xref: /dragonfly/sys/dev/raid/twe/twe_freebsd.c (revision bcb3e04d)
1 /*-
2  * Copyright (c) 2000 Michael Smith
3  * Copyright (c) 2003 Paul Saab
4  * Copyright (c) 2003 Vinod Kashyap
5  * Copyright (c) 2000 BSDi
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/dev/twe/twe_freebsd.c,v 1.2.2.9 2004/06/11 18:57:31 vkashyap Exp $
30  */
31 
32 /*
33  * FreeBSD-specific code.
34  */
35 
36 #include <dev/raid/twe/twe_compat.h>
37 #include <dev/raid/twe/twereg.h>
38 #include <dev/raid/twe/twe_tables.h>
39 #include <dev/raid/twe/tweio.h>
40 #include <dev/raid/twe/twevar.h>
41 #include <sys/dtype.h>
42 
43 static devclass_t	twe_devclass;
44 
45 #ifdef TWE_DEBUG
46 static u_int32_t	twed_bio_in;
47 #define TWED_BIO_IN	twed_bio_in++
48 static u_int32_t	twed_bio_out;
49 #define TWED_BIO_OUT	twed_bio_out++
50 #else
51 #define TWED_BIO_IN
52 #define TWED_BIO_OUT
53 #endif
54 
55 /********************************************************************************
56  ********************************************************************************
57                                                          Control device interface
58  ********************************************************************************
59  ********************************************************************************/
60 
61 static	d_open_t		twe_open;
62 static	d_close_t		twe_close;
63 static	d_ioctl_t		twe_ioctl_wrapper;
64 
65 static struct dev_ops twe_ops = {
66 	{ "twe", 0, 0 },
67 	.d_open =	twe_open,
68 	.d_close =	twe_close,
69 	.d_ioctl =	twe_ioctl_wrapper,
70 };
71 
72 /********************************************************************************
73  * Accept an open operation on the control device.
74  */
75 static int
76 twe_open(struct dev_open_args *ap)
77 {
78     cdev_t dev = ap->a_head.a_dev;
79     int			unit = minor(dev);
80     struct twe_softc	*sc = devclass_get_softc(twe_devclass, unit);
81 
82     sc->twe_state |= TWE_STATE_OPEN;
83     return(0);
84 }
85 
86 /********************************************************************************
87  * Accept the last close on the control device.
88  */
89 static int
90 twe_close(struct dev_close_args *ap)
91 {
92     cdev_t dev = ap->a_head.a_dev;
93     int			unit = minor(dev);
94     struct twe_softc	*sc = devclass_get_softc(twe_devclass, unit);
95 
96     sc->twe_state &= ~TWE_STATE_OPEN;
97     return (0);
98 }
99 
100 /********************************************************************************
101  * Handle controller-specific control operations.
102  */
103 static int
104 twe_ioctl_wrapper(struct dev_ioctl_args *ap)
105 {
106     cdev_t dev = ap->a_head.a_dev;
107     struct twe_softc *sc = (struct twe_softc *)dev->si_drv1;
108 
109     return(twe_ioctl(sc, ap->a_cmd, ap->a_data));
110 }
111 
112 /********************************************************************************
113  ********************************************************************************
114                                                              PCI device interface
115  ********************************************************************************
116  ********************************************************************************/
117 
118 static int	twe_probe(device_t dev);
119 static int	twe_attach(device_t dev);
120 static void	twe_free(struct twe_softc *sc);
121 static int	twe_detach(device_t dev);
122 static int	twe_shutdown(device_t dev);
123 static int	twe_suspend(device_t dev);
124 static int	twe_resume(device_t dev);
125 static void	twe_pci_intr(void *arg);
126 static void	twe_intrhook(void *arg);
127 static void	twe_free_request(struct twe_request *tr);
128 static void	twe_setup_data_dmamap(void *arg, bus_dma_segment_t *segs,
129 								  int nsegments, int error);
130 static void	twe_setup_request_dmamap(void *arg, bus_dma_segment_t *segs,
131 									 int nsegments, int error);
132 
133 static device_method_t twe_methods[] = {
134     /* Device interface */
135     DEVMETHOD(device_probe,	twe_probe),
136     DEVMETHOD(device_attach,	twe_attach),
137     DEVMETHOD(device_detach,	twe_detach),
138     DEVMETHOD(device_shutdown,	twe_shutdown),
139     DEVMETHOD(device_suspend,	twe_suspend),
140     DEVMETHOD(device_resume,	twe_resume),
141 
142     DEVMETHOD(bus_print_child,	bus_generic_print_child),
143     DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
144     { 0, 0 }
145 };
146 
147 static driver_t twe_pci_driver = {
148 	"twe",
149 	twe_methods,
150 	sizeof(struct twe_softc)
151 };
152 
153 #ifdef TWE_OVERRIDE
154 DRIVER_MODULE(Xtwe, pci, twe_pci_driver, twe_devclass, 0, 0);
155 #else
156 DRIVER_MODULE(twe, pci, twe_pci_driver, twe_devclass, 0, 0);
157 #endif
158 
159 /********************************************************************************
160  * Match a 3ware Escalade ATA RAID controller.
161  */
162 static int
163 twe_probe(device_t dev)
164 {
165 
166     debug_called(4);
167 
168     if ((pci_get_vendor(dev) == TWE_VENDOR_ID) &&
169 	((pci_get_device(dev) == TWE_DEVICE_ID) ||
170 	 (pci_get_device(dev) == TWE_DEVICE_ID_ASIC))) {
171 	device_set_desc(dev, TWE_DEVICE_NAME " driver ver. " TWE_DRIVER_VERSION_STRING);
172 #ifdef TWE_OVERRIDE
173 	return(0);
174 #else
175 	return(-10);
176 #endif
177     }
178     return(ENXIO);
179 }
180 
181 /********************************************************************************
182  * Allocate resources, initialise the controller.
183  */
184 static int
185 twe_attach(device_t dev)
186 {
187     struct twe_softc	*sc;
188     int			rid, error;
189     u_int32_t		command;
190 
191     debug_called(4);
192 
193     /*
194      * Initialise the softc structure.
195      */
196     sc = device_get_softc(dev);
197     sc->twe_dev = dev;
198 
199     sysctl_ctx_init(&sc->sysctl_ctx);
200     sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
201 	SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
202 	device_get_nameunit(dev), CTLFLAG_RD, 0, "");
203     if (sc->sysctl_tree == NULL) {
204 	twe_printf(sc, "cannot add sysctl tree node\n");
205 	return (ENXIO);
206     }
207     SYSCTL_ADD_STRING(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
208 	OID_AUTO, "driver_version", CTLFLAG_RD, TWE_DRIVER_VERSION_STRING, 0,
209 	"TWE driver version");
210 
211     /*
212      * Make sure we are going to be able to talk to this board.
213      */
214     command = pci_read_config(dev, PCIR_COMMAND, 2);
215     if ((command & PCIM_CMD_PORTEN) == 0) {
216 	twe_printf(sc, "register window not available\n");
217 	return(ENXIO);
218     }
219     /*
220      * Force the busmaster enable bit on, in case the BIOS forgot.
221      */
222     command |= PCIM_CMD_BUSMASTEREN;
223     pci_write_config(dev, PCIR_COMMAND, command, 2);
224 
225     /*
226      * Allocate the PCI register window.
227      */
228     rid = TWE_IO_CONFIG_REG;
229     if ((sc->twe_io = bus_alloc_resource(dev, SYS_RES_IOPORT, &rid, 0, ~0, 1, RF_ACTIVE)) == NULL) {
230 	twe_printf(sc, "can't allocate register window\n");
231 	twe_free(sc);
232 	return(ENXIO);
233     }
234     sc->twe_btag = rman_get_bustag(sc->twe_io);
235     sc->twe_bhandle = rman_get_bushandle(sc->twe_io);
236 
237     /*
238      * Allocate the parent bus DMA tag appropriate for PCI.
239      */
240     if (bus_dma_tag_create(NULL, 				/* parent */
241 			   1, 0, 				/* alignment, boundary */
242 			   BUS_SPACE_MAXADDR_32BIT, 		/* lowaddr */
243 			   BUS_SPACE_MAXADDR, 			/* highaddr */
244 			   NULL, NULL, 				/* filter, filterarg */
245 			   MAXBSIZE, TWE_MAX_SGL_LENGTH,	/* maxsize, nsegments */
246 			   BUS_SPACE_MAXSIZE_32BIT,		/* maxsegsize */
247 			   BUS_DMA_ALLOCNOW,			/* flags */
248 			   &sc->twe_parent_dmat)) {
249 	twe_printf(sc, "can't allocate parent DMA tag\n");
250 	twe_free(sc);
251 	return(ENOMEM);
252     }
253 
254     /*
255      * Allocate and connect our interrupt.
256      */
257     rid = 0;
258     if ((sc->twe_irq = bus_alloc_resource(sc->twe_dev, SYS_RES_IRQ, &rid, 0, ~0, 1, RF_SHAREABLE | RF_ACTIVE)) == NULL) {
259 	twe_printf(sc, "can't allocate interrupt\n");
260 	twe_free(sc);
261 	return(ENXIO);
262     }
263     if (bus_setup_intr(sc->twe_dev, sc->twe_irq, 0,
264 			twe_pci_intr, sc, &sc->twe_intr, NULL)) {
265 	twe_printf(sc, "can't set up interrupt\n");
266 	twe_free(sc);
267 	return(ENXIO);
268     }
269 
270     /*
271      * Create DMA tag for mapping objects into controller-addressable space.
272      */
273     if (bus_dma_tag_create(sc->twe_parent_dmat, 	/* parent */
274 			   1, 0, 			/* alignment, boundary */
275 			   BUS_SPACE_MAXADDR,		/* lowaddr */
276 			   BUS_SPACE_MAXADDR, 		/* highaddr */
277 			   NULL, NULL, 			/* filter, filterarg */
278 			   MAXBSIZE, TWE_MAX_SGL_LENGTH,/* maxsize, nsegments */
279 			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
280 			   0,				/* flags */
281 			   &sc->twe_buffer_dmat)) {
282 	twe_printf(sc, "can't allocate data buffer DMA tag\n");
283 	twe_free(sc);
284 	return(ENOMEM);
285     }
286 
287     /*
288      * Initialise the controller and driver core.
289      */
290     if ((error = twe_setup(sc))) {
291 	twe_free(sc);
292 	return(error);
293     }
294 
295     /*
296      * Print some information about the controller and configuration.
297      */
298     twe_describe_controller(sc);
299 
300     /*
301      * Create the control device.
302      */
303     sc->twe_dev_t = make_dev(&twe_ops, device_get_unit(sc->twe_dev),
304 			     UID_ROOT, GID_OPERATOR,
305 			     S_IRUSR | S_IWUSR, "twe%d",
306 			     device_get_unit(sc->twe_dev));
307     sc->twe_dev_t->si_drv1 = sc;
308 
309     /*
310      * Schedule ourselves to bring the controller up once interrupts are
311      * available.  This isn't strictly necessary, since we disable
312      * interrupts while probing the controller, but it is more in keeping
313      * with common practice for other disk devices.
314      */
315     sc->twe_ich.ich_func = twe_intrhook;
316     sc->twe_ich.ich_arg = sc;
317     if (config_intrhook_establish(&sc->twe_ich) != 0) {
318 	twe_printf(sc, "can't establish configuration hook\n");
319 	twe_free(sc);
320 	return(ENXIO);
321     }
322 
323     return(0);
324 }
325 
326 /********************************************************************************
327  * Free all of the resources associated with (sc).
328  *
329  * Should not be called if the controller is active.
330  */
331 static void
332 twe_free(struct twe_softc *sc)
333 {
334     struct twe_request	*tr;
335 
336     debug_called(4);
337 
338     /* throw away any command buffers */
339     while ((tr = twe_dequeue_free(sc)) != NULL)
340 	twe_free_request(tr);
341 
342     /* destroy the data-transfer DMA tag */
343     if (sc->twe_buffer_dmat)
344 	bus_dma_tag_destroy(sc->twe_buffer_dmat);
345 
346     /* disconnect the interrupt handler */
347     if (sc->twe_intr)
348 	bus_teardown_intr(sc->twe_dev, sc->twe_irq, sc->twe_intr);
349     if (sc->twe_irq != NULL)
350 	bus_release_resource(sc->twe_dev, SYS_RES_IRQ, 0, sc->twe_irq);
351 
352     /* destroy the parent DMA tag */
353     if (sc->twe_parent_dmat)
354 	bus_dma_tag_destroy(sc->twe_parent_dmat);
355 
356     /* release the register window mapping */
357     if (sc->twe_io != NULL)
358 	bus_release_resource(sc->twe_dev, SYS_RES_IOPORT, TWE_IO_CONFIG_REG, sc->twe_io);
359 
360     dev_ops_remove_minor(&twe_ops, device_get_unit(sc->twe_dev));
361 
362     /* destroy control device */
363     if (sc->twe_dev_t != (cdev_t)NULL)
364 	destroy_dev(sc->twe_dev_t);
365 
366     sysctl_ctx_free(&sc->sysctl_ctx);
367 }
368 
369 /********************************************************************************
370  * Disconnect from the controller completely, in preparation for unload.
371  */
372 static int
373 twe_detach(device_t dev)
374 {
375     struct twe_softc	*sc = device_get_softc(dev);
376     int			error;
377 
378     debug_called(4);
379 
380     error = EBUSY;
381     crit_enter();
382     if (sc->twe_state & TWE_STATE_OPEN)
383 	goto out;
384 
385     /*
386      * Shut the controller down.
387      */
388     if ((error = twe_shutdown(dev)))
389 	goto out;
390 
391     twe_free(sc);
392 
393     error = 0;
394  out:
395     crit_exit();
396     return(error);
397 }
398 
399 /********************************************************************************
400  * Bring the controller down to a dormant state and detach all child devices.
401  *
402  * Note that we can assume that the bioq on the controller is empty, as we won't
403  * allow shutdown if any device is open.
404  */
405 static int
406 twe_shutdown(device_t dev)
407 {
408     struct twe_softc	*sc = device_get_softc(dev);
409     int			i, error = 0;
410 
411     debug_called(4);
412 
413     crit_enter();
414 
415     /*
416      * Delete all our child devices.
417      */
418     for (i = 0; i < TWE_MAX_UNITS; i++) {
419       if (sc->twe_drive[i].td_disk != 0)
420 	if ((error = twe_detach_drive(sc, i)) != 0)
421 	    goto out;
422     }
423 
424     /*
425      * Bring the controller down.
426      */
427     twe_deinit(sc);
428 
429  out:
430     crit_exit();
431     return(error);
432 }
433 
434 /********************************************************************************
435  * Bring the controller to a quiescent state, ready for system suspend.
436  */
437 static int
438 twe_suspend(device_t dev)
439 {
440     struct twe_softc	*sc = device_get_softc(dev);
441 
442     debug_called(4);
443 
444     crit_enter();
445     sc->twe_state |= TWE_STATE_SUSPEND;
446 
447     twe_disable_interrupts(sc);
448     crit_exit();
449 
450     return(0);
451 }
452 
453 /********************************************************************************
454  * Bring the controller back to a state ready for operation.
455  */
456 static int
457 twe_resume(device_t dev)
458 {
459     struct twe_softc	*sc = device_get_softc(dev);
460 
461     debug_called(4);
462 
463     sc->twe_state &= ~TWE_STATE_SUSPEND;
464     twe_enable_interrupts(sc);
465 
466     return(0);
467 }
468 
469 /*******************************************************************************
470  * Take an interrupt, or be poked by other code to look for interrupt-worthy
471  * status.
472  */
473 static void
474 twe_pci_intr(void *arg)
475 {
476     twe_intr((struct twe_softc *)arg);
477 }
478 
479 /********************************************************************************
480  * Delayed-startup hook
481  */
482 static void
483 twe_intrhook(void *arg)
484 {
485     struct twe_softc		*sc = (struct twe_softc *)arg;
486 
487     /* pull ourselves off the intrhook chain */
488     config_intrhook_disestablish(&sc->twe_ich);
489 
490     /* call core startup routine */
491     twe_init(sc);
492 }
493 
494 /********************************************************************************
495  * Given a detected drive, attach it to the bio interface.
496  *
497  * This is called from twe_add_unit.
498  */
499 int
500 twe_attach_drive(struct twe_softc *sc, struct twe_drive *dr)
501 {
502     char	buf[80];
503     int		error = 0;
504 
505     dr->td_disk =  device_add_child(sc->twe_dev, NULL, -1);
506     if (dr->td_disk == NULL) {
507 	twe_printf(sc, "Cannot add unit\n");
508 	return (EIO);
509     }
510     device_set_ivars(dr->td_disk, dr);
511 
512     /*
513      * XXX It would make sense to test the online/initialising bits, but they seem to be
514      * always set...
515      */
516     ksprintf(buf, "Unit %d, %s, %s",
517 	    dr->td_twe_unit,
518 	    twe_describe_code(twe_table_unittype, dr->td_type),
519 	    twe_describe_code(twe_table_unitstate, dr->td_state & TWE_PARAM_UNITSTATUS_MASK));
520     device_set_desc_copy(dr->td_disk, buf);
521 
522     if ((error = bus_generic_attach(sc->twe_dev)) != 0) {
523 	twe_printf(sc, "Cannot attach unit to controller. error = %d\n", error);
524 	error = EIO;
525     }
526     return (error);
527 }
528 
529 /********************************************************************************
530  * Detach the specified unit if it exsists
531  *
532  * This is called from twe_del_unit.
533  */
534 int
535 twe_detach_drive(struct twe_softc *sc, int unit)
536 {
537     int	error = 0;
538 
539     if ((error = device_delete_child(sc->twe_dev, sc->twe_drive[unit].td_disk))) {
540 	twe_printf(sc, "Cannot delete unit. error = %d\n", error);
541 	return (error);
542     }
543     bzero(&sc->twe_drive[unit], sizeof(sc->twe_drive[unit]));
544     return (error);
545 }
546 
547 /********************************************************************************
548  * Clear a PCI parity error.
549  */
550 void
551 twe_clear_pci_parity_error(struct twe_softc *sc)
552 {
553     TWE_CONTROL(sc, TWE_CONTROL_CLEAR_PARITY_ERROR);
554     pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PARITY_ERROR, 2);
555 }
556 
557 /********************************************************************************
558  * Clear a PCI abort.
559  */
560 void
561 twe_clear_pci_abort(struct twe_softc *sc)
562 {
563     TWE_CONTROL(sc, TWE_CONTROL_CLEAR_PCI_ABORT);
564     pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PCI_ABORT, 2);
565 }
566 
567 /********************************************************************************
568  ********************************************************************************
569                                                                       Disk device
570  ********************************************************************************
571  ********************************************************************************/
572 
573 /*
574  * Disk device bus interface
575  */
576 static int twed_probe(device_t dev);
577 static int twed_attach(device_t dev);
578 static int twed_detach(device_t dev);
579 
580 static device_method_t twed_methods[] = {
581     DEVMETHOD(device_probe,	twed_probe),
582     DEVMETHOD(device_attach,	twed_attach),
583     DEVMETHOD(device_detach,	twed_detach),
584     { 0, 0 }
585 };
586 
587 static driver_t twed_driver = {
588     "twed",
589     twed_methods,
590     sizeof(struct twed_softc)
591 };
592 
593 static devclass_t	twed_devclass;
594 #ifdef TWE_OVERRIDE
595 DRIVER_MODULE(Xtwed, Xtwe, twed_driver, twed_devclass, 0, 0);
596 #else
597 DRIVER_MODULE(twed, twe, twed_driver, twed_devclass, 0, 0);
598 #endif
599 
600 /*
601  * Disk device control interface.
602  */
603 static	d_open_t	twed_open;
604 static	d_close_t	twed_close;
605 static	d_strategy_t	twed_strategy;
606 static	d_dump_t	twed_dump;
607 
608 static struct dev_ops twed_ops = {
609 	{ "twed", 0, D_DISK },
610 	.d_open =	twed_open,
611 	.d_close =	twed_close,
612 	.d_read =	physread,
613 	.d_write =	physwrite,
614 	.d_strategy =	twed_strategy,
615 	.d_dump =	twed_dump,
616 };
617 
618 #ifdef FREEBSD_4
619 static int		disks_registered = 0;
620 #endif
621 
622 /********************************************************************************
623  * Handle open from generic layer.
624  *
625  * Note that this is typically only called by the diskslice code, and not
626  * for opens on subdevices (eg. slices, partitions).
627  */
628 static int
629 twed_open(struct dev_open_args *ap)
630 {
631     cdev_t dev = ap->a_head.a_dev;
632     struct twed_softc	*sc = (struct twed_softc *)dev->si_drv1;
633 
634     debug_called(4);
635 
636     if (sc == NULL)
637 	return (ENXIO);
638 
639     /* check that the controller is up and running */
640     if (sc->twed_controller->twe_state & TWE_STATE_SHUTDOWN)
641 	return(ENXIO);
642 #if 0
643     /* build disk info */
644     bzero(&info, sizeof(info));
645     info.d_media_blksize    = TWE_BLOCK_SIZE;	/* mandatory */
646     info.d_media_blocks	    = sc->twed_drive->td_size;
647 
648     info.d_type		= DTYPE_ESDI;		/* optional */
649     info.d_secpertrack	= sc->twed_drive->td_sectors;
650     info.d_nheads	= sc->twed_drive->td_heads;
651     info.d_ncylinders	= sc->twed_drive->td_cylinders;
652     info.d_secpercyl	= sc->twed_drive->td_sectors * sc->twed_drive->td_heads;
653 
654     disk_setdiskinfo(&sc->twed_disk, &info);
655 #endif
656     sc->twed_flags |= TWED_OPEN;
657     return (0);
658 }
659 
660 /********************************************************************************
661  * Handle last close of the disk device.
662  */
663 static int
664 twed_close(struct dev_close_args *ap)
665 {
666     cdev_t dev = ap->a_head.a_dev;
667     struct twed_softc	*sc = (struct twed_softc *)dev->si_drv1;
668 
669     debug_called(4);
670 
671     if (sc == NULL)
672 	return (ENXIO);
673 
674     sc->twed_flags &= ~TWED_OPEN;
675     return (0);
676 }
677 
678 /********************************************************************************
679  * Handle an I/O request.
680  */
681 static int
682 twed_strategy(struct dev_strategy_args *ap)
683 {
684     cdev_t dev = ap->a_head.a_dev;
685     struct bio *bio = ap->a_bio;
686     struct twed_softc *sc = dev->si_drv1;
687     struct buf *bp = bio->bio_buf;
688 
689     bio->bio_driver_info = sc;
690 
691     debug_called(4);
692 
693     TWED_BIO_IN;
694 
695     /* bogus disk? */
696     if ((sc == NULL) || (!sc->twed_drive->td_disk)) {
697 	bp->b_error = EINVAL;
698 	bp->b_flags |= B_ERROR;
699 	kprintf("twe: bio for invalid disk!\n");
700 	biodone(bio);
701 	TWED_BIO_OUT;
702 	return(0);
703     }
704 
705     /* perform accounting */
706     devstat_start_transaction(&sc->twed_stats);
707 
708     /* queue the bio on the controller */
709     twe_enqueue_bio(sc->twed_controller, bio);
710 
711     /* poke the controller to start I/O */
712     twe_startio(sc->twed_controller);
713     return(0);
714 }
715 
716 /********************************************************************************
717  * System crashdump support
718  */
719 static int
720 twed_dump(struct dev_dump_args *ap)
721 {
722     cdev_t dev = ap->a_head.a_dev;
723     struct twed_softc	*twed_sc = (struct twed_softc *)dev->si_drv1;
724     struct twe_softc	*twe_sc  = (struct twe_softc *)twed_sc->twed_controller;
725     int			error;
726 
727     if (!twed_sc || !twe_sc)
728 	return(ENXIO);
729 
730     if (ap->a_length > 0) {
731 	if ((error = twe_dump_blocks(twe_sc, twed_sc->twed_drive->td_twe_unit,
732 				     ap->a_offset / TWE_BLOCK_SIZE,
733 				     ap->a_virtual, ap->a_length / TWE_BLOCK_SIZE)) != 0)
734 	    return(error);
735     }
736     return(0);
737 }
738 
739 /********************************************************************************
740  * Handle completion of an I/O request.
741  */
742 void
743 twed_intr(struct bio *bio)
744 {
745     struct buf *bp = bio->bio_buf;
746     struct twed_softc *sc = bio->bio_driver_info;
747     debug_called(4);
748 
749     /* if no error, transfer completed */
750     if ((bp->b_flags & B_ERROR) == 0)
751 	bp->b_resid = 0;
752     devstat_end_transaction_buf(&sc->twed_stats, bp);
753     biodone(bio);
754     TWED_BIO_OUT;
755 }
756 
757 /********************************************************************************
758  * Default probe stub.
759  */
760 static int
761 twed_probe(device_t dev)
762 {
763     return (0);
764 }
765 
766 /********************************************************************************
767  * Attach a unit to the controller.
768  */
769 static int
770 twed_attach(device_t dev)
771 {
772     struct twed_softc	*sc;
773 	struct disk_info info;
774     device_t		parent;
775     cdev_t		dsk;
776 
777     debug_called(4);
778 
779     /* initialise our softc */
780     sc = device_get_softc(dev);
781     parent = device_get_parent(dev);
782     sc->twed_controller = (struct twe_softc *)device_get_softc(parent);
783     sc->twed_drive = device_get_ivars(dev);
784     sc->twed_drive->td_sys_unit = device_get_unit(dev);
785     sc->twed_dev = dev;
786 
787     /* report the drive */
788     twed_printf(sc, "%uMB (%u sectors)\n",
789 		sc->twed_drive->td_size / ((1024 * 1024) / TWE_BLOCK_SIZE),
790 		sc->twed_drive->td_size);
791 
792     devstat_add_entry(&sc->twed_stats, "twed", sc->twed_drive->td_sys_unit,
793 			TWE_BLOCK_SIZE,
794 			DEVSTAT_NO_ORDERED_TAGS,
795 			DEVSTAT_TYPE_STORARRAY | DEVSTAT_TYPE_IF_OTHER,
796 			DEVSTAT_PRIORITY_ARRAY);
797 
798     /* attach a generic disk device to ourselves */
799     dsk = disk_create(sc->twed_drive->td_sys_unit, &sc->twed_disk, &twed_ops);
800     dsk->si_drv1 = sc;
801 /*    dsk->si_drv2 = sc->twed_drive;*/
802     sc->twed_dev_t = dsk;
803 #ifdef FREEBSD_4
804     disks_registered++;
805 #endif
806 
807     /* set the maximum I/O size to the theoretical maximum allowed by the S/G list size */
808     dsk->si_iosize_max = (TWE_MAX_SGL_LENGTH - 1) * PAGE_SIZE;
809 
810 	/*
811 	 * Set disk info, as it appears that all needed data is available already.
812 	 * Setting the disk info will also cause the probing to start.
813 	 */
814     bzero(&info, sizeof(info));
815     info.d_media_blksize    = TWE_BLOCK_SIZE;	/* mandatory */
816     info.d_media_blocks	    = sc->twed_drive->td_size;
817 
818     info.d_type		= DTYPE_ESDI;		/* optional */
819     info.d_secpertrack	= sc->twed_drive->td_sectors;
820     info.d_nheads	= sc->twed_drive->td_heads;
821     info.d_ncylinders	= sc->twed_drive->td_cylinders;
822     info.d_secpercyl	= sc->twed_drive->td_sectors * sc->twed_drive->td_heads;
823 
824     disk_setdiskinfo(&sc->twed_disk, &info);
825 
826     return (0);
827 }
828 
829 /********************************************************************************
830  * Disconnect ourselves from the system.
831  */
832 static int
833 twed_detach(device_t dev)
834 {
835     struct twed_softc *sc = (struct twed_softc *)device_get_softc(dev);
836 
837     debug_called(4);
838 
839     if (sc->twed_flags & TWED_OPEN)
840 	return(EBUSY);
841 
842     devstat_remove_entry(&sc->twed_stats);
843     disk_destroy(&sc->twed_disk);
844 #ifdef FREEBSD_4
845 	kprintf("Disks registered: %d\n", disks_registered);
846 #if 0
847     if (--disks_registered == 0)
848 	dev_ops_remove_all(&tweddisk_ops);
849 #endif
850 #endif
851 
852     return(0);
853 }
854 
855 /********************************************************************************
856  ********************************************************************************
857                                                                              Misc
858  ********************************************************************************
859  ********************************************************************************/
860 
861 MALLOC_DEFINE(TWE_MALLOC_CLASS, "twe commands", "twe commands");
862 /********************************************************************************
863  * Allocate a command buffer
864  */
865 struct twe_request *
866 twe_allocate_request(struct twe_softc *sc)
867 {
868     struct twe_request	*tr;
869 	int aligned_size;
870 
871     /*
872      * TWE requires requests to be 512-byte aligned.  Depend on malloc()
873      * guarenteeing alignment for power-of-2 requests.  Note that the old
874      * (FreeBSD-4.x) malloc code aligned all requests, but the new slab
875      * allocator only guarentees same-size alignment for power-of-2 requests.
876      */
877     aligned_size = (sizeof(struct twe_request) + TWE_ALIGNMASK) &
878            ~TWE_ALIGNMASK;
879     tr = kmalloc(aligned_size, TWE_MALLOC_CLASS, M_INTWAIT|M_ZERO);
880     tr->tr_sc = sc;
881     if (bus_dmamap_create(sc->twe_buffer_dmat, 0, &tr->tr_cmdmap)) {
882 	twe_free_request(tr);
883 	return(NULL);
884     }
885     bus_dmamap_load(sc->twe_buffer_dmat, tr->tr_cmdmap, &tr->tr_command,
886 	sizeof(tr->tr_command), twe_setup_request_dmamap, tr, 0);
887     if (bus_dmamap_create(sc->twe_buffer_dmat, 0, &tr->tr_dmamap)) {
888 	bus_dmamap_destroy(sc->twe_buffer_dmat, tr->tr_cmdmap);
889 	twe_free_request(tr);
890 	return(NULL);
891     }
892     return(tr);
893 }
894 
895 /********************************************************************************
896  * Permanently discard a command buffer.
897  */
898 static void
899 twe_free_request(struct twe_request *tr)
900 {
901     struct twe_softc	*sc = tr->tr_sc;
902 
903     debug_called(4);
904 
905     bus_dmamap_unload(sc->twe_buffer_dmat, tr->tr_cmdmap);
906     bus_dmamap_destroy(sc->twe_buffer_dmat, tr->tr_cmdmap);
907     bus_dmamap_destroy(sc->twe_buffer_dmat, tr->tr_dmamap);
908     kfree(tr, TWE_MALLOC_CLASS);
909 }
910 
911 /********************************************************************************
912  * Map/unmap (tr)'s command and data in the controller's addressable space.
913  *
914  * These routines ensure that the data which the controller is going to try to
915  * access is actually visible to the controller, in a machine-independant
916  * fashion.  Due to a hardware limitation, I/O buffers must be 512-byte aligned
917  * and we take care of that here as well.
918  */
919 static void
920 twe_fillin_sgl(TWE_SG_Entry *sgl, bus_dma_segment_t *segs, int nsegments, int max_sgl)
921 {
922     int i;
923 
924     for (i = 0; i < nsegments; i++) {
925 	sgl[i].address = segs[i].ds_addr;
926 	sgl[i].length = segs[i].ds_len;
927     }
928     for (; i < max_sgl; i++) {				/* XXX necessary? */
929 	sgl[i].address = 0;
930 	sgl[i].length = 0;
931     }
932 }
933 
934 static void
935 twe_setup_data_dmamap(void *arg, bus_dma_segment_t *segs, int nsegments, int error)
936 {
937     struct twe_request	*tr = (struct twe_request *)arg;
938     TWE_Command		*cmd = &tr->tr_command;
939 
940     debug_called(4);
941 
942     if (tr->tr_flags & TWE_CMD_MAPPED)
943 	panic("already mapped command");
944 
945     tr->tr_flags |= TWE_CMD_MAPPED;
946 
947     if (tr->tr_flags & TWE_CMD_IN_PROGRESS)
948 	tr->tr_sc->twe_state &= ~TWE_STATE_FRZN;
949     /* save base of first segment in command (applicable if there only one segment) */
950     tr->tr_dataphys = segs[0].ds_addr;
951 
952     /* correct command size for s/g list size */
953     tr->tr_command.generic.size += 2 * nsegments;
954 
955     /*
956      * Due to the fact that parameter and I/O commands have the scatter/gather list in
957      * different places, we need to determine which sort of command this actually is
958      * before we can populate it correctly.
959      */
960     switch(cmd->generic.opcode) {
961     case TWE_OP_GET_PARAM:
962     case TWE_OP_SET_PARAM:
963 	cmd->generic.sgl_offset = 2;
964 	twe_fillin_sgl(&cmd->param.sgl[0], segs, nsegments, TWE_MAX_SGL_LENGTH);
965 	break;
966     case TWE_OP_READ:
967     case TWE_OP_WRITE:
968 	cmd->generic.sgl_offset = 3;
969 	twe_fillin_sgl(&cmd->io.sgl[0], segs, nsegments, TWE_MAX_SGL_LENGTH);
970 	break;
971     case TWE_OP_ATA_PASSTHROUGH:
972 	cmd->generic.sgl_offset = 5;
973 	twe_fillin_sgl(&cmd->ata.sgl[0], segs, nsegments, TWE_MAX_ATA_SGL_LENGTH);
974 	break;
975     default:
976 	/*
977 	 * Fall back to what the linux driver does.
978 	 * Do this because the API may send an opcode
979 	 * the driver knows nothing about and this will
980 	 * at least stop PCIABRT's from hosing us.
981 	 */
982 	switch (cmd->generic.sgl_offset) {
983 	case 2:
984 	    twe_fillin_sgl(&cmd->param.sgl[0], segs, nsegments, TWE_MAX_SGL_LENGTH);
985 	    break;
986 	case 3:
987 	    twe_fillin_sgl(&cmd->io.sgl[0], segs, nsegments, TWE_MAX_SGL_LENGTH);
988 	    break;
989 	case 5:
990 	    twe_fillin_sgl(&cmd->ata.sgl[0], segs, nsegments, TWE_MAX_ATA_SGL_LENGTH);
991 	    break;
992 	}
993     }
994     if (tr->tr_flags & TWE_CMD_DATAIN)
995 	bus_dmamap_sync(tr->tr_sc->twe_buffer_dmat, tr->tr_dmamap, BUS_DMASYNC_PREREAD);
996     if (tr->tr_flags & TWE_CMD_DATAOUT) {
997 	/* if we're using an alignment buffer, and we're writing data, copy the real data out */
998 	if (tr->tr_flags & TWE_CMD_ALIGNBUF)
999 	    bcopy(tr->tr_realdata, tr->tr_data, tr->tr_length);
1000 	bus_dmamap_sync(tr->tr_sc->twe_buffer_dmat, tr->tr_dmamap, BUS_DMASYNC_PREWRITE);
1001     }
1002     if (twe_start(tr) == EBUSY) {
1003 	tr->tr_sc->twe_state |= TWE_STATE_CTLR_BUSY;
1004 	twe_requeue_ready(tr);
1005     }
1006 }
1007 
1008 static void
1009 twe_setup_request_dmamap(void *arg, bus_dma_segment_t *segs, int nsegments, int error)
1010 {
1011     struct twe_request	*tr = (struct twe_request *)arg;
1012 
1013     debug_called(4);
1014 
1015     /* command can't cross a page boundary */
1016     tr->tr_cmdphys = segs[0].ds_addr;
1017 }
1018 
1019 int
1020 twe_map_request(struct twe_request *tr)
1021 {
1022     struct twe_softc	*sc = tr->tr_sc;
1023     int			error = 0;
1024 
1025     debug_called(4);
1026 
1027     if (sc->twe_state & (TWE_STATE_CTLR_BUSY | TWE_STATE_FRZN)) {
1028 	twe_requeue_ready(tr);
1029 	return (EBUSY);
1030     }
1031 
1032     /*
1033      * Map the command into bus space.
1034      */
1035     bus_dmamap_sync(sc->twe_buffer_dmat, tr->tr_cmdmap, BUS_DMASYNC_PREWRITE);
1036 
1037     /*
1038      * If the command involves data, map that too.
1039      */
1040     if ((tr->tr_data != NULL) && ((tr->tr_flags & TWE_CMD_MAPPED) == 0)) {
1041 
1042 	/*
1043 	 * Data must be 512-byte aligned; allocate a fixup buffer if it's not.
1044 	 *
1045 	 * DragonFly's malloc only guarentees alignment for requests which
1046 	 * are power-of-2 sized.
1047 	 */
1048 	if (((vm_offset_t)tr->tr_data % TWE_ALIGNMENT) != 0) {
1049 	    int aligned_size;
1050 
1051 	    tr->tr_realdata = tr->tr_data;	/* save pointer to 'real' data */
1052 	    aligned_size = TWE_ALIGNMENT;
1053 	    while (aligned_size < tr->tr_length)
1054 		aligned_size <<= 1;
1055 	    tr->tr_flags |= TWE_CMD_ALIGNBUF;
1056 	    tr->tr_data = kmalloc(aligned_size, TWE_MALLOC_CLASS, M_INTWAIT);
1057 	    if (tr->tr_data == NULL) {
1058 		twe_printf(sc, "%s: malloc failed\n", __func__);
1059 		tr->tr_data = tr->tr_realdata; /* restore original data pointer */
1060 		return(ENOMEM);
1061 	    }
1062 	}
1063 
1064 	/*
1065 	 * Map the data buffer into bus space and build the s/g list.
1066 	 */
1067 	if ((error = bus_dmamap_load(sc->twe_buffer_dmat, tr->tr_dmamap, tr->tr_data,
1068 			tr->tr_length, twe_setup_data_dmamap, tr, BUS_DMA_NOWAIT)
1069 			== EINPROGRESS)) {
1070 	    tr->tr_flags |= TWE_CMD_IN_PROGRESS;
1071 	    sc->twe_state |= TWE_STATE_FRZN;
1072 	    error = 0;
1073 	}
1074     } else {
1075 	if ((error = twe_start(tr)) == EBUSY) {
1076 	    sc->twe_state |= TWE_STATE_CTLR_BUSY;
1077 	    twe_requeue_ready(tr);
1078 	}
1079     }
1080 
1081     return(error);
1082 }
1083 
1084 void
1085 twe_unmap_request(struct twe_request *tr)
1086 {
1087     struct twe_softc	*sc = tr->tr_sc;
1088     debug_called(4);
1089 
1090     /*
1091      * Unmap the command from bus space.
1092      */
1093     bus_dmamap_sync(sc->twe_buffer_dmat, tr->tr_cmdmap, BUS_DMASYNC_POSTWRITE);
1094 
1095     /*
1096      * If the command involved data, unmap that too.
1097      */
1098     if (tr->tr_data != NULL) {
1099 
1100 	if (tr->tr_flags & TWE_CMD_DATAIN) {
1101 	    bus_dmamap_sync(sc->twe_buffer_dmat, tr->tr_dmamap, BUS_DMASYNC_POSTREAD);
1102 	    /* if we're using an alignment buffer, and we're reading data, copy the real data in */
1103 	    if (tr->tr_flags & TWE_CMD_ALIGNBUF)
1104 		bcopy(tr->tr_data, tr->tr_realdata, tr->tr_length);
1105 	}
1106 	if (tr->tr_flags & TWE_CMD_DATAOUT)
1107 	    bus_dmamap_sync(sc->twe_buffer_dmat, tr->tr_dmamap, BUS_DMASYNC_POSTWRITE);
1108 
1109 	bus_dmamap_unload(sc->twe_buffer_dmat, tr->tr_dmamap);
1110     }
1111 
1112     /* free alignment buffer if it was used */
1113     if (tr->tr_flags & TWE_CMD_ALIGNBUF) {
1114 	kfree(tr->tr_data, TWE_MALLOC_CLASS);
1115 	tr->tr_data = tr->tr_realdata;		/* restore 'real' data pointer */
1116     }
1117 }
1118 
1119 #ifdef TWE_DEBUG
1120 void twe_report(void);
1121 /********************************************************************************
1122  * Print current controller status, call from DDB.
1123  */
1124 void
1125 twe_report(void)
1126 {
1127     struct twe_softc	*sc;
1128     int			i;
1129 
1130     crit_enter();
1131     for (i = 0; (sc = devclass_get_softc(twe_devclass, i)) != NULL; i++)
1132 	twe_print_controller(sc);
1133     kprintf("twed: total bio count in %u  out %u\n", twed_bio_in, twed_bio_out);
1134     crit_exit();
1135 }
1136 #endif
1137