xref: /dragonfly/sys/dev/raid/vinum/vinumrequest.c (revision 984263bc)
1 /*-
2  * Copyright (c) 1997, 1998, 1999
3  *  Nan Yang Computer Services Limited.  All rights reserved.
4  *
5  *  Parts copyright (c) 1997, 1998 Cybernet Corporation, NetMAX project.
6  *
7  *  Written by Greg Lehey
8  *
9  *  This software is distributed under the so-called ``Berkeley
10  *  License'':
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by Nan Yang Computer
23  *      Services Limited.
24  * 4. Neither the name of the Company nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * This software is provided ``as is'', and any express or implied
29  * warranties, including, but not limited to, the implied warranties of
30  * merchantability and fitness for a particular purpose are disclaimed.
31  * In no event shall the company or contributors be liable for any
32  * direct, indirect, incidental, special, exemplary, or consequential
33  * damages (including, but not limited to, procurement of substitute
34  * goods or services; loss of use, data, or profits; or business
35  * interruption) however caused and on any theory of liability, whether
36  * in contract, strict liability, or tort (including negligence or
37  * otherwise) arising in any way out of the use of this software, even if
38  * advised of the possibility of such damage.
39  *
40  * $Id: vinumrequest.c,v 1.30 2001/01/09 04:20:55 grog Exp grog $
41  * $FreeBSD: src/sys/dev/vinum/vinumrequest.c,v 1.44.2.5 2002/08/28 04:30:56 grog Exp $
42  */
43 
44 #include <dev/vinum/vinumhdr.h>
45 #include <dev/vinum/request.h>
46 #include <sys/resourcevar.h>
47 
48 enum requeststatus bre(struct request *rq,
49     int plexno,
50     daddr_t * diskstart,
51     daddr_t diskend);
52 enum requeststatus bre5(struct request *rq,
53     int plexno,
54     daddr_t * diskstart,
55     daddr_t diskend);
56 enum requeststatus build_read_request(struct request *rq, int volplexno);
57 enum requeststatus build_write_request(struct request *rq);
58 enum requeststatus build_rq_buffer(struct rqelement *rqe, struct plex *plex);
59 int find_alternate_sd(struct request *rq);
60 int check_range_covered(struct request *);
61 void complete_rqe(struct buf *bp);
62 void complete_raid5_write(struct rqelement *);
63 int abortrequest(struct request *rq, int error);
64 void sdio_done(struct buf *bp);
65 int vinum_bounds_check(struct buf *bp, struct volume *vol);
66 caddr_t allocdatabuf(struct rqelement *rqe);
67 void freedatabuf(struct rqelement *rqe);
68 
69 #ifdef VINUMDEBUG
70 struct rqinfo rqinfo[RQINFO_SIZE];
71 struct rqinfo *rqip = rqinfo;
72 
73 void
74 logrq(enum rqinfo_type type, union rqinfou info, struct buf *ubp)
75 {
76     int s = splhigh();
77 
78     microtime(&rqip->timestamp);			    /* when did this happen? */
79     rqip->type = type;
80     rqip->bp = ubp;					    /* user buffer */
81     switch (type) {
82     case loginfo_user_bp:
83     case loginfo_user_bpl:
84     case loginfo_sdio:					    /* subdisk I/O */
85     case loginfo_sdiol:					    /* subdisk I/O launch */
86     case loginfo_sdiodone:				    /* subdisk I/O complete */
87 	bcopy(info.bp, &rqip->info.b, sizeof(struct buf));
88 	rqip->devmajor = major(info.bp->b_dev);
89 	rqip->devminor = minor(info.bp->b_dev);
90 	break;
91 
92     case loginfo_iodone:
93     case loginfo_rqe:
94     case loginfo_raid5_data:
95     case loginfo_raid5_parity:
96 	bcopy(info.rqe, &rqip->info.rqe, sizeof(struct rqelement));
97 	rqip->devmajor = major(info.rqe->b.b_dev);
98 	rqip->devminor = minor(info.rqe->b.b_dev);
99 	break;
100 
101     case loginfo_lockwait:
102     case loginfo_lock:
103     case loginfo_unlock:
104 	bcopy(info.lockinfo, &rqip->info.lockinfo, sizeof(struct rangelock));
105 
106 	break;
107 
108     case loginfo_unused:
109 	break;
110     }
111     rqip++;
112     if (rqip >= &rqinfo[RQINFO_SIZE])			    /* wrap around */
113 	rqip = rqinfo;
114     splx(s);
115 }
116 
117 #endif
118 
119 void
120 vinumstrategy(struct buf *bp)
121 {
122     int volno;
123     struct volume *vol = NULL;
124 
125     switch (DEVTYPE(bp->b_dev)) {
126     case VINUM_SD_TYPE:
127     case VINUM_RAWSD_TYPE:
128 	sdio(bp);
129 	return;
130 
131 	/*
132 	 * In fact, vinum doesn't handle drives: they're
133 	 * handled directly by the disk drivers
134 	 */
135     case VINUM_DRIVE_TYPE:
136     default:
137 	bp->b_error = EIO;				    /* I/O error */
138 	bp->b_flags |= B_ERROR;
139 	biodone(bp);
140 	return;
141 
142     case VINUM_VOLUME_TYPE:				    /* volume I/O */
143 	volno = Volno(bp->b_dev);
144 	vol = &VOL[volno];
145 	if (vol->state != volume_up) {			    /* can't access this volume */
146 	    bp->b_error = EIO;				    /* I/O error */
147 	    bp->b_flags |= B_ERROR;
148 	    biodone(bp);
149 	    return;
150 	}
151 	if (vinum_bounds_check(bp, vol) <= 0) {		    /* don't like them bounds */
152 	    biodone(bp);
153 	    return;
154 	}
155 	/* FALLTHROUGH */
156 	/*
157 	 * Plex I/O is pretty much the same as volume I/O
158 	 * for a single plex.  Indicate this by passing a NULL
159 	 * pointer (set above) for the volume
160 	 */
161     case VINUM_PLEX_TYPE:
162     case VINUM_RAWPLEX_TYPE:
163 	bp->b_resid = bp->b_bcount;			    /* transfer everything */
164 	vinumstart(bp, 0);
165 	return;
166     }
167 }
168 
169 /*
170  * Start a transfer.  Return -1 on error,
171  * 0 if OK, 1 if we need to retry.
172  * Parameter reviveok is set when doing
173  * transfers for revives: it allows transfers to
174  * be started immediately when a revive is in
175  * progress.  During revive, normal transfers
176  * are queued if they share address space with
177  * a currently active revive operation.
178  */
179 int
180 vinumstart(struct buf *bp, int reviveok)
181 {
182     int plexno;
183     int maxplex;					    /* maximum number of plexes to handle */
184     struct volume *vol;
185     struct request *rq;					    /* build up our request here */
186     enum requeststatus status;
187 
188 #if VINUMDEBUG
189     if (debug & DEBUG_LASTREQS)
190 	logrq(loginfo_user_bp, (union rqinfou) bp, bp);
191 #endif
192 
193     if ((bp->b_bcount % DEV_BSIZE) != 0) {		    /* bad length */
194 	bp->b_error = EINVAL;				    /* invalid size */
195 	bp->b_flags |= B_ERROR;
196 	biodone(bp);
197 	return -1;
198     }
199     rq = (struct request *) Malloc(sizeof(struct request)); /* allocate a request struct */
200     if (rq == NULL) {					    /* can't do it */
201 	bp->b_error = ENOMEM;				    /* can't get memory */
202 	bp->b_flags |= B_ERROR;
203 	biodone(bp);
204 	return -1;
205     }
206     bzero(rq, sizeof(struct request));
207 
208     /*
209      * Note the volume ID.  This can be NULL, which
210      * the request building functions use as an
211      * indication for single plex I/O
212      */
213     rq->bp = bp;					    /* and the user buffer struct */
214 
215     if (DEVTYPE(bp->b_dev) == VINUM_VOLUME_TYPE) {	    /* it's a volume, */
216 	rq->volplex.volno = Volno(bp->b_dev);		    /* get the volume number */
217 	vol = &VOL[rq->volplex.volno];			    /* and point to it */
218 	vol->active++;					    /* one more active request */
219 	maxplex = vol->plexes;				    /* consider all its plexes */
220     } else {
221 	vol = NULL;					    /* no volume */
222 	rq->volplex.plexno = Plexno(bp->b_dev);		    /* point to the plex */
223 	rq->isplex = 1;					    /* note that it's a plex */
224 	maxplex = 1;					    /* just the one plex */
225     }
226 
227     if (bp->b_flags & B_READ) {
228 	/*
229 	 * This is a read request.  Decide
230 	 * which plex to read from.
231 	 *
232 	 * There's a potential race condition here,
233 	 * since we're not locked, and we could end
234 	 * up multiply incrementing the round-robin
235 	 * counter.  This doesn't have any serious
236 	 * effects, however.
237 	 */
238 	if (vol != NULL) {
239 	    plexno = vol->preferred_plex;		    /* get the plex to use */
240 	    if (plexno < 0) {				    /* round robin */
241 		plexno = vol->last_plex_read;
242 		vol->last_plex_read++;
243 		if (vol->last_plex_read >= vol->plexes)	    /* got the the end? */
244 		    vol->last_plex_read = 0;		    /* wrap around */
245 	    }
246 	    status = build_read_request(rq, plexno);	    /* build a request */
247 	} else {
248 	    daddr_t diskaddr = bp->b_blkno;		    /* start offset of transfer */
249 	    status = bre(rq,				    /* build a request list */
250 		rq->volplex.plexno,
251 		&diskaddr,
252 		diskaddr + (bp->b_bcount / DEV_BSIZE));
253 	}
254 
255 	if (status > REQUEST_RECOVERED) {		    /* can't satisfy it */
256 	    if (status == REQUEST_DOWN) {		    /* not enough subdisks */
257 		bp->b_error = EIO;			    /* I/O error */
258 		bp->b_flags |= B_ERROR;
259 	    }
260 	    biodone(bp);
261 	    freerq(rq);
262 	    return -1;
263 	}
264 	return launch_requests(rq, reviveok);		    /* now start the requests if we can */
265     } else
266 	/*
267 	 * This is a write operation.  We write to all plexes.  If this is
268 	 * a RAID-4 or RAID-5 plex, we must also update the parity stripe.
269 	 */
270     {
271 	if (vol != NULL)
272 	    status = build_write_request(rq);		    /* Not all the subdisks are up */
273 	else {						    /* plex I/O */
274 	    daddr_t diskstart;
275 
276 	    diskstart = bp->b_blkno;			    /* start offset of transfer */
277 	    status = bre(rq,
278 		Plexno(bp->b_dev),
279 		&diskstart,
280 		bp->b_blkno + (bp->b_bcount / DEV_BSIZE));  /* build requests for the plex */
281 	}
282 	if (status > REQUEST_RECOVERED) {		    /* can't satisfy it */
283 	    if (status == REQUEST_DOWN) {		    /* not enough subdisks */
284 		bp->b_error = EIO;			    /* I/O error */
285 		bp->b_flags |= B_ERROR;
286 	    }
287 	    biodone(bp);
288 	    freerq(rq);
289 	    return -1;
290 	}
291 	return launch_requests(rq, reviveok);		    /* now start the requests if we can */
292     }
293 }
294 
295 /*
296  * Call the low-level strategy routines to
297  * perform the requests in a struct request
298  */
299 int
300 launch_requests(struct request *rq, int reviveok)
301 {
302     struct rqgroup *rqg;
303     int rqno;						    /* loop index */
304     struct rqelement *rqe;				    /* current element */
305     struct drive *drive;
306     int rcount;						    /* request count */
307     int s;
308 
309     /*
310      * First find out whether we're reviving, and the
311      * request contains a conflict.  If so, we hang
312      * the request off plex->waitlist of the first
313      * plex we find which is reviving
314      */
315 
316     if ((rq->flags & XFR_REVIVECONFLICT)		    /* possible revive conflict */
317     &&(!reviveok)) {					    /* and we don't want to do it now, */
318 	struct sd *sd;
319 	struct request *waitlist;			    /* point to the waitlist */
320 
321 	sd = &SD[rq->sdno];
322 	if (sd->waitlist != NULL) {			    /* something there already, */
323 	    waitlist = sd->waitlist;
324 	    while (waitlist->next != NULL)		    /* find the end */
325 		waitlist = waitlist->next;
326 	    waitlist->next = rq;			    /* hook our request there */
327 	} else
328 	    sd->waitlist = rq;				    /* hook our request at the front */
329 
330 #if VINUMDEBUG
331 	if (debug & DEBUG_REVIVECONFLICT)
332 	    log(LOG_DEBUG,
333 		"Revive conflict sd %d: %p\n%s dev %d.%d, offset 0x%x, length %ld\n",
334 		rq->sdno,
335 		rq,
336 		rq->bp->b_flags & B_READ ? "Read" : "Write",
337 		major(rq->bp->b_dev),
338 		minor(rq->bp->b_dev),
339 		rq->bp->b_blkno,
340 		rq->bp->b_bcount);
341 #endif
342 	return 0;					    /* and get out of here */
343     }
344     rq->active = 0;					    /* nothing yet */
345 #if VINUMDEBUG
346     if (debug & DEBUG_ADDRESSES)
347 	log(LOG_DEBUG,
348 	    "Request: %p\n%s dev %d.%d, offset 0x%x, length %ld\n",
349 	    rq,
350 	    rq->bp->b_flags & B_READ ? "Read" : "Write",
351 	    major(rq->bp->b_dev),
352 	    minor(rq->bp->b_dev),
353 	    rq->bp->b_blkno,
354 	    rq->bp->b_bcount);
355     vinum_conf.lastrq = rq;
356     vinum_conf.lastbuf = rq->bp;
357     if (debug & DEBUG_LASTREQS)
358 	logrq(loginfo_user_bpl, (union rqinfou) rq->bp, rq->bp);
359 #endif
360 
361     /*
362      * We used to have an splbio() here anyway, out
363      * of superstition.  With the division of labour
364      * below (first count the requests, then issue
365      * them), it looks as if we don't need this
366      * splbio() protection.  In fact, as dillon
367      * points out, there's a race condition
368      * incrementing and decrementing rq->active and
369      * rqg->active.  This splbio() didn't help
370      * there, because the device strategy routine
371      * can sleep.  Solve this by putting shorter
372      * duration locks on the code.
373      */
374     /*
375      * This loop happens without any participation
376      * of the bottom half, so it requires no
377      * protection.
378      */
379     for (rqg = rq->rqg; rqg != NULL; rqg = rqg->next) {	    /* through the whole request chain */
380 	rqg->active = rqg->count;			    /* they're all active */
381 	for (rqno = 0; rqno < rqg->count; rqno++) {
382 	    rqe = &rqg->rqe[rqno];
383 	    if (rqe->flags & XFR_BAD_SUBDISK)		    /* this subdisk is bad, */
384 		rqg->active--;				    /* one less active request */
385 	}
386 	if (rqg->active)				    /* we have at least one active request, */
387 	    rq->active++;				    /* one more active request group */
388     }
389 
390     /*
391      * Now fire off the requests.  In this loop the
392      * bottom half could be completing requests
393      * before we finish, so we need splbio() protection.
394      */
395     s = splbio ();
396     for (rqg = rq->rqg; rqg != NULL;) {			    /* through the whole request chain */
397 	if (rqg->lockbase >= 0)				    /* this rqg needs a lock first */
398 	    rqg->lock = lockrange(rqg->lockbase, rqg->rq->bp, &PLEX[rqg->plexno]);
399 	rcount = rqg->count;
400 	for (rqno = 0; rqno < rcount;) {
401 	    rqe = &rqg->rqe[rqno];
402 
403 	    /*
404 	     * Point to next rqg before the bottom end
405 	     * changes the structures.
406 	     */
407 	    if (++rqno >= rcount)
408 		rqg = rqg->next;
409 	    if ((rqe->flags & XFR_BAD_SUBDISK) == 0) {	    /* this subdisk is good, */
410 		drive = &DRIVE[rqe->driveno];		    /* look at drive */
411 		drive->active++;
412 		if (drive->active >= drive->maxactive)
413 		    drive->maxactive = drive->active;
414 		vinum_conf.active++;
415 		if (vinum_conf.active >= vinum_conf.maxactive)
416 		    vinum_conf.maxactive = vinum_conf.active;
417 
418 #ifdef VINUMDEBUG
419 		if (debug & DEBUG_ADDRESSES)
420 		    log(LOG_DEBUG,
421 			"  %s dev %d.%d, sd %d, offset 0x%x, devoffset 0x%x, length %ld\n",
422 			rqe->b.b_flags & B_READ ? "Read" : "Write",
423 			major(rqe->b.b_dev),
424 			minor(rqe->b.b_dev),
425 			rqe->sdno,
426 			(u_int) (rqe->b.b_blkno - SD[rqe->sdno].driveoffset),
427 			rqe->b.b_blkno,
428 			rqe->b.b_bcount);
429 		if (debug & DEBUG_LASTREQS)
430 		    logrq(loginfo_rqe, (union rqinfou) rqe, rq->bp);
431 #endif
432 		/* fire off the request */
433 		BUF_STRATEGY(&rqe->b, 0);
434 	    }
435 	}
436     }
437     splx (s);
438     return 0;
439 }
440 
441 /*
442  * define the low-level requests needed to perform a
443  * high-level I/O operation for a specific plex 'plexno'.
444  *
445  * Return REQUEST_OK if all subdisks involved in the request are up,
446  * REQUEST_DOWN if some subdisks are not up, and REQUEST_EOF if the
447  * request is at least partially outside the bounds of the subdisks.
448  *
449  * Modify the pointer *diskstart to point to the end address.  On
450  * read, return on the first bad subdisk, so that the caller
451  * (build_read_request) can try alternatives.
452  *
453  * On entry to this routine, the rqg structures are not assigned.  The
454  * assignment is performed by expandrq().  Strictly speaking, the
455  * elements rqe->sdno of all entries should be set to -1, since 0
456  * (from bzero) is a valid subdisk number.  We avoid this problem by
457  * initializing the ones we use, and not looking at the others (index
458  * >= rqg->requests).
459  */
460 enum requeststatus
461 bre(struct request *rq,
462     int plexno,
463     daddr_t * diskaddr,
464     daddr_t diskend)
465 {
466     int sdno;
467     struct sd *sd;
468     struct rqgroup *rqg;
469     struct buf *bp;					    /* user's bp */
470     struct plex *plex;
471     enum requeststatus status;				    /* return value */
472     daddr_t plexoffset;					    /* offset of transfer in plex */
473     daddr_t stripebase;					    /* base address of stripe (1st subdisk) */
474     daddr_t stripeoffset;				    /* offset in stripe */
475     daddr_t blockoffset;				    /* offset in stripe on subdisk */
476     struct rqelement *rqe;				    /* point to this request information */
477     daddr_t diskstart = *diskaddr;			    /* remember where this transfer starts */
478     enum requeststatus s;				    /* temp return value */
479 
480     bp = rq->bp;					    /* buffer pointer */
481     status = REQUEST_OK;				    /* return value: OK until proven otherwise */
482     plex = &PLEX[plexno];				    /* point to the plex */
483 
484     switch (plex->organization) {
485     case plex_concat:
486 	sd = NULL;					    /* (keep compiler quiet) */
487 	for (sdno = 0; sdno < plex->subdisks; sdno++) {
488 	    sd = &SD[plex->sdnos[sdno]];
489 	    if (*diskaddr < sd->plexoffset)		    /* we must have a hole, */
490 		status = REQUEST_DEGRADED;		    /* note the fact */
491 	    if (*diskaddr < (sd->plexoffset + sd->sectors)) { /* the request starts in this subdisk */
492 		rqg = allocrqg(rq, 1);			    /* space for the request */
493 		if (rqg == NULL) {			    /* malloc failed */
494 		    bp->b_error = ENOMEM;
495 		    bp->b_flags |= B_ERROR;
496 		    return REQUEST_ENOMEM;
497 		}
498 		rqg->plexno = plexno;
499 
500 		rqe = &rqg->rqe[0];			    /* point to the element */
501 		rqe->rqg = rqg;				    /* group */
502 		rqe->sdno = sd->sdno;			    /* put in the subdisk number */
503 		plexoffset = *diskaddr;			    /* start offset in plex */
504 		rqe->sdoffset = plexoffset - sd->plexoffset; /* start offset in subdisk */
505 		rqe->useroffset = plexoffset - diskstart;   /* start offset in user buffer */
506 		rqe->dataoffset = 0;
507 		rqe->datalen = min(diskend - *diskaddr,	    /* number of sectors to transfer in this sd */
508 		    sd->sectors - rqe->sdoffset);
509 		rqe->groupoffset = 0;			    /* no groups for concatenated plexes */
510 		rqe->grouplen = 0;
511 		rqe->buflen = rqe->datalen;		    /* buffer length is data buffer length */
512 		rqe->flags = 0;
513 		rqe->driveno = sd->driveno;
514 		if (sd->state != sd_up) {		    /* *now* we find the sd is down */
515 		    s = checksdstate(sd, rq, *diskaddr, diskend); /* do we need to change state? */
516 		    if (s == REQUEST_DOWN) {		    /* down? */
517 			rqe->flags = XFR_BAD_SUBDISK;	    /* yup */
518 			if (rq->bp->b_flags & B_READ)	    /* read request, */
519 			    return REQUEST_DEGRADED;	    /* give up here */
520 			/*
521 			 * If we're writing, don't give up
522 			 * because of a bad subdisk.  Go
523 			 * through to the bitter end, but note
524 			 * which ones we can't access.
525 			 */
526 			status = REQUEST_DEGRADED;	    /* can't do it all */
527 		    }
528 		}
529 		*diskaddr += rqe->datalen;		    /* bump the address */
530 		if (build_rq_buffer(rqe, plex)) {	    /* build the buffer */
531 		    deallocrqg(rqg);
532 		    bp->b_error = ENOMEM;
533 		    bp->b_flags |= B_ERROR;
534 		    return REQUEST_ENOMEM;		    /* can't do it */
535 		}
536 	    }
537 	    if (*diskaddr == diskend)			    /* we're finished, */
538 		break;					    /* get out of here */
539 	}
540 	/*
541 	 * We've got to the end of the plex.  Have we got to the end of
542 	 * the transfer?  It would seem that having an offset beyond the
543 	 * end of the subdisk is an error, but in fact it can happen if
544 	 * the volume has another plex of different size.  There's a valid
545 	 * question as to why you would want to do this, but currently
546 	 * it's allowed.
547 	 *
548 	 * In a previous version, I returned REQUEST_DOWN here.  I think
549 	 * REQUEST_EOF is more appropriate now.
550 	 */
551 	if (diskend > sd->sectors + sd->plexoffset)	    /* pointing beyond EOF? */
552 	    status = REQUEST_EOF;
553 	break;
554 
555     case plex_striped:
556 	{
557 	    while (*diskaddr < diskend) {		    /* until we get it all sorted out */
558 		if (*diskaddr >= plex->length)		    /* beyond the end of the plex */
559 		    return REQUEST_EOF;			    /* can't continue */
560 
561 		/* The offset of the start address from the start of the stripe. */
562 		stripeoffset = *diskaddr % (plex->stripesize * plex->subdisks);
563 
564 		/* The plex-relative address of the start of the stripe. */
565 		stripebase = *diskaddr - stripeoffset;
566 
567 		/* The number of the subdisk in which the start is located. */
568 		sdno = stripeoffset / plex->stripesize;
569 
570 		/* The offset from the beginning of the stripe on this subdisk. */
571 		blockoffset = stripeoffset % plex->stripesize;
572 
573 		sd = &SD[plex->sdnos[sdno]];		    /* the subdisk in question */
574 		rqg = allocrqg(rq, 1);			    /* space for the request */
575 		if (rqg == NULL) {			    /* malloc failed */
576 		    bp->b_error = ENOMEM;
577 		    bp->b_flags |= B_ERROR;
578 		    return REQUEST_ENOMEM;
579 		}
580 		rqg->plexno = plexno;
581 
582 		rqe = &rqg->rqe[0];			    /* point to the element */
583 		rqe->rqg = rqg;
584 		rqe->sdoffset = stripebase / plex->subdisks + blockoffset; /* start offset in this subdisk */
585 		rqe->useroffset = *diskaddr - diskstart;    /* The offset of the start in the user buffer */
586 		rqe->dataoffset = 0;
587 		rqe->datalen = min(diskend - *diskaddr,	    /* the amount remaining to transfer */
588 		    plex->stripesize - blockoffset);	    /* and the amount left in this stripe */
589 		rqe->groupoffset = 0;			    /* no groups for striped plexes */
590 		rqe->grouplen = 0;
591 		rqe->buflen = rqe->datalen;		    /* buffer length is data buffer length */
592 		rqe->flags = 0;
593 		rqe->sdno = sd->sdno;			    /* put in the subdisk number */
594 		rqe->driveno = sd->driveno;
595 
596 		if (sd->state != sd_up) {		    /* *now* we find the sd is down */
597 		    s = checksdstate(sd, rq, *diskaddr, diskend); /* do we need to change state? */
598 		    if (s == REQUEST_DOWN) {		    /* down? */
599 			rqe->flags = XFR_BAD_SUBDISK;	    /* yup */
600 			if (rq->bp->b_flags & B_READ)	    /* read request, */
601 			    return REQUEST_DEGRADED;	    /* give up here */
602 			/*
603 			 * If we're writing, don't give up
604 			 * because of a bad subdisk.  Go through
605 			 * to the bitter end, but note which
606 			 * ones we can't access.
607 			 */
608 			status = REQUEST_DEGRADED;	    /* can't do it all */
609 		    }
610 		}
611 		/*
612 		 * It would seem that having an offset
613 		 * beyond the end of the subdisk is an
614 		 * error, but in fact it can happen if the
615 		 * volume has another plex of different
616 		 * size.  There's a valid question as to why
617 		 * you would want to do this, but currently
618 		 * it's allowed.
619 		 */
620 		if (rqe->sdoffset + rqe->datalen > sd->sectors) { /* ends beyond the end of the subdisk? */
621 		    rqe->datalen = sd->sectors - rqe->sdoffset;	/* truncate */
622 #if VINUMDEBUG
623 		    if (debug & DEBUG_EOFINFO) {	    /* tell on the request */
624 			log(LOG_DEBUG,
625 			    "vinum: EOF on plex %s, sd %s offset %x (user offset %x)\n",
626 			    plex->name,
627 			    sd->name,
628 			    (u_int) sd->sectors,
629 			    bp->b_blkno);
630 			log(LOG_DEBUG,
631 			    "vinum: stripebase %x, stripeoffset %x, blockoffset %x\n",
632 			    stripebase,
633 			    stripeoffset,
634 			    blockoffset);
635 		    }
636 #endif
637 		}
638 		if (build_rq_buffer(rqe, plex)) {	    /* build the buffer */
639 		    deallocrqg(rqg);
640 		    bp->b_error = ENOMEM;
641 		    bp->b_flags |= B_ERROR;
642 		    return REQUEST_ENOMEM;		    /* can't do it */
643 		}
644 		*diskaddr += rqe->datalen;		    /* look at the remainder */
645 		if ((*diskaddr < diskend)		    /* didn't finish the request on this stripe */
646 		&&(*diskaddr < plex->length)) {		    /* and there's more to come */
647 		    plex->multiblock++;			    /* count another one */
648 		    if (sdno == plex->subdisks - 1)	    /* last subdisk, */
649 			plex->multistripe++;		    /* another stripe as well */
650 		}
651 	    }
652 	}
653 	break;
654 
655 	/*
656 	 * RAID-4 and RAID-5 are complicated enough to have their own
657 	 * function.
658 	 */
659     case plex_raid4:
660     case plex_raid5:
661 	status = bre5(rq, plexno, diskaddr, diskend);
662 	break;
663 
664     default:
665 	log(LOG_ERR, "vinum: invalid plex type %d in bre\n", plex->organization);
666 	status = REQUEST_DOWN;				    /* can't access it */
667     }
668 
669     return status;
670 }
671 
672 /*
673  * Build up a request structure for reading volumes.
674  * This function is not needed for plex reads, since there's
675  * no recovery if a plex read can't be satisified.
676  */
677 enum requeststatus
678 build_read_request(struct request *rq,			    /* request */
679     int plexindex)
680 {							    /* index in the volume's plex table */
681     struct buf *bp;
682     daddr_t startaddr;					    /* offset of previous part of transfer */
683     daddr_t diskaddr;					    /* offset of current part of transfer */
684     daddr_t diskend;					    /* and end offset of transfer */
685     int plexno;						    /* plex index in vinum_conf */
686     struct rqgroup *rqg;				    /* point to the request we're working on */
687     struct volume *vol;					    /* volume in question */
688     int recovered = 0;					    /* set if we recover a read */
689     enum requeststatus status = REQUEST_OK;
690     int plexmask;					    /* bit mask of plexes, for recovery */
691 
692     bp = rq->bp;					    /* buffer pointer */
693     diskaddr = bp->b_blkno;				    /* start offset of transfer */
694     diskend = diskaddr + (bp->b_bcount / DEV_BSIZE);	    /* and end offset of transfer */
695     rqg = &rq->rqg[plexindex];				    /* plex request */
696     vol = &VOL[rq->volplex.volno];			    /* point to volume */
697 
698     while (diskaddr < diskend) {			    /* build up request components */
699 	startaddr = diskaddr;
700 	status = bre(rq, vol->plex[plexindex], &diskaddr, diskend); /* build up a request */
701 	switch (status) {
702 	case REQUEST_OK:
703 	    continue;
704 
705 	case REQUEST_RECOVERED:
706 	    /*
707 	     * XXX FIXME if we have more than one plex, and we can
708 	     * satisfy the request from another, don't use the
709 	     * recovered request, since it's more expensive.
710 	     */
711 	    recovered = 1;
712 	    break;
713 
714 	case REQUEST_ENOMEM:
715 	    return status;
716 	    /*
717 	     * If we get here, our request is not complete.  Try
718 	     * to fill in the missing parts from another plex.
719 	     * This can happen multiple times in this function,
720 	     * and we reinitialize the plex mask each time, since
721 	     * we could have a hole in our plexes.
722 	     */
723 	case REQUEST_EOF:
724 	case REQUEST_DOWN:				    /* can't access the plex */
725 	case REQUEST_DEGRADED:				    /* can't access the plex */
726 	    plexmask = ((1 << vol->plexes) - 1)		    /* all plexes in the volume */
727 	    &~(1 << plexindex);				    /* except for the one we were looking at */
728 	    for (plexno = 0; plexno < vol->plexes; plexno++) {
729 		if (plexmask == 0)			    /* no plexes left to try */
730 		    return REQUEST_DOWN;		    /* failed */
731 		diskaddr = startaddr;			    /* start at the beginning again */
732 		if (plexmask & (1 << plexno)) {		    /* we haven't tried this plex yet */
733 		    bre(rq, vol->plex[plexno], &diskaddr, diskend); /* try a request */
734 		    if (diskaddr > startaddr) {		    /* we satisfied another part */
735 			recovered = 1;			    /* we recovered from the problem */
736 			status = REQUEST_OK;		    /* don't complain about it */
737 			break;
738 		    }
739 		}
740 	    }
741 	    if (diskaddr == startaddr)			    /* didn't get any further, */
742 		return status;
743 	}
744 	if (recovered)
745 	    vol->recovered_reads += recovered;		    /* adjust our recovery count */
746     }
747     return status;
748 }
749 
750 /*
751  * Build up a request structure for writes.
752  * Return 0 if all subdisks involved in the request are up, 1 if some
753  * subdisks are not up, and -1 if the request is at least partially
754  * outside the bounds of the subdisks.
755  */
756 enum requeststatus
757 build_write_request(struct request *rq)
758 {							    /* request */
759     struct buf *bp;
760     daddr_t diskstart;					    /* offset of current part of transfer */
761     daddr_t diskend;					    /* and end offset of transfer */
762     int plexno;						    /* plex index in vinum_conf */
763     struct volume *vol;					    /* volume in question */
764     enum requeststatus status;
765 
766     bp = rq->bp;					    /* buffer pointer */
767     vol = &VOL[rq->volplex.volno];			    /* point to volume */
768     diskend = bp->b_blkno + (bp->b_bcount / DEV_BSIZE);	    /* end offset of transfer */
769     status = REQUEST_DOWN;				    /* assume the worst */
770     for (plexno = 0; plexno < vol->plexes; plexno++) {
771 	diskstart = bp->b_blkno;			    /* start offset of transfer */
772 	/*
773 	 * Build requests for the plex.
774 	 * We take the best possible result here (min,
775 	 * not max): we're happy if we can write at all
776 	 */
777 	status = min(status, bre(rq,
778 		vol->plex[plexno],
779 		&diskstart,
780 		diskend));
781     }
782     return status;
783 }
784 
785 /* Fill in the struct buf part of a request element. */
786 enum requeststatus
787 build_rq_buffer(struct rqelement *rqe, struct plex *plex)
788 {
789     struct sd *sd;					    /* point to subdisk */
790     struct volume *vol;
791     struct buf *bp;
792     struct buf *ubp;					    /* user (high level) buffer header */
793 
794     vol = &VOL[rqe->rqg->rq->volplex.volno];
795     sd = &SD[rqe->sdno];				    /* point to subdisk */
796     bp = &rqe->b;
797     ubp = rqe->rqg->rq->bp;				    /* pointer to user buffer header */
798 
799     /* Initialize the buf struct */
800     /* copy these flags from user bp */
801     bp->b_flags = ubp->b_flags & (B_ORDERED | B_NOCACHE | B_READ | B_ASYNC);
802     bp->b_flags |= B_CALL;				    /* inform us when it's done */
803 #ifdef VINUMDEBUG
804     if (rqe->flags & XFR_BUFLOCKED)			    /* paranoia */
805 	panic("build_rq_buffer: rqe already locked");	    /* XXX remove this when we're sure */
806 #endif
807     BUF_LOCKINIT(bp);					    /* get a lock for the buffer */
808     BUF_LOCK(bp, LK_EXCLUSIVE);				    /* and lock it */
809     BUF_KERNPROC(bp);
810     rqe->flags |= XFR_BUFLOCKED;
811     bp->b_iodone = complete_rqe;
812     /*
813      * You'd think that we wouldn't need to even
814      * build the request buffer for a dead subdisk,
815      * but in some cases we need information like
816      * the user buffer address.  Err on the side of
817      * generosity and supply what we can.  That
818      * obviously doesn't include drive information
819      * when the drive is dead.
820      */
821     if ((rqe->flags & XFR_BAD_SUBDISK) == 0)		    /* subdisk is accessible, */
822 	bp->b_dev = DRIVE[rqe->driveno].dev;		    /* drive device */
823     bp->b_blkno = rqe->sdoffset + sd->driveoffset;	    /* start address */
824     bp->b_bcount = rqe->buflen << DEV_BSHIFT;		    /* number of bytes to transfer */
825     bp->b_resid = bp->b_bcount;				    /* and it's still all waiting */
826     bp->b_bufsize = bp->b_bcount;			    /* and buffer size */
827     bp->b_rcred = FSCRED;				    /* we have the file system credentials */
828     bp->b_wcred = FSCRED;				    /* we have the file system credentials */
829 
830     if (rqe->flags & XFR_MALLOCED) {			    /* this operation requires a malloced buffer */
831 	bp->b_data = Malloc(bp->b_bcount);		    /* get a buffer to put it in */
832 	if (bp->b_data == NULL) {			    /* failed */
833 	    abortrequest(rqe->rqg->rq, ENOMEM);
834 	    return REQUEST_ENOMEM;			    /* no memory */
835 	}
836     } else
837 	/*
838 	 * Point directly to user buffer data.  This means
839 	 * that we don't need to do anything when we have
840 	 * finished the transfer
841 	 */
842 	bp->b_data = ubp->b_data + rqe->useroffset * DEV_BSIZE;
843     /*
844      * On a recovery read, we perform an XOR of
845      * all blocks to the user buffer.  To make
846      * this work, we first clean out the buffer
847      */
848     if ((rqe->flags & (XFR_RECOVERY_READ | XFR_BAD_SUBDISK))
849 	== (XFR_RECOVERY_READ | XFR_BAD_SUBDISK)) {	    /* bad subdisk of a recovery read */
850 	int length = rqe->grouplen << DEV_BSHIFT;	    /* and count involved */
851 	char *data = (char *) &rqe->b.b_data[rqe->groupoffset << DEV_BSHIFT]; /* destination */
852 
853 	bzero(data, length);				    /* clean it out */
854     }
855     return 0;
856 }
857 
858 /*
859  * Abort a request: free resources and complete the
860  * user request with the specified error
861  */
862 int
863 abortrequest(struct request *rq, int error)
864 {
865     struct buf *bp = rq->bp;				    /* user buffer */
866 
867     bp->b_error = error;
868     freerq(rq);						    /* free everything we're doing */
869     bp->b_flags |= B_ERROR;
870     return error;					    /* and give up */
871 }
872 
873 /*
874  * Check that our transfer will cover the
875  * complete address space of the user request.
876  *
877  * Return 1 if it can, otherwise 0
878  */
879 int
880 check_range_covered(struct request *rq)
881 {
882     return 1;
883 }
884 
885 /* Perform I/O on a subdisk */
886 void
887 sdio(struct buf *bp)
888 {
889     int s;						    /* spl */
890     struct sd *sd;
891     struct sdbuf *sbp;
892     daddr_t endoffset;
893     struct drive *drive;
894 
895 #if VINUMDEBUG
896     if (debug & DEBUG_LASTREQS)
897 	logrq(loginfo_sdio, (union rqinfou) bp, bp);
898 #endif
899     sd = &SD[Sdno(bp->b_dev)];				    /* point to the subdisk */
900     drive = &DRIVE[sd->driveno];
901 
902     if (drive->state != drive_up) {
903 	if (sd->state >= sd_crashed) {
904 	    if ((bp->b_flags & B_READ) == 0)		    /* writing, */
905 		set_sd_state(sd->sdno, sd_stale, setstate_force);
906 	    else
907 		set_sd_state(sd->sdno, sd_crashed, setstate_force);
908 	}
909 	bp->b_error = EIO;
910 	bp->b_flags |= B_ERROR;
911 	biodone(bp);
912 	return;
913     }
914     /*
915      * We allow access to any kind of subdisk as long as we can expect
916      * to get the I/O performed.
917      */
918     if (sd->state < sd_empty) {				    /* nothing to talk to, */
919 	bp->b_error = EIO;
920 	bp->b_flags |= B_ERROR;
921 	biodone(bp);
922 	return;
923     }
924     /* Get a buffer */
925     sbp = (struct sdbuf *) Malloc(sizeof(struct sdbuf));
926     if (sbp == NULL) {
927 	bp->b_error = ENOMEM;
928 	bp->b_flags |= B_ERROR;
929 	biodone(bp);
930 	return;
931     }
932     bzero(sbp, sizeof(struct sdbuf));			    /* start with nothing */
933     sbp->b.b_flags = bp->b_flags | B_CALL;		    /* inform us when it's done */
934     sbp->b.b_bufsize = bp->b_bufsize;			    /* buffer size */
935     sbp->b.b_bcount = bp->b_bcount;			    /* number of bytes to transfer */
936     sbp->b.b_resid = bp->b_resid;			    /* and amount waiting */
937     sbp->b.b_dev = DRIVE[sd->driveno].dev;		    /* device */
938     sbp->b.b_data = bp->b_data;				    /* data buffer */
939     sbp->b.b_blkno = bp->b_blkno + sd->driveoffset;
940     sbp->b.b_iodone = sdio_done;			    /* come here on completion */
941     BUF_LOCKINIT(&sbp->b);				    /* get a lock for the buffer */
942     BUF_LOCK(&sbp->b, LK_EXCLUSIVE);			    /* and lock it */
943     BUF_KERNPROC(&sbp->b);
944     sbp->bp = bp;					    /* note the address of the original header */
945     sbp->sdno = sd->sdno;				    /* note for statistics */
946     sbp->driveno = sd->driveno;
947     endoffset = bp->b_blkno + sbp->b.b_bcount / DEV_BSIZE;  /* final sector offset */
948     if (endoffset > sd->sectors) {			    /* beyond the end */
949 	sbp->b.b_bcount -= (endoffset - sd->sectors) * DEV_BSIZE; /* trim */
950 	if (sbp->b.b_bcount <= 0) {			    /* nothing to transfer */
951 	    bp->b_resid = bp->b_bcount;			    /* nothing transferred */
952 	    biodone(bp);
953 	    BUF_UNLOCK(&sbp->b);
954 	    BUF_LOCKFREE(&sbp->b);
955 	    Free(sbp);
956 	    return;
957 	}
958     }
959 #if VINUMDEBUG
960     if (debug & DEBUG_ADDRESSES)
961 	log(LOG_DEBUG,
962 	    "  %s dev %d.%d, sd %d, offset 0x%x, devoffset 0x%x, length %ld\n",
963 	    sbp->b.b_flags & B_READ ? "Read" : "Write",
964 	    major(sbp->b.b_dev),
965 	    minor(sbp->b.b_dev),
966 	    sbp->sdno,
967 	    (u_int) (sbp->b.b_blkno - SD[sbp->sdno].driveoffset),
968 	    (int) sbp->b.b_blkno,
969 	    sbp->b.b_bcount);
970 #endif
971     s = splbio();
972 #if VINUMDEBUG
973     if (debug & DEBUG_LASTREQS)
974 	logrq(loginfo_sdiol, (union rqinfou) &sbp->b, &sbp->b);
975 #endif
976     BUF_STRATEGY(&sbp->b, 0);
977     splx(s);
978 }
979 
980 /*
981  * Simplified version of bounds_check_with_label
982  * Determine the size of the transfer, and make sure it is
983  * within the boundaries of the partition. Adjust transfer
984  * if needed, and signal errors or early completion.
985  *
986  * Volumes are simpler than disk slices: they only contain
987  * one component (though we call them a, b and c to make
988  * system utilities happy), and they always take up the
989  * complete space of the "partition".
990  *
991  * I'm still not happy with this: why should the label be
992  * protected?  If it weren't so damned difficult to write
993  * one in the first pleace (because it's protected), it wouldn't
994  * be a problem.
995  */
996 int
997 vinum_bounds_check(struct buf *bp, struct volume *vol)
998 {
999     int maxsize = vol->size;				    /* size of the partition (sectors) */
1000     int size = (bp->b_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT; /* size of this request (sectors) */
1001 
1002     /* Would this transfer overwrite the disk label? */
1003     if (bp->b_blkno <= LABELSECTOR			    /* starts before or at the label */
1004 #if LABELSECTOR != 0
1005 	&& bp->b_blkno + size > LABELSECTOR		    /* and finishes after */
1006 #endif
1007 	&& (!(vol->flags & VF_RAW))			    /* and it's not raw */
1008 	&&((bp->b_flags & B_READ) == 0)			    /* and it's a write */
1009 	&&(!vol->flags & (VF_WLABEL | VF_LABELLING))) {	    /* and we're not allowed to write the label */
1010 	bp->b_error = EROFS;				    /* read-only */
1011 	bp->b_flags |= B_ERROR;
1012 	return -1;
1013     }
1014     if (size == 0)					    /* no transfer specified, */
1015 	return 0;					    /* treat as EOF */
1016     /* beyond partition? */
1017     if (bp->b_blkno < 0					    /* negative start */
1018 	|| bp->b_blkno + size > maxsize) {		    /* or goes beyond the end of the partition */
1019 	/* if exactly at end of disk, return an EOF */
1020 	if (bp->b_blkno == maxsize) {
1021 	    bp->b_resid = bp->b_bcount;
1022 	    return 0;
1023 	}
1024 	/* or truncate if part of it fits */
1025 	size = maxsize - bp->b_blkno;
1026 	if (size <= 0) {				    /* nothing to transfer */
1027 	    bp->b_error = EINVAL;
1028 	    bp->b_flags |= B_ERROR;
1029 	    return -1;
1030 	}
1031 	bp->b_bcount = size << DEV_BSHIFT;
1032     }
1033     bp->b_pblkno = bp->b_blkno;
1034     return 1;
1035 }
1036 
1037 /*
1038  * Allocate a request group and hook
1039  * it in in the list for rq
1040  */
1041 struct rqgroup *
1042 allocrqg(struct request *rq, int elements)
1043 {
1044     struct rqgroup *rqg;				    /* the one we're going to allocate */
1045     int size = sizeof(struct rqgroup) + elements * sizeof(struct rqelement);
1046 
1047     rqg = (struct rqgroup *) Malloc(size);
1048     if (rqg != NULL) {					    /* malloc OK, */
1049 	if (rq->rqg)					    /* we already have requests */
1050 	    rq->lrqg->next = rqg;			    /* hang it off the end */
1051 	else						    /* first request */
1052 	    rq->rqg = rqg;				    /* at the start */
1053 	rq->lrqg = rqg;					    /* this one is the last in the list */
1054 
1055 	bzero(rqg, size);				    /* no old junk */
1056 	rqg->rq = rq;					    /* point back to the parent request */
1057 	rqg->count = elements;				    /* number of requests in the group */
1058 	rqg->lockbase = -1;				    /* no lock required yet */
1059     }
1060     return rqg;
1061 }
1062 
1063 /*
1064  * Deallocate a request group out of a chain.  We do
1065  * this by linear search: the chain is short, this
1066  * almost never happens, and currently it can only
1067  * happen to the first member of the chain.
1068  */
1069 void
1070 deallocrqg(struct rqgroup *rqg)
1071 {
1072     struct rqgroup *rqgc = rqg->rq->rqg;		    /* point to the request chain */
1073 
1074     if (rqg->lock)					    /* got a lock? */
1075 	unlockrange(rqg->plexno, rqg->lock);		    /* yes, free it */
1076     if (rqgc == rqg)					    /* we're first in line */
1077 	rqg->rq->rqg = rqg->next;			    /* unhook ourselves */
1078     else {
1079 	while ((rqgc->next != NULL)			    /* find the group */
1080 	&&(rqgc->next != rqg))
1081 	    rqgc = rqgc->next;
1082 	if (rqgc->next == NULL)
1083 	    log(LOG_ERR,
1084 		"vinum deallocrqg: rqg %p not found in request %p\n",
1085 		rqg->rq,
1086 		rqg);
1087 	else
1088 	    rqgc->next = rqg->next;			    /* make the chain jump over us */
1089     }
1090     Free(rqg);
1091 }
1092 
1093 /* Local Variables: */
1094 /* fill-column: 50 */
1095 /* End: */
1096