1 /*- 2 * Copyright (c) 2008 Yahoo!, Inc. 3 * All rights reserved. 4 * Written by: John Baldwin <jhb@FreeBSD.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Neither the name of the author nor the names of any co-contributors 15 * may be used to endorse or promote products derived from this software 16 * without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD userland interface 31 */ 32 /*- 33 * Copyright (c) 2011-2015 LSI Corp. 34 * Copyright (c) 2013-2016 Avago Technologies 35 * All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 56 * SUCH DAMAGE. 57 * 58 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD 59 * 60 * $FreeBSD: head/sys/dev/mpr/mpr_user.c 332122 2018-04-06 17:35:35Z brooks $ 61 */ 62 63 /* TODO Move headers to mprvar */ 64 #include <sys/types.h> 65 #include <sys/param.h> 66 #include <sys/systm.h> 67 #include <sys/kernel.h> 68 #include <sys/module.h> 69 #include <sys/bus.h> 70 #include <sys/conf.h> 71 #include <sys/bio.h> 72 #include <sys/malloc.h> 73 #include <sys/uio.h> 74 #include <sys/sysctl.h> 75 #include <sys/ioccom.h> 76 #include <sys/endian.h> 77 #include <sys/queue.h> 78 #include <sys/kthread.h> 79 #include <sys/taskqueue.h> 80 #include <sys/proc.h> 81 #include <sys/sysent.h> 82 #include <sys/device.h> 83 #include <sys/eventhandler.h> 84 85 #include <sys/rman.h> 86 87 #include <bus/cam/cam.h> 88 #include <bus/cam/cam_ccb.h> 89 90 #include <dev/raid/mpr/mpi/mpi2_type.h> 91 #include <dev/raid/mpr/mpi/mpi2.h> 92 #include <dev/raid/mpr/mpi/mpi2_ioc.h> 93 #include <dev/raid/mpr/mpi/mpi2_cnfg.h> 94 #include <dev/raid/mpr/mpi/mpi2_init.h> 95 #include <dev/raid/mpr/mpi/mpi2_tool.h> 96 #include <dev/raid/mpr/mpi/mpi2_pci.h> 97 #include <dev/raid/mpr/mpr_ioctl.h> 98 #include <dev/raid/mpr/mprvar.h> 99 #include <dev/raid/mpr/mpr_table.h> 100 #include <dev/raid/mpr/mpr_sas.h> 101 #include <bus/pci/pcivar.h> 102 #include <bus/pci/pcireg.h> 103 104 static d_open_t mpr_open; 105 static d_close_t mpr_close; 106 static d_ioctl_t mpr_ioctl_devsw; 107 108 static struct dev_ops mpr_ops = { 109 { "mpr", 0, D_MPSAFE }, 110 .d_open = mpr_open, 111 .d_close = mpr_close, 112 .d_ioctl = mpr_ioctl_devsw, 113 }; 114 115 typedef int (mpr_user_f)(struct mpr_command *, struct mpr_usr_command *); 116 static mpr_user_f mpi_pre_ioc_facts; 117 static mpr_user_f mpi_pre_port_facts; 118 static mpr_user_f mpi_pre_fw_download; 119 static mpr_user_f mpi_pre_fw_upload; 120 static mpr_user_f mpi_pre_sata_passthrough; 121 static mpr_user_f mpi_pre_smp_passthrough; 122 static mpr_user_f mpi_pre_config; 123 static mpr_user_f mpi_pre_sas_io_unit_control; 124 125 static int mpr_user_read_cfg_header(struct mpr_softc *, 126 struct mpr_cfg_page_req *); 127 static int mpr_user_read_cfg_page(struct mpr_softc *, 128 struct mpr_cfg_page_req *, void *); 129 static int mpr_user_read_extcfg_header(struct mpr_softc *, 130 struct mpr_ext_cfg_page_req *); 131 static int mpr_user_read_extcfg_page(struct mpr_softc *, 132 struct mpr_ext_cfg_page_req *, void *); 133 static int mpr_user_write_cfg_page(struct mpr_softc *, 134 struct mpr_cfg_page_req *, void *); 135 static int mpr_user_setup_request(struct mpr_command *, 136 struct mpr_usr_command *); 137 static int mpr_user_command(struct mpr_softc *, struct mpr_usr_command *); 138 139 static int mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data); 140 static void mpr_user_get_adapter_data(struct mpr_softc *sc, 141 mpr_adapter_data_t *data); 142 static void mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data); 143 static uint8_t mpr_get_fw_diag_buffer_number(struct mpr_softc *sc, 144 uint32_t unique_id); 145 static int mpr_post_fw_diag_buffer(struct mpr_softc *sc, 146 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code); 147 static int mpr_release_fw_diag_buffer(struct mpr_softc *sc, 148 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 149 uint32_t diag_type); 150 static int mpr_diag_register(struct mpr_softc *sc, 151 mpr_fw_diag_register_t *diag_register, uint32_t *return_code); 152 static int mpr_diag_unregister(struct mpr_softc *sc, 153 mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code); 154 static int mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query, 155 uint32_t *return_code); 156 static int mpr_diag_read_buffer(struct mpr_softc *sc, 157 mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 158 uint32_t *return_code); 159 static int mpr_diag_release(struct mpr_softc *sc, 160 mpr_fw_diag_release_t *diag_release, uint32_t *return_code); 161 static int mpr_do_diag_action(struct mpr_softc *sc, uint32_t action, 162 uint8_t *diag_action, uint32_t length, uint32_t *return_code); 163 static int mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data); 164 static void mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data); 165 static void mpr_user_event_enable(struct mpr_softc *sc, 166 mpr_event_enable_t *data); 167 static int mpr_user_event_report(struct mpr_softc *sc, 168 mpr_event_report_t *data); 169 static int mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data); 170 static int mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data); 171 172 static MALLOC_DEFINE(M_MPRUSER, "mpr_user", "Buffers for mpr(4) ioctls"); 173 174 /* Macros from compat/freebsd32/freebsd32.h */ 175 #define PTRIN(v) (void *)(uintptr_t)(v) 176 #define PTROUT(v) (uint32_t)(uintptr_t)(v) 177 178 #define CP(src,dst,fld) do { (dst).fld = (src).fld; } while (0) 179 #define PTRIN_CP(src,dst,fld) \ 180 do { (dst).fld = PTRIN((src).fld); } while (0) 181 #define PTROUT_CP(src,dst,fld) \ 182 do { (dst).fld = PTROUT((src).fld); } while (0) 183 184 /* 185 * MPI functions that support IEEE SGLs for SAS3. 186 */ 187 static uint8_t ieee_sgl_func_list[] = { 188 MPI2_FUNCTION_SCSI_IO_REQUEST, 189 MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH, 190 MPI2_FUNCTION_SMP_PASSTHROUGH, 191 MPI2_FUNCTION_SATA_PASSTHROUGH, 192 MPI2_FUNCTION_FW_UPLOAD, 193 MPI2_FUNCTION_FW_DOWNLOAD, 194 MPI2_FUNCTION_TARGET_ASSIST, 195 MPI2_FUNCTION_TARGET_STATUS_SEND, 196 MPI2_FUNCTION_TOOLBOX 197 }; 198 199 int 200 mpr_attach_user(struct mpr_softc *sc) 201 { 202 int unit; 203 204 unit = device_get_unit(sc->mpr_dev); 205 sc->mpr_cdev = make_dev(&mpr_ops, unit, UID_ROOT, GID_OPERATOR, 0640, 206 "mpr%d", unit); 207 208 if (sc->mpr_cdev == NULL) 209 return (ENOMEM); 210 211 sc->mpr_cdev->si_drv1 = sc; 212 return (0); 213 } 214 215 void 216 mpr_detach_user(struct mpr_softc *sc) 217 { 218 219 /* XXX: do a purge of pending requests? */ 220 if (sc->mpr_cdev != NULL) 221 destroy_dev(sc->mpr_cdev); 222 } 223 224 static int 225 mpr_open(struct dev_open_args *ap) 226 { 227 228 return (0); 229 } 230 231 static int 232 mpr_close(struct dev_close_args *ap) 233 { 234 235 return (0); 236 } 237 238 static int 239 mpr_user_read_cfg_header(struct mpr_softc *sc, 240 struct mpr_cfg_page_req *page_req) 241 { 242 MPI2_CONFIG_PAGE_HEADER *hdr; 243 struct mpr_config_params params; 244 int error; 245 246 hdr = ¶ms.hdr.Struct; 247 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 248 params.page_address = le32toh(page_req->page_address); 249 hdr->PageVersion = 0; 250 hdr->PageLength = 0; 251 hdr->PageNumber = page_req->header.PageNumber; 252 hdr->PageType = page_req->header.PageType; 253 params.buffer = NULL; 254 params.length = 0; 255 params.callback = NULL; 256 257 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 258 /* 259 * Leave the request. Without resetting the chip, it's 260 * still owned by it and we'll just get into trouble 261 * freeing it now. Mark it as abandoned so that if it 262 * shows up later it can be freed. 263 */ 264 mpr_printf(sc, "read_cfg_header timed out\n"); 265 return (ETIMEDOUT); 266 } 267 268 page_req->ioc_status = htole16(params.status); 269 if ((page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 270 MPI2_IOCSTATUS_SUCCESS) { 271 bcopy(hdr, &page_req->header, sizeof(page_req->header)); 272 } 273 274 return (0); 275 } 276 277 static int 278 mpr_user_read_cfg_page(struct mpr_softc *sc, struct mpr_cfg_page_req *page_req, 279 void *buf) 280 { 281 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 282 struct mpr_config_params params; 283 int error; 284 285 reqhdr = buf; 286 hdr = ¶ms.hdr.Struct; 287 hdr->PageVersion = reqhdr->PageVersion; 288 hdr->PageLength = reqhdr->PageLength; 289 hdr->PageNumber = reqhdr->PageNumber; 290 hdr->PageType = reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK; 291 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 292 params.page_address = le32toh(page_req->page_address); 293 params.buffer = buf; 294 params.length = le32toh(page_req->len); 295 params.callback = NULL; 296 297 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 298 mpr_printf(sc, "mpr_user_read_cfg_page timed out\n"); 299 return (ETIMEDOUT); 300 } 301 302 page_req->ioc_status = htole16(params.status); 303 return (0); 304 } 305 306 static int 307 mpr_user_read_extcfg_header(struct mpr_softc *sc, 308 struct mpr_ext_cfg_page_req *ext_page_req) 309 { 310 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr; 311 struct mpr_config_params params; 312 int error; 313 314 hdr = ¶ms.hdr.Ext; 315 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER; 316 hdr->PageVersion = ext_page_req->header.PageVersion; 317 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 318 hdr->ExtPageLength = 0; 319 hdr->PageNumber = ext_page_req->header.PageNumber; 320 hdr->ExtPageType = ext_page_req->header.ExtPageType; 321 params.page_address = le32toh(ext_page_req->page_address); 322 params.buffer = NULL; 323 params.length = 0; 324 params.callback = NULL; 325 326 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 327 /* 328 * Leave the request. Without resetting the chip, it's 329 * still owned by it and we'll just get into trouble 330 * freeing it now. Mark it as abandoned so that if it 331 * shows up later it can be freed. 332 */ 333 mpr_printf(sc, "mpr_user_read_extcfg_header timed out\n"); 334 return (ETIMEDOUT); 335 } 336 337 ext_page_req->ioc_status = htole16(params.status); 338 if ((ext_page_req->ioc_status & MPI2_IOCSTATUS_MASK) == 339 MPI2_IOCSTATUS_SUCCESS) { 340 ext_page_req->header.PageVersion = hdr->PageVersion; 341 ext_page_req->header.PageNumber = hdr->PageNumber; 342 ext_page_req->header.PageType = hdr->PageType; 343 ext_page_req->header.ExtPageLength = hdr->ExtPageLength; 344 ext_page_req->header.ExtPageType = hdr->ExtPageType; 345 } 346 347 return (0); 348 } 349 350 static int 351 mpr_user_read_extcfg_page(struct mpr_softc *sc, 352 struct mpr_ext_cfg_page_req *ext_page_req, void *buf) 353 { 354 MPI2_CONFIG_EXTENDED_PAGE_HEADER *reqhdr, *hdr; 355 struct mpr_config_params params; 356 int error; 357 358 reqhdr = buf; 359 hdr = ¶ms.hdr.Ext; 360 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT; 361 params.page_address = le32toh(ext_page_req->page_address); 362 hdr->PageVersion = reqhdr->PageVersion; 363 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; 364 hdr->PageNumber = reqhdr->PageNumber; 365 hdr->ExtPageType = reqhdr->ExtPageType; 366 hdr->ExtPageLength = reqhdr->ExtPageLength; 367 params.buffer = buf; 368 params.length = le32toh(ext_page_req->len); 369 params.callback = NULL; 370 371 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) { 372 mpr_printf(sc, "mpr_user_read_extcfg_page timed out\n"); 373 return (ETIMEDOUT); 374 } 375 376 ext_page_req->ioc_status = htole16(params.status); 377 return (0); 378 } 379 380 static int 381 mpr_user_write_cfg_page(struct mpr_softc *sc, 382 struct mpr_cfg_page_req *page_req, void *buf) 383 { 384 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr; 385 struct mpr_config_params params; 386 u_int hdr_attr; 387 int error; 388 389 reqhdr = buf; 390 hdr = ¶ms.hdr.Struct; 391 hdr_attr = reqhdr->PageType & MPI2_CONFIG_PAGEATTR_MASK; 392 if (hdr_attr != MPI2_CONFIG_PAGEATTR_CHANGEABLE && 393 hdr_attr != MPI2_CONFIG_PAGEATTR_PERSISTENT) { 394 mpr_printf(sc, "page type 0x%x not changeable\n", 395 reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK); 396 return (EINVAL); 397 } 398 399 /* 400 * There isn't any point in restoring stripped out attributes 401 * if you then mask them going down to issue the request. 402 */ 403 404 hdr->PageVersion = reqhdr->PageVersion; 405 hdr->PageLength = reqhdr->PageLength; 406 hdr->PageNumber = reqhdr->PageNumber; 407 hdr->PageType = reqhdr->PageType; 408 params.action = MPI2_CONFIG_ACTION_PAGE_WRITE_CURRENT; 409 params.page_address = le32toh(page_req->page_address); 410 params.buffer = buf; 411 params.length = le32toh(page_req->len); 412 params.callback = NULL; 413 414 if ((error = mpr_write_config_page(sc, ¶ms)) != 0) { 415 mpr_printf(sc, "mpr_write_cfg_page timed out\n"); 416 return (ETIMEDOUT); 417 } 418 419 page_req->ioc_status = htole16(params.status); 420 return (0); 421 } 422 423 void 424 mpr_init_sge(struct mpr_command *cm, void *req, void *sge) 425 { 426 int off, space; 427 428 space = (int)cm->cm_sc->reqframesz; 429 off = (uintptr_t)sge - (uintptr_t)req; 430 431 KASSERT(off < space, ("bad pointers %p %p, off %d, space %d", 432 req, sge, off, space)); 433 434 cm->cm_sge = sge; 435 cm->cm_sglsize = space - off; 436 } 437 438 /* 439 * Prepare the mpr_command for an IOC_FACTS request. 440 */ 441 static int 442 mpi_pre_ioc_facts(struct mpr_command *cm, struct mpr_usr_command *cmd) 443 { 444 MPI2_IOC_FACTS_REQUEST *req = (void *)cm->cm_req; 445 MPI2_IOC_FACTS_REPLY *rpl; 446 447 if (cmd->req_len != sizeof *req) 448 return (EINVAL); 449 if (cmd->rpl_len != sizeof *rpl) 450 return (EINVAL); 451 452 cm->cm_sge = NULL; 453 cm->cm_sglsize = 0; 454 return (0); 455 } 456 457 /* 458 * Prepare the mpr_command for a PORT_FACTS request. 459 */ 460 static int 461 mpi_pre_port_facts(struct mpr_command *cm, struct mpr_usr_command *cmd) 462 { 463 MPI2_PORT_FACTS_REQUEST *req = (void *)cm->cm_req; 464 MPI2_PORT_FACTS_REPLY *rpl; 465 466 if (cmd->req_len != sizeof *req) 467 return (EINVAL); 468 if (cmd->rpl_len != sizeof *rpl) 469 return (EINVAL); 470 471 cm->cm_sge = NULL; 472 cm->cm_sglsize = 0; 473 return (0); 474 } 475 476 /* 477 * Prepare the mpr_command for a FW_DOWNLOAD request. 478 */ 479 static int 480 mpi_pre_fw_download(struct mpr_command *cm, struct mpr_usr_command *cmd) 481 { 482 MPI25_FW_DOWNLOAD_REQUEST *req = (void *)cm->cm_req; 483 MPI2_FW_DOWNLOAD_REPLY *rpl; 484 int error; 485 486 if (cmd->req_len != sizeof *req) 487 return (EINVAL); 488 if (cmd->rpl_len != sizeof *rpl) 489 return (EINVAL); 490 491 if (cmd->len == 0) 492 return (EINVAL); 493 494 error = copyin(cmd->buf, cm->cm_data, cmd->len); 495 if (error != 0) 496 return (error); 497 498 mpr_init_sge(cm, req, &req->SGL); 499 500 /* 501 * For now, the F/W image must be provided in a single request. 502 */ 503 if ((req->MsgFlags & MPI2_FW_DOWNLOAD_MSGFLGS_LAST_SEGMENT) == 0) 504 return (EINVAL); 505 if (req->TotalImageSize != cmd->len) 506 return (EINVAL); 507 508 req->ImageOffset = 0; 509 req->ImageSize = cmd->len; 510 511 cm->cm_flags |= MPR_CM_FLAGS_DATAOUT; 512 513 return (mpr_push_ieee_sge(cm, &req->SGL, 0)); 514 } 515 516 /* 517 * Prepare the mpr_command for a FW_UPLOAD request. 518 */ 519 static int 520 mpi_pre_fw_upload(struct mpr_command *cm, struct mpr_usr_command *cmd) 521 { 522 MPI25_FW_UPLOAD_REQUEST *req = (void *)cm->cm_req; 523 MPI2_FW_UPLOAD_REPLY *rpl; 524 525 if (cmd->req_len != sizeof *req) 526 return (EINVAL); 527 if (cmd->rpl_len != sizeof *rpl) 528 return (EINVAL); 529 530 mpr_init_sge(cm, req, &req->SGL); 531 if (cmd->len == 0) { 532 /* Perhaps just asking what the size of the fw is? */ 533 return (0); 534 } 535 536 req->ImageOffset = 0; 537 req->ImageSize = cmd->len; 538 539 cm->cm_flags |= MPR_CM_FLAGS_DATAIN; 540 541 return (mpr_push_ieee_sge(cm, &req->SGL, 0)); 542 } 543 544 /* 545 * Prepare the mpr_command for a SATA_PASSTHROUGH request. 546 */ 547 static int 548 mpi_pre_sata_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd) 549 { 550 MPI2_SATA_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 551 MPI2_SATA_PASSTHROUGH_REPLY *rpl; 552 553 if (cmd->req_len != sizeof *req) 554 return (EINVAL); 555 if (cmd->rpl_len != sizeof *rpl) 556 return (EINVAL); 557 558 mpr_init_sge(cm, req, &req->SGL); 559 return (0); 560 } 561 562 /* 563 * Prepare the mpr_command for a SMP_PASSTHROUGH request. 564 */ 565 static int 566 mpi_pre_smp_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd) 567 { 568 MPI2_SMP_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req; 569 MPI2_SMP_PASSTHROUGH_REPLY *rpl; 570 571 if (cmd->req_len != sizeof *req) 572 return (EINVAL); 573 if (cmd->rpl_len != sizeof *rpl) 574 return (EINVAL); 575 576 mpr_init_sge(cm, req, &req->SGL); 577 return (0); 578 } 579 580 /* 581 * Prepare the mpr_command for a CONFIG request. 582 */ 583 static int 584 mpi_pre_config(struct mpr_command *cm, struct mpr_usr_command *cmd) 585 { 586 MPI2_CONFIG_REQUEST *req = (void *)cm->cm_req; 587 MPI2_CONFIG_REPLY *rpl; 588 589 if (cmd->req_len != sizeof *req) 590 return (EINVAL); 591 if (cmd->rpl_len != sizeof *rpl) 592 return (EINVAL); 593 594 mpr_init_sge(cm, req, &req->PageBufferSGE); 595 return (0); 596 } 597 598 /* 599 * Prepare the mpr_command for a SAS_IO_UNIT_CONTROL request. 600 */ 601 static int 602 mpi_pre_sas_io_unit_control(struct mpr_command *cm, 603 struct mpr_usr_command *cmd) 604 { 605 606 cm->cm_sge = NULL; 607 cm->cm_sglsize = 0; 608 return (0); 609 } 610 611 /* 612 * A set of functions to prepare an mpr_command for the various 613 * supported requests. 614 */ 615 struct mpr_user_func { 616 U8 Function; 617 mpr_user_f *f_pre; 618 } mpr_user_func_list[] = { 619 { MPI2_FUNCTION_IOC_FACTS, mpi_pre_ioc_facts }, 620 { MPI2_FUNCTION_PORT_FACTS, mpi_pre_port_facts }, 621 { MPI2_FUNCTION_FW_DOWNLOAD, mpi_pre_fw_download }, 622 { MPI2_FUNCTION_FW_UPLOAD, mpi_pre_fw_upload }, 623 { MPI2_FUNCTION_SATA_PASSTHROUGH, mpi_pre_sata_passthrough }, 624 { MPI2_FUNCTION_SMP_PASSTHROUGH, mpi_pre_smp_passthrough}, 625 { MPI2_FUNCTION_CONFIG, mpi_pre_config}, 626 { MPI2_FUNCTION_SAS_IO_UNIT_CONTROL, mpi_pre_sas_io_unit_control }, 627 { 0xFF, NULL } /* list end */ 628 }; 629 630 static int 631 mpr_user_setup_request(struct mpr_command *cm, struct mpr_usr_command *cmd) 632 { 633 MPI2_REQUEST_HEADER *hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 634 struct mpr_user_func *f; 635 636 for (f = mpr_user_func_list; f->f_pre != NULL; f++) { 637 if (hdr->Function == f->Function) 638 return (f->f_pre(cm, cmd)); 639 } 640 return (EINVAL); 641 } 642 643 static int 644 mpr_user_command(struct mpr_softc *sc, struct mpr_usr_command *cmd) 645 { 646 MPI2_REQUEST_HEADER *hdr; 647 MPI2_DEFAULT_REPLY *rpl = NULL; 648 void *buf = NULL; 649 struct mpr_command *cm = NULL; 650 int err = 0; 651 int sz; 652 653 mpr_lock(sc); 654 cm = mpr_alloc_command(sc); 655 656 if (cm == NULL) { 657 mpr_printf(sc, "%s: no mpr requests\n", __func__); 658 err = ENOMEM; 659 goto RetFree; 660 } 661 mpr_unlock(sc); 662 663 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 664 665 mpr_dprint(sc, MPR_USER, "%s: req %p %d rpl %p %d\n", __func__, 666 cmd->req, cmd->req_len, cmd->rpl, cmd->rpl_len); 667 668 if (cmd->req_len > (int)sc->reqframesz) { 669 err = EINVAL; 670 goto RetFreeUnlocked; 671 } 672 err = copyin(cmd->req, hdr, cmd->req_len); 673 if (err != 0) 674 goto RetFreeUnlocked; 675 676 mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 677 hdr->Function, hdr->MsgFlags); 678 679 if (cmd->len > 0) { 680 buf = kmalloc(cmd->len, M_MPRUSER, M_WAITOK|M_ZERO); 681 cm->cm_data = buf; 682 cm->cm_length = cmd->len; 683 } else { 684 cm->cm_data = NULL; 685 cm->cm_length = 0; 686 } 687 688 cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE; 689 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 690 691 err = mpr_user_setup_request(cm, cmd); 692 if (err == EINVAL) { 693 mpr_printf(sc, "%s: unsupported parameter or unsupported " 694 "function in request (function = 0x%X)\n", __func__, 695 hdr->Function); 696 } 697 if (err != 0) 698 goto RetFreeUnlocked; 699 700 mpr_lock(sc); 701 err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 702 703 if (err || (cm == NULL)) { 704 mpr_printf(sc, "%s: invalid request: error %d\n", 705 __func__, err); 706 goto RetFree; 707 } 708 709 if (cm != NULL) 710 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 711 if (rpl != NULL) 712 sz = rpl->MsgLength * 4; 713 else 714 sz = 0; 715 716 if (sz > cmd->rpl_len) { 717 mpr_printf(sc, "%s: user reply buffer (%d) smaller than " 718 "returned buffer (%d)\n", __func__, cmd->rpl_len, sz); 719 sz = cmd->rpl_len; 720 } 721 722 mpr_unlock(sc); 723 copyout(rpl, cmd->rpl, sz); 724 if (buf != NULL) 725 copyout(buf, cmd->buf, cmd->len); 726 mpr_dprint(sc, MPR_USER, "%s: reply size %d\n", __func__, sz); 727 728 RetFreeUnlocked: 729 mpr_lock(sc); 730 RetFree: 731 if (cm != NULL) 732 mpr_free_command(sc, cm); 733 mpr_unlock(sc); 734 if (buf != NULL) 735 kfree(buf, M_MPRUSER); 736 return (err); 737 } 738 739 static int 740 mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data) 741 { 742 MPI2_REQUEST_HEADER *hdr, tmphdr; 743 MPI2_DEFAULT_REPLY *rpl; 744 Mpi26NVMeEncapsulatedErrorReply_t *nvme_error_reply = NULL; 745 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request = NULL; 746 struct mpr_command *cm = NULL; 747 int i, err = 0, dir = 0, sz; 748 uint8_t tool, function = 0; 749 u_int sense_len; 750 struct mprsas_target *targ = NULL; 751 752 /* 753 * Only allow one passthru command at a time. Use the MPR_FLAGS_BUSY 754 * bit to denote that a passthru is being processed. 755 */ 756 mpr_lock(sc); 757 if (sc->mpr_flags & MPR_FLAGS_BUSY) { 758 mpr_dprint(sc, MPR_USER, "%s: Only one passthru command " 759 "allowed at a single time.", __func__); 760 mpr_unlock(sc); 761 return (EBUSY); 762 } 763 sc->mpr_flags |= MPR_FLAGS_BUSY; 764 mpr_unlock(sc); 765 766 /* 767 * Do some validation on data direction. Valid cases are: 768 * 1) DataSize is 0 and direction is NONE 769 * 2) DataSize is non-zero and one of: 770 * a) direction is READ or 771 * b) direction is WRITE or 772 * c) direction is BOTH and DataOutSize is non-zero 773 * If valid and the direction is BOTH, change the direction to READ. 774 * if valid and the direction is not BOTH, make sure DataOutSize is 0. 775 */ 776 if (((data->DataSize == 0) && 777 (data->DataDirection == MPR_PASS_THRU_DIRECTION_NONE)) || 778 ((data->DataSize != 0) && 779 ((data->DataDirection == MPR_PASS_THRU_DIRECTION_READ) || 780 (data->DataDirection == MPR_PASS_THRU_DIRECTION_WRITE) || 781 ((data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH) && 782 (data->DataOutSize != 0))))) { 783 if (data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH) 784 data->DataDirection = MPR_PASS_THRU_DIRECTION_READ; 785 else 786 data->DataOutSize = 0; 787 } else 788 return (EINVAL); 789 790 mpr_dprint(sc, MPR_USER, "%s: req 0x%jx %d rpl 0x%jx %d " 791 "data in 0x%jx %d data out 0x%jx %d data dir %d\n", __func__, 792 data->PtrRequest, data->RequestSize, data->PtrReply, 793 data->ReplySize, data->PtrData, data->DataSize, 794 data->PtrDataOut, data->DataOutSize, data->DataDirection); 795 796 /* 797 * copy in the header so we know what we're dealing with before we 798 * commit to allocating a command for it. 799 */ 800 err = copyin(PTRIN(data->PtrRequest), &tmphdr, data->RequestSize); 801 if (err != 0) 802 goto RetFreeUnlocked; 803 804 if (data->RequestSize > (int)sc->reqframesz) { 805 err = EINVAL; 806 goto RetFreeUnlocked; 807 } 808 809 function = tmphdr.Function; 810 mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__, 811 function, tmphdr.MsgFlags); 812 813 /* 814 * Handle a passthru TM request. 815 */ 816 if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) { 817 MPI2_SCSI_TASK_MANAGE_REQUEST *task; 818 819 mpr_lock(sc); 820 cm = mprsas_alloc_tm(sc); 821 if (cm == NULL) { 822 err = EINVAL; 823 goto Ret; 824 } 825 826 /* Copy the header in. Only a small fixup is needed. */ 827 task = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req; 828 bcopy(&tmphdr, task, data->RequestSize); 829 task->TaskMID = cm->cm_desc.Default.SMID; 830 831 cm->cm_data = NULL; 832 cm->cm_desc.HighPriority.RequestFlags = 833 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 834 cm->cm_complete = NULL; 835 cm->cm_complete_data = NULL; 836 837 targ = mprsas_find_target_by_handle(sc->sassc, 0, 838 task->DevHandle); 839 if (targ == NULL) { 840 mpr_dprint(sc, MPR_INFO, 841 "%s %d : invalid handle for requested TM 0x%x \n", 842 __func__, __LINE__, task->DevHandle); 843 err = 1; 844 } else { 845 mprsas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD); 846 err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 847 } 848 849 if (err != 0) { 850 err = EIO; 851 mpr_dprint(sc, MPR_FAULT, "%s: task management failed", 852 __func__); 853 } 854 /* 855 * Copy the reply data and sense data to user space. 856 */ 857 if ((cm != NULL) && (cm->cm_reply != NULL)) { 858 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 859 sz = rpl->MsgLength * 4; 860 861 if (sz > data->ReplySize) { 862 mpr_printf(sc, "%s: user reply buffer (%d) " 863 "smaller than returned buffer (%d)\n", 864 __func__, data->ReplySize, sz); 865 } 866 mpr_unlock(sc); 867 copyout(cm->cm_reply, PTRIN(data->PtrReply), 868 data->ReplySize); 869 mpr_lock(sc); 870 } 871 mprsas_free_tm(sc, cm); 872 goto Ret; 873 } 874 875 mpr_lock(sc); 876 cm = mpr_alloc_command(sc); 877 878 if (cm == NULL) { 879 mpr_printf(sc, "%s: no mpr requests\n", __func__); 880 err = ENOMEM; 881 goto Ret; 882 } 883 mpr_unlock(sc); 884 885 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req; 886 bcopy(&tmphdr, hdr, data->RequestSize); 887 888 /* 889 * Do some checking to make sure the IOCTL request contains a valid 890 * request. Then set the SGL info. 891 */ 892 mpr_init_sge(cm, hdr, (void *)((uint8_t *)hdr + data->RequestSize)); 893 894 /* 895 * Set up for read, write or both. From check above, DataOutSize will 896 * be 0 if direction is READ or WRITE, but it will have some non-zero 897 * value if the direction is BOTH. So, just use the biggest size to get 898 * the cm_data buffer size. If direction is BOTH, 2 SGLs need to be set 899 * up; the first is for the request and the second will contain the 900 * response data. cm_out_len needs to be set here and this will be used 901 * when the SGLs are set up. 902 */ 903 cm->cm_data = NULL; 904 cm->cm_length = MAX(data->DataSize, data->DataOutSize); 905 cm->cm_out_len = data->DataOutSize; 906 cm->cm_flags = 0; 907 if (cm->cm_length != 0) { 908 cm->cm_data = kmalloc(cm->cm_length, M_MPRUSER, M_WAITOK | 909 M_ZERO); 910 cm->cm_flags = MPR_CM_FLAGS_DATAIN; 911 if (data->DataOutSize) { 912 cm->cm_flags |= MPR_CM_FLAGS_DATAOUT; 913 err = copyin(PTRIN(data->PtrDataOut), 914 cm->cm_data, data->DataOutSize); 915 } else if (data->DataDirection == 916 MPR_PASS_THRU_DIRECTION_WRITE) { 917 cm->cm_flags = MPR_CM_FLAGS_DATAOUT; 918 err = copyin(PTRIN(data->PtrData), 919 cm->cm_data, data->DataSize); 920 } 921 if (err != 0) 922 mpr_dprint(sc, MPR_FAULT, "%s: failed to copy IOCTL " 923 "data from user space\n", __func__); 924 } 925 /* 926 * Set this flag only if processing a command that does not need an 927 * IEEE SGL. The CLI Tool within the Toolbox uses IEEE SGLs, so clear 928 * the flag only for that tool if processing a Toolbox function. 929 */ 930 cm->cm_flags |= MPR_CM_FLAGS_SGE_SIMPLE; 931 for (i = 0; i < sizeof (ieee_sgl_func_list); i++) { 932 if (function == ieee_sgl_func_list[i]) { 933 if (function == MPI2_FUNCTION_TOOLBOX) 934 { 935 tool = (uint8_t)hdr->FunctionDependent1; 936 if (tool != MPI2_TOOLBOX_DIAGNOSTIC_CLI_TOOL) 937 break; 938 } 939 cm->cm_flags &= ~MPR_CM_FLAGS_SGE_SIMPLE; 940 break; 941 } 942 } 943 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 944 945 if (function == MPI2_FUNCTION_NVME_ENCAPSULATED) { 946 nvme_encap_request = 947 (Mpi26NVMeEncapsulatedRequest_t *)cm->cm_req; 948 cm->cm_desc.Default.RequestFlags = 949 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED; 950 951 /* 952 * Get the Physical Address of the sense buffer. 953 * Save the user's Error Response buffer address and use that 954 * field to hold the sense buffer address. 955 * Clear the internal sense buffer, which will potentially hold 956 * the Completion Queue Entry on return, or 0 if no Entry. 957 * Build the PRPs and set direction bits. 958 * Send the request. 959 */ 960 cm->nvme_error_response = 961 (uint64_t *)(uintptr_t)(((uint64_t)nvme_encap_request-> 962 ErrorResponseBaseAddress.High << 32) | 963 (uint64_t)nvme_encap_request-> 964 ErrorResponseBaseAddress.Low); 965 nvme_encap_request->ErrorResponseBaseAddress.High = 966 htole32((uint32_t)((uint64_t)cm->cm_sense_busaddr >> 32)); 967 nvme_encap_request->ErrorResponseBaseAddress.Low = 968 htole32(cm->cm_sense_busaddr); 969 memset(cm->cm_sense, 0, NVME_ERROR_RESPONSE_SIZE); 970 mpr_build_nvme_prp(sc, cm, nvme_encap_request, cm->cm_data, 971 data->DataSize, data->DataOutSize); 972 } 973 974 /* 975 * Set up Sense buffer and SGL offset for IO passthru. SCSI IO request 976 * uses SCSI IO or Fast Path SCSI IO descriptor. 977 */ 978 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 979 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 980 MPI2_SCSI_IO_REQUEST *scsi_io_req; 981 982 scsi_io_req = (MPI2_SCSI_IO_REQUEST *)hdr; 983 /* 984 * Put SGE for data and data_out buffer at the end of 985 * scsi_io_request message header (64 bytes in total). 986 * Following above SGEs, the residual space will be used by 987 * sense data. 988 */ 989 scsi_io_req->SenseBufferLength = (uint8_t)(data->RequestSize - 990 64); 991 scsi_io_req->SenseBufferLowAddress = 992 htole32(cm->cm_sense_busaddr); 993 994 /* 995 * Set SGLOffset0 value. This is the number of dwords that SGL 996 * is offset from the beginning of MPI2_SCSI_IO_REQUEST struct. 997 */ 998 scsi_io_req->SGLOffset0 = 24; 999 1000 /* 1001 * Setup descriptor info. RAID passthrough must use the 1002 * default request descriptor which is already set, so if this 1003 * is a SCSI IO request, change the descriptor to SCSI IO or 1004 * Fast Path SCSI IO. Also, if this is a SCSI IO request, 1005 * handle the reply in the mprsas_scsio_complete function. 1006 */ 1007 if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 1008 targ = mprsas_find_target_by_handle(sc->sassc, 0, 1009 scsi_io_req->DevHandle); 1010 1011 if (!targ) { 1012 kprintf("No Target found for handle %d\n", 1013 scsi_io_req->DevHandle); 1014 err = EINVAL; 1015 goto RetFreeUnlocked; 1016 } 1017 1018 if (targ->scsi_req_desc_type == 1019 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO) { 1020 cm->cm_desc.FastPathSCSIIO.RequestFlags = 1021 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 1022 if (!sc->atomic_desc_capable) { 1023 cm->cm_desc.FastPathSCSIIO.DevHandle = 1024 scsi_io_req->DevHandle; 1025 } 1026 scsi_io_req->IoFlags |= 1027 MPI25_SCSIIO_IOFLAGS_FAST_PATH; 1028 } else { 1029 cm->cm_desc.SCSIIO.RequestFlags = 1030 MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 1031 if (!sc->atomic_desc_capable) { 1032 cm->cm_desc.SCSIIO.DevHandle = 1033 scsi_io_req->DevHandle; 1034 } 1035 } 1036 1037 /* 1038 * Make sure the DevHandle is not 0 because this is a 1039 * likely error. 1040 */ 1041 if (scsi_io_req->DevHandle == 0) { 1042 err = EINVAL; 1043 goto RetFreeUnlocked; 1044 } 1045 } 1046 } 1047 1048 mpr_lock(sc); 1049 1050 err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 1051 1052 if (err || (cm == NULL)) { 1053 mpr_printf(sc, "%s: invalid request: error %d\n", __func__, 1054 err); 1055 goto RetFree; 1056 } 1057 1058 /* 1059 * Sync the DMA data, if any. Then copy the data to user space. 1060 */ 1061 if (cm->cm_data != NULL) { 1062 if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) 1063 dir = BUS_DMASYNC_POSTREAD; 1064 else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT) 1065 dir = BUS_DMASYNC_POSTWRITE; 1066 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir); 1067 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); 1068 1069 if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) { 1070 mpr_unlock(sc); 1071 err = copyout(cm->cm_data, 1072 PTRIN(data->PtrData), data->DataSize); 1073 mpr_lock(sc); 1074 if (err != 0) 1075 mpr_dprint(sc, MPR_FAULT, "%s: failed to copy " 1076 "IOCTL data to user space\n", __func__); 1077 } 1078 } 1079 1080 /* 1081 * Copy the reply data and sense data to user space. 1082 */ 1083 if (cm->cm_reply != NULL) { 1084 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply; 1085 sz = rpl->MsgLength * 4; 1086 1087 if (sz > data->ReplySize) { 1088 mpr_printf(sc, "%s: user reply buffer (%d) smaller " 1089 "than returned buffer (%d)\n", __func__, 1090 data->ReplySize, sz); 1091 } 1092 mpr_unlock(sc); 1093 copyout(cm->cm_reply, PTRIN(data->PtrReply), data->ReplySize); 1094 mpr_lock(sc); 1095 1096 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 1097 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 1098 if (((MPI2_SCSI_IO_REPLY *)rpl)->SCSIState & 1099 MPI2_SCSI_STATE_AUTOSENSE_VALID) { 1100 sense_len = 1101 MIN((le32toh(((MPI2_SCSI_IO_REPLY *)rpl)-> 1102 SenseCount)), sizeof(struct 1103 scsi_sense_data)); 1104 mpr_unlock(sc); 1105 copyout(cm->cm_sense, cm->cm_req + 64, 1106 sense_len); 1107 mpr_lock(sc); 1108 } 1109 } 1110 1111 /* 1112 * Copy out the NVMe Error Reponse to user. The Error Response 1113 * buffer is given by the user, but a sense buffer is used to 1114 * get that data from the IOC. The user's 1115 * ErrorResponseBaseAddress is saved in the 1116 * 'nvme_error_response' field before the command because that 1117 * field is set to a sense buffer. When the command is 1118 * complete, the Error Response data from the IOC is copied to 1119 * that user address after it is checked for validity. 1120 * Also note that 'sense' buffers are not defined for 1121 * NVMe commands. Sense terminalogy is only used here so that 1122 * the same IOCTL structure and sense buffers can be used for 1123 * NVMe. 1124 */ 1125 if (function == MPI2_FUNCTION_NVME_ENCAPSULATED) { 1126 if (cm->nvme_error_response == NULL) { 1127 mpr_dprint(sc, MPR_INFO, "NVMe Error Response " 1128 "buffer is NULL. Response data will not be " 1129 "returned.\n"); 1130 mpr_unlock(sc); 1131 goto RetFreeUnlocked; 1132 } 1133 1134 nvme_error_reply = 1135 (Mpi26NVMeEncapsulatedErrorReply_t *)cm->cm_reply; 1136 sz = MIN(le32toh(nvme_error_reply->ErrorResponseCount), 1137 NVME_ERROR_RESPONSE_SIZE); 1138 mpr_unlock(sc); 1139 copyout(cm->cm_sense, cm->nvme_error_response, sz); 1140 mpr_lock(sc); 1141 } 1142 } 1143 mpr_unlock(sc); 1144 1145 RetFreeUnlocked: 1146 mpr_lock(sc); 1147 1148 RetFree: 1149 if (cm != NULL) { 1150 if (cm->cm_data) 1151 kfree(cm->cm_data, M_MPRUSER); 1152 mpr_free_command(sc, cm); 1153 } 1154 Ret: 1155 sc->mpr_flags &= ~MPR_FLAGS_BUSY; 1156 mpr_unlock(sc); 1157 1158 return (err); 1159 } 1160 1161 static void 1162 mpr_user_get_adapter_data(struct mpr_softc *sc, mpr_adapter_data_t *data) 1163 { 1164 Mpi2ConfigReply_t mpi_reply; 1165 Mpi2BiosPage3_t config_page; 1166 1167 /* 1168 * Use the PCI interface functions to get the Bus, Device, and Function 1169 * information. 1170 */ 1171 data->PciInformation.u.bits.BusNumber = pci_get_bus(sc->mpr_dev); 1172 data->PciInformation.u.bits.DeviceNumber = pci_get_slot(sc->mpr_dev); 1173 data->PciInformation.u.bits.FunctionNumber = 1174 pci_get_function(sc->mpr_dev); 1175 1176 /* 1177 * Get the FW version that should already be saved in IOC Facts. 1178 */ 1179 data->MpiFirmwareVersion = sc->facts->FWVersion.Word; 1180 1181 /* 1182 * General device info. 1183 */ 1184 if (sc->mpr_flags & MPR_FLAGS_GEN35_IOC) 1185 data->AdapterType = MPRIOCTL_ADAPTER_TYPE_SAS35; 1186 else 1187 data->AdapterType = MPRIOCTL_ADAPTER_TYPE_SAS3; 1188 data->PCIDeviceHwId = pci_get_device(sc->mpr_dev); 1189 data->PCIDeviceHwRev = pci_read_config(sc->mpr_dev, PCIR_REVID, 1); 1190 data->SubSystemId = pci_get_subdevice(sc->mpr_dev); 1191 data->SubsystemVendorId = pci_get_subvendor(sc->mpr_dev); 1192 1193 /* 1194 * Get the driver version. 1195 */ 1196 strcpy((char *)&data->DriverVersion[0], MPR_DRIVER_VERSION); 1197 1198 /* 1199 * Need to get BIOS Config Page 3 for the BIOS Version. 1200 */ 1201 data->BiosVersion = 0; 1202 mpr_lock(sc); 1203 if (mpr_config_get_bios_pg3(sc, &mpi_reply, &config_page)) 1204 kprintf("%s: Error while retrieving BIOS Version\n", __func__); 1205 else 1206 data->BiosVersion = config_page.BiosVersion; 1207 mpr_unlock(sc); 1208 } 1209 1210 static void 1211 mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data) 1212 { 1213 int i; 1214 1215 /* 1216 * Use the PCI interface functions to get the Bus, Device, and Function 1217 * information. 1218 */ 1219 data->BusNumber = pci_get_bus(sc->mpr_dev); 1220 data->DeviceNumber = pci_get_slot(sc->mpr_dev); 1221 data->FunctionNumber = pci_get_function(sc->mpr_dev); 1222 1223 /* 1224 * Now get the interrupt vector and the pci header. The vector can 1225 * only be 0 right now. The header is the first 256 bytes of config 1226 * space. 1227 */ 1228 data->InterruptVector = 0; 1229 for (i = 0; i < sizeof (data->PciHeader); i++) { 1230 data->PciHeader[i] = pci_read_config(sc->mpr_dev, i, 1); 1231 } 1232 } 1233 1234 static uint8_t 1235 mpr_get_fw_diag_buffer_number(struct mpr_softc *sc, uint32_t unique_id) 1236 { 1237 uint8_t index; 1238 1239 for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) { 1240 if (sc->fw_diag_buffer_list[index].unique_id == unique_id) { 1241 return (index); 1242 } 1243 } 1244 1245 return (MPR_FW_DIAGNOSTIC_UID_NOT_FOUND); 1246 } 1247 1248 static int 1249 mpr_post_fw_diag_buffer(struct mpr_softc *sc, 1250 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code) 1251 { 1252 MPI2_DIAG_BUFFER_POST_REQUEST *req; 1253 MPI2_DIAG_BUFFER_POST_REPLY *reply; 1254 struct mpr_command *cm = NULL; 1255 int i, status; 1256 1257 /* 1258 * If buffer is not enabled, just leave. 1259 */ 1260 *return_code = MPR_FW_DIAG_ERROR_POST_FAILED; 1261 if (!pBuffer->enabled) { 1262 return (MPR_DIAG_FAILURE); 1263 } 1264 1265 /* 1266 * Clear some flags initially. 1267 */ 1268 pBuffer->force_release = FALSE; 1269 pBuffer->valid_data = FALSE; 1270 pBuffer->owned_by_firmware = FALSE; 1271 1272 /* 1273 * Get a command. 1274 */ 1275 cm = mpr_alloc_command(sc); 1276 if (cm == NULL) { 1277 mpr_printf(sc, "%s: no mpr requests\n", __func__); 1278 return (MPR_DIAG_FAILURE); 1279 } 1280 1281 /* 1282 * Build the request for releasing the FW Diag Buffer and send it. 1283 */ 1284 req = (MPI2_DIAG_BUFFER_POST_REQUEST *)cm->cm_req; 1285 req->Function = MPI2_FUNCTION_DIAG_BUFFER_POST; 1286 req->BufferType = pBuffer->buffer_type; 1287 req->ExtendedType = pBuffer->extended_type; 1288 req->BufferLength = pBuffer->size; 1289 for (i = 0; i < (sizeof(req->ProductSpecific) / 4); i++) 1290 req->ProductSpecific[i] = pBuffer->product_specific[i]; 1291 mpr_from_u64(sc->fw_diag_busaddr, &req->BufferAddress); 1292 cm->cm_data = NULL; 1293 cm->cm_length = 0; 1294 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1295 cm->cm_complete_data = NULL; 1296 1297 /* 1298 * Send command synchronously. 1299 */ 1300 status = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 1301 if (status || (cm == NULL)) { 1302 mpr_printf(sc, "%s: invalid request: error %d\n", __func__, 1303 status); 1304 status = MPR_DIAG_FAILURE; 1305 goto done; 1306 } 1307 1308 /* 1309 * Process POST reply. 1310 */ 1311 reply = (MPI2_DIAG_BUFFER_POST_REPLY *)cm->cm_reply; 1312 if (reply == NULL) { 1313 mpr_printf(sc, "%s: reply is NULL, probably due to " 1314 "reinitialization", __func__); 1315 status = MPR_DIAG_FAILURE; 1316 goto done; 1317 } 1318 1319 if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1320 MPI2_IOCSTATUS_SUCCESS) { 1321 status = MPR_DIAG_FAILURE; 1322 mpr_dprint(sc, MPR_FAULT, "%s: post of FW Diag Buffer failed " 1323 "with IOCStatus = 0x%x, IOCLogInfo = 0x%x and " 1324 "TransferLength = 0x%x\n", __func__, 1325 le16toh(reply->IOCStatus), le32toh(reply->IOCLogInfo), 1326 le32toh(reply->TransferLength)); 1327 goto done; 1328 } 1329 1330 /* 1331 * Post was successful. 1332 */ 1333 pBuffer->valid_data = TRUE; 1334 pBuffer->owned_by_firmware = TRUE; 1335 *return_code = MPR_FW_DIAG_ERROR_SUCCESS; 1336 status = MPR_DIAG_SUCCESS; 1337 1338 done: 1339 if (cm != NULL) 1340 mpr_free_command(sc, cm); 1341 return (status); 1342 } 1343 1344 static int 1345 mpr_release_fw_diag_buffer(struct mpr_softc *sc, 1346 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 1347 uint32_t diag_type) 1348 { 1349 MPI2_DIAG_RELEASE_REQUEST *req; 1350 MPI2_DIAG_RELEASE_REPLY *reply; 1351 struct mpr_command *cm = NULL; 1352 int status; 1353 1354 /* 1355 * If buffer is not enabled, just leave. 1356 */ 1357 *return_code = MPR_FW_DIAG_ERROR_RELEASE_FAILED; 1358 if (!pBuffer->enabled) { 1359 mpr_dprint(sc, MPR_USER, "%s: This buffer type is not " 1360 "supported by the IOC", __func__); 1361 return (MPR_DIAG_FAILURE); 1362 } 1363 1364 /* 1365 * Clear some flags initially. 1366 */ 1367 pBuffer->force_release = FALSE; 1368 pBuffer->valid_data = FALSE; 1369 pBuffer->owned_by_firmware = FALSE; 1370 1371 /* 1372 * Get a command. 1373 */ 1374 cm = mpr_alloc_command(sc); 1375 if (cm == NULL) { 1376 mpr_printf(sc, "%s: no mpr requests\n", __func__); 1377 return (MPR_DIAG_FAILURE); 1378 } 1379 1380 /* 1381 * Build the request for releasing the FW Diag Buffer and send it. 1382 */ 1383 req = (MPI2_DIAG_RELEASE_REQUEST *)cm->cm_req; 1384 req->Function = MPI2_FUNCTION_DIAG_RELEASE; 1385 req->BufferType = pBuffer->buffer_type; 1386 cm->cm_data = NULL; 1387 cm->cm_length = 0; 1388 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 1389 cm->cm_complete_data = NULL; 1390 1391 /* 1392 * Send command synchronously. 1393 */ 1394 status = mpr_wait_command(sc, &cm, 30, CAN_SLEEP); 1395 if (status || (cm == NULL)) { 1396 mpr_printf(sc, "%s: invalid request: error %d\n", __func__, 1397 status); 1398 status = MPR_DIAG_FAILURE; 1399 goto done; 1400 } 1401 1402 /* 1403 * Process RELEASE reply. 1404 */ 1405 reply = (MPI2_DIAG_RELEASE_REPLY *)cm->cm_reply; 1406 if (reply == NULL) { 1407 mpr_printf(sc, "%s: reply is NULL, probably due to " 1408 "reinitialization", __func__); 1409 status = MPR_DIAG_FAILURE; 1410 goto done; 1411 } 1412 if (((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) != 1413 MPI2_IOCSTATUS_SUCCESS) || pBuffer->owned_by_firmware) { 1414 status = MPR_DIAG_FAILURE; 1415 mpr_dprint(sc, MPR_FAULT, "%s: release of FW Diag Buffer " 1416 "failed with IOCStatus = 0x%x and IOCLogInfo = 0x%x\n", 1417 __func__, le16toh(reply->IOCStatus), 1418 le32toh(reply->IOCLogInfo)); 1419 goto done; 1420 } 1421 1422 /* 1423 * Release was successful. 1424 */ 1425 *return_code = MPR_FW_DIAG_ERROR_SUCCESS; 1426 status = MPR_DIAG_SUCCESS; 1427 1428 /* 1429 * If this was for an UNREGISTER diag type command, clear the unique ID. 1430 */ 1431 if (diag_type == MPR_FW_DIAG_TYPE_UNREGISTER) { 1432 pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID; 1433 } 1434 1435 done: 1436 if (cm != NULL) 1437 mpr_free_command(sc, cm); 1438 1439 return (status); 1440 } 1441 1442 static int 1443 mpr_diag_register(struct mpr_softc *sc, mpr_fw_diag_register_t *diag_register, 1444 uint32_t *return_code) 1445 { 1446 mpr_fw_diagnostic_buffer_t *pBuffer; 1447 struct mpr_busdma_context *ctx; 1448 uint8_t extended_type, buffer_type, i; 1449 uint32_t buffer_size; 1450 uint32_t unique_id; 1451 int status; 1452 int error; 1453 1454 extended_type = diag_register->ExtendedType; 1455 buffer_type = diag_register->BufferType; 1456 buffer_size = diag_register->RequestedBufferSize; 1457 unique_id = diag_register->UniqueId; 1458 ctx = NULL; 1459 error = 0; 1460 1461 /* 1462 * Check for valid buffer type 1463 */ 1464 if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) { 1465 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1466 return (MPR_DIAG_FAILURE); 1467 } 1468 1469 /* 1470 * Get the current buffer and look up the unique ID. The unique ID 1471 * should not be found. If it is, the ID is already in use. 1472 */ 1473 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1474 pBuffer = &sc->fw_diag_buffer_list[buffer_type]; 1475 if (i != MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1476 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1477 return (MPR_DIAG_FAILURE); 1478 } 1479 1480 /* 1481 * The buffer's unique ID should not be registered yet, and the given 1482 * unique ID cannot be 0. 1483 */ 1484 if ((pBuffer->unique_id != MPR_FW_DIAG_INVALID_UID) || 1485 (unique_id == MPR_FW_DIAG_INVALID_UID)) { 1486 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1487 return (MPR_DIAG_FAILURE); 1488 } 1489 1490 /* 1491 * If this buffer is already posted as immediate, just change owner. 1492 */ 1493 if (pBuffer->immediate && pBuffer->owned_by_firmware && 1494 (pBuffer->unique_id == MPR_FW_DIAG_INVALID_UID)) { 1495 pBuffer->immediate = FALSE; 1496 pBuffer->unique_id = unique_id; 1497 return (MPR_DIAG_SUCCESS); 1498 } 1499 1500 /* 1501 * Post a new buffer after checking if it's enabled. The DMA buffer 1502 * that is allocated will be contiguous (nsegments = 1). 1503 */ 1504 if (!pBuffer->enabled) { 1505 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1506 return (MPR_DIAG_FAILURE); 1507 } 1508 if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */ 1509 1, 0, /* algnmnt, boundary */ 1510 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 1511 BUS_SPACE_MAXADDR, /* highaddr */ 1512 NULL, NULL, /* filter, filterarg */ 1513 buffer_size, /* maxsize */ 1514 1, /* nsegments */ 1515 buffer_size, /* maxsegsize */ 1516 0, /* flags */ 1517 &sc->fw_diag_dmat)) { 1518 mpr_dprint(sc, MPR_ERROR, 1519 "Cannot allocate FW diag buffer DMA tag\n"); 1520 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1521 status = MPR_DIAG_FAILURE; 1522 goto bailout; 1523 } 1524 if (bus_dmamem_alloc(sc->fw_diag_dmat, (void **)&sc->fw_diag_buffer, 1525 BUS_DMA_NOWAIT, &sc->fw_diag_map)) { 1526 mpr_dprint(sc, MPR_ERROR, 1527 "Cannot allocate FW diag buffer memory\n"); 1528 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1529 status = MPR_DIAG_FAILURE; 1530 goto bailout; 1531 } 1532 bzero(sc->fw_diag_buffer, buffer_size); 1533 1534 ctx = kmalloc(sizeof(*ctx), M_MPR, M_WAITOK | M_ZERO); 1535 if (ctx == NULL) { 1536 device_printf(sc->mpr_dev, "%s: context kmalloc failed\n", 1537 __func__); 1538 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1539 status = MPR_DIAG_FAILURE; 1540 goto bailout; 1541 } 1542 ctx->addr = &sc->fw_diag_busaddr; 1543 ctx->buffer_dmat = sc->fw_diag_dmat; 1544 ctx->buffer_dmamap = sc->fw_diag_map; 1545 ctx->softc = sc; 1546 error = bus_dmamap_load(sc->fw_diag_dmat, sc->fw_diag_map, 1547 sc->fw_diag_buffer, buffer_size, mpr_memaddr_wait_cb, 1548 ctx, 0); 1549 if (error == EINPROGRESS) { 1550 1551 /* XXX KDM */ 1552 device_printf(sc->mpr_dev, "%s: Deferred bus_dmamap_load\n", 1553 __func__); 1554 /* 1555 * Wait for the load to complete. If we're interrupted, 1556 * bail out. 1557 */ 1558 mpr_lock(sc); 1559 if (ctx->completed == 0) { 1560 error = lksleep(ctx, &sc->mpr_lock, PCATCH, "mprwait", 0); 1561 if (error != 0) { 1562 /* 1563 * We got an error from msleep(9). This is 1564 * most likely due to a signal. Tell 1565 * mpr_memaddr_wait_cb() that we've abandoned 1566 * the context, so it needs to clean up when 1567 * it is called. 1568 */ 1569 ctx->abandoned = 1; 1570 1571 /* The callback will free this memory */ 1572 ctx = NULL; 1573 mpr_unlock(sc); 1574 1575 device_printf(sc->mpr_dev, "Cannot " 1576 "bus_dmamap_load FW diag buffer, error = " 1577 "%d returned from lksleep\n", error); 1578 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1579 status = MPR_DIAG_FAILURE; 1580 goto bailout; 1581 } 1582 } 1583 mpr_unlock(sc); 1584 } 1585 1586 if ((error != 0) || (ctx->error != 0)) { 1587 device_printf(sc->mpr_dev, "Cannot bus_dmamap_load FW diag " 1588 "buffer, %serror = %d\n", error ? "" : "callback ", 1589 error ? error : ctx->error); 1590 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER; 1591 status = MPR_DIAG_FAILURE; 1592 goto bailout; 1593 } 1594 1595 bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, BUS_DMASYNC_PREREAD); 1596 1597 pBuffer->size = buffer_size; 1598 1599 /* 1600 * Copy the given info to the diag buffer and post the buffer. 1601 */ 1602 pBuffer->buffer_type = buffer_type; 1603 pBuffer->immediate = FALSE; 1604 if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) { 1605 for (i = 0; i < (sizeof (pBuffer->product_specific) / 4); 1606 i++) { 1607 pBuffer->product_specific[i] = 1608 diag_register->ProductSpecific[i]; 1609 } 1610 } 1611 pBuffer->extended_type = extended_type; 1612 pBuffer->unique_id = unique_id; 1613 status = mpr_post_fw_diag_buffer(sc, pBuffer, return_code); 1614 1615 bailout: 1616 1617 /* 1618 * In case there was a failure, free the DMA buffer. 1619 */ 1620 if (status == MPR_DIAG_FAILURE) { 1621 if (sc->fw_diag_busaddr != 0) { 1622 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1623 sc->fw_diag_busaddr = 0; 1624 } 1625 if (sc->fw_diag_buffer != NULL) { 1626 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1627 sc->fw_diag_map); 1628 sc->fw_diag_buffer = NULL; 1629 } 1630 if (sc->fw_diag_dmat != NULL) { 1631 bus_dma_tag_destroy(sc->fw_diag_dmat); 1632 sc->fw_diag_dmat = NULL; 1633 } 1634 } 1635 1636 if (ctx != NULL) 1637 kfree(ctx, M_MPR); 1638 1639 return (status); 1640 } 1641 1642 static int 1643 mpr_diag_unregister(struct mpr_softc *sc, 1644 mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code) 1645 { 1646 mpr_fw_diagnostic_buffer_t *pBuffer; 1647 uint8_t i; 1648 uint32_t unique_id; 1649 int status; 1650 1651 unique_id = diag_unregister->UniqueId; 1652 1653 /* 1654 * Get the current buffer and look up the unique ID. The unique ID 1655 * should be there. 1656 */ 1657 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1658 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1659 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1660 return (MPR_DIAG_FAILURE); 1661 } 1662 1663 pBuffer = &sc->fw_diag_buffer_list[i]; 1664 1665 /* 1666 * Try to release the buffer from FW before freeing it. If release 1667 * fails, don't free the DMA buffer in case FW tries to access it 1668 * later. If buffer is not owned by firmware, can't release it. 1669 */ 1670 if (!pBuffer->owned_by_firmware) { 1671 status = MPR_DIAG_SUCCESS; 1672 } else { 1673 status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code, 1674 MPR_FW_DIAG_TYPE_UNREGISTER); 1675 } 1676 1677 /* 1678 * At this point, return the current status no matter what happens with 1679 * the DMA buffer. 1680 */ 1681 pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID; 1682 if (status == MPR_DIAG_SUCCESS) { 1683 if (sc->fw_diag_busaddr != 0) { 1684 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map); 1685 sc->fw_diag_busaddr = 0; 1686 } 1687 if (sc->fw_diag_buffer != NULL) { 1688 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer, 1689 sc->fw_diag_map); 1690 sc->fw_diag_buffer = NULL; 1691 } 1692 if (sc->fw_diag_dmat != NULL) { 1693 bus_dma_tag_destroy(sc->fw_diag_dmat); 1694 sc->fw_diag_dmat = NULL; 1695 } 1696 } 1697 1698 return (status); 1699 } 1700 1701 static int 1702 mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query, 1703 uint32_t *return_code) 1704 { 1705 mpr_fw_diagnostic_buffer_t *pBuffer; 1706 uint8_t i; 1707 uint32_t unique_id; 1708 1709 unique_id = diag_query->UniqueId; 1710 1711 /* 1712 * If ID is valid, query on ID. 1713 * If ID is invalid, query on buffer type. 1714 */ 1715 if (unique_id == MPR_FW_DIAG_INVALID_UID) { 1716 i = diag_query->BufferType; 1717 if (i >= MPI2_DIAG_BUF_TYPE_COUNT) { 1718 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1719 return (MPR_DIAG_FAILURE); 1720 } 1721 } else { 1722 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1723 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1724 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1725 return (MPR_DIAG_FAILURE); 1726 } 1727 } 1728 1729 /* 1730 * Fill query structure with the diag buffer info. 1731 */ 1732 pBuffer = &sc->fw_diag_buffer_list[i]; 1733 diag_query->BufferType = pBuffer->buffer_type; 1734 diag_query->ExtendedType = pBuffer->extended_type; 1735 if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) { 1736 for (i = 0; i < (sizeof(diag_query->ProductSpecific) / 4); 1737 i++) { 1738 diag_query->ProductSpecific[i] = 1739 pBuffer->product_specific[i]; 1740 } 1741 } 1742 diag_query->TotalBufferSize = pBuffer->size; 1743 diag_query->DriverAddedBufferSize = 0; 1744 diag_query->UniqueId = pBuffer->unique_id; 1745 diag_query->ApplicationFlags = 0; 1746 diag_query->DiagnosticFlags = 0; 1747 1748 /* 1749 * Set/Clear application flags 1750 */ 1751 if (pBuffer->immediate) { 1752 diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_APP_OWNED; 1753 } else { 1754 diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_APP_OWNED; 1755 } 1756 if (pBuffer->valid_data || pBuffer->owned_by_firmware) { 1757 diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_BUFFER_VALID; 1758 } else { 1759 diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_BUFFER_VALID; 1760 } 1761 if (pBuffer->owned_by_firmware) { 1762 diag_query->ApplicationFlags |= 1763 MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1764 } else { 1765 diag_query->ApplicationFlags &= 1766 ~MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 1767 } 1768 1769 return (MPR_DIAG_SUCCESS); 1770 } 1771 1772 static int 1773 mpr_diag_read_buffer(struct mpr_softc *sc, 1774 mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 1775 uint32_t *return_code) 1776 { 1777 mpr_fw_diagnostic_buffer_t *pBuffer; 1778 uint8_t i, *pData; 1779 uint32_t unique_id; 1780 int status; 1781 1782 unique_id = diag_read_buffer->UniqueId; 1783 1784 /* 1785 * Get the current buffer and look up the unique ID. The unique ID 1786 * should be there. 1787 */ 1788 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1789 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1790 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1791 return (MPR_DIAG_FAILURE); 1792 } 1793 1794 pBuffer = &sc->fw_diag_buffer_list[i]; 1795 1796 /* 1797 * Make sure requested read is within limits 1798 */ 1799 if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead > 1800 pBuffer->size) { 1801 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1802 return (MPR_DIAG_FAILURE); 1803 } 1804 1805 /* Sync the DMA map before we copy to userland. */ 1806 bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, 1807 BUS_DMASYNC_POSTREAD); 1808 1809 /* 1810 * Copy the requested data from DMA to the diag_read_buffer. The DMA 1811 * buffer that was allocated is one contiguous buffer. 1812 */ 1813 pData = (uint8_t *)(sc->fw_diag_buffer + 1814 diag_read_buffer->StartingOffset); 1815 if (copyout(pData, ioctl_buf, diag_read_buffer->BytesToRead) != 0) 1816 return (MPR_DIAG_FAILURE); 1817 diag_read_buffer->Status = 0; 1818 1819 /* 1820 * Set or clear the Force Release flag. 1821 */ 1822 if (pBuffer->force_release) { 1823 diag_read_buffer->Flags |= MPR_FW_DIAG_FLAG_FORCE_RELEASE; 1824 } else { 1825 diag_read_buffer->Flags &= ~MPR_FW_DIAG_FLAG_FORCE_RELEASE; 1826 } 1827 1828 /* 1829 * If buffer is to be reregistered, make sure it's not already owned by 1830 * firmware first. 1831 */ 1832 status = MPR_DIAG_SUCCESS; 1833 if (!pBuffer->owned_by_firmware) { 1834 if (diag_read_buffer->Flags & MPR_FW_DIAG_FLAG_REREGISTER) { 1835 status = mpr_post_fw_diag_buffer(sc, pBuffer, 1836 return_code); 1837 } 1838 } 1839 1840 return (status); 1841 } 1842 1843 static int 1844 mpr_diag_release(struct mpr_softc *sc, mpr_fw_diag_release_t *diag_release, 1845 uint32_t *return_code) 1846 { 1847 mpr_fw_diagnostic_buffer_t *pBuffer; 1848 uint8_t i; 1849 uint32_t unique_id; 1850 int status; 1851 1852 unique_id = diag_release->UniqueId; 1853 1854 /* 1855 * Get the current buffer and look up the unique ID. The unique ID 1856 * should be there. 1857 */ 1858 i = mpr_get_fw_diag_buffer_number(sc, unique_id); 1859 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) { 1860 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID; 1861 return (MPR_DIAG_FAILURE); 1862 } 1863 1864 pBuffer = &sc->fw_diag_buffer_list[i]; 1865 1866 /* 1867 * If buffer is not owned by firmware, it's already been released. 1868 */ 1869 if (!pBuffer->owned_by_firmware) { 1870 *return_code = MPR_FW_DIAG_ERROR_ALREADY_RELEASED; 1871 return (MPR_DIAG_FAILURE); 1872 } 1873 1874 /* 1875 * Release the buffer. 1876 */ 1877 status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code, 1878 MPR_FW_DIAG_TYPE_RELEASE); 1879 return (status); 1880 } 1881 1882 static int 1883 mpr_do_diag_action(struct mpr_softc *sc, uint32_t action, uint8_t *diag_action, 1884 uint32_t length, uint32_t *return_code) 1885 { 1886 mpr_fw_diag_register_t diag_register; 1887 mpr_fw_diag_unregister_t diag_unregister; 1888 mpr_fw_diag_query_t diag_query; 1889 mpr_diag_read_buffer_t diag_read_buffer; 1890 mpr_fw_diag_release_t diag_release; 1891 int status = MPR_DIAG_SUCCESS; 1892 uint32_t original_return_code; 1893 1894 original_return_code = *return_code; 1895 *return_code = MPR_FW_DIAG_ERROR_SUCCESS; 1896 1897 switch (action) { 1898 case MPR_FW_DIAG_TYPE_REGISTER: 1899 if (!length) { 1900 *return_code = 1901 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1902 status = MPR_DIAG_FAILURE; 1903 break; 1904 } 1905 if (copyin(diag_action, &diag_register, 1906 sizeof(diag_register)) != 0) 1907 return (MPR_DIAG_FAILURE); 1908 status = mpr_diag_register(sc, &diag_register, 1909 return_code); 1910 break; 1911 1912 case MPR_FW_DIAG_TYPE_UNREGISTER: 1913 if (length < sizeof(diag_unregister)) { 1914 *return_code = 1915 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1916 status = MPR_DIAG_FAILURE; 1917 break; 1918 } 1919 if (copyin(diag_action, &diag_unregister, 1920 sizeof(diag_unregister)) != 0) 1921 return (MPR_DIAG_FAILURE); 1922 status = mpr_diag_unregister(sc, &diag_unregister, 1923 return_code); 1924 break; 1925 1926 case MPR_FW_DIAG_TYPE_QUERY: 1927 if (length < sizeof (diag_query)) { 1928 *return_code = 1929 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1930 status = MPR_DIAG_FAILURE; 1931 break; 1932 } 1933 if (copyin(diag_action, &diag_query, sizeof(diag_query)) 1934 != 0) 1935 return (MPR_DIAG_FAILURE); 1936 status = mpr_diag_query(sc, &diag_query, return_code); 1937 if (status == MPR_DIAG_SUCCESS) 1938 if (copyout(&diag_query, diag_action, 1939 sizeof (diag_query)) != 0) 1940 return (MPR_DIAG_FAILURE); 1941 break; 1942 1943 case MPR_FW_DIAG_TYPE_READ_BUFFER: 1944 if (copyin(diag_action, &diag_read_buffer, 1945 sizeof(diag_read_buffer)) != 0) 1946 return (MPR_DIAG_FAILURE); 1947 if (length < diag_read_buffer.BytesToRead) { 1948 *return_code = 1949 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1950 status = MPR_DIAG_FAILURE; 1951 break; 1952 } 1953 status = mpr_diag_read_buffer(sc, &diag_read_buffer, 1954 PTRIN(diag_read_buffer.PtrDataBuffer), 1955 return_code); 1956 if (status == MPR_DIAG_SUCCESS) { 1957 if (copyout(&diag_read_buffer, diag_action, 1958 sizeof(diag_read_buffer) - 1959 sizeof(diag_read_buffer.PtrDataBuffer)) != 1960 0) 1961 return (MPR_DIAG_FAILURE); 1962 } 1963 break; 1964 1965 case MPR_FW_DIAG_TYPE_RELEASE: 1966 if (length < sizeof(diag_release)) { 1967 *return_code = 1968 MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1969 status = MPR_DIAG_FAILURE; 1970 break; 1971 } 1972 if (copyin(diag_action, &diag_release, 1973 sizeof(diag_release)) != 0) 1974 return (MPR_DIAG_FAILURE); 1975 status = mpr_diag_release(sc, &diag_release, 1976 return_code); 1977 break; 1978 1979 default: 1980 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER; 1981 status = MPR_DIAG_FAILURE; 1982 break; 1983 } 1984 1985 if ((status == MPR_DIAG_FAILURE) && 1986 (original_return_code == MPR_FW_DIAG_NEW) && 1987 (*return_code != MPR_FW_DIAG_ERROR_SUCCESS)) 1988 status = MPR_DIAG_SUCCESS; 1989 1990 return (status); 1991 } 1992 1993 static int 1994 mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data) 1995 { 1996 int status; 1997 1998 /* 1999 * Only allow one diag action at one time. 2000 */ 2001 if (sc->mpr_flags & MPR_FLAGS_BUSY) { 2002 mpr_dprint(sc, MPR_USER, "%s: Only one FW diag command " 2003 "allowed at a single time.", __func__); 2004 return (EBUSY); 2005 } 2006 sc->mpr_flags |= MPR_FLAGS_BUSY; 2007 2008 /* 2009 * Send diag action request 2010 */ 2011 if (data->Action == MPR_FW_DIAG_TYPE_REGISTER || 2012 data->Action == MPR_FW_DIAG_TYPE_UNREGISTER || 2013 data->Action == MPR_FW_DIAG_TYPE_QUERY || 2014 data->Action == MPR_FW_DIAG_TYPE_READ_BUFFER || 2015 data->Action == MPR_FW_DIAG_TYPE_RELEASE) { 2016 status = mpr_do_diag_action(sc, data->Action, 2017 PTRIN(data->PtrDiagAction), data->Length, 2018 &data->ReturnCode); 2019 } else 2020 status = EINVAL; 2021 2022 sc->mpr_flags &= ~MPR_FLAGS_BUSY; 2023 return (status); 2024 } 2025 2026 /* 2027 * Copy the event recording mask and the event queue size out. For 2028 * clarification, the event recording mask (events_to_record) is not the same 2029 * thing as the event mask (event_mask). events_to_record has a bit set for 2030 * every event type that is to be recorded by the driver, and event_mask has a 2031 * bit cleared for every event that is allowed into the driver from the IOC. 2032 * They really have nothing to do with each other. 2033 */ 2034 static void 2035 mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data) 2036 { 2037 uint8_t i; 2038 2039 mpr_lock(sc); 2040 data->Entries = MPR_EVENT_QUEUE_SIZE; 2041 2042 for (i = 0; i < 4; i++) { 2043 data->Types[i] = sc->events_to_record[i]; 2044 } 2045 mpr_unlock(sc); 2046 } 2047 2048 /* 2049 * Set the driver's event mask according to what's been given. See 2050 * mpr_user_event_query for explanation of the event recording mask and the IOC 2051 * event mask. It's the app's responsibility to enable event logging by setting 2052 * the bits in events_to_record. Initially, no events will be logged. 2053 */ 2054 static void 2055 mpr_user_event_enable(struct mpr_softc *sc, mpr_event_enable_t *data) 2056 { 2057 uint8_t i; 2058 2059 mpr_lock(sc); 2060 for (i = 0; i < 4; i++) { 2061 sc->events_to_record[i] = data->Types[i]; 2062 } 2063 mpr_unlock(sc); 2064 } 2065 2066 /* 2067 * Copy out the events that have been recorded, up to the max events allowed. 2068 */ 2069 static int 2070 mpr_user_event_report(struct mpr_softc *sc, mpr_event_report_t *data) 2071 { 2072 int status = 0; 2073 uint32_t size; 2074 2075 mpr_lock(sc); 2076 size = data->Size; 2077 if ((size >= sizeof(sc->recorded_events)) && (status == 0)) { 2078 mpr_unlock(sc); 2079 if (copyout((void *)sc->recorded_events, 2080 PTRIN(data->PtrEvents), size) != 0) 2081 status = EFAULT; 2082 mpr_lock(sc); 2083 } else { 2084 /* 2085 * data->Size value is not large enough to copy event data. 2086 */ 2087 status = EFAULT; 2088 } 2089 2090 /* 2091 * Change size value to match the number of bytes that were copied. 2092 */ 2093 if (status == 0) 2094 data->Size = sizeof(sc->recorded_events); 2095 mpr_unlock(sc); 2096 2097 return (status); 2098 } 2099 2100 /* 2101 * Record events into the driver from the IOC if they are not masked. 2102 */ 2103 void 2104 mprsas_record_event(struct mpr_softc *sc, 2105 MPI2_EVENT_NOTIFICATION_REPLY *event_reply) 2106 { 2107 uint32_t event; 2108 int i, j; 2109 uint16_t event_data_len; 2110 boolean_t sendAEN = FALSE; 2111 2112 event = event_reply->Event; 2113 2114 /* 2115 * Generate a system event to let anyone who cares know that a 2116 * LOG_ENTRY_ADDED event has occurred. This is sent no matter what the 2117 * event mask is set to. 2118 */ 2119 if (event == MPI2_EVENT_LOG_ENTRY_ADDED) { 2120 sendAEN = TRUE; 2121 } 2122 2123 /* 2124 * Record the event only if its corresponding bit is set in 2125 * events_to_record. event_index is the index into recorded_events and 2126 * event_number is the overall number of an event being recorded since 2127 * start-of-day. event_index will roll over; event_number will never 2128 * roll over. 2129 */ 2130 i = (uint8_t)(event / 32); 2131 j = (uint8_t)(event % 32); 2132 if ((i < 4) && ((1 << j) & sc->events_to_record[i])) { 2133 i = sc->event_index; 2134 sc->recorded_events[i].Type = event; 2135 sc->recorded_events[i].Number = ++sc->event_number; 2136 bzero(sc->recorded_events[i].Data, MPR_MAX_EVENT_DATA_LENGTH * 2137 4); 2138 event_data_len = event_reply->EventDataLength; 2139 2140 if (event_data_len > 0) { 2141 /* 2142 * Limit data to size in m_event entry 2143 */ 2144 if (event_data_len > MPR_MAX_EVENT_DATA_LENGTH) { 2145 event_data_len = MPR_MAX_EVENT_DATA_LENGTH; 2146 } 2147 for (j = 0; j < event_data_len; j++) { 2148 sc->recorded_events[i].Data[j] = 2149 event_reply->EventData[j]; 2150 } 2151 2152 /* 2153 * check for index wrap-around 2154 */ 2155 if (++i == MPR_EVENT_QUEUE_SIZE) { 2156 i = 0; 2157 } 2158 sc->event_index = (uint8_t)i; 2159 2160 /* 2161 * Set flag to send the event. 2162 */ 2163 sendAEN = TRUE; 2164 } 2165 } 2166 2167 /* 2168 * Generate a system event if flag is set to let anyone who cares know 2169 * that an event has occurred. 2170 */ 2171 if (sendAEN) { 2172 //SLM-how to send a system event (see kqueue, kevent) 2173 // (void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS", 2174 // "SAS", NULL, NULL, DDI_NOSLEEP); 2175 } 2176 } 2177 2178 static int 2179 mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data) 2180 { 2181 int status = 0; 2182 2183 switch (data->Command) { 2184 /* 2185 * IO access is not supported. 2186 */ 2187 case REG_IO_READ: 2188 case REG_IO_WRITE: 2189 mpr_dprint(sc, MPR_USER, "IO access is not supported. " 2190 "Use memory access."); 2191 status = EINVAL; 2192 break; 2193 2194 case REG_MEM_READ: 2195 data->RegData = mpr_regread(sc, data->RegOffset); 2196 break; 2197 2198 case REG_MEM_WRITE: 2199 mpr_regwrite(sc, data->RegOffset, data->RegData); 2200 break; 2201 2202 default: 2203 status = EINVAL; 2204 break; 2205 } 2206 2207 return (status); 2208 } 2209 2210 static int 2211 mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data) 2212 { 2213 uint8_t bt2dh = FALSE; 2214 uint8_t dh2bt = FALSE; 2215 uint16_t dev_handle, bus, target; 2216 2217 bus = data->Bus; 2218 target = data->TargetID; 2219 dev_handle = data->DevHandle; 2220 2221 /* 2222 * When DevHandle is 0xFFFF and Bus/Target are not 0xFFFF, use Bus/ 2223 * Target to get DevHandle. When Bus/Target are 0xFFFF and DevHandle is 2224 * not 0xFFFF, use DevHandle to get Bus/Target. Anything else is 2225 * invalid. 2226 */ 2227 if ((bus == 0xFFFF) && (target == 0xFFFF) && (dev_handle != 0xFFFF)) 2228 dh2bt = TRUE; 2229 if ((dev_handle == 0xFFFF) && (bus != 0xFFFF) && (target != 0xFFFF)) 2230 bt2dh = TRUE; 2231 if (!dh2bt && !bt2dh) 2232 return (EINVAL); 2233 2234 /* 2235 * Only handle bus of 0. Make sure target is within range. 2236 */ 2237 if (bt2dh) { 2238 if (bus != 0) 2239 return (EINVAL); 2240 2241 if (target > sc->max_devices) { 2242 mpr_dprint(sc, MPR_XINFO, "Target ID is out of range " 2243 "for Bus/Target to DevHandle mapping."); 2244 return (EINVAL); 2245 } 2246 dev_handle = sc->mapping_table[target].dev_handle; 2247 if (dev_handle) 2248 data->DevHandle = dev_handle; 2249 } else { 2250 bus = 0; 2251 target = mpr_mapping_get_tid_from_handle(sc, dev_handle); 2252 data->Bus = bus; 2253 data->TargetID = target; 2254 } 2255 2256 return (0); 2257 } 2258 2259 static int 2260 mpr_ioctl(struct cdev *dev, u_long cmd, void *arg, int flag) 2261 { 2262 struct mpr_softc *sc; 2263 struct mpr_cfg_page_req *page_req; 2264 struct mpr_ext_cfg_page_req *ext_page_req; 2265 void *mpr_page; 2266 int error, msleep_ret; 2267 2268 mpr_page = NULL; 2269 sc = dev->si_drv1; 2270 page_req = (void *)arg; 2271 ext_page_req = (void *)arg; 2272 2273 switch (cmd) { 2274 case MPRIO_READ_CFG_HEADER: 2275 mpr_lock(sc); 2276 error = mpr_user_read_cfg_header(sc, page_req); 2277 mpr_unlock(sc); 2278 break; 2279 case MPRIO_READ_CFG_PAGE: 2280 mpr_page = kmalloc(page_req->len, M_MPRUSER, M_WAITOK | M_ZERO); 2281 error = copyin(page_req->buf, mpr_page, 2282 sizeof(MPI2_CONFIG_PAGE_HEADER)); 2283 if (error) 2284 break; 2285 mpr_lock(sc); 2286 error = mpr_user_read_cfg_page(sc, page_req, mpr_page); 2287 mpr_unlock(sc); 2288 if (error) 2289 break; 2290 error = copyout(mpr_page, page_req->buf, page_req->len); 2291 break; 2292 case MPRIO_READ_EXT_CFG_HEADER: 2293 mpr_lock(sc); 2294 error = mpr_user_read_extcfg_header(sc, ext_page_req); 2295 mpr_unlock(sc); 2296 break; 2297 case MPRIO_READ_EXT_CFG_PAGE: 2298 mpr_page = kmalloc(ext_page_req->len, M_MPRUSER, 2299 M_WAITOK | M_ZERO); 2300 error = copyin(ext_page_req->buf, mpr_page, 2301 sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER)); 2302 if (error) 2303 break; 2304 mpr_lock(sc); 2305 error = mpr_user_read_extcfg_page(sc, ext_page_req, mpr_page); 2306 mpr_unlock(sc); 2307 if (error) 2308 break; 2309 error = copyout(mpr_page, ext_page_req->buf, ext_page_req->len); 2310 break; 2311 case MPRIO_WRITE_CFG_PAGE: 2312 mpr_page = kmalloc(page_req->len, M_MPRUSER, M_WAITOK|M_ZERO); 2313 error = copyin(page_req->buf, mpr_page, page_req->len); 2314 if (error) 2315 break; 2316 mpr_lock(sc); 2317 error = mpr_user_write_cfg_page(sc, page_req, mpr_page); 2318 mpr_unlock(sc); 2319 break; 2320 case MPRIO_MPR_COMMAND: 2321 error = mpr_user_command(sc, (struct mpr_usr_command *)arg); 2322 break; 2323 case MPTIOCTL_PASS_THRU: 2324 /* 2325 * The user has requested to pass through a command to be 2326 * executed by the MPT firmware. Call our routine which does 2327 * this. Only allow one passthru IOCTL at one time. 2328 */ 2329 error = mpr_user_pass_thru(sc, (mpr_pass_thru_t *)arg); 2330 break; 2331 case MPTIOCTL_GET_ADAPTER_DATA: 2332 /* 2333 * The user has requested to read adapter data. Call our 2334 * routine which does this. 2335 */ 2336 error = 0; 2337 mpr_user_get_adapter_data(sc, (mpr_adapter_data_t *)arg); 2338 break; 2339 case MPTIOCTL_GET_PCI_INFO: 2340 /* 2341 * The user has requested to read pci info. Call 2342 * our routine which does this. 2343 */ 2344 mpr_lock(sc); 2345 error = 0; 2346 mpr_user_read_pci_info(sc, (mpr_pci_info_t *)arg); 2347 mpr_unlock(sc); 2348 break; 2349 case MPTIOCTL_RESET_ADAPTER: 2350 mpr_lock(sc); 2351 sc->port_enable_complete = 0; 2352 uint32_t reinit_start = time_uptime; 2353 error = mpr_reinit(sc); 2354 /* Sleep for 300 second. */ 2355 msleep_ret = lksleep(&sc->port_enable_complete, &sc->mpr_lock, 2356 0, "mpr_porten", 300 * hz); 2357 mpr_unlock(sc); 2358 if (msleep_ret) 2359 kprintf("Port Enable did not complete after Diag " 2360 "Reset lksleep error %d.\n", msleep_ret); 2361 else 2362 mpr_dprint(sc, MPR_USER, "Hard Reset with Port Enable " 2363 "completed in %d seconds.\n", 2364 (uint32_t)(time_uptime - reinit_start)); 2365 break; 2366 case MPTIOCTL_DIAG_ACTION: 2367 /* 2368 * The user has done a diag buffer action. Call our routine 2369 * which does this. Only allow one diag action at one time. 2370 */ 2371 mpr_lock(sc); 2372 error = mpr_user_diag_action(sc, (mpr_diag_action_t *)arg); 2373 mpr_unlock(sc); 2374 break; 2375 case MPTIOCTL_EVENT_QUERY: 2376 /* 2377 * The user has done an event query. Call our routine which does 2378 * this. 2379 */ 2380 error = 0; 2381 mpr_user_event_query(sc, (mpr_event_query_t *)arg); 2382 break; 2383 case MPTIOCTL_EVENT_ENABLE: 2384 /* 2385 * The user has done an event enable. Call our routine which 2386 * does this. 2387 */ 2388 error = 0; 2389 mpr_user_event_enable(sc, (mpr_event_enable_t *)arg); 2390 break; 2391 case MPTIOCTL_EVENT_REPORT: 2392 /* 2393 * The user has done an event report. Call our routine which 2394 * does this. 2395 */ 2396 error = mpr_user_event_report(sc, (mpr_event_report_t *)arg); 2397 break; 2398 case MPTIOCTL_REG_ACCESS: 2399 /* 2400 * The user has requested register access. Call our routine 2401 * which does this. 2402 */ 2403 mpr_lock(sc); 2404 error = mpr_user_reg_access(sc, (mpr_reg_access_t *)arg); 2405 mpr_unlock(sc); 2406 break; 2407 case MPTIOCTL_BTDH_MAPPING: 2408 /* 2409 * The user has requested to translate a bus/target to a 2410 * DevHandle or a DevHandle to a bus/target. Call our routine 2411 * which does this. 2412 */ 2413 error = mpr_user_btdh(sc, (mpr_btdh_mapping_t *)arg); 2414 break; 2415 default: 2416 error = ENOIOCTL; 2417 break; 2418 } 2419 2420 if (mpr_page != NULL) 2421 kfree(mpr_page, M_MPRUSER); 2422 2423 return (error); 2424 } 2425 2426 #ifdef COMPAT_FREEBSD32 2427 2428 struct mpr_cfg_page_req32 { 2429 MPI2_CONFIG_PAGE_HEADER header; 2430 uint32_t page_address; 2431 uint32_t buf; 2432 int len; 2433 uint16_t ioc_status; 2434 }; 2435 2436 struct mpr_ext_cfg_page_req32 { 2437 MPI2_CONFIG_EXTENDED_PAGE_HEADER header; 2438 uint32_t page_address; 2439 uint32_t buf; 2440 int len; 2441 uint16_t ioc_status; 2442 }; 2443 2444 struct mpr_raid_action32 { 2445 uint8_t action; 2446 uint8_t volume_bus; 2447 uint8_t volume_id; 2448 uint8_t phys_disk_num; 2449 uint32_t action_data_word; 2450 uint32_t buf; 2451 int len; 2452 uint32_t volume_status; 2453 uint32_t action_data[4]; 2454 uint16_t action_status; 2455 uint16_t ioc_status; 2456 uint8_t write; 2457 }; 2458 2459 struct mpr_usr_command32 { 2460 uint32_t req; 2461 uint32_t req_len; 2462 uint32_t rpl; 2463 uint32_t rpl_len; 2464 uint32_t buf; 2465 int len; 2466 uint32_t flags; 2467 }; 2468 2469 #define MPRIO_READ_CFG_HEADER32 _IOWR('M', 200, struct mpr_cfg_page_req32) 2470 #define MPRIO_READ_CFG_PAGE32 _IOWR('M', 201, struct mpr_cfg_page_req32) 2471 #define MPRIO_READ_EXT_CFG_HEADER32 _IOWR('M', 202, struct mpr_ext_cfg_page_req32) 2472 #define MPRIO_READ_EXT_CFG_PAGE32 _IOWR('M', 203, struct mpr_ext_cfg_page_req32) 2473 #define MPRIO_WRITE_CFG_PAGE32 _IOWR('M', 204, struct mpr_cfg_page_req32) 2474 #define MPRIO_RAID_ACTION32 _IOWR('M', 205, struct mpr_raid_action32) 2475 #define MPRIO_MPR_COMMAND32 _IOWR('M', 210, struct mpr_usr_command32) 2476 2477 static int 2478 mpr_ioctl32(struct cdev *dev, u_long cmd32, void *_arg, int flag, 2479 struct thread *td) 2480 { 2481 struct mpr_cfg_page_req32 *page32 = _arg; 2482 struct mpr_ext_cfg_page_req32 *ext32 = _arg; 2483 struct mpr_raid_action32 *raid32 = _arg; 2484 struct mpr_usr_command32 *user32 = _arg; 2485 union { 2486 struct mpr_cfg_page_req page; 2487 struct mpr_ext_cfg_page_req ext; 2488 struct mpr_raid_action raid; 2489 struct mpr_usr_command user; 2490 } arg; 2491 u_long cmd; 2492 int error; 2493 2494 switch (cmd32) { 2495 case MPRIO_READ_CFG_HEADER32: 2496 case MPRIO_READ_CFG_PAGE32: 2497 case MPRIO_WRITE_CFG_PAGE32: 2498 if (cmd32 == MPRIO_READ_CFG_HEADER32) 2499 cmd = MPRIO_READ_CFG_HEADER; 2500 else if (cmd32 == MPRIO_READ_CFG_PAGE32) 2501 cmd = MPRIO_READ_CFG_PAGE; 2502 else 2503 cmd = MPRIO_WRITE_CFG_PAGE; 2504 CP(*page32, arg.page, header); 2505 CP(*page32, arg.page, page_address); 2506 PTRIN_CP(*page32, arg.page, buf); 2507 CP(*page32, arg.page, len); 2508 CP(*page32, arg.page, ioc_status); 2509 break; 2510 2511 case MPRIO_READ_EXT_CFG_HEADER32: 2512 case MPRIO_READ_EXT_CFG_PAGE32: 2513 if (cmd32 == MPRIO_READ_EXT_CFG_HEADER32) 2514 cmd = MPRIO_READ_EXT_CFG_HEADER; 2515 else 2516 cmd = MPRIO_READ_EXT_CFG_PAGE; 2517 CP(*ext32, arg.ext, header); 2518 CP(*ext32, arg.ext, page_address); 2519 PTRIN_CP(*ext32, arg.ext, buf); 2520 CP(*ext32, arg.ext, len); 2521 CP(*ext32, arg.ext, ioc_status); 2522 break; 2523 2524 case MPRIO_RAID_ACTION32: 2525 cmd = MPRIO_RAID_ACTION; 2526 CP(*raid32, arg.raid, action); 2527 CP(*raid32, arg.raid, volume_bus); 2528 CP(*raid32, arg.raid, volume_id); 2529 CP(*raid32, arg.raid, phys_disk_num); 2530 CP(*raid32, arg.raid, action_data_word); 2531 PTRIN_CP(*raid32, arg.raid, buf); 2532 CP(*raid32, arg.raid, len); 2533 CP(*raid32, arg.raid, volume_status); 2534 bcopy(raid32->action_data, arg.raid.action_data, 2535 sizeof arg.raid.action_data); 2536 CP(*raid32, arg.raid, ioc_status); 2537 CP(*raid32, arg.raid, write); 2538 break; 2539 2540 case MPRIO_MPR_COMMAND32: 2541 cmd = MPRIO_MPR_COMMAND; 2542 PTRIN_CP(*user32, arg.user, req); 2543 CP(*user32, arg.user, req_len); 2544 PTRIN_CP(*user32, arg.user, rpl); 2545 CP(*user32, arg.user, rpl_len); 2546 PTRIN_CP(*user32, arg.user, buf); 2547 CP(*user32, arg.user, len); 2548 CP(*user32, arg.user, flags); 2549 break; 2550 default: 2551 return (ENOIOCTL); 2552 } 2553 2554 error = mpr_ioctl(dev, cmd, &arg, flag, td); 2555 if (error == 0 && (cmd32 & IOC_OUT) != 0) { 2556 switch (cmd32) { 2557 case MPRIO_READ_CFG_HEADER32: 2558 case MPRIO_READ_CFG_PAGE32: 2559 case MPRIO_WRITE_CFG_PAGE32: 2560 CP(arg.page, *page32, header); 2561 CP(arg.page, *page32, page_address); 2562 PTROUT_CP(arg.page, *page32, buf); 2563 CP(arg.page, *page32, len); 2564 CP(arg.page, *page32, ioc_status); 2565 break; 2566 2567 case MPRIO_READ_EXT_CFG_HEADER32: 2568 case MPRIO_READ_EXT_CFG_PAGE32: 2569 CP(arg.ext, *ext32, header); 2570 CP(arg.ext, *ext32, page_address); 2571 PTROUT_CP(arg.ext, *ext32, buf); 2572 CP(arg.ext, *ext32, len); 2573 CP(arg.ext, *ext32, ioc_status); 2574 break; 2575 2576 case MPRIO_RAID_ACTION32: 2577 CP(arg.raid, *raid32, action); 2578 CP(arg.raid, *raid32, volume_bus); 2579 CP(arg.raid, *raid32, volume_id); 2580 CP(arg.raid, *raid32, phys_disk_num); 2581 CP(arg.raid, *raid32, action_data_word); 2582 PTROUT_CP(arg.raid, *raid32, buf); 2583 CP(arg.raid, *raid32, len); 2584 CP(arg.raid, *raid32, volume_status); 2585 bcopy(arg.raid.action_data, raid32->action_data, 2586 sizeof arg.raid.action_data); 2587 CP(arg.raid, *raid32, ioc_status); 2588 CP(arg.raid, *raid32, write); 2589 break; 2590 2591 case MPRIO_MPR_COMMAND32: 2592 PTROUT_CP(arg.user, *user32, req); 2593 CP(arg.user, *user32, req_len); 2594 PTROUT_CP(arg.user, *user32, rpl); 2595 CP(arg.user, *user32, rpl_len); 2596 PTROUT_CP(arg.user, *user32, buf); 2597 CP(arg.user, *user32, len); 2598 CP(arg.user, *user32, flags); 2599 break; 2600 } 2601 } 2602 2603 return (error); 2604 } 2605 #endif /* COMPAT_FREEBSD32 */ 2606 2607 static int 2608 mpr_ioctl_devsw(struct dev_ioctl_args *ap) 2609 { 2610 cdev_t dev = ap->a_head.a_dev; 2611 u_long cmd = ap->a_cmd; 2612 int flag = ap->a_fflag; 2613 caddr_t arg = ap->a_data; 2614 2615 #ifdef COMPAT_FREEBSD32 2616 if (SV_CURPROC_FLAG(SV_ILP32)) 2617 return (mpr_ioctl32(dev, com, arg, flag, td)); 2618 #endif 2619 return (mpr_ioctl(dev, cmd, arg, flag)); 2620 } 2621