xref: /dragonfly/sys/kern/imgact_elf.c (revision 0fe46dc6)
1 /*-
2  * Copyright (c) 2000 David O'Brien
3  * Copyright (c) 1995-1996 Søren Schmidt
4  * Copyright (c) 1996 Peter Wemm
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer
12  *    in this position and unchanged.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The name of the author may not be used to endorse or promote products
17  *    derived from this software without specific prior written permission
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  *
30  * $FreeBSD: src/sys/kern/imgact_elf.c,v 1.73.2.13 2002/12/28 19:49:41 dillon Exp $
31  */
32 
33 #include <sys/param.h>
34 #include <sys/exec.h>
35 #include <sys/fcntl.h>
36 #include <sys/file.h>
37 #include <sys/imgact.h>
38 #include <sys/imgact_elf.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/mman.h>
42 #include <sys/systm.h>
43 #include <sys/proc.h>
44 #include <sys/nlookup.h>
45 #include <sys/pioctl.h>
46 #include <sys/procfs.h>
47 #include <sys/resourcevar.h>
48 #include <sys/signalvar.h>
49 #include <sys/stat.h>
50 #include <sys/syscall.h>
51 #include <sys/sysctl.h>
52 #include <sys/sysent.h>
53 #include <sys/vnode.h>
54 #include <sys/eventhandler.h>
55 
56 #include <cpu/lwbuf.h>
57 
58 #include <vm/vm.h>
59 #include <vm/vm_kern.h>
60 #include <vm/vm_param.h>
61 #include <vm/pmap.h>
62 #include <sys/lock.h>
63 #include <vm/vm_map.h>
64 #include <vm/vm_object.h>
65 #include <vm/vm_extern.h>
66 
67 #include <machine/elf.h>
68 #include <machine/md_var.h>
69 #include <sys/mount.h>
70 #include <sys/ckpt.h>
71 
72 #define OLD_EI_BRAND	8
73 #define truncps(va,ps)	((va) & ~(ps - 1))
74 #define aligned(a,t)	(truncps((u_long)(a), sizeof(t)) == (u_long)(a))
75 
76 static int __elfN(check_header)(const Elf_Ehdr *hdr);
77 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp,
78     const char *interp, int32_t *osrel);
79 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
80     u_long *entry);
81 static int __elfN(load_section)(struct proc *p,
82     struct vmspace *vmspace, struct vnode *vp,
83     vm_offset_t offset, caddr_t vmaddr, size_t memsz, size_t filsz,
84     vm_prot_t prot);
85 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp);
86 static boolean_t __elfN(bsd_trans_osrel)(const Elf_Note *note,
87     int32_t *osrel);
88 static boolean_t __elfN(check_note)(struct image_params *imgp,
89     Elf_Brandnote *checknote, int32_t *osrel);
90 static vm_prot_t __elfN(trans_prot)(Elf_Word);
91 static Elf_Word __elfN(untrans_prot)(vm_prot_t);
92 static boolean_t check_PT_NOTE(struct image_params *imgp,
93     Elf_Brandnote *checknote, int32_t *osrel, const Elf_Phdr * pnote);
94 static boolean_t extract_interpreter(struct image_params *imgp,
95     const Elf_Phdr *pinterpreter, char *data);
96 static u_long pie_base_hint(struct proc *p);
97 
98 static int elf_legacy_coredump = 0;
99 static int __elfN(fallback_brand) = -1;
100 static int elf_pie_base_mmap = 0;
101 #if defined(__x86_64__)
102 SYSCTL_NODE(_kern, OID_AUTO, elf64, CTLFLAG_RW, 0, "");
103 SYSCTL_INT(_debug, OID_AUTO, elf64_legacy_coredump, CTLFLAG_RW,
104     &elf_legacy_coredump, 0, "legacy coredump mode");
105 SYSCTL_INT(_kern_elf64, OID_AUTO, fallback_brand, CTLFLAG_RW,
106     &elf64_fallback_brand, 0, "ELF64 brand of last resort");
107 TUNABLE_INT("kern.elf64.fallback_brand", &elf64_fallback_brand);
108 SYSCTL_INT(_kern_elf64, OID_AUTO, pie_base_mmap, CTLFLAG_RW,
109     &elf_pie_base_mmap, 0,
110     "choose a base address for PIE as if it is mapped with mmap()");
111 TUNABLE_INT("kern.elf64.pie_base_mmap", &elf_pie_base_mmap);
112 #else /* i386 assumed */
113 SYSCTL_NODE(_kern, OID_AUTO, elf32, CTLFLAG_RW, 0, "");
114 SYSCTL_INT(_debug, OID_AUTO, elf32_legacy_coredump, CTLFLAG_RW,
115     &elf_legacy_coredump, 0, "legacy coredump mode");
116 SYSCTL_INT(_kern_elf32, OID_AUTO, fallback_brand, CTLFLAG_RW,
117     &elf32_fallback_brand, 0, "ELF32 brand of last resort");
118 TUNABLE_INT("kern.elf32.fallback_brand", &elf32_fallback_brand);
119 SYSCTL_INT(_kern_elf32, OID_AUTO, pie_base_mmap, CTLFLAG_RW,
120     &elf_pie_base_mmap, 0,
121     "choose a base address for PIE as if it is mapped with mmap()");
122 TUNABLE_INT("kern.elf32.pie_base_mmap", &elf_pie_base_mmap);
123 #endif
124 
125 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS];
126 
127 static const char DRAGONFLY_ABI_VENDOR[] = "DragonFly";
128 static const char FREEBSD_ABI_VENDOR[]   = "FreeBSD";
129 
130 Elf_Brandnote __elfN(dragonfly_brandnote) = {
131 	.hdr.n_namesz	= sizeof(DRAGONFLY_ABI_VENDOR),
132 	.hdr.n_descsz	= sizeof(int32_t),
133 	.hdr.n_type	= 1,
134 	.vendor		= DRAGONFLY_ABI_VENDOR,
135 	.flags		= BN_TRANSLATE_OSREL,
136 	.trans_osrel	= __elfN(bsd_trans_osrel),
137 };
138 
139 Elf_Brandnote __elfN(freebsd_brandnote) = {
140 	.hdr.n_namesz	= sizeof(FREEBSD_ABI_VENDOR),
141 	.hdr.n_descsz	= sizeof(int32_t),
142 	.hdr.n_type	= 1,
143 	.vendor		= FREEBSD_ABI_VENDOR,
144 	.flags		= BN_TRANSLATE_OSREL,
145 	.trans_osrel	= __elfN(bsd_trans_osrel),
146 };
147 
148 int
149 __elfN(insert_brand_entry)(Elf_Brandinfo *entry)
150 {
151 	int i;
152 
153 	for (i = 0; i < MAX_BRANDS; i++) {
154 		if (elf_brand_list[i] == NULL) {
155 			elf_brand_list[i] = entry;
156 			break;
157 		}
158 	}
159 	if (i == MAX_BRANDS) {
160 		uprintf("WARNING: %s: could not insert brandinfo entry: %p\n",
161 			__func__, entry);
162 		return (-1);
163 	}
164 	return (0);
165 }
166 
167 int
168 __elfN(remove_brand_entry)(Elf_Brandinfo *entry)
169 {
170 	int i;
171 
172 	for (i = 0; i < MAX_BRANDS; i++) {
173 		if (elf_brand_list[i] == entry) {
174 			elf_brand_list[i] = NULL;
175 			break;
176 		}
177 	}
178 	if (i == MAX_BRANDS)
179 		return (-1);
180 	return (0);
181 }
182 
183 /*
184  * Check if an elf brand is being used anywhere in the system.
185  *
186  * Used by the linux emulation module unloader.  This isn't safe from
187  * races.
188  */
189 struct elf_brand_inuse_info {
190 	int rval;
191 	Elf_Brandinfo *entry;
192 };
193 
194 static int elf_brand_inuse_callback(struct proc *p, void *data);
195 
196 int
197 __elfN(brand_inuse)(Elf_Brandinfo *entry)
198 {
199 	struct elf_brand_inuse_info info;
200 
201 	info.rval = FALSE;
202 	info.entry = entry;
203 	allproc_scan(elf_brand_inuse_callback, &info);
204 	return (info.rval);
205 }
206 
207 static
208 int
209 elf_brand_inuse_callback(struct proc *p, void *data)
210 {
211 	struct elf_brand_inuse_info *info = data;
212 
213 	if (p->p_sysent == info->entry->sysvec) {
214 		info->rval = TRUE;
215 		return (-1);
216 	}
217 	return (0);
218 }
219 
220 static int
221 __elfN(check_header)(const Elf_Ehdr *hdr)
222 {
223 	Elf_Brandinfo *bi;
224 	int i;
225 
226 	if (!IS_ELF(*hdr) ||
227 	    hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS ||
228 	    hdr->e_ident[EI_DATA] != ELF_TARG_DATA ||
229 	    hdr->e_ident[EI_VERSION] != EV_CURRENT ||
230 	    hdr->e_phentsize != sizeof(Elf_Phdr) ||
231 	    hdr->e_ehsize != sizeof(Elf_Ehdr) ||
232 	    hdr->e_version != ELF_TARG_VER)
233 		return (ENOEXEC);
234 
235 	/*
236 	 * Make sure we have at least one brand for this machine.
237 	 */
238 
239 	for (i = 0; i < MAX_BRANDS; i++) {
240 		bi = elf_brand_list[i];
241 		if (bi != NULL && bi->machine == hdr->e_machine)
242 			break;
243 	}
244 	if (i == MAX_BRANDS)
245 		return (ENOEXEC);
246 
247 	return (0);
248 }
249 
250 static int
251 __elfN(load_section)(struct proc *p, struct vmspace *vmspace, struct vnode *vp,
252 		 vm_offset_t offset, caddr_t vmaddr, size_t memsz,
253 		 size_t filsz, vm_prot_t prot)
254 {
255 	size_t map_len;
256 	vm_offset_t map_addr;
257 	int error, rv, cow;
258 	int count;
259 	int shared;
260 	size_t copy_len;
261 	vm_object_t object;
262 	vm_offset_t file_addr;
263 
264 	object = vp->v_object;
265 	error = 0;
266 
267 	/*
268 	 * In most cases we will be able to use a shared lock on the
269 	 * object we are inserting into the map.  The lock will be
270 	 * upgraded in situations where new VM pages must be allocated.
271 	 */
272 	vm_object_hold_shared(object);
273 	shared = 1;
274 
275 	/*
276 	 * It's necessary to fail if the filsz + offset taken from the
277 	 * header is greater than the actual file pager object's size.
278 	 * If we were to allow this, then the vm_map_find() below would
279 	 * walk right off the end of the file object and into the ether.
280 	 *
281 	 * While I'm here, might as well check for something else that
282 	 * is invalid: filsz cannot be greater than memsz.
283 	 */
284 	if ((off_t)filsz + offset > vp->v_filesize || filsz > memsz) {
285 		uprintf("elf_load_section: truncated ELF file\n");
286 		vm_object_drop(object);
287 		return (ENOEXEC);
288 	}
289 
290 	map_addr = trunc_page((vm_offset_t)vmaddr);
291 	file_addr = trunc_page(offset);
292 
293 	/*
294 	 * We have two choices.  We can either clear the data in the last page
295 	 * of an oversized mapping, or we can start the anon mapping a page
296 	 * early and copy the initialized data into that first page.  We
297 	 * choose the second..
298 	 */
299 	if (memsz > filsz)
300 		map_len = trunc_page(offset+filsz) - file_addr;
301 	else
302 		map_len = round_page(offset+filsz) - file_addr;
303 
304 	if (map_len != 0) {
305 		vm_object_reference_locked(object);
306 
307 		/* cow flags: don't dump readonly sections in core */
308 		cow = MAP_COPY_ON_WRITE | MAP_PREFAULT;
309 		if ((prot & VM_PROT_WRITE) == 0)
310 			cow |= MAP_DISABLE_COREDUMP;
311 		if (shared == 0)
312 			cow |= MAP_PREFAULT_RELOCK;
313 
314 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
315 		vm_map_lock(&vmspace->vm_map);
316 		rv = vm_map_insert(&vmspace->vm_map, &count,
317 				      object, NULL,
318 				      file_addr,	/* file offset */
319 				      map_addr,		/* virtual start */
320 				      map_addr + map_len,/* virtual end */
321 				      VM_MAPTYPE_NORMAL,
322 				      prot, VM_PROT_ALL,
323 				      cow);
324 		vm_map_unlock(&vmspace->vm_map);
325 		vm_map_entry_release(count);
326 
327 		/*
328 		 * NOTE: Object must have a hold ref when calling
329 		 * vm_object_deallocate().
330 		 */
331 		if (rv != KERN_SUCCESS) {
332 			vm_object_drop(object);
333 			vm_object_deallocate(object);
334 			return (EINVAL);
335 		}
336 
337 		/* we can stop now if we've covered it all */
338 		if (memsz == filsz) {
339 			vm_object_drop(object);
340 			return (0);
341 		}
342 	}
343 
344 	/*
345 	 * We have to get the remaining bit of the file into the first part
346 	 * of the oversized map segment.  This is normally because the .data
347 	 * segment in the file is extended to provide bss.  It's a neat idea
348 	 * to try and save a page, but it's a pain in the behind to implement.
349 	 */
350 	copy_len = (offset + filsz) - trunc_page(offset + filsz);
351 	map_addr = trunc_page((vm_offset_t)vmaddr + filsz);
352 	map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr;
353 
354 	/* This had damn well better be true! */
355         if (map_len != 0) {
356 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
357 		vm_map_lock(&vmspace->vm_map);
358 		rv = vm_map_insert(&vmspace->vm_map, &count,
359 					NULL, NULL,
360 					0,
361 					map_addr,
362 					map_addr + map_len,
363 					VM_MAPTYPE_NORMAL,
364 					VM_PROT_ALL, VM_PROT_ALL,
365 					0);
366 		vm_map_unlock(&vmspace->vm_map);
367 		vm_map_entry_release(count);
368 		if (rv != KERN_SUCCESS) {
369 			vm_object_drop(object);
370 			return (EINVAL);
371 		}
372 	}
373 
374 	if (copy_len != 0) {
375 		struct lwbuf *lwb;
376 		struct lwbuf lwb_cache;
377 		vm_page_t m;
378 
379 		m = vm_fault_object_page(object, trunc_page(offset + filsz),
380 					 VM_PROT_READ, 0, &shared, &error);
381 		vm_object_drop(object);
382 		if (m) {
383 			lwb = lwbuf_alloc(m, &lwb_cache);
384 			error = copyout((caddr_t)lwbuf_kva(lwb),
385 					(caddr_t)map_addr, copy_len);
386 			lwbuf_free(lwb);
387 			vm_page_unhold(m);
388 		}
389 	} else {
390 		vm_object_drop(object);
391 	}
392 
393 	/*
394 	 * set it to the specified protection
395 	 */
396 	if (error == 0) {
397 		vm_map_protect(&vmspace->vm_map,
398 			       map_addr, map_addr + map_len,
399 			       prot, FALSE);
400 	}
401 	return (error);
402 }
403 
404 /*
405  * Load the file "file" into memory.  It may be either a shared object
406  * or an executable.
407  *
408  * The "addr" reference parameter is in/out.  On entry, it specifies
409  * the address where a shared object should be loaded.  If the file is
410  * an executable, this value is ignored.  On exit, "addr" specifies
411  * where the file was actually loaded.
412  *
413  * The "entry" reference parameter is out only.  On exit, it specifies
414  * the entry point for the loaded file.
415  */
416 static int
417 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, u_long *entry)
418 {
419 	struct {
420 		struct nlookupdata nd;
421 		struct vattr attr;
422 		struct image_params image_params;
423 	} *tempdata;
424 	const Elf_Ehdr *hdr = NULL;
425 	const Elf_Phdr *phdr = NULL;
426 	struct nlookupdata *nd;
427 	struct vmspace *vmspace = p->p_vmspace;
428 	struct vattr *attr;
429 	struct image_params *imgp;
430 	struct mount *topmnt;
431 	vm_prot_t prot;
432 	u_long rbase;
433 	u_long base_addr = 0;
434 	int error, i, numsegs;
435 
436 	tempdata = kmalloc(sizeof(*tempdata), M_TEMP, M_WAITOK);
437 	nd = &tempdata->nd;
438 	attr = &tempdata->attr;
439 	imgp = &tempdata->image_params;
440 
441 	/*
442 	 * Initialize part of the common data
443 	 */
444 	imgp->proc = p;
445 	imgp->attr = attr;
446 	imgp->firstpage = NULL;
447 	imgp->image_header = NULL;
448 	imgp->vp = NULL;
449 
450 	error = nlookup_init(nd, file, UIO_SYSSPACE, NLC_FOLLOW);
451 	if (error == 0)
452 		error = nlookup(nd);
453 	if (error == 0)
454 		error = cache_vget(&nd->nl_nch, nd->nl_cred,
455 				   LK_SHARED, &imgp->vp);
456 	topmnt = nd->nl_nch.mount;
457 	nlookup_done(nd);
458 	if (error)
459 		goto fail;
460 
461 	/*
462 	 * Check permissions, modes, uid, etc on the file, and "open" it.
463 	 */
464 	error = exec_check_permissions(imgp, topmnt);
465 	if (error) {
466 		vn_unlock(imgp->vp);
467 		goto fail;
468 	}
469 
470 	error = exec_map_first_page(imgp);
471 	/*
472 	 * Also make certain that the interpreter stays the same, so set
473 	 * its VTEXT flag, too.
474 	 */
475 	if (error == 0)
476 		vsetflags(imgp->vp, VTEXT);
477 	vn_unlock(imgp->vp);
478 	if (error)
479                 goto fail;
480 
481 	hdr = (const Elf_Ehdr *)imgp->image_header;
482 	if ((error = __elfN(check_header)(hdr)) != 0)
483 		goto fail;
484 	if (hdr->e_type == ET_DYN)
485 		rbase = *addr;
486 	else if (hdr->e_type == ET_EXEC)
487 		rbase = 0;
488 	else {
489 		error = ENOEXEC;
490 		goto fail;
491 	}
492 
493 	/* Only support headers that fit within first page for now      */
494 	/*    (multiplication of two Elf_Half fields will not overflow) */
495 	if ((hdr->e_phoff > PAGE_SIZE) ||
496 	    (hdr->e_phentsize * hdr->e_phnum) > PAGE_SIZE - hdr->e_phoff) {
497 		error = ENOEXEC;
498 		goto fail;
499 	}
500 
501 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
502 	if (!aligned(phdr, Elf_Addr)) {
503 		error = ENOEXEC;
504 		goto fail;
505 	}
506 
507 	for (i = 0, numsegs = 0; i < hdr->e_phnum; i++) {
508 		if (phdr[i].p_type == PT_LOAD && phdr[i].p_memsz != 0) {
509 			/* Loadable segment */
510 			prot = __elfN(trans_prot)(phdr[i].p_flags);
511 			error = __elfN(load_section)(
512 				    p, vmspace, imgp->vp,
513 				    phdr[i].p_offset,
514 				    (caddr_t)phdr[i].p_vaddr +
515 				    rbase,
516 				    phdr[i].p_memsz,
517 				    phdr[i].p_filesz, prot);
518 			if (error != 0)
519 				goto fail;
520 			/*
521 			 * Establish the base address if this is the
522 			 * first segment.
523 			 */
524 			if (numsegs == 0)
525   				base_addr = trunc_page(phdr[i].p_vaddr + rbase);
526 			numsegs++;
527 		}
528 	}
529 	*addr = base_addr;
530 	*entry = (unsigned long)hdr->e_entry + rbase;
531 
532 fail:
533 	if (imgp->firstpage)
534 		exec_unmap_first_page(imgp);
535 	if (imgp->vp) {
536 		vrele(imgp->vp);
537 		imgp->vp = NULL;
538 	}
539 	kfree(tempdata, M_TEMP);
540 
541 	return (error);
542 }
543 
544 static Elf_Brandinfo *
545 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp,
546     int32_t *osrel)
547 {
548 	const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header;
549 	Elf_Brandinfo *bi;
550 	boolean_t ret;
551 	int i;
552 
553 	/* We support four types of branding -- (1) the ELF EI_OSABI field
554 	 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string
555 	 * branding within the ELF header, (3) path of the `interp_path' field,
556 	 * and (4) the ".note.ABI-tag" ELF section.
557 	 */
558 
559 	/* Look for an ".note.ABI-tag" ELF section */
560 	for (i = 0; i < MAX_BRANDS; i++) {
561 		bi = elf_brand_list[i];
562 
563 		if (bi == NULL)
564 			continue;
565 		if (hdr->e_machine == bi->machine && (bi->flags &
566 		    (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) {
567 			ret = __elfN(check_note)(imgp, bi->brand_note, osrel);
568 			if (ret)
569 				return (bi);
570 		}
571 	}
572 
573 	/* If the executable has a brand, search for it in the brand list. */
574 	for (i = 0;  i < MAX_BRANDS;  i++) {
575 		bi = elf_brand_list[i];
576 
577                 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY)
578 			continue;
579 		if (hdr->e_machine == bi->machine &&
580 		    (hdr->e_ident[EI_OSABI] == bi->brand ||
581 		    strncmp((const char *)&hdr->e_ident[OLD_EI_BRAND],
582 		    bi->compat_3_brand, strlen(bi->compat_3_brand)) == 0))
583 			return (bi);
584 	}
585 
586 	/* Lacking a known brand, search for a recognized interpreter. */
587 	if (interp != NULL) {
588 		for (i = 0;  i < MAX_BRANDS;  i++) {
589 			bi = elf_brand_list[i];
590 
591                         if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY)
592 				continue;
593 			if (hdr->e_machine == bi->machine &&
594 			    strcmp(interp, bi->interp_path) == 0)
595 				return (bi);
596 		}
597 	}
598 
599 	/* Lacking a recognized interpreter, try the default brand */
600 	for (i = 0; i < MAX_BRANDS; i++) {
601 		bi = elf_brand_list[i];
602 
603 		if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY)
604 			continue;
605 		if (hdr->e_machine == bi->machine &&
606 		    __elfN(fallback_brand) == bi->brand)
607 			return (bi);
608 	}
609 	return (NULL);
610 }
611 
612 static int
613 __CONCAT(exec_,__elfN(imgact))(struct image_params *imgp)
614 {
615 	const Elf_Ehdr *hdr = (const Elf_Ehdr *) imgp->image_header;
616 	const Elf_Phdr *phdr;
617 	Elf_Auxargs *elf_auxargs;
618 	struct vmspace *vmspace;
619 	vm_prot_t prot;
620 	u_long text_size = 0, data_size = 0, total_size = 0;
621 	u_long text_addr = 0, data_addr = 0;
622 	u_long seg_size, seg_addr;
623 	u_long addr, baddr, et_dyn_addr = 0, entry = 0, proghdr = 0;
624 	int32_t osrel = 0;
625 	int error = 0, i, n;
626 	boolean_t failure;
627 	char *interp = NULL;
628 	const char *newinterp = NULL;
629 	Elf_Brandinfo *brand_info;
630 	char *path;
631 
632 	/*
633 	 * Do we have a valid ELF header ?
634 	 *
635 	 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later if a particular
636 	 * brand doesn't support it.  Both DragonFly platforms do by default.
637 	 */
638 	if (__elfN(check_header)(hdr) != 0 ||
639 	    (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN))
640 		return (-1);
641 
642 	/*
643 	 * From here on down, we return an errno, not -1, as we've
644 	 * detected an ELF file.
645 	 */
646 
647 	if ((hdr->e_phoff > PAGE_SIZE) ||
648 	    (hdr->e_phoff + hdr->e_phentsize * hdr->e_phnum) > PAGE_SIZE) {
649 		/* Only support headers in first page for now */
650 		return (ENOEXEC);
651 	}
652 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
653 	if (!aligned(phdr, Elf_Addr))
654 		return (ENOEXEC);
655 	n = 0;
656 	baddr = 0;
657 	for (i = 0; i < hdr->e_phnum; i++) {
658 		if (phdr[i].p_type == PT_LOAD) {
659 			if (n == 0)
660 				baddr = phdr[i].p_vaddr;
661 			n++;
662 			continue;
663 		}
664 		if (phdr[i].p_type == PT_INTERP) {
665 			/*
666 			 * If interp is already defined there are more than
667 			 * one PT_INTERP program headers present.  Take only
668 			 * the first one and ignore the rest.
669 			 */
670 			if (interp != NULL)
671 				continue;
672 
673 			if (phdr[i].p_filesz == 0 ||
674 			    phdr[i].p_filesz > PAGE_SIZE ||
675 			    phdr[i].p_filesz > MAXPATHLEN)
676 				return (ENOEXEC);
677 
678 			interp = kmalloc(phdr[i].p_filesz, M_TEMP, M_WAITOK);
679 			failure = extract_interpreter(imgp, &phdr[i], interp);
680 			if (failure) {
681 				kfree(interp, M_TEMP);
682 				return (ENOEXEC);
683 			}
684 			continue;
685 		}
686 	}
687 
688 	brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel);
689 	if (brand_info == NULL) {
690 		uprintf("ELF binary type \"%u\" not known.\n",
691 		    hdr->e_ident[EI_OSABI]);
692 		if (interp != NULL)
693 			kfree(interp, M_TEMP);
694 		return (ENOEXEC);
695 	}
696 	if (hdr->e_type == ET_DYN) {
697 		if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) {
698 			if (interp != NULL)
699 				kfree(interp, M_TEMP);
700 			return (ENOEXEC);
701 		}
702 		/*
703 		 * If p_vaddr field of PT_LOAD program header is zero and type of an
704 		 * executale is ET_DYN, then it must be a position independent
705 		 * executable (PIE). In this case the system needs to pick a base
706 		 * address for us. Set et_dyn_addr to non-zero and choose the actual
707 		 * address when we are ready.
708 		 */
709 		if (baddr == 0)
710 			et_dyn_addr = 1;
711 	}
712 
713 	if (interp != NULL && brand_info->interp_newpath != NULL)
714 		newinterp = brand_info->interp_newpath;
715 
716 	exec_new_vmspace(imgp, NULL);
717 
718 	/*
719 	 * Yeah, I'm paranoid.  There is every reason in the world to get
720 	 * VTEXT now since from here on out, there are places we can have
721 	 * a context switch.  Better safe than sorry; I really don't want
722 	 * the file to change while it's being loaded.
723 	 */
724 	vsetflags(imgp->vp, VTEXT);
725 
726 	vmspace = imgp->proc->p_vmspace;
727 	/* Choose the base address for dynamic executables if we need to. */
728 	if (et_dyn_addr)
729 		et_dyn_addr = pie_base_hint(imgp->proc);
730 
731 	for (i = 0; i < hdr->e_phnum; i++) {
732 		switch (phdr[i].p_type) {
733 		case PT_LOAD:	/* Loadable segment */
734 			if (phdr[i].p_memsz == 0)
735 				break;
736 			prot = __elfN(trans_prot)(phdr[i].p_flags);
737 
738 			if ((error = __elfN(load_section)(
739 					imgp->proc,
740 					vmspace,
741 					imgp->vp,
742 					phdr[i].p_offset,
743 					(caddr_t)phdr[i].p_vaddr + et_dyn_addr,
744 					phdr[i].p_memsz,
745 					phdr[i].p_filesz,
746 					prot)) != 0) {
747                                 if (interp != NULL)
748                                         kfree (interp, M_TEMP);
749 				return (error);
750                         }
751 
752 			/*
753 			 * If this segment contains the program headers,
754 			 * remember their virtual address for the AT_PHDR
755 			 * aux entry. Static binaries don't usually include
756 			 * a PT_PHDR entry.
757 			 */
758 			if (phdr[i].p_offset == 0 &&
759 			    hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize
760 				<= phdr[i].p_filesz)
761 				proghdr = phdr[i].p_vaddr + hdr->e_phoff +
762 				    et_dyn_addr;
763 
764 			seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr);
765 			seg_size = round_page(phdr[i].p_memsz +
766 			    phdr[i].p_vaddr + et_dyn_addr - seg_addr);
767 
768 			/*
769 			 * Is this .text or .data?  We can't use
770 			 * VM_PROT_WRITE or VM_PROT_EXEC, it breaks the
771 			 * alpha terribly and possibly does other bad
772 			 * things so we stick to the old way of figuring
773 			 * it out:  If the segment contains the program
774 			 * entry point, it's a text segment, otherwise it
775 			 * is a data segment.
776 			 *
777 			 * Note that obreak() assumes that data_addr +
778 			 * data_size == end of data load area, and the ELF
779 			 * file format expects segments to be sorted by
780 			 * address.  If multiple data segments exist, the
781 			 * last one will be used.
782 			 */
783 			if (hdr->e_entry >= phdr[i].p_vaddr &&
784 			    hdr->e_entry < (phdr[i].p_vaddr +
785 			    phdr[i].p_memsz)) {
786 				text_size = seg_size;
787 				text_addr = seg_addr;
788 				entry = (u_long)hdr->e_entry + et_dyn_addr;
789 			} else {
790 				data_size = seg_size;
791 				data_addr = seg_addr;
792 			}
793 			total_size += seg_size;
794 
795 			/*
796 			 * Check limits.  It should be safe to check the
797 			 * limits after loading the segment since we do
798 			 * not actually fault in all the segment's pages.
799 			 */
800 			if (data_size >
801 			    imgp->proc->p_rlimit[RLIMIT_DATA].rlim_cur ||
802 			    text_size > maxtsiz ||
803 			    total_size >
804 			    imgp->proc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
805 				if (interp != NULL)
806 					kfree(interp, M_TEMP);
807 				error = ENOMEM;
808 				return (error);
809 			}
810 			break;
811 		case PT_PHDR: 	/* Program header table info */
812 			proghdr = phdr[i].p_vaddr + et_dyn_addr;
813 			break;
814 		default:
815 			break;
816 		}
817 	}
818 
819 	vmspace->vm_tsize = text_size >> PAGE_SHIFT;
820 	vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr;
821 	vmspace->vm_dsize = data_size >> PAGE_SHIFT;
822 	vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr;
823 
824 	addr = ELF_RTLD_ADDR(vmspace);
825 
826 	imgp->entry_addr = entry;
827 
828 	imgp->proc->p_sysent = brand_info->sysvec;
829 	EVENTHANDLER_INVOKE(process_exec, imgp);
830 
831 	if (interp != NULL) {
832 		int have_interp = FALSE;
833 		if (brand_info->emul_path != NULL &&
834 		    brand_info->emul_path[0] != '\0') {
835 			path = kmalloc(MAXPATHLEN, M_TEMP, M_WAITOK);
836 		        ksnprintf(path, MAXPATHLEN, "%s%s",
837 			    brand_info->emul_path, interp);
838 			error = __elfN(load_file)(imgp->proc, path, &addr,
839 			    &imgp->entry_addr);
840 			kfree(path, M_TEMP);
841 			if (error == 0)
842 				have_interp = TRUE;
843 		}
844 		if (!have_interp && newinterp != NULL) {
845 			error = __elfN(load_file)(imgp->proc, newinterp,
846 			    &addr, &imgp->entry_addr);
847 			if (error == 0)
848 				have_interp = TRUE;
849 		}
850 		if (!have_interp) {
851 			error = __elfN(load_file)(imgp->proc, interp, &addr,
852 			    &imgp->entry_addr);
853 		}
854 		if (error != 0) {
855 			uprintf("ELF interpreter %s not found\n", interp);
856 			kfree(interp, M_TEMP);
857 			return (error);
858 		}
859 		kfree(interp, M_TEMP);
860 	} else
861 		addr = et_dyn_addr;
862 
863 	/*
864 	 * Construct auxargs table (used by the fixup routine)
865 	 */
866 	elf_auxargs = kmalloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK);
867 	elf_auxargs->execfd = -1;
868 	elf_auxargs->phdr = proghdr;
869 	elf_auxargs->phent = hdr->e_phentsize;
870 	elf_auxargs->phnum = hdr->e_phnum;
871 	elf_auxargs->pagesz = PAGE_SIZE;
872 	elf_auxargs->base = addr;
873 	elf_auxargs->flags = 0;
874 	elf_auxargs->entry = entry;
875 
876 	imgp->auxargs = elf_auxargs;
877 	imgp->interpreted = 0;
878 	imgp->proc->p_osrel = osrel;
879 
880 	return (error);
881 }
882 
883 int
884 __elfN(dragonfly_fixup)(register_t **stack_base, struct image_params *imgp)
885 {
886 	Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs;
887 	Elf_Addr *base;
888 	Elf_Addr *pos;
889 
890 	base = (Elf_Addr *)*stack_base;
891 	pos = base + (imgp->args->argc + imgp->args->envc + 2);
892 
893 	if (args->execfd != -1)
894 		AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd);
895 	AUXARGS_ENTRY(pos, AT_PHDR, args->phdr);
896 	AUXARGS_ENTRY(pos, AT_PHENT, args->phent);
897 	AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum);
898 	AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz);
899 	AUXARGS_ENTRY(pos, AT_FLAGS, args->flags);
900 	AUXARGS_ENTRY(pos, AT_ENTRY, args->entry);
901 	AUXARGS_ENTRY(pos, AT_BASE, args->base);
902 	if (imgp->execpathp != 0)
903 		AUXARGS_ENTRY(pos, AT_EXECPATH, imgp->execpathp);
904 	AUXARGS_ENTRY(pos, AT_OSRELDATE, osreldate);
905 	AUXARGS_ENTRY(pos, AT_NULL, 0);
906 
907 	kfree(imgp->auxargs, M_TEMP);
908 	imgp->auxargs = NULL;
909 
910 	base--;
911 	suword(base, (long)imgp->args->argc);
912 	*stack_base = (register_t *)base;
913 	return (0);
914 }
915 
916 /*
917  * Code for generating ELF core dumps.
918  */
919 
920 typedef int (*segment_callback)(vm_map_entry_t, void *);
921 
922 /* Closure for cb_put_phdr(). */
923 struct phdr_closure {
924 	Elf_Phdr *phdr;		/* Program header to fill in (incremented) */
925 	Elf_Phdr *phdr_max;	/* Pointer bound for error check */
926 	Elf_Off offset;		/* Offset of segment in core file */
927 };
928 
929 /* Closure for cb_size_segment(). */
930 struct sseg_closure {
931 	int count;		/* Count of writable segments. */
932 	size_t vsize;		/* Total size of all writable segments. */
933 };
934 
935 /* Closure for cb_put_fp(). */
936 struct fp_closure {
937 	struct vn_hdr *vnh;
938 	struct vn_hdr *vnh_max;
939 	int count;
940 	struct stat *sb;
941 };
942 
943 typedef struct elf_buf {
944 	char	*buf;
945 	size_t	off;
946 	size_t	off_max;
947 } *elf_buf_t;
948 
949 static void *target_reserve(elf_buf_t target, size_t bytes, int *error);
950 
951 static int cb_put_phdr (vm_map_entry_t, void *);
952 static int cb_size_segment (vm_map_entry_t, void *);
953 static int cb_fpcount_segment(vm_map_entry_t, void *);
954 static int cb_put_fp(vm_map_entry_t, void *);
955 
956 
957 static int each_segment (struct proc *, segment_callback, void *, int);
958 static int __elfN(corehdr)(struct lwp *, int, struct file *, struct ucred *,
959 			int, elf_buf_t);
960 enum putmode { WRITE, DRYRUN };
961 static int __elfN(puthdr)(struct lwp *, elf_buf_t, int sig, enum putmode,
962 			int, struct file *);
963 static int elf_putallnotes(struct lwp *, elf_buf_t, int, enum putmode);
964 static int __elfN(putnote)(elf_buf_t, const char *, int, const void *, size_t);
965 
966 static int elf_putsigs(struct lwp *, elf_buf_t);
967 static int elf_puttextvp(struct proc *, elf_buf_t);
968 static int elf_putfiles(struct proc *, elf_buf_t, struct file *);
969 
970 int
971 __elfN(coredump)(struct lwp *lp, int sig, struct vnode *vp, off_t limit)
972 {
973 	struct file *fp;
974 	int error;
975 
976 	if ((error = falloc(NULL, &fp, NULL)) != 0)
977 		return (error);
978 	fsetcred(fp, lp->lwp_proc->p_ucred);
979 
980 	/*
981 	 * XXX fixme.
982 	 */
983 	fp->f_type = DTYPE_VNODE;
984 	fp->f_flag = O_CREAT|O_WRONLY|O_NOFOLLOW;
985 	fp->f_ops = &vnode_fileops;
986 	fp->f_data = vp;
987 
988 	error = generic_elf_coredump(lp, sig, fp, limit);
989 
990 	fp->f_type = 0;
991 	fp->f_flag = 0;
992 	fp->f_ops = &badfileops;
993 	fp->f_data = NULL;
994 	fdrop(fp);
995 	return (error);
996 }
997 
998 int
999 generic_elf_coredump(struct lwp *lp, int sig, struct file *fp, off_t limit)
1000 {
1001 	struct proc *p = lp->lwp_proc;
1002 	struct ucred *cred = p->p_ucred;
1003 	int error = 0;
1004 	struct sseg_closure seginfo;
1005 	struct elf_buf target;
1006 
1007 	if (!fp)
1008 		kprintf("can't dump core - null fp\n");
1009 
1010 	/*
1011 	 * Size the program segments
1012 	 */
1013 	seginfo.count = 0;
1014 	seginfo.vsize = 0;
1015 	each_segment(p, cb_size_segment, &seginfo, 1);
1016 
1017 	/*
1018 	 * Calculate the size of the core file header area by making
1019 	 * a dry run of generating it.  Nothing is written, but the
1020 	 * size is calculated.
1021 	 */
1022 	bzero(&target, sizeof(target));
1023 	__elfN(puthdr)(lp, &target, sig, DRYRUN, seginfo.count, fp);
1024 
1025 	if (target.off + seginfo.vsize >= limit)
1026 		return (EFAULT);
1027 
1028 	/*
1029 	 * Allocate memory for building the header, fill it up,
1030 	 * and write it out.
1031 	 */
1032 	target.off_max = target.off;
1033 	target.off = 0;
1034 	target.buf = kmalloc(target.off_max, M_TEMP, M_WAITOK|M_ZERO);
1035 
1036 	error = __elfN(corehdr)(lp, sig, fp, cred, seginfo.count, &target);
1037 
1038 	/* Write the contents of all of the writable segments. */
1039 	if (error == 0) {
1040 		Elf_Phdr *php;
1041 		int i;
1042 		ssize_t nbytes;
1043 
1044 		php = (Elf_Phdr *)(target.buf + sizeof(Elf_Ehdr)) + 1;
1045 		for (i = 0; i < seginfo.count; i++) {
1046 			error = fp_write(fp, (caddr_t)php->p_vaddr,
1047 					php->p_filesz, &nbytes, UIO_USERSPACE);
1048 			if (error != 0)
1049 				break;
1050 			php++;
1051 		}
1052 	}
1053 	kfree(target.buf, M_TEMP);
1054 
1055 	return (error);
1056 }
1057 
1058 /*
1059  * A callback for each_segment() to write out the segment's
1060  * program header entry.
1061  */
1062 static int
1063 cb_put_phdr(vm_map_entry_t entry, void *closure)
1064 {
1065 	struct phdr_closure *phc = closure;
1066 	Elf_Phdr *phdr = phc->phdr;
1067 
1068 	if (phc->phdr == phc->phdr_max)
1069 		return (EINVAL);
1070 
1071 	phc->offset = round_page(phc->offset);
1072 
1073 	phdr->p_type = PT_LOAD;
1074 	phdr->p_offset = phc->offset;
1075 	phdr->p_vaddr = entry->start;
1076 	phdr->p_paddr = 0;
1077 	phdr->p_filesz = phdr->p_memsz = entry->end - entry->start;
1078 	phdr->p_align = PAGE_SIZE;
1079 	phdr->p_flags = __elfN(untrans_prot)(entry->protection);
1080 
1081 	phc->offset += phdr->p_filesz;
1082 	++phc->phdr;
1083 	return (0);
1084 }
1085 
1086 /*
1087  * A callback for each_writable_segment() to gather information about
1088  * the number of segments and their total size.
1089  */
1090 static int
1091 cb_size_segment(vm_map_entry_t entry, void *closure)
1092 {
1093 	struct sseg_closure *ssc = closure;
1094 
1095 	++ssc->count;
1096 	ssc->vsize += entry->end - entry->start;
1097 	return (0);
1098 }
1099 
1100 /*
1101  * A callback for each_segment() to gather information about
1102  * the number of text segments.
1103  */
1104 static int
1105 cb_fpcount_segment(vm_map_entry_t entry, void *closure)
1106 {
1107 	int *count = closure;
1108 	struct vnode *vp;
1109 
1110 	if (entry->object.vm_object->type == OBJT_VNODE) {
1111 		vp = (struct vnode *)entry->object.vm_object->handle;
1112 		if ((vp->v_flag & VCKPT) && curproc->p_textvp == vp)
1113 			return (0);
1114 		++*count;
1115 	}
1116 	return (0);
1117 }
1118 
1119 static int
1120 cb_put_fp(vm_map_entry_t entry, void *closure)
1121 {
1122 	struct fp_closure *fpc = closure;
1123 	struct vn_hdr *vnh = fpc->vnh;
1124 	Elf_Phdr *phdr = &vnh->vnh_phdr;
1125 	struct vnode *vp;
1126 	int error;
1127 
1128 	/*
1129 	 * If an entry represents a vnode then write out a file handle.
1130 	 *
1131 	 * If we are checkpointing a checkpoint-restored program we do
1132 	 * NOT record the filehandle for the old checkpoint vnode (which
1133 	 * is mapped all over the place).  Instead we rely on the fact
1134 	 * that a checkpoint-restored program does not mmap() the checkpt
1135 	 * vnode NOCORE, so its contents will be written out to the
1136 	 * new checkpoint file.  This is necessary because the 'old'
1137 	 * checkpoint file is typically destroyed when a new one is created
1138 	 * and thus cannot be used to restore the new checkpoint.
1139 	 *
1140 	 * Theoretically we could create a chain of checkpoint files and
1141 	 * operate the checkpointing operation kinda like an incremental
1142 	 * checkpoint, but a checkpoint restore would then likely wind up
1143 	 * referencing many prior checkpoint files and that is a bit over
1144 	 * the top for the purpose of the checkpoint API.
1145 	 */
1146 	if (entry->object.vm_object->type == OBJT_VNODE) {
1147 		vp = (struct vnode *)entry->object.vm_object->handle;
1148 		if ((vp->v_flag & VCKPT) && curproc->p_textvp == vp)
1149 			return (0);
1150 		if (vnh == fpc->vnh_max)
1151 			return (EINVAL);
1152 
1153 		if (vp->v_mount)
1154 			vnh->vnh_fh.fh_fsid = vp->v_mount->mnt_stat.f_fsid;
1155 		error = VFS_VPTOFH(vp, &vnh->vnh_fh.fh_fid);
1156 		if (error) {
1157 			char *freepath, *fullpath;
1158 
1159 			/*
1160 			 * This is actually a relatively common occurance,
1161 			 * so don't spew on the console by default.
1162 			 */
1163 			if (vn_fullpath(curproc, vp, &fullpath, &freepath, 0)) {
1164 				if (bootverbose)
1165 					kprintf("Warning: coredump, error %d: cannot store file handle for vnode %p\n", error, vp);
1166 			} else {
1167 				if (bootverbose)
1168 					kprintf("Warning: coredump, error %d: cannot store file handle for %s\n", error, fullpath);
1169 				kfree(freepath, M_TEMP);
1170 			}
1171 			error = 0;
1172 		}
1173 
1174 		phdr->p_type = PT_LOAD;
1175 		phdr->p_offset = 0;        /* not written to core */
1176 		phdr->p_vaddr = entry->start;
1177 		phdr->p_paddr = 0;
1178 		phdr->p_filesz = phdr->p_memsz = entry->end - entry->start;
1179 		phdr->p_align = PAGE_SIZE;
1180 		phdr->p_flags = 0;
1181 		if (entry->protection & VM_PROT_READ)
1182 			phdr->p_flags |= PF_R;
1183 		if (entry->protection & VM_PROT_WRITE)
1184 			phdr->p_flags |= PF_W;
1185 		if (entry->protection & VM_PROT_EXECUTE)
1186 			phdr->p_flags |= PF_X;
1187 		++fpc->vnh;
1188 		++fpc->count;
1189 	}
1190 	return (0);
1191 }
1192 
1193 /*
1194  * For each writable segment in the process's memory map, call the given
1195  * function with a pointer to the map entry and some arbitrary
1196  * caller-supplied data.
1197  */
1198 static int
1199 each_segment(struct proc *p, segment_callback func, void *closure, int writable)
1200 {
1201 	int error = 0;
1202 	vm_map_t map = &p->p_vmspace->vm_map;
1203 	vm_map_entry_t entry;
1204 
1205 	for (entry = map->header.next; error == 0 && entry != &map->header;
1206 	    entry = entry->next) {
1207 		vm_object_t obj;
1208 		vm_object_t lobj;
1209 		vm_object_t tobj;
1210 
1211 		/*
1212 		 * Don't dump inaccessible mappings, deal with legacy
1213 		 * coredump mode.
1214 		 *
1215 		 * Note that read-only segments related to the elf binary
1216 		 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer
1217 		 * need to arbitrarily ignore such segments.
1218 		 */
1219 		if (elf_legacy_coredump) {
1220 			if (writable && (entry->protection & VM_PROT_RW) != VM_PROT_RW)
1221 				continue;
1222 		} else {
1223 			if (writable && (entry->protection & VM_PROT_ALL) == 0)
1224 				continue;
1225 		}
1226 
1227 		/*
1228 		 * Dont include memory segment in the coredump if
1229 		 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in
1230 		 * madvise(2).
1231 		 *
1232 		 * Currently we only dump normal VM object maps.  We do
1233 		 * not dump submaps or virtual page tables.
1234 		 */
1235 		if (writable && (entry->eflags & MAP_ENTRY_NOCOREDUMP))
1236 			continue;
1237 		if (entry->maptype != VM_MAPTYPE_NORMAL)
1238 			continue;
1239 		if ((obj = entry->object.vm_object) == NULL)
1240 			continue;
1241 
1242 		/*
1243 		 * Find the bottom-most object, leaving the base object
1244 		 * and the bottom-most object held (but only one hold
1245 		 * if they happen to be the same).
1246 		 */
1247 		vm_object_hold_shared(obj);
1248 
1249 		lobj = obj;
1250 		while (lobj && (tobj = lobj->backing_object) != NULL) {
1251 			KKASSERT(tobj != obj);
1252 			vm_object_hold_shared(tobj);
1253 			if (tobj == lobj->backing_object) {
1254 				if (lobj != obj) {
1255 					vm_object_lock_swap();
1256 					vm_object_drop(lobj);
1257 				}
1258 				lobj = tobj;
1259 			} else {
1260 				vm_object_drop(tobj);
1261 			}
1262 		}
1263 
1264 		/*
1265 		 * The callback only applies to default, swap, or vnode
1266 		 * objects.  Other types of objects such as memory-mapped
1267 		 * devices are ignored.
1268 		 */
1269 		if (lobj->type == OBJT_DEFAULT || lobj->type == OBJT_SWAP ||
1270 		    lobj->type == OBJT_VNODE) {
1271 			error = (*func)(entry, closure);
1272 		}
1273 		if (lobj != obj)
1274 			vm_object_drop(lobj);
1275 		vm_object_drop(obj);
1276 	}
1277 	return (error);
1278 }
1279 
1280 static
1281 void *
1282 target_reserve(elf_buf_t target, size_t bytes, int *error)
1283 {
1284     void *res = NULL;
1285 
1286     if (target->buf) {
1287 	    if (target->off + bytes > target->off_max)
1288 		    *error = EINVAL;
1289 	    else
1290 		    res = target->buf + target->off;
1291     }
1292     target->off += bytes;
1293     return (res);
1294 }
1295 
1296 /*
1297  * Write the core file header to the file, including padding up to
1298  * the page boundary.
1299  */
1300 static int
1301 __elfN(corehdr)(struct lwp *lp, int sig, struct file *fp, struct ucred *cred,
1302 	    int numsegs, elf_buf_t target)
1303 {
1304 	int error;
1305 	ssize_t nbytes;
1306 
1307 	/*
1308 	 * Fill in the header.  The fp is passed so we can detect and flag
1309 	 * a checkpoint file pointer within the core file itself, because
1310 	 * it may not be restored from the same file handle.
1311 	 */
1312 	error = __elfN(puthdr)(lp, target, sig, WRITE, numsegs, fp);
1313 
1314 	/* Write it to the core file. */
1315 	if (error == 0) {
1316 		error = fp_write(fp, target->buf, target->off, &nbytes,
1317 				 UIO_SYSSPACE);
1318 	}
1319 	return (error);
1320 }
1321 
1322 static int
1323 __elfN(puthdr)(struct lwp *lp, elf_buf_t target, int sig, enum putmode mode,
1324     int numsegs, struct file *fp)
1325 {
1326 	struct proc *p = lp->lwp_proc;
1327 	int error = 0;
1328 	size_t phoff;
1329 	size_t noteoff;
1330 	size_t notesz;
1331 	Elf_Ehdr *ehdr;
1332 	Elf_Phdr *phdr;
1333 
1334 	ehdr = target_reserve(target, sizeof(Elf_Ehdr), &error);
1335 
1336 	phoff = target->off;
1337 	phdr = target_reserve(target, (numsegs + 1) * sizeof(Elf_Phdr), &error);
1338 
1339 	noteoff = target->off;
1340 	if (error == 0)
1341 		elf_putallnotes(lp, target, sig, mode);
1342 	notesz = target->off - noteoff;
1343 
1344 	/*
1345 	 * put extra cruft for dumping process state here
1346 	 *  - we really want it be before all the program
1347 	 *    mappings
1348 	 *  - we just need to update the offset accordingly
1349 	 *    and GDB will be none the wiser.
1350 	 */
1351 	if (error == 0)
1352 		error = elf_puttextvp(p, target);
1353 	if (error == 0)
1354 		error = elf_putsigs(lp, target);
1355 	if (error == 0)
1356 		error = elf_putfiles(p, target, fp);
1357 
1358 	/*
1359 	 * Align up to a page boundary for the program segments.  The
1360 	 * actual data will be written to the outptu file, not to elf_buf_t,
1361 	 * so we do not have to do any further bounds checking.
1362 	 */
1363 	target->off = round_page(target->off);
1364 	if (error == 0 && ehdr != NULL) {
1365 		/*
1366 		 * Fill in the ELF header.
1367 		 */
1368 		ehdr->e_ident[EI_MAG0] = ELFMAG0;
1369 		ehdr->e_ident[EI_MAG1] = ELFMAG1;
1370 		ehdr->e_ident[EI_MAG2] = ELFMAG2;
1371 		ehdr->e_ident[EI_MAG3] = ELFMAG3;
1372 		ehdr->e_ident[EI_CLASS] = ELF_CLASS;
1373 		ehdr->e_ident[EI_DATA] = ELF_DATA;
1374 		ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1375 		ehdr->e_ident[EI_OSABI] = ELFOSABI_NONE;
1376 		ehdr->e_ident[EI_ABIVERSION] = 0;
1377 		ehdr->e_ident[EI_PAD] = 0;
1378 		ehdr->e_type = ET_CORE;
1379 		ehdr->e_machine = ELF_ARCH;
1380 		ehdr->e_version = EV_CURRENT;
1381 		ehdr->e_entry = 0;
1382 		ehdr->e_phoff = phoff;
1383 		ehdr->e_flags = 0;
1384 		ehdr->e_ehsize = sizeof(Elf_Ehdr);
1385 		ehdr->e_phentsize = sizeof(Elf_Phdr);
1386 		ehdr->e_phnum = numsegs + 1;
1387 		ehdr->e_shentsize = sizeof(Elf_Shdr);
1388 		ehdr->e_shnum = 0;
1389 		ehdr->e_shstrndx = SHN_UNDEF;
1390 	}
1391 	if (error == 0 && phdr != NULL) {
1392 		/*
1393 		 * Fill in the program header entries.
1394 		 */
1395 		struct phdr_closure phc;
1396 
1397 		/* The note segement. */
1398 		phdr->p_type = PT_NOTE;
1399 		phdr->p_offset = noteoff;
1400 		phdr->p_vaddr = 0;
1401 		phdr->p_paddr = 0;
1402 		phdr->p_filesz = notesz;
1403 		phdr->p_memsz = 0;
1404 		phdr->p_flags = 0;
1405 		phdr->p_align = 0;
1406 		++phdr;
1407 
1408 		/* All the writable segments from the program. */
1409 		phc.phdr = phdr;
1410 		phc.phdr_max = phdr + numsegs;
1411 		phc.offset = target->off;
1412 		each_segment(p, cb_put_phdr, &phc, 1);
1413 	}
1414 	return (error);
1415 }
1416 
1417 /*
1418  * Append core dump notes to target ELF buffer or simply update target size
1419  * if dryrun selected.
1420  */
1421 static int
1422 elf_putallnotes(struct lwp *corelp, elf_buf_t target, int sig,
1423     enum putmode mode)
1424 {
1425 	struct proc *p = corelp->lwp_proc;
1426 	int error;
1427 	struct {
1428 		prstatus_t status;
1429 		prfpregset_t fpregs;
1430 		prpsinfo_t psinfo;
1431 	} *tmpdata;
1432 	prstatus_t *status;
1433 	prfpregset_t *fpregs;
1434 	prpsinfo_t *psinfo;
1435 	struct lwp *lp;
1436 
1437 	/*
1438 	 * Allocate temporary storage for notes on heap to avoid stack overflow.
1439 	 */
1440 	if (mode != DRYRUN) {
1441 		tmpdata = kmalloc(sizeof(*tmpdata), M_TEMP, M_ZERO | M_WAITOK);
1442 		status = &tmpdata->status;
1443 		fpregs = &tmpdata->fpregs;
1444 		psinfo = &tmpdata->psinfo;
1445 	} else {
1446 		tmpdata = NULL;
1447 		status = NULL;
1448 		fpregs = NULL;
1449 		psinfo = NULL;
1450 	}
1451 
1452 	/*
1453 	 * Append LWP-agnostic note.
1454 	 */
1455 	if (mode != DRYRUN) {
1456 		psinfo->pr_version = PRPSINFO_VERSION;
1457 		psinfo->pr_psinfosz = sizeof(prpsinfo_t);
1458 		strlcpy(psinfo->pr_fname, p->p_comm,
1459 			sizeof(psinfo->pr_fname));
1460 		/*
1461 		 * XXX - We don't fill in the command line arguments
1462 		 * properly yet.
1463 		 */
1464 		strlcpy(psinfo->pr_psargs, p->p_comm,
1465 			sizeof(psinfo->pr_psargs));
1466 	}
1467 	error =
1468 	    __elfN(putnote)(target, "CORE", NT_PRPSINFO, psinfo, sizeof *psinfo);
1469 	if (error)
1470 		goto exit;
1471 
1472 	/*
1473 	 * Append first note for LWP that triggered core so that it is
1474 	 * the selected one when the debugger starts.
1475 	 */
1476 	if (mode != DRYRUN) {
1477 		status->pr_version = PRSTATUS_VERSION;
1478 		status->pr_statussz = sizeof(prstatus_t);
1479 		status->pr_gregsetsz = sizeof(gregset_t);
1480 		status->pr_fpregsetsz = sizeof(fpregset_t);
1481 		status->pr_osreldate = osreldate;
1482 		status->pr_cursig = sig;
1483 		/*
1484 		 * XXX GDB needs unique pr_pid for each LWP and does not
1485 		 * not support pr_pid==0 but lwp_tid can be 0, so hack unique
1486 		 * value.
1487 		 */
1488 		status->pr_pid = corelp->lwp_tid;
1489 		fill_regs(corelp, &status->pr_reg);
1490 		fill_fpregs(corelp, fpregs);
1491 	}
1492 	error =
1493 	    __elfN(putnote)(target, "CORE", NT_PRSTATUS, status, sizeof *status);
1494 	if (error)
1495 		goto exit;
1496 	error =
1497 	    __elfN(putnote)(target, "CORE", NT_FPREGSET, fpregs, sizeof *fpregs);
1498 	if (error)
1499 		goto exit;
1500 
1501 	/*
1502 	 * Then append notes for other LWPs.
1503 	 */
1504 	FOREACH_LWP_IN_PROC(lp, p) {
1505 		if (lp == corelp)
1506 			continue;
1507 		/* skip lwps being created */
1508 		if (lp->lwp_thread == NULL)
1509 			continue;
1510 		if (mode != DRYRUN) {
1511 			status->pr_pid = lp->lwp_tid;
1512 			fill_regs(lp, &status->pr_reg);
1513 			fill_fpregs(lp, fpregs);
1514 		}
1515 		error = __elfN(putnote)(target, "CORE", NT_PRSTATUS,
1516 					status, sizeof *status);
1517 		if (error)
1518 			goto exit;
1519 		error = __elfN(putnote)(target, "CORE", NT_FPREGSET,
1520 					fpregs, sizeof *fpregs);
1521 		if (error)
1522 			goto exit;
1523 	}
1524 
1525 exit:
1526 	if (tmpdata != NULL)
1527 		kfree(tmpdata, M_TEMP);
1528 	return (error);
1529 }
1530 
1531 /*
1532  * Generate a note sub-structure.
1533  *
1534  * NOTE: 4-byte alignment.
1535  */
1536 static int
1537 __elfN(putnote)(elf_buf_t target, const char *name, int type,
1538 	    const void *desc, size_t descsz)
1539 {
1540 	int error = 0;
1541 	char *dst;
1542 	Elf_Note note;
1543 
1544 	note.n_namesz = strlen(name) + 1;
1545 	note.n_descsz = descsz;
1546 	note.n_type = type;
1547 	dst = target_reserve(target, sizeof(note), &error);
1548 	if (dst != NULL)
1549 		bcopy(&note, dst, sizeof note);
1550 	dst = target_reserve(target, note.n_namesz, &error);
1551 	if (dst != NULL)
1552 		bcopy(name, dst, note.n_namesz);
1553 	target->off = roundup2(target->off, sizeof(Elf_Word));
1554 	dst = target_reserve(target, note.n_descsz, &error);
1555 	if (dst != NULL)
1556 		bcopy(desc, dst, note.n_descsz);
1557 	target->off = roundup2(target->off, sizeof(Elf_Word));
1558 	return (error);
1559 }
1560 
1561 
1562 static int
1563 elf_putsigs(struct lwp *lp, elf_buf_t target)
1564 {
1565 	/* XXX lwp handle more than one lwp */
1566 	struct proc *p = lp->lwp_proc;
1567 	int error = 0;
1568 	struct ckpt_siginfo *csi;
1569 
1570 	csi = target_reserve(target, sizeof(struct ckpt_siginfo), &error);
1571 	if (csi) {
1572 		csi->csi_ckptpisz = sizeof(struct ckpt_siginfo);
1573 		bcopy(p->p_sigacts, &csi->csi_sigacts, sizeof(*p->p_sigacts));
1574 		bcopy(&p->p_realtimer, &csi->csi_itimerval, sizeof(struct itimerval));
1575 		bcopy(&lp->lwp_sigmask, &csi->csi_sigmask,
1576 			sizeof(sigset_t));
1577 		csi->csi_sigparent = p->p_sigparent;
1578 	}
1579 	return (error);
1580 }
1581 
1582 static int
1583 elf_putfiles(struct proc *p, elf_buf_t target, struct file *ckfp)
1584 {
1585 	int error = 0;
1586 	int i;
1587 	struct ckpt_filehdr *cfh = NULL;
1588 	struct ckpt_fileinfo *cfi;
1589 	struct file *fp;
1590 	struct vnode *vp;
1591 	/*
1592 	 * the duplicated loop is gross, but it was the only way
1593 	 * to eliminate uninitialized variable warnings
1594 	 */
1595 	cfh = target_reserve(target, sizeof(struct ckpt_filehdr), &error);
1596 	if (cfh) {
1597 		cfh->cfh_nfiles = 0;
1598 	}
1599 
1600 	/*
1601 	 * ignore STDIN/STDERR/STDOUT.
1602 	 */
1603 	for (i = 3; error == 0 && i < p->p_fd->fd_nfiles; i++) {
1604 		fp = holdfp(p->p_fd, i, -1);
1605 		if (fp == NULL)
1606 			continue;
1607 		/*
1608 		 * XXX Only checkpoint vnodes for now.
1609 		 */
1610 		if (fp->f_type != DTYPE_VNODE) {
1611 			fdrop(fp);
1612 			continue;
1613 		}
1614 		cfi = target_reserve(target, sizeof(struct ckpt_fileinfo),
1615 					&error);
1616 		if (cfi == NULL) {
1617 			fdrop(fp);
1618 			continue;
1619 		}
1620 		cfi->cfi_index = -1;
1621 		cfi->cfi_type = fp->f_type;
1622 		cfi->cfi_flags = fp->f_flag;
1623 		cfi->cfi_offset = fp->f_offset;
1624 		cfi->cfi_ckflags = 0;
1625 
1626 		if (fp == ckfp)
1627 			cfi->cfi_ckflags |= CKFIF_ISCKPTFD;
1628 		/* f_count and f_msgcount should not be saved/restored */
1629 		/* XXX save cred info */
1630 
1631 		switch(fp->f_type) {
1632 		case DTYPE_VNODE:
1633 			vp = (struct vnode *)fp->f_data;
1634 			/*
1635 			 * it looks like a bug in ptrace is marking
1636 			 * a non-vnode as a vnode - until we find the
1637 			 * root cause this will at least prevent
1638 			 * further panics from truss
1639 			 */
1640 			if (vp == NULL || vp->v_mount == NULL)
1641 				break;
1642 			cfh->cfh_nfiles++;
1643 			cfi->cfi_index = i;
1644 			cfi->cfi_fh.fh_fsid = vp->v_mount->mnt_stat.f_fsid;
1645 			error = VFS_VPTOFH(vp, &cfi->cfi_fh.fh_fid);
1646 			break;
1647 		default:
1648 			break;
1649 		}
1650 		fdrop(fp);
1651 	}
1652 	return (error);
1653 }
1654 
1655 static int
1656 elf_puttextvp(struct proc *p, elf_buf_t target)
1657 {
1658 	int error = 0;
1659 	int *vn_count;
1660 	struct fp_closure fpc;
1661 	struct ckpt_vminfo *vminfo;
1662 
1663 	vminfo = target_reserve(target, sizeof(struct ckpt_vminfo), &error);
1664 	if (vminfo != NULL) {
1665 		vminfo->cvm_dsize = p->p_vmspace->vm_dsize;
1666 		vminfo->cvm_tsize = p->p_vmspace->vm_tsize;
1667 		vminfo->cvm_daddr = p->p_vmspace->vm_daddr;
1668 		vminfo->cvm_taddr = p->p_vmspace->vm_taddr;
1669 	}
1670 
1671 	fpc.count = 0;
1672 	vn_count = target_reserve(target, sizeof(int), &error);
1673 	if (target->buf != NULL) {
1674 		fpc.vnh = (struct vn_hdr *)(target->buf + target->off);
1675 		fpc.vnh_max = fpc.vnh +
1676 			(target->off_max - target->off) / sizeof(struct vn_hdr);
1677 		error = each_segment(p, cb_put_fp, &fpc, 0);
1678 		if (vn_count)
1679 			*vn_count = fpc.count;
1680 	} else {
1681 		error = each_segment(p, cb_fpcount_segment, &fpc.count, 0);
1682 	}
1683 	target->off += fpc.count * sizeof(struct vn_hdr);
1684 	return (error);
1685 }
1686 
1687 /*
1688  * Try to find the appropriate ABI-note section for checknote,
1689  * The entire image is searched if necessary, not only the first page.
1690  */
1691 static boolean_t
1692 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *checknote,
1693     int32_t *osrel)
1694 {
1695 	boolean_t valid_note_found;
1696 	const Elf_Phdr *phdr, *pnote;
1697 	const Elf_Ehdr *hdr;
1698 	int i;
1699 
1700 	valid_note_found = FALSE;
1701 	hdr = (const Elf_Ehdr *)imgp->image_header;
1702 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
1703 
1704 	for (i = 0; i < hdr->e_phnum; i++) {
1705 		if (phdr[i].p_type == PT_NOTE) {
1706 			pnote = &phdr[i];
1707 			valid_note_found = check_PT_NOTE (imgp, checknote,
1708 				osrel, pnote);
1709 			if (valid_note_found)
1710 				break;
1711 		}
1712 	}
1713 	return valid_note_found;
1714 }
1715 
1716 /*
1717  * Be careful not to create new overflow conditions when checking
1718  * for overflow.
1719  */
1720 static boolean_t
1721 note_overflow(const Elf_Note *note, size_t maxsize)
1722 {
1723 	if (sizeof(*note) > maxsize)
1724 		return TRUE;
1725 	if (note->n_namesz > maxsize - sizeof(*note))
1726 		return TRUE;
1727 	return FALSE;
1728 }
1729 
1730 static boolean_t
1731 hdr_overflow(__ElfN(Off) off_beg, __ElfN(Size) size)
1732 {
1733 	__ElfN(Off) off_end;
1734 
1735 	off_end = off_beg + size;
1736 	if (off_end < off_beg)
1737 		return TRUE;
1738 	return FALSE;
1739 }
1740 
1741 static boolean_t
1742 check_PT_NOTE(struct image_params *imgp, Elf_Brandnote *checknote,
1743 	      int32_t *osrel, const Elf_Phdr * pnote)
1744 {
1745 	boolean_t limited_to_first_page;
1746 	boolean_t found = FALSE;
1747 	const Elf_Note *note, *note0, *note_end;
1748 	const char *note_name;
1749 	__ElfN(Off) noteloc, firstloc;
1750 	__ElfN(Size) notesz, firstlen, endbyte;
1751 	struct lwbuf *lwb;
1752 	struct lwbuf lwb_cache;
1753 	const char *page;
1754 	char *data = NULL;
1755 	int n;
1756 
1757 	if (hdr_overflow(pnote->p_offset, pnote->p_filesz))
1758 		return (FALSE);
1759 	notesz = pnote->p_filesz;
1760 	noteloc = pnote->p_offset;
1761 	endbyte = noteloc + notesz;
1762 	limited_to_first_page = noteloc < PAGE_SIZE && endbyte < PAGE_SIZE;
1763 
1764 	if (limited_to_first_page) {
1765 		note = (const Elf_Note *)(imgp->image_header + noteloc);
1766 		note_end = (const Elf_Note *)(imgp->image_header + endbyte);
1767 		note0 = note;
1768 	} else {
1769 		firstloc = noteloc & PAGE_MASK;
1770 		firstlen = PAGE_SIZE - firstloc;
1771 		if (notesz < sizeof(Elf_Note) || notesz > PAGE_SIZE)
1772 			return (FALSE);
1773 
1774 		lwb = &lwb_cache;
1775 		if (exec_map_page(imgp, noteloc >> PAGE_SHIFT, &lwb, &page))
1776 			return (FALSE);
1777 		if (firstlen < notesz) {         /* crosses page boundary */
1778 			data = kmalloc(notesz, M_TEMP, M_WAITOK);
1779 			bcopy(page + firstloc, data, firstlen);
1780 
1781 			exec_unmap_page(lwb);
1782 			lwb = &lwb_cache;
1783 			if (exec_map_page(imgp, (noteloc >> PAGE_SHIFT) + 1,
1784 				&lwb, &page)) {
1785 				kfree(data, M_TEMP);
1786 				return (FALSE);
1787 			}
1788 			bcopy(page, data + firstlen, notesz - firstlen);
1789 			note = note0 = (const Elf_Note *)(data);
1790 			note_end = (const Elf_Note *)(data + notesz);
1791 		} else {
1792 			note = note0 = (const Elf_Note *)(page + firstloc);
1793 			note_end = (const Elf_Note *)(page + firstloc +
1794 				firstlen);
1795 		}
1796 	}
1797 
1798 	for (n = 0; n < 100 && note >= note0 && note < note_end; n++) {
1799 		if (!aligned(note, Elf32_Addr))
1800 			break;
1801 		if (note_overflow(note, (const char *)note_end -
1802 					(const char *)note)) {
1803 			break;
1804 		}
1805 		note_name = (const char *)(note + 1);
1806 
1807 		if (note->n_namesz == checknote->hdr.n_namesz
1808 		    && note->n_descsz == checknote->hdr.n_descsz
1809 		    && note->n_type == checknote->hdr.n_type
1810 		    && (strncmp(checknote->vendor, note_name,
1811 			checknote->hdr.n_namesz) == 0)) {
1812 			/* Fetch osreldata from ABI.note-tag */
1813 			if ((checknote->flags & BN_TRANSLATE_OSREL) != 0 &&
1814 			    checknote->trans_osrel != NULL)
1815 				checknote->trans_osrel(note, osrel);
1816 			found = TRUE;
1817 			break;
1818 		}
1819 		note = (const Elf_Note *)((const char *)(note + 1) +
1820 		    roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1821 		    roundup2(note->n_descsz, sizeof(Elf32_Addr)));
1822 	}
1823 
1824 	if (!limited_to_first_page) {
1825 		if (data != NULL)
1826 			kfree(data, M_TEMP);
1827 		exec_unmap_page(lwb);
1828 	}
1829 	return (found);
1830 }
1831 
1832 /*
1833  * The interpreter program header may be located beyond the first page, so
1834  * regardless of its location, a copy of the interpreter path is created so
1835  * that it may be safely referenced by the calling function in all case.  The
1836  * memory is allocated by calling function, and the copying is done here.
1837  */
1838 static boolean_t
1839 extract_interpreter(struct image_params *imgp, const Elf_Phdr *pinterpreter,
1840 		    char *data)
1841 {
1842 	boolean_t limited_to_first_page;
1843 	const boolean_t result_success = FALSE;
1844 	const boolean_t result_failure = TRUE;
1845 	__ElfN(Off) pathloc, firstloc;
1846 	__ElfN(Size) pathsz, firstlen, endbyte;
1847 	struct lwbuf *lwb;
1848 	struct lwbuf lwb_cache;
1849 	const char *page;
1850 
1851 	if (hdr_overflow(pinterpreter->p_offset, pinterpreter->p_filesz))
1852 		return (result_failure);
1853 	pathsz  = pinterpreter->p_filesz;
1854 	pathloc = pinterpreter->p_offset;
1855 	endbyte = pathloc + pathsz;
1856 
1857 	limited_to_first_page = pathloc < PAGE_SIZE && endbyte < PAGE_SIZE;
1858 	if (limited_to_first_page) {
1859 	        bcopy(imgp->image_header + pathloc, data, pathsz);
1860 	        return (result_success);
1861 	}
1862 
1863 	firstloc = pathloc & PAGE_MASK;
1864 	firstlen = PAGE_SIZE - firstloc;
1865 
1866 	lwb = &lwb_cache;
1867 	if (exec_map_page(imgp, pathloc >> PAGE_SHIFT, &lwb, &page))
1868 		return (result_failure);
1869 
1870 	if (firstlen < pathsz) {         /* crosses page boundary */
1871 		bcopy(page + firstloc, data, firstlen);
1872 
1873 		exec_unmap_page(lwb);
1874 		lwb = &lwb_cache;
1875 		if (exec_map_page(imgp, (pathloc >> PAGE_SHIFT) + 1, &lwb,
1876 			&page))
1877 			return (result_failure);
1878 		bcopy(page, data + firstlen, pathsz - firstlen);
1879 	} else
1880 		bcopy(page + firstloc, data, pathsz);
1881 
1882 	exec_unmap_page(lwb);
1883 	return (result_success);
1884 }
1885 
1886 static boolean_t
1887 __elfN(bsd_trans_osrel)(const Elf_Note *note, int32_t *osrel)
1888 {
1889 	uintptr_t p;
1890 
1891 	p = (uintptr_t)(note + 1);
1892 	p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1893 	*osrel = *(const int32_t *)(p);
1894 
1895 	return (TRUE);
1896 }
1897 
1898 /*
1899  * Tell kern_execve.c about it, with a little help from the linker.
1900  */
1901 #if defined(__x86_64__)
1902 static struct execsw elf_execsw = {exec_elf64_imgact, "ELF64"};
1903 EXEC_SET_ORDERED(elf64, elf_execsw, SI_ORDER_FIRST);
1904 #else /* i386 assumed */
1905 static struct execsw elf_execsw = {exec_elf32_imgact, "ELF32"};
1906 EXEC_SET_ORDERED(elf32, elf_execsw, SI_ORDER_FIRST);
1907 #endif
1908 
1909 static vm_prot_t
1910 __elfN(trans_prot)(Elf_Word flags)
1911 {
1912 	vm_prot_t prot;
1913 
1914 	prot = 0;
1915 	if (flags & PF_X)
1916 		prot |= VM_PROT_EXECUTE;
1917 	if (flags & PF_W)
1918 		prot |= VM_PROT_WRITE;
1919 	if (flags & PF_R)
1920 		prot |= VM_PROT_READ;
1921 	return (prot);
1922 }
1923 
1924 static Elf_Word
1925 __elfN(untrans_prot)(vm_prot_t prot)
1926 {
1927 	Elf_Word flags;
1928 
1929 	flags = 0;
1930 	if (prot & VM_PROT_EXECUTE)
1931 		flags |= PF_X;
1932 	if (prot & VM_PROT_READ)
1933 		flags |= PF_R;
1934 	if (prot & VM_PROT_WRITE)
1935 		flags |= PF_W;
1936 	return (flags);
1937 }
1938 
1939 static u_long
1940 pie_base_hint(struct proc *p)
1941 {
1942 	u_long base;
1943 
1944 	if (elf_pie_base_mmap)
1945 		base = vm_map_hint(p, 0, VM_PROT_READ | VM_PROT_EXECUTE);
1946 	else
1947 		base = ET_DYN_LOAD_ADDR;
1948 	return base;
1949 }
1950