc)
1760 {
1761     struct mly_command	*mc;
1762 
1763     /* throw away command buffer DMA maps */
1764     while (mly_alloc_command(sc, &mc) == 0)
1765 	bus_dmamap_destroy(sc->mly_buffer_dmat, mc->mc_datamap);
1766 
1767     /* release the packet storage */
1768     if (sc->mly_packet != NULL) {
1769 	bus_dmamap_unload(sc->mly_packet_dmat, sc->mly_packetmap);
1770 	bus_dmamem_free(sc->mly_packet_dmat, sc->mly_packet, sc->mly_packetmap);
1771 	sc->mly_packet = NULL;
1772     }
1773 }
1774 
1775 
1776 /********************************************************************************
1777  * Command-mapping helper function - populate this command's s/g table
1778  * with the s/g entries for its data.
1779  */
1780 static void
1781 mly_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1782 {
1783     struct mly_command		*mc = (struct mly_command *)arg;
1784     struct mly_softc		*sc = mc->mc_sc;
1785     struct mly_command_generic	*gen = &(mc->mc_packet->generic);
1786     struct mly_sg_entry		*sg;
1787     int				i, tabofs;
1788 
1789     debug_called(2);
1790 
1791     /* can we use the transfer structure directly? */
1792     if (nseg <= 2) {
1793 	sg = &gen->transfer.direct.sg[0];
1794 	gen->command_control.extended_sg_table = 0;
1795     } else {
1796 	tabofs = ((mc->mc_slot - MLY_SLOT_START) * MLY_MAX_SGENTRIES);
1797 	sg = sc->mly_sg_table + tabofs;
1798 	gen->transfer.indirect.entries[0] = nseg;
1799 	gen->transfer.indirect.table_physaddr[0] = sc->mly_sg_busaddr + (tabofs * sizeof(struct mly_sg_entry));
1800 	gen->command_control.extended_sg_table = 1;
1801     }
1802 
1803     /* copy the s/g table */
1804     for (i = 0; i < nseg; i++) {
1805 	sg[i].physaddr = segs[i].ds_addr;
1806 	sg[i].length = segs[i].ds_len;
1807     }
1808 
1809 }
1810 
1811 #if 0
1812 /********************************************************************************
1813  * Command-mapping helper function - save the cdb's physical address.
1814  *
1815  * We don't support 'large' SCSI commands at this time, so this is unused.
1816  */
1817 static void
1818 mly_map_command_cdb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1819 {
1820     struct mly_command			*mc = (struct mly_command *)arg;
1821 
1822     debug_called(2);
1823 
1824     /* XXX can we safely assume that a CDB will never cross a page boundary? */
1825     if ((segs[0].ds_addr % PAGE_SIZE) >
1826 	((segs[0].ds_addr + mc->mc_packet->scsi_large.cdb_length) % PAGE_SIZE))
1827 	panic("cdb crosses page boundary");
1828 
1829     /* fix up fields in the command packet */
1830     mc->mc_packet->scsi_large.cdb_physaddr = segs[0].ds_addr;
1831 }
1832 #endif
1833 
1834 /********************************************************************************
1835  * Map a command into controller-visible space
1836  */
1837 static void
1838 mly_map_command(struct mly_command *mc)
1839 {
1840     struct mly_softc	*sc = mc->mc_sc;
1841 
1842     debug_called(2);
1843 
1844     /* don't map more than once */
1845     if (mc->mc_flags & MLY_CMD_MAPPED)
1846 	return;
1847 
1848     /* does the command have a data buffer? */
1849     if (mc->mc_data != NULL) {
1850 	bus_dmamap_load(sc->mly_buffer_dmat, mc->mc_datamap, mc->mc_data, mc->mc_length,
1851 			mly_map_command_sg, mc, 0);
1852 
1853 	if (mc->mc_flags & MLY_CMD_DATAIN)
1854 	    bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_PREREAD);
1855 	if (mc->mc_flags & MLY_CMD_DATAOUT)
1856 	    bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_PREWRITE);
1857     }
1858     mc->mc_flags |= MLY_CMD_MAPPED;
1859 }
1860 
1861 /********************************************************************************
1862  * Unmap a command from controller-visible space
1863  */
1864 static void
1865 mly_unmap_command(struct mly_command *mc)
1866 {
1867     struct mly_softc	*sc = mc->mc_sc;
1868 
1869     debug_called(2);
1870 
1871     if (!(mc->mc_flags & MLY_CMD_MAPPED))
1872 	return;
1873 
1874     /* does the command have a data buffer? */
1875     if (mc->mc_data != NULL) {
1876 	if (mc->mc_flags & MLY_CMD_DATAIN)
1877 	    bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_POSTREAD);
1878 	if (mc->mc_flags & MLY_CMD_DATAOUT)
1879 	    bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_POSTWRITE);
1880 
1881 	bus_dmamap_unload(sc->mly_buffer_dmat, mc->mc_datamap);
1882     }
1883     mc->mc_flags &= ~MLY_CMD_MAPPED;
1884 }
1885 
1886 
1887 /********************************************************************************
1888  ********************************************************************************
1889                                                                     CAM interface
1890  ********************************************************************************
1891  ********************************************************************************/
1892 
1893 /********************************************************************************
1894  * Attach the physical and virtual SCSI busses to CAM.
1895  *
1896  * Physical bus numbering starts from 0, virtual bus numbering from one greater
1897  * than the highest physical bus.  Physical busses are only registered if
1898  * the kernel environment variable "hw.mly.register_physical_channels" is set.
1899  *
1900  * When we refer to a "bus", we are referring to the bus number registered with
1901  * the SIM, wheras a "channel" is a channel number given to the adapter.  In order
1902  * to keep things simple, we map these 1:1, so "bus" and "channel" may be used
1903  * interchangeably.
1904  */
1905 static int
1906 mly_cam_attach(struct mly_softc *sc)
1907 {
1908     struct cam_devq	*devq;
1909     int			chn, i;
1910 
1911     debug_called(1);
1912 
1913     /*
1914      * Allocate a devq for all our channels combined.
1915      */
1916     if ((devq = cam_simq_alloc(sc->mly_controllerinfo->maximum_parallel_commands)) == NULL) {
1917 	mly_printf(sc, "can't allocate CAM SIM queue\n");
1918 	return(ENOMEM);
1919     }
1920 
1921     /*
1922      * If physical channel registration has been requested, register these first.
1923      * Note that we enable tagged command queueing for physical channels.
1924      */
1925     if (ktestenv("hw.mly.register_physical_channels")) {
1926 	chn = 0;
1927 	for (i = 0; i < sc->mly_controllerinfo->physical_channels_present; i++, chn++) {
1928 
1929 	    if ((sc->mly_cam_sim[chn] = cam_sim_alloc(mly_cam_action, mly_cam_poll, "mly", sc,
1930 						      device_get_unit(sc->mly_dev),
1931 						      &sim_mplock,
1932 						      sc->mly_controllerinfo->maximum_parallel_commands,
1933 						      1, devq)) == NULL) {
1934 		return(ENOMEM);
1935 	    }
1936 	    if (xpt_bus_register(sc->mly_cam_sim[chn], chn)) {
1937 		mly_printf(sc, "CAM XPT phsyical channel registration failed\n");
1938 		return(ENXIO);
1939 	    }
1940 	    debug(1, "registered physical channel %d", chn);
1941 	}
1942     }
1943 
1944     /*
1945      * Register our virtual channels, with bus numbers matching channel numbers.
1946      */
1947     chn = sc->mly_controllerinfo->physical_channels_present;
1948     for (i = 0; i < sc->mly_controllerinfo->virtual_channels_present; i++, chn++) {
1949 	if ((sc->mly_cam_sim[chn] = cam_sim_alloc(mly_cam_action, mly_cam_poll, "mly", sc,
1950 						  device_get_unit(sc->mly_dev),
1951 						  &sim_mplock,
1952 						  sc->mly_controllerinfo->maximum_parallel_commands,
1953 						  0, devq)) == NULL) {
1954 	    return(ENOMEM);
1955 	}
1956 	if (xpt_bus_register(sc->mly_cam_sim[chn], chn)) {
1957 	    mly_printf(sc, "CAM XPT virtual channel registration failed\n");
1958 	    return(ENXIO);
1959 	}
1960 	debug(1, "registered virtual channel %d", chn);
1961     }
1962 
1963     /*
1964      * This is the total number of channels that (might have been) registered with
1965      * CAM.  Some may not have been; check the mly_cam_sim array to be certain.
1966      */
1967     sc->mly_cam_channels = sc->mly_controllerinfo->physical_channels_present +
1968 	sc->mly_controllerinfo->virtual_channels_present;
1969 
1970     return(0);
1971 }
1972 
1973 /********************************************************************************
1974  * Detach from CAM
1975  */
1976 static void
1977 mly_cam_detach(struct mly_softc *sc)
1978 {
1979     int		i;
1980 
1981     debug_called(1);
1982 
1983     for (i = 0; i < sc->mly_cam_channels; i++) {
1984 	if (sc->mly_cam_sim[i] != NULL) {
1985 	    xpt_bus_deregister(cam_sim_path(sc->mly_cam_sim[i]));
1986 	    cam_sim_free(sc->mly_cam_sim[i]);
1987 	}
1988     }
1989     if (sc->mly_cam_devq != NULL)
1990 	cam_simq_release(sc->mly_cam_devq);
1991 }
1992 
1993 /************************************************************************
1994  * Rescan a device.
1995  */
1996 static void
1997 mly_cam_rescan_btl(struct mly_softc *sc, int bus, int target)
1998 {
1999     union ccb	*ccb;
2000 
2001     debug_called(1);
2002 
2003     ccb = kmalloc(sizeof(union ccb), M_TEMP, M_WAITOK | M_ZERO);
2004 
2005     if (xpt_create_path(&sc->mly_cam_path, xpt_periph,
2006 			cam_sim_path(sc->mly_cam_sim[bus]), target, 0) != CAM_REQ_CMP) {
2007 	mly_printf(sc, "rescan failed (can't create path)\n");
2008 	kfree(ccb, M_TEMP);
2009 	return;
2010     }
2011     xpt_setup_ccb(&ccb->ccb_h, sc->mly_cam_path, 5/*priority (low)*/);
2012     ccb->ccb_h.func_code = XPT_SCAN_LUN;
2013     ccb->ccb_h.cbfcnp = mly_cam_rescan_callback;
2014     ccb->crcn.flags = CAM_FLAG_NONE;
2015     debug(1, "rescan target %d:%d", bus, target);
2016     xpt_action(ccb);
2017 }
2018 
2019 static void
2020 mly_cam_rescan_callback(struct cam_periph *periph, union ccb *ccb)
2021 {
2022     kfree(ccb, M_TEMP);
2023 }
2024 
2025 /********************************************************************************
2026  * Handle an action requested by CAM
2027  */
2028 static void
2029 mly_cam_action(struct cam_sim *sim, union ccb *ccb)
2030 {
2031     struct mly_softc	*sc = cam_sim_softc(sim);
2032 
2033     debug_called(2);
2034 
2035     switch (ccb->ccb_h.func_code) {
2036 
2037 	/* perform SCSI I/O */
2038     case XPT_SCSI_IO:
2039 	if (!mly_cam_action_io(sim, (struct ccb_scsiio *)&ccb->csio))
2040 	    return;
2041 	break;
2042 
2043 	/* perform geometry calculations */
2044     case XPT_CALC_GEOMETRY:
2045     {
2046 	struct ccb_calc_geometry	*ccg = &ccb->ccg;
2047         u_int32_t			secs_per_cylinder;
2048 
2049 	debug(2, "XPT_CALC_GEOMETRY %d:%d:%d", cam_sim_bus(sim), ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
2050 
2051 	if (sc->mly_controllerparam->bios_geometry == MLY_BIOSGEOM_8G) {
2052 	    ccg->heads = 255;
2053             ccg->secs_per_track = 63;
2054 	} else {				/* MLY_BIOSGEOM_2G */
2055 	    ccg->heads = 128;
2056             ccg->secs_per_track = 32;
2057 	}
2058 	secs_per_cylinder = ccg->heads * ccg->secs_per_track;
2059         ccg->cylinders = ccg->volume_size / secs_per_cylinder;
2060         ccb->ccb_h.status = CAM_REQ_CMP;
2061         break;
2062     }
2063 
2064 	/* handle path attribute inquiry */
2065     case XPT_PATH_INQ:
2066     {
2067 	struct ccb_pathinq	*cpi = &ccb->cpi;
2068 
2069 	debug(2, "XPT_PATH_INQ %d:%d:%d", cam_sim_bus(sim), ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
2070 
2071 	cpi->version_num = 1;
2072 	cpi->hba_inquiry = PI_TAG_ABLE;		/* XXX extra flags for physical channels? */
2073 	cpi->target_sprt = 0;
2074 	cpi->hba_misc = 0;
2075 	cpi->max_target = MLY_MAX_TARGETS - 1;
2076 	cpi->max_lun = MLY_MAX_LUNS - 1;
2077 	cpi->initiator_id = sc->mly_controllerparam->initiator_id;
2078 	strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
2079         strncpy(cpi->hba_vid, "FreeBSD", HBA_IDLEN);
2080         strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
2081         cpi->unit_number = cam_sim_unit(sim);
2082         cpi->bus_id = cam_sim_bus(sim);
2083 	cpi->base_transfer_speed = 132 * 1024;	/* XXX what to set this to? */
2084 	cpi->transport = XPORT_SPI;
2085 	cpi->transport_version = 2;
2086 	cpi->protocol = PROTO_SCSI;
2087 	cpi->protocol_version = SCSI_REV_2;
2088 	ccb->ccb_h.status = CAM_REQ_CMP;
2089 	break;
2090     }
2091 
2092     case XPT_GET_TRAN_SETTINGS:
2093     {
2094 	struct ccb_trans_settings	*cts = &ccb->cts;
2095 	int				bus, target;
2096 	struct ccb_trans_settings_scsi *scsi = &cts->proto_specific.scsi;
2097 	struct ccb_trans_settings_spi *spi = &cts->xport_specific.spi;
2098 
2099 	cts->protocol = PROTO_SCSI;
2100 	cts->protocol_version = SCSI_REV_2;
2101 	cts->transport = XPORT_SPI;
2102 	cts->transport_version = 2;
2103 
2104 	scsi->flags = 0;
2105 	scsi->valid = 0;
2106 	spi->flags = 0;
2107 	spi->valid = 0;
2108 
2109 	bus = cam_sim_bus(sim);
2110 	target = cts->ccb_h.target_id;
2111 	debug(2, "XPT_GET_TRAN_SETTINGS %d:%d", bus, target);
2112 	/* logical device? */
2113 	if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_LOGICAL) {
2114 	    /* nothing special for these */
2115 	/* physical device? */
2116 	} else if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_PHYSICAL) {
2117 	    /* allow CAM to try tagged transactions */
2118 	    scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
2119 	    scsi->valid |= CTS_SCSI_VALID_TQ;
2120 
2121 	    /* convert speed (MHz) to usec */
2122 	    if (sc->mly_btl[bus][target].mb_speed == 0) {
2123 		spi->sync_period = 1000000 / 5;
2124 	    } else {
2125 		spi->sync_period = 1000000 / sc->mly_btl[bus][target].mb_speed;
2126 	    }
2127 
2128 	    /* convert bus width to CAM internal encoding */
2129 	    switch (sc->mly_btl[bus][target].mb_width) {
2130 	    case 32:
2131 		spi->bus_width = MSG_EXT_WDTR_BUS_32_BIT;
2132 		break;
2133 	    case 16:
2134 		spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
2135 		break;
2136 	    case 8:
2137 	    default:
2138 		spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
2139 		break;
2140 	    }
2141 	    spi->valid |= CTS_SPI_VALID_SYNC_RATE | CTS_SPI_VALID_BUS_WIDTH;
2142 
2143 	    /* not a device, bail out */
2144 	} else {
2145 	    cts->ccb_h.status = CAM_REQ_CMP_ERR;
2146 	    break;
2147 	}
2148 
2149 	/* disconnect always OK */
2150 	spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
2151 	spi->valid |= CTS_SPI_VALID_DISC;
2152 
2153 	cts->ccb_h.status = CAM_REQ_CMP;
2154 	break;
2155     }
2156 
2157     default:		/* we can't do this */
2158 	debug(2, "unsupported func_code = 0x%x", ccb->ccb_h.func_code);
2159 	ccb->ccb_h.status = CAM_REQ_INVALID;
2160 	break;
2161     }
2162 
2163     xpt_done(ccb);
2164 }
2165 
2166 /********************************************************************************
2167  * Handle an I/O operation requested by CAM
2168  */
2169 static int
2170 mly_cam_action_io(struct cam_sim *sim, struct ccb_scsiio *csio)
2171 {
2172     struct mly_softc			*sc = cam_sim_softc(sim);
2173     struct mly_command			*mc;
2174     struct mly_command_scsi_small	*ss;
2175     int					bus, target;
2176     int					error;
2177 
2178     bus = cam_sim_bus(sim);
2179     target = csio->ccb_h.target_id;
2180 
2181     debug(2, "XPT_SCSI_IO %d:%d:%d", bus, target, csio->ccb_h.target_lun);
2182 
2183     /* validate bus number */
2184     if (!MLY_BUS_IS_VALID(sc, bus)) {
2185 	debug(0, " invalid bus %d", bus);
2186 	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2187     }
2188 
2189     /*  check for I/O attempt to a protected device */
2190     if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_PROTECTED) {
2191 	debug(2, "  device protected");
2192 	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2193     }
2194 
2195     /* check for I/O attempt to nonexistent device */
2196     if (!(sc->mly_btl[bus][target].mb_flags & (MLY_BTL_LOGICAL | MLY_BTL_PHYSICAL))) {
2197 	debug(2, "  device %d:%d does not exist", bus, target);
2198 	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2199     }
2200 
2201     /* XXX increase if/when we support large SCSI commands */
2202     if (csio->cdb_len > MLY_CMD_SCSI_SMALL_CDB) {
2203 	debug(0, "  command too large (%d > %d)", csio->cdb_len, MLY_CMD_SCSI_SMALL_CDB);
2204 	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2205     }
2206 
2207     /* check that the CDB pointer is not to a physical address */
2208     if ((csio->ccb_h.flags & CAM_CDB_POINTER) && (csio->ccb_h.flags & CAM_CDB_PHYS)) {
2209 	debug(0, "  CDB pointer is to physical address");
2210 	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2211     }
2212 
2213     /* if there is data transfer, it must be to/from a virtual address */
2214     if ((csio->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
2215 	if (csio->ccb_h.flags & CAM_DATA_PHYS) {		/* we can't map it */
2216 	    debug(0, "  data pointer is to physical address");
2217 	    csio->ccb_h.status = CAM_REQ_CMP_ERR;
2218 	}
2219 	if (csio->ccb_h.flags & CAM_SCATTER_VALID) {	/* we want to do the s/g setup */
2220 	    debug(0, "  data has premature s/g setup");
2221 	    csio->ccb_h.status = CAM_REQ_CMP_ERR;
2222 	}
2223     }
2224 
2225     /* abandon aborted ccbs or those that have failed validation */
2226     if ((csio->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
2227 	debug(2, "abandoning CCB due to abort/validation failure");
2228 	return(EINVAL);
2229     }
2230 
2231     /*
2232      * Get a command, or push the ccb back to CAM and freeze the queue.
2233      */
2234     if ((error = mly_alloc_command(sc, &mc))) {
2235 	crit_enter();
2236 	xpt_freeze_simq(sim, 1);
2237 	csio->ccb_h.status |= CAM_REQUEUE_REQ;
2238 	sc->mly_qfrzn_cnt++;
2239 	crit_exit();
2240 	return(error);
2241     }
2242 
2243     /* build the command */
2244     mc->mc_data = csio->data_ptr;
2245     mc->mc_length = csio->dxfer_len;
2246     mc->mc_complete = mly_cam_complete;
2247     mc->mc_private = csio;
2248 
2249     /* save the bus number in the ccb for later recovery XXX should be a better way */
2250      csio->ccb_h.sim_priv.entries[0].field = bus;
2251 
2252     /* build the packet for the controller */
2253     ss = &mc->mc_packet->scsi_small;
2254     ss->opcode = MDACMD_SCSI;
2255     if (csio->ccb_h.flags & CAM_DIS_DISCONNECT)
2256 	ss->command_control.disable_disconnect = 1;
2257     if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT)
2258 	ss->command_control.data_direction = MLY_CCB_WRITE;
2259     ss->data_size = csio->dxfer_len;
2260     ss->addr.phys.lun = csio->ccb_h.target_lun;
2261     ss->addr.phys.target = csio->ccb_h.target_id;
2262     ss->addr.phys.channel = bus;
2263     if (csio->ccb_h.timeout < (60 * 1000)) {
2264 	ss->timeout.value = csio->ccb_h.timeout / 1000;
2265 	ss->timeout.scale = MLY_TIMEOUT_SECONDS;
2266     } else if (csio->ccb_h.timeout < (60 * 60 * 1000)) {
2267 	ss->timeout.value = csio->ccb_h.timeout / (60 * 1000);
2268 	ss->timeout.scale = MLY_TIMEOUT_MINUTES;
2269     } else {
2270 	ss->timeout.value = csio->ccb_h.timeout / (60 * 60 * 1000);	/* overflow? */
2271 	ss->timeout.scale = MLY_TIMEOUT_HOURS;
2272     }
2273     ss->maximum_sense_size = csio->sense_len;
2274     ss->cdb_length = csio->cdb_len;
2275     if (csio->ccb_h.flags & CAM_CDB_POINTER) {
2276 	bcopy(csio->cdb_io.cdb_ptr, ss->cdb, csio->cdb_len);
2277     } else {
2278 	bcopy(csio->cdb_io.cdb_bytes, ss->cdb, csio->cdb_len);
2279     }
2280 
2281     /* give the command to the controller */
2282     if ((error = mly_start(mc))) {
2283 	crit_enter();
2284 	xpt_freeze_simq(sim, 1);
2285 	csio->ccb_h.status |= CAM_REQUEUE_REQ;
2286 	sc->mly_qfrzn_cnt++;
2287 	crit_exit();
2288 	return(error);
2289     }
2290 
2291     return(0);
2292 }
2293 
2294 /********************************************************************************
2295  * Check for possibly-completed commands.
2296  */
2297 static void
2298 mly_cam_poll(struct cam_sim *sim)
2299 {
2300     struct mly_softc	*sc = cam_sim_softc(sim);
2301 
2302     debug_called(2);
2303 
2304     mly_done(sc);
2305 }
2306 
2307 /********************************************************************************
2308  * Handle completion of a command - pass results back through the CCB
2309  */
2310 static void
2311 mly_cam_complete(struct mly_command *mc)
2312 {
2313     struct mly_softc		*sc = mc->mc_sc;
2314     struct ccb_scsiio		*csio = (struct ccb_scsiio *)mc->mc_private;
2315     struct scsi_inquiry_data	*inq = (struct scsi_inquiry_data *)csio->data_ptr;
2316     struct mly_btl		*btl;
2317     u_int8_t			cmd;
2318     int				bus, target;
2319 
2320     debug_called(2);
2321 
2322     csio->scsi_status = mc->mc_status;
2323     switch(mc->mc_status) {
2324     case SCSI_STATUS_OK:
2325 	/*
2326 	 * In order to report logical device type and status, we overwrite
2327 	 * the result of the INQUIRY command to logical devices.
2328 	 */
2329 	bus = csio->ccb_h.sim_priv.entries[0].field;
2330 	target = csio->ccb_h.target_id;
2331 	/* XXX validate bus/target? */
2332 	if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_LOGICAL) {
2333 	    if (csio->ccb_h.flags & CAM_CDB_POINTER) {
2334 		cmd = *csio->cdb_io.cdb_ptr;
2335 	    } else {
2336 		cmd = csio->cdb_io.cdb_bytes[0];
2337 	    }
2338 	    if (cmd == INQUIRY) {
2339 		btl = &sc->mly_btl[bus][target];
2340 		padstr(inq->vendor, mly_describe_code(mly_table_device_type, btl->mb_type), 8);
2341 		padstr(inq->product, mly_describe_code(mly_table_device_state, btl->mb_state), 16);
2342 		padstr(inq->revision, "", 4);
2343 	    }
2344 	}
2345 
2346 	debug(2, "SCSI_STATUS_OK");
2347 	csio->ccb_h.status = CAM_REQ_CMP;
2348 	break;
2349 
2350     case SCSI_STATUS_CHECK_COND:
2351 	debug(1, "SCSI_STATUS_CHECK_COND  sense %d  resid %d", mc->mc_sense, mc->mc_resid);
2352 	csio->ccb_h.status = CAM_SCSI_STATUS_ERROR;
2353 	bzero(&csio->sense_data, SSD_FULL_SIZE);
2354 	bcopy(mc->mc_packet, &csio->sense_data, mc->mc_sense);
2355 	csio->sense_len = mc->mc_sense;
2356 	csio->ccb_h.status |= CAM_AUTOSNS_VALID;
2357 	csio->resid = mc->mc_resid;	/* XXX this is a signed value... */
2358 	break;
2359 
2360     case SCSI_STATUS_BUSY:
2361 	debug(1, "SCSI_STATUS_BUSY");
2362 	csio->ccb_h.status = CAM_SCSI_BUSY;
2363 	break;
2364 
2365     default:
2366 	debug(1, "unknown status 0x%x", csio->scsi_status);
2367 	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2368 	break;
2369     }
2370 
2371     crit_enter();
2372     if (sc->mly_qfrzn_cnt) {
2373 	csio->ccb_h.status |= CAM_RELEASE_SIMQ;
2374 	sc->mly_qfrzn_cnt--;
2375     }
2376     crit_exit();
2377 
2378     xpt_done((union ccb *)csio);
2379     mly_release_command(mc);
2380 }
2381 
2382 /********************************************************************************
2383  * Find a peripheral attahed at (bus),(target)
2384  */
2385 static struct cam_periph *
2386 mly_find_periph(struct mly_softc *sc, int bus, int target)
2387 {
2388     struct cam_periph	*periph;
2389     struct cam_path	*path;
2390     int			status;
2391 
2392     status = xpt_create_path(&path, NULL, cam_sim_path(sc->mly_cam_sim[bus]), target, 0);
2393     if (status == CAM_REQ_CMP) {
2394 	periph = cam_periph_find(path, NULL);
2395 	xpt_free_path(path);
2396     } else {
2397 	periph = NULL;
2398     }
2399     return(periph);
2400 }
2401 
2402 /********************************************************************************
2403  * Name the device at (bus)(target)
2404  */
2405 static int
2406 mly_name_device(struct mly_softc *sc, int bus, int target)
2407 {
2408     struct cam_periph	*periph;
2409 
2410     if ((periph = mly_find_periph(sc, bus, target)) != NULL) {
2411 	ksprintf(sc->mly_btl[bus][target].mb_name, "%s%d", periph->periph_name, periph->unit_number);
2412 	return(0);
2413     }
2414     sc->mly_btl[bus][target].mb_name[0] = 0;
2415     return(ENOENT);
2416 }
2417 
2418 /********************************************************************************
2419  ********************************************************************************
2420                                                                  Hardware Control
2421  ********************************************************************************
2422  ********************************************************************************/
2423 
2424 /********************************************************************************
2425  * Handshake with the firmware while the card is being initialised.
2426  */
2427 static int
2428 mly_fwhandshake(struct mly_softc *sc)
2429 {
2430     u_int8_t	error, param0, param1;
2431     int		spinup = 0;
2432 
2433     debug_called(1);
2434 
2435     /* set HM_STSACK and let the firmware initialise */
2436     MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_STSACK);
2437     DELAY(1000);	/* too short? */
2438 
2439     /* if HM_STSACK is still true, the controller is initialising */
2440     if (!MLY_IDBR_TRUE(sc, MLY_HM_STSACK))
2441 	return(0);
2442     mly_printf(sc, "controller initialisation started\n");
2443 
2444     /* spin waiting for initialisation to finish, or for a message to be delivered */
2445     while (MLY_IDBR_TRUE(sc, MLY_HM_STSACK)) {
2446 	/* check for a message */
2447 	if (MLY_ERROR_VALID(sc)) {
2448 	    error = MLY_GET_REG(sc, sc->mly_error_status) & ~MLY_MSG_EMPTY;
2449 	    param0 = MLY_GET_REG(sc, sc->mly_command_mailbox);
2450 	    param1 = MLY_GET_REG(sc, sc->mly_command_mailbox + 1);
2451 
2452 	    switch(error) {
2453 	    case MLY_MSG_SPINUP:
2454 		if (!spinup) {
2455 		    mly_printf(sc, "drive spinup in progress\n");
2456 		    spinup = 1;			/* only print this once (should print drive being spun?) */
2457 		}
2458 		break;
2459 	    case MLY_MSG_RACE_RECOVERY_FAIL:
2460 		mly_printf(sc, "mirror race recovery failed, one or more drives offline\n");
2461 		break;
2462 	    case MLY_MSG_RACE_IN_PROGRESS:
2463 		mly_printf(sc, "mirror race recovery in progress\n");
2464 		break;
2465 	    case MLY_MSG_RACE_ON_CRITICAL:
2466 		mly_printf(sc, "mirror race recovery on a critical drive\n");
2467 		break;
2468 	    case MLY_MSG_PARITY_ERROR:
2469 		mly_printf(sc, "FATAL MEMORY PARITY ERROR\n");
2470 		return(ENXIO);
2471 	    default:
2472 		mly_printf(sc, "unknown initialisation code 0x%x\n", error);
2473 	    }
2474 	}
2475     }
2476     return(0);
2477 }
2478 
2479 /********************************************************************************
2480  ********************************************************************************
2481                                                         Debugging and Diagnostics
2482  ********************************************************************************
2483  ********************************************************************************/
2484 
2485 /********************************************************************************
2486  * Print some information about the controller.
2487  */
2488 static void
2489 mly_describe_controller(struct mly_softc *sc)
2490 {
2491     struct mly_ioctl_getcontrollerinfo	*mi = sc->mly_controllerinfo;
2492 
2493     mly_printf(sc, "%16s, %d channel%s, firmware %d.%02d-%d-%02d (%02d%02d%02d%02d), %dMB RAM\n",
2494 	       mi->controller_name, mi->physical_channels_present, (mi->physical_channels_present) > 1 ? "s" : "",
2495 	       mi->fw_major, mi->fw_minor, mi->fw_turn, mi->fw_build,	/* XXX turn encoding? */
2496 	       mi->fw_century, mi->fw_year, mi->fw_month, mi->fw_day,
2497 	       mi->memory_size);
2498 
2499     if (bootverbose) {
2500 	mly_printf(sc, "%s %s (%x), %dMHz %d-bit %.16s\n",
2501 		   mly_describe_code(mly_table_oemname, mi->oem_information),
2502 		   mly_describe_code(mly_table_controllertype, mi->controller_type), mi->controller_type,
2503 		   mi->interface_speed, mi->interface_width, mi->interface_name);
2504 	mly_printf(sc, "%dMB %dMHz %d-bit %s%s%s, cache %dMB\n",
2505 		   mi->memory_size, mi->memory_speed, mi->memory_width,
2506 		   mly_describe_code(mly_table_memorytype, mi->memory_type),
2507 		   mi->memory_parity ? "+parity": "",mi->memory_ecc ? "+ECC": "",
2508 		   mi->cache_size);
2509 	mly_printf(sc, "CPU: %s @ %dMHZ\n",
2510 		   mly_describe_code(mly_table_cputype, mi->cpu[0].type), mi->cpu[0].speed);
2511 	if (mi->l2cache_size != 0)
2512 	    mly_printf(sc, "%dKB L2 cache\n", mi->l2cache_size);
2513 	if (mi->exmemory_size != 0)
2514 	    mly_printf(sc, "%dMB %dMHz %d-bit private %s%s%s\n",
2515 		       mi->exmemory_size, mi->exmemory_speed, mi->exmemory_width,
2516 		       mly_describe_code(mly_table_memorytype, mi->exmemory_type),
2517 		       mi->exmemory_parity ? "+parity": "",mi->exmemory_ecc ? "+ECC": "");
2518 	mly_printf(sc, "battery backup %s\n", mi->bbu_present ? "present" : "not installed");
2519 	mly_printf(sc, "maximum data transfer %d blocks, maximum sg entries/command %d\n",
2520 		   mi->maximum_block_count, mi->maximum_sg_entries);
2521 	mly_printf(sc, "logical devices present/critical/offline %d/%d/%d\n",
2522 		   mi->logical_devices_present, mi->logical_devices_critical, mi->logical_devices_offline);
2523 	mly_printf(sc, "physical devices present %d\n",
2524 		   mi->physical_devices_present);
2525 	mly_printf(sc, "physical disks present/offline %d/%d\n",
2526 		   mi->physical_disks_present, mi->physical_disks_offline);
2527 	mly_printf(sc, "%d physical channel%s, %d virtual channel%s of %d possible\n",
2528 		   mi->physical_channels_present, mi->physical_channels_present == 1 ? "" : "s",
2529 		   mi->virtual_channels_present, mi->virtual_channels_present == 1 ? "" : "s",
2530 		   mi->virtual_channels_possible);
2531 	mly_printf(sc, "%d parallel commands supported\n", mi->maximum_parallel_commands);
2532 	mly_printf(sc, "%dMB flash ROM, %d of %d maximum cycles\n",
2533 		   mi->flash_size, mi->flash_age, mi->flash_maximum_age);
2534     }
2535 }
2536 
2537 #ifdef MLY_DEBUG
2538 /********************************************************************************
2539  * Print some controller state
2540  */
2541 static void
2542 mly_printstate(struct mly_softc *sc)
2543 {
2544     mly_printf(sc, "IDBR %02x  ODBR %02x  ERROR %02x  (%x %x %x)\n",
2545 		  MLY_GET_REG(sc, sc->mly_idbr),
2546 		  MLY_GET_REG(sc, sc->mly_odbr),
2547 		  MLY_GET_REG(sc, sc->mly_error_status),
2548 		  sc->mly_idbr,
2549 		  sc->mly_odbr,
2550 		  sc->mly_error_status);
2551     mly_printf(sc, "IMASK %02x  ISTATUS %02x\n",
2552 		  MLY_GET_REG(sc, sc->mly_interrupt_mask),
2553 		  MLY_GET_REG(sc, sc->mly_interrupt_status));
2554     mly_printf(sc, "COMMAND %02x %02x %02x %02x %02x %02x %02x %02x\n",
2555 		  MLY_GET_REG(sc, sc->mly_command_mailbox),
2556 		  MLY_GET_REG(sc, sc->mly_command_mailbox + 1),
2557 		  MLY_GET_REG(sc, sc->mly_command_mailbox + 2),
2558 		  MLY_GET_REG(sc, sc->mly_command_mailbox + 3),
2559 		  MLY_GET_REG(sc, sc->mly_command_mailbox + 4),
2560 		  MLY_GET_REG(sc, sc->mly_command_mailbox + 5),
2561 		  MLY_GET_REG(sc, sc->mly_command_mailbox + 6),
2562 		  MLY_GET_REG(sc, sc->mly_command_mailbox + 7));
2563     mly_printf(sc, "STATUS  %02x %02x %02x %02x %02x %02x %02x %02x\n",
2564 		  MLY_GET_REG(sc, sc->mly_status_mailbox),
2565 		  MLY_GET_REG(sc, sc->mly_status_mailbox + 1),
2566 		  MLY_GET_REG(sc, sc->mly_status_mailbox + 2),
2567 		  MLY_GET_REG(sc, sc->mly_status_mailbox + 3),
2568 		  MLY_GET_REG(sc, sc->mly_status_mailbox + 4),
2569 		  MLY_GET_REG(sc, sc->mly_status_mailbox + 5),
2570 		  MLY_GET_REG(sc, sc->mly_status_mailbox + 6),
2571 		  MLY_GET_REG(sc, sc->mly_status_mailbox + 7));
2572     mly_printf(sc, "        %04x        %08x\n",
2573 		  MLY_GET_REG2(sc, sc->mly_status_mailbox),
2574 		  MLY_GET_REG4(sc, sc->mly_status_mailbox + 4));
2575 }
2576 
2577 struct mly_softc	*mly_softc0 = NULL;
2578 void
2579 mly_printstate0(void)
2580 {
2581     if (mly_softc0 != NULL)
2582 	mly_printstate(mly_softc0);
2583 }
2584 
2585 /********************************************************************************
2586  * Print a command
2587  */
2588 static void
2589 mly_print_command(struct mly_command *mc)
2590 {
2591     struct mly_softc	*sc = mc->mc_sc;
2592 
2593     mly_printf(sc, "COMMAND @ %p\n", mc);
2594     mly_printf(sc, "  slot      %d\n", mc->mc_slot);
2595     mly_printf(sc, "  status    0x%x\n", mc->mc_status);
2596     mly_printf(sc, "  sense len %d\n", mc->mc_sense);
2597     mly_printf(sc, "  resid     %d\n", mc->mc_resid);
2598     mly_printf(sc, "  packet    %p/0x%llx\n", mc->mc_packet, mc->mc_packetphys);
2599     if (mc->mc_packet != NULL)
2600 	mly_print_packet(mc);
2601     mly_printf(sc, "  data      %p/%d\n", mc->mc_data, mc->mc_length);
2602     mly_printf(sc, "  flags     %b\n", mc->mc_flags, "\20\1busy\2complete\3slotted\4mapped\5datain\6dataout\n");
2603     mly_printf(sc, "  complete  %p\n", mc->mc_complete);
2604     mly_printf(sc, "  private   %p\n", mc->mc_private);
2605 }
2606 
2607 /********************************************************************************
2608  * Print a command packet
2609  */
2610 static void
2611 mly_print_packet(struct mly_command *mc)
2612 {
2613     struct mly_softc			*sc = mc->mc_sc;
2614     struct mly_command_generic		*ge = (struct mly_command_generic *)mc->mc_packet;
2615     struct mly_command_scsi_small	*ss = (struct mly_command_scsi_small *)mc->mc_packet;
2616     struct mly_command_scsi_large	*sl = (struct mly_command_scsi_large *)mc->mc_packet;
2617     struct mly_command_ioctl		*io = (struct mly_command_ioctl *)mc->mc_packet;
2618     int					transfer;
2619 
2620     mly_printf(sc, "   command_id           %d\n", ge->command_id);
2621     mly_printf(sc, "   opcode               %d\n", ge->opcode);
2622     mly_printf(sc, "   command_control      fua %d  dpo %d  est %d  dd %s  nas %d ddis %d\n",
2623 		  ge->command_control.force_unit_access,
2624 		  ge->command_control.disable_page_out,
2625 		  ge->command_control.extended_sg_table,
2626 		  (ge->command_control.data_direction == MLY_CCB_WRITE) ? "WRITE" : "READ",
2627 		  ge->command_control.no_auto_sense,
2628 		  ge->command_control.disable_disconnect);
2629     mly_printf(sc, "   data_size            %d\n", ge->data_size);
2630     mly_printf(sc, "   sense_buffer_address 0x%llx\n", ge->sense_buffer_address);
2631     mly_printf(sc, "   lun                  %d\n", ge->addr.phys.lun);
2632     mly_printf(sc, "   target               %d\n", ge->addr.phys.target);
2633     mly_printf(sc, "   channel              %d\n", ge->addr.phys.channel);
2634     mly_printf(sc, "   logical device       %d\n", ge->addr.log.logdev);
2635     mly_printf(sc, "   controller           %d\n", ge->addr.phys.controller);
2636     mly_printf(sc, "   timeout              %d %s\n",
2637 		  ge->timeout.value,
2638 		  (ge->timeout.scale == MLY_TIMEOUT_SECONDS) ? "seconds" :
2639 		  ((ge->timeout.scale == MLY_TIMEOUT_MINUTES) ? "minutes" : "hours"));
2640     mly_printf(sc, "   maximum_sense_size   %d\n", ge->maximum_sense_size);
2641     switch(ge->opcode) {
2642     case MDACMD_SCSIPT:
2643     case MDACMD_SCSI:
2644 	mly_printf(sc, "   cdb length           %d\n", ss->cdb_length);
2645 	mly_printf(sc, "   cdb                  %*D\n", ss->cdb_length, ss->cdb, " ");
2646 	transfer = 1;
2647 	break;
2648     case MDACMD_SCSILC:
2649     case MDACMD_SCSILCPT:
2650 	mly_printf(sc, "   cdb length           %d\n", sl->cdb_length);
2651 	mly_printf(sc, "   cdb                  0x%llx\n", sl->cdb_physaddr);
2652 	transfer = 1;
2653 	break;
2654     case MDACMD_IOCTL:
2655 	mly_printf(sc, "   sub_ioctl            0x%x\n", io->sub_ioctl);
2656 	switch(io->sub_ioctl) {
2657 	case MDACIOCTL_SETMEMORYMAILBOX:
2658 	    mly_printf(sc, "   health_buffer_size   %d\n",
2659 			  io->param.setmemorymailbox.health_buffer_size);
2660 	    mly_printf(sc, "   health_buffer_phys   0x%llx\n",
2661 			  io->param.setmemorymailbox.health_buffer_physaddr);
2662 	    mly_printf(sc, "   command_mailbox      0x%llx\n",
2663 			  io->param.setmemorymailbox.command_mailbox_physaddr);
2664 	    mly_printf(sc, "   status_mailbox       0x%llx\n",
2665 			  io->param.setmemorymailbox.status_mailbox_physaddr);
2666 	    transfer = 0;
2667 	    break;
2668 
2669 	case MDACIOCTL_SETREALTIMECLOCK:
2670 	case MDACIOCTL_GETHEALTHSTATUS:
2671 	case MDACIOCTL_GETCONTROLLERINFO:
2672 	case MDACIOCTL_GETLOGDEVINFOVALID:
2673 	case MDACIOCTL_GETPHYSDEVINFOVALID:
2674 	case MDACIOCTL_GETPHYSDEVSTATISTICS:
2675 	case MDACIOCTL_GETLOGDEVSTATISTICS:
2676 	case MDACIOCTL_GETCONTROLLERSTATISTICS:
2677 	case MDACIOCTL_GETBDT_FOR_SYSDRIVE:
2678 	case MDACIOCTL_CREATENEWCONF:
2679 	case MDACIOCTL_ADDNEWCONF:
2680 	case MDACIOCTL_GETDEVCONFINFO:
2681 	case MDACIOCTL_GETFREESPACELIST:
2682 	case MDACIOCTL_MORE:
2683 	case MDACIOCTL_SETPHYSDEVPARAMETER:
2684 	case MDACIOCTL_GETPHYSDEVPARAMETER:
2685 	case MDACIOCTL_GETLOGDEVPARAMETER:
2686 	case MDACIOCTL_SETLOGDEVPARAMETER:
2687 	    mly_printf(sc, "   param                %10D\n", io->param.data.param, " ");
2688 	    transfer = 1;
2689 	    break;
2690 
2691 	case MDACIOCTL_GETEVENT:
2692 	    mly_printf(sc, "   event                %d\n",
2693 		       io->param.getevent.sequence_number_low + ((u_int32_t)io->addr.log.logdev << 16));
2694 	    transfer = 1;
2695 	    break;
2696 
2697 	case MDACIOCTL_SETRAIDDEVSTATE:
2698 	    mly_printf(sc, "   state                %d\n", io->param.setraiddevstate.state);
2699 	    transfer = 0;
2700 	    break;
2701 
2702 	case MDACIOCTL_XLATEPHYSDEVTORAIDDEV:
2703 	    mly_printf(sc, "   raid_device          %d\n", io->param.xlatephysdevtoraiddev.raid_device);
2704 	    mly_printf(sc, "   controller           %d\n", io->param.xlatephysdevtoraiddev.controller);
2705 	    mly_printf(sc, "   channel              %d\n", io->param.xlatephysdevtoraiddev.channel);
2706 	    mly_printf(sc, "   target               %d\n", io->param.xlatephysdevtoraiddev.target);
2707 	    mly_printf(sc, "   lun                  %d\n", io->param.xlatephysdevtoraiddev.lun);
2708 	    transfer = 0;
2709 	    break;
2710 
2711 	case MDACIOCTL_GETGROUPCONFINFO:
2712 	    mly_printf(sc, "   group                %d\n", io->param.getgroupconfinfo.group);
2713 	    transfer = 1;
2714 	    break;
2715 
2716 	case MDACIOCTL_GET_SUBSYSTEM_DATA:
2717 	case MDACIOCTL_SET_SUBSYSTEM_DATA:
2718 	case MDACIOCTL_STARTDISOCVERY:
2719 	case MDACIOCTL_INITPHYSDEVSTART:
2720 	case MDACIOCTL_INITPHYSDEVSTOP:
2721 	case MDACIOCTL_INITRAIDDEVSTART:
2722 	case MDACIOCTL_INITRAIDDEVSTOP:
2723 	case MDACIOCTL_REBUILDRAIDDEVSTART:
2724 	case MDACIOCTL_REBUILDRAIDDEVSTOP:
2725 	case MDACIOCTL_MAKECONSISTENTDATASTART:
2726 	case MDACIOCTL_MAKECONSISTENTDATASTOP:
2727 	case MDACIOCTL_CONSISTENCYCHECKSTART:
2728 	case MDACIOCTL_CONSISTENCYCHECKSTOP:
2729 	case MDACIOCTL_RESETDEVICE:
2730 	case MDACIOCTL_FLUSHDEVICEDATA:
2731 	case MDACIOCTL_PAUSEDEVICE:
2732 	case MDACIOCTL_UNPAUSEDEVICE:
2733 	case MDACIOCTL_LOCATEDEVICE:
2734 	case MDACIOCTL_SETMASTERSLAVEMODE:
2735 	case MDACIOCTL_DELETERAIDDEV:
2736 	case MDACIOCTL_REPLACEINTERNALDEV:
2737 	case MDACIOCTL_CLEARCONF:
2738 	case MDACIOCTL_GETCONTROLLERPARAMETER:
2739 	case MDACIOCTL_SETCONTRLLERPARAMETER:
2740 	case MDACIOCTL_CLEARCONFSUSPMODE:
2741 	case MDACIOCTL_STOREIMAGE:
2742 	case MDACIOCTL_READIMAGE:
2743 	case MDACIOCTL_FLASHIMAGES:
2744 	case MDACIOCTL_RENAMERAIDDEV:
2745 	default:			/* no idea what to print */
2746 	    transfer = 0;
2747 	    break;
2748 	}
2749 	break;
2750 
2751     case MDACMD_IOCTLCHECK:
2752     case MDACMD_MEMCOPY:
2753     default:
2754 	transfer = 0;
2755 	break;	/* print nothing */
2756     }
2757     if (transfer) {
2758 	if (ge->command_control.extended_sg_table) {
2759 	    mly_printf(sc, "   sg table             0x%llx/%d\n",
2760 			  ge->transfer.indirect.table_physaddr[0], ge->transfer.indirect.entries[0]);
2761 	} else {
2762 	    mly_printf(sc, "   0000                 0x%llx/%lld\n",
2763 			  ge->transfer.direct.sg[0].physaddr, ge->transfer.direct.sg[0].length);
2764 	    mly_printf(sc, "   0001                 0x%llx/%lld\n",
2765 			  ge->transfer.direct.sg[1].physaddr, ge->transfer.direct.sg[1].length);
2766 	}
2767     }
2768 }
2769 
2770 /********************************************************************************
2771  * Panic in a slightly informative fashion
2772  */
2773 static void
2774 mly_panic(struct mly_softc *sc, char *reason)
2775 {
2776     mly_printstate(sc);
2777     panic(reason);
2778 }
2779 
2780 /********************************************************************************
2781  * Print queue statistics, callable from DDB.
2782  */
2783 void
2784 mly_print_controller(int controller)
2785 {
2786     struct mly_softc	*sc;
2787 
2788     if ((sc = devclass_get_softc(devclass_find("mly"), controller)) == NULL) {
2789 	kprintf("mly: controller %d invalid\n", controller);
2790     } else {
2791 	device_printf(sc->mly_dev, "queue    curr max\n");
2792 	device_printf(sc->mly_dev, "free     %04d/%04d\n",
2793 		      sc->mly_qstat[MLYQ_FREE].q_length, sc->mly_qstat[MLYQ_FREE].q_max);
2794 	device_printf(sc->mly_dev, "busy     %04d/%04d\n",
2795 		      sc->mly_qstat[MLYQ_BUSY].q_length, sc->mly_qstat[MLYQ_BUSY].q_max);
2796 	device_printf(sc->mly_dev, "complete %04d/%04d\n",
2797 		      sc->mly_qstat[MLYQ_COMPLETE].q_length, sc->mly_qstat[MLYQ_COMPLETE].q_max);
2798     }
2799 }
2800 #endif
2801 
2802 
2803 /********************************************************************************
2804  ********************************************************************************
2805                                                          Control device interface
2806  ********************************************************************************
2807  ********************************************************************************/
2808 
2809 /********************************************************************************
2810  * Accept an open operation on the control device.
2811  */
2812 static int
2813 mly_user_open(struct dev_open_args *ap)
2814 {
2815     cdev_t dev = ap->a_head.a_dev;
2816     int			unit = minor(dev);
2817     struct mly_softc	*sc = devclass_get_softc(devclass_find("mly"), unit);
2818 
2819     sc->mly_state |= MLY_STATE_OPEN;
2820     return(0);
2821 }
2822 
2823 /********************************************************************************
2824  * Accept the last close on the control device.
2825  */
2826 static int
2827 mly_user_close(struct dev_close_args *ap)
2828 {
2829     cdev_t dev = ap->a_head.a_dev;
2830     int			unit = minor(dev);
2831     struct mly_softc	*sc = devclass_get_softc(devclass_find("mly"), unit);
2832 
2833     sc->mly_state &= ~MLY_STATE_OPEN;
2834     return (0);
2835 }
2836 
2837 /********************************************************************************
2838  * Handle controller-specific control operations.
2839  */
2840 static int
2841 mly_user_ioctl(struct dev_ioctl_args *ap)
2842 {
2843     cdev_t dev = ap->a_head.a_dev;
2844     struct mly_softc		*sc = (struct mly_softc *)dev->si_drv1;
2845     struct mly_user_command	*uc = (struct mly_user_command *)ap->a_data;
2846     struct mly_user_health	*uh = (struct mly_user_health *)ap->a_data;
2847 
2848     switch(ap->a_cmd) {
2849     case MLYIO_COMMAND:
2850 	return(mly_user_command(sc, uc));
2851     case MLYIO_HEALTH:
2852 	return(mly_user_health(sc, uh));
2853     default:
2854 	return(ENOIOCTL);
2855     }
2856 }
2857 
2858 /********************************************************************************
2859  * Execute a command passed in from userspace.
2860  *
2861  * The control structure contains the actual command for the controller, as well
2862  * as the user-space data pointer and data size, and an optional sense buffer
2863  * size/pointer.  On completion, the data size is adjusted to the command
2864  * residual, and the sense buffer size to the size of the returned sense data.
2865  *
2866  */
2867 static int
2868 mly_user_command(struct mly_softc *sc, struct mly_user_command *uc)
2869 {
2870     struct mly_command	*mc;
2871     int			error;
2872 
2873     /* allocate a command */
2874     if (mly_alloc_command(sc, &mc)) {
2875 	error = ENOMEM;
2876 	goto out;		/* XXX Linux version will wait for a command */
2877     }
2878 
2879     /* handle data size/direction */
2880     mc->mc_length = (uc->DataTransferLength >= 0) ? uc->DataTransferLength : -uc->DataTransferLength;
2881     if (mc->mc_length > 0)
2882 	mc->mc_data = kmalloc(mc->mc_length, M_DEVBUF, M_INTWAIT);
2883     if (uc->DataTransferLength > 0) {
2884 	mc->mc_flags |= MLY_CMD_DATAIN;
2885 	bzero(mc->mc_data, mc->mc_length);
2886     }
2887     if (uc->DataTransferLength < 0) {
2888 	mc->mc_flags |= MLY_CMD_DATAOUT;
2889 	if ((error = copyin(uc->DataTransferBuffer, mc->mc_data, mc->mc_length)) != 0)
2890 	    goto out;
2891     }
2892 
2893     /* copy the controller command */
2894     bcopy(&uc->CommandMailbox, mc->mc_packet, sizeof(uc->CommandMailbox));
2895 
2896     /* clear command completion handler so that we get woken up */
2897     mc->mc_complete = NULL;
2898 
2899     /* execute the command */
2900     if ((error = mly_start(mc)) != 0)
2901 	goto out;
2902     crit_enter();
2903     while (!(mc->mc_flags & MLY_CMD_COMPLETE))
2904 	tsleep(mc, 0, "mlyioctl", 0);
2905     crit_exit();
2906 
2907     /* return the data to userspace */
2908     if (uc->DataTransferLength > 0)
2909 	if ((error = copyout(mc->mc_data, uc->DataTransferBuffer, mc->mc_length)) != 0)
2910 	    goto out;
2911 
2912     /* return the sense buffer to userspace */
2913     if ((uc->RequestSenseLength > 0) && (mc->mc_sense > 0)) {
2914 	if ((error = copyout(mc->mc_packet, uc->RequestSenseBuffer,
2915 			     min(uc->RequestSenseLength, mc->mc_sense))) != 0)
2916 	    goto out;
2917     }
2918 
2919     /* return command results to userspace (caller will copy out) */
2920     uc->DataTransferLength = mc->mc_resid;
2921     uc->RequestSenseLength = min(uc->RequestSenseLength, mc->mc_sense);
2922     uc->CommandStatus = mc->mc_status;
2923     error = 0;
2924 
2925  out:
2926     if (mc->mc_data != NULL)
2927 	kfree(mc->mc_data, M_DEVBUF);
2928     if (mc != NULL)
2929 	mly_release_command(mc);
2930     return(error);
2931 }
2932 
2933 /********************************************************************************
2934  * Return health status to userspace.  If the health change index in the user
2935  * structure does not match that currently exported by the controller, we
2936  * return the current status immediately.  Otherwise, we block until either
2937  * interrupted or new status is delivered.
2938  */
2939 static int
2940 mly_user_health(struct mly_softc *sc, struct mly_user_health *uh)
2941 {
2942     struct mly_health_status		mh;
2943     int					error;
2944 
2945     /* fetch the current health status from userspace */
2946     if ((error = copyin(uh->HealthStatusBuffer, &mh, sizeof(mh))) != 0)
2947 	return(error);
2948 
2949     /* spin waiting for a status update */
2950     crit_enter();
2951     error = EWOULDBLOCK;
2952     while ((error != 0) && (sc->mly_event_change == mh.change_counter))
2953 	error = tsleep(&sc->mly_event_change, PCATCH, "mlyhealth", 0);
2954     crit_exit();
2955 
2956     /* copy the controller's health status buffer out (there is a race here if it changes again) */
2957     error = copyout(&sc->mly_mmbox->mmm_health.status, uh->HealthStatusBuffer,
2958 		    sizeof(uh->HealthStatusBuffer));
2959     return(error);
2960 }
2961 
2962 #ifdef MLY_DEBUG
2963 static int
2964 mly_timeout(struct mly_softc *sc)
2965 {
2966 	struct mly_command *mc;
2967 	int deadline;
2968 
2969 	deadline = time_second - MLY_CMD_TIMEOUT;
2970 	TAILQ_FOREACH(mc, &sc->mly_busy, mc_link) {
2971 		if ((mc->mc_timestamp < deadline)) {
2972 			device_printf(sc->mly_dev,
2973 			    "COMMAND %p TIMEOUT AFTER %d SECONDS\n", mc,
2974 			    (int)(time_second - mc->mc_timestamp));
2975 		}
2976 	}
2977 
2978 	callout_reset(&sc->mly_timeout, MLY_CMD_TIMEOUT * hz,
2979 		      (timeout_t *)mly_timeout, sc);
2980 
2981 	return (0);
2982 }
2983 #endif
2984