xref: /dragonfly/sys/kern/imgact_elf.c (revision 16dd80e4)
1 /*-
2  * Copyright (c) 2000 David O'Brien
3  * Copyright (c) 1995-1996 Søren Schmidt
4  * Copyright (c) 1996 Peter Wemm
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer
12  *    in this position and unchanged.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The name of the author may not be used to endorse or promote products
17  *    derived from this software without specific prior written permission
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  *
30  * $FreeBSD: src/sys/kern/imgact_elf.c,v 1.73.2.13 2002/12/28 19:49:41 dillon Exp $
31  */
32 
33 #include <sys/param.h>
34 #include <sys/exec.h>
35 #include <sys/fcntl.h>
36 #include <sys/file.h>
37 #include <sys/imgact.h>
38 #include <sys/imgact_elf.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/mman.h>
42 #include <sys/systm.h>
43 #include <sys/proc.h>
44 #include <sys/nlookup.h>
45 #include <sys/pioctl.h>
46 #include <sys/procfs.h>
47 #include <sys/resourcevar.h>
48 #include <sys/signalvar.h>
49 #include <sys/stat.h>
50 #include <sys/syscall.h>
51 #include <sys/sysctl.h>
52 #include <sys/sysent.h>
53 #include <sys/vnode.h>
54 #include <sys/eventhandler.h>
55 
56 #include <cpu/lwbuf.h>
57 
58 #include <vm/vm.h>
59 #include <vm/vm_kern.h>
60 #include <vm/vm_param.h>
61 #include <vm/pmap.h>
62 #include <sys/lock.h>
63 #include <vm/vm_map.h>
64 #include <vm/vm_object.h>
65 #include <vm/vm_extern.h>
66 
67 #include <machine/elf.h>
68 #include <machine/md_var.h>
69 #include <sys/mount.h>
70 #include <sys/ckpt.h>
71 
72 #define OLD_EI_BRAND	8
73 #define truncps(va,ps)	((va) & ~(ps - 1))
74 #define aligned(a,t)	(truncps((u_long)(a), sizeof(t)) == (u_long)(a))
75 
76 static int __elfN(check_header)(const Elf_Ehdr *hdr);
77 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp,
78     const char *interp, int32_t *osrel);
79 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
80     u_long *entry);
81 static int __elfN(load_section)(struct proc *p,
82     struct vmspace *vmspace, struct vnode *vp,
83     vm_offset_t offset, caddr_t vmaddr, size_t memsz, size_t filsz,
84     vm_prot_t prot);
85 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp);
86 static boolean_t __elfN(bsd_trans_osrel)(const Elf_Note *note,
87     int32_t *osrel);
88 static boolean_t __elfN(check_note)(struct image_params *imgp,
89     Elf_Brandnote *checknote, int32_t *osrel);
90 static vm_prot_t __elfN(trans_prot)(Elf_Word);
91 static Elf_Word __elfN(untrans_prot)(vm_prot_t);
92 static boolean_t check_PT_NOTE(struct image_params *imgp,
93     Elf_Brandnote *checknote, int32_t *osrel, const Elf_Phdr * pnote);
94 static boolean_t extract_interpreter(struct image_params *imgp,
95     const Elf_Phdr *pinterpreter, char *data);
96 static u_long pie_base_hint(struct proc *p);
97 
98 static int elf_legacy_coredump = 0;
99 static int __elfN(fallback_brand) = -1;
100 static int elf_pie_base_mmap = 0;
101 #if defined(__x86_64__)
102 SYSCTL_NODE(_kern, OID_AUTO, elf64, CTLFLAG_RW, 0, "");
103 SYSCTL_INT(_debug, OID_AUTO, elf64_legacy_coredump, CTLFLAG_RW,
104     &elf_legacy_coredump, 0, "legacy coredump mode");
105 SYSCTL_INT(_kern_elf64, OID_AUTO, fallback_brand, CTLFLAG_RW,
106     &elf64_fallback_brand, 0, "ELF64 brand of last resort");
107 TUNABLE_INT("kern.elf64.fallback_brand", &elf64_fallback_brand);
108 SYSCTL_INT(_kern_elf64, OID_AUTO, pie_base_mmap, CTLFLAG_RW,
109     &elf_pie_base_mmap, 0,
110     "choose a base address for PIE as if it is mapped with mmap()");
111 TUNABLE_INT("kern.elf64.pie_base_mmap", &elf_pie_base_mmap);
112 #else /* i386 assumed */
113 SYSCTL_NODE(_kern, OID_AUTO, elf32, CTLFLAG_RW, 0, "");
114 SYSCTL_INT(_debug, OID_AUTO, elf32_legacy_coredump, CTLFLAG_RW,
115     &elf_legacy_coredump, 0, "legacy coredump mode");
116 SYSCTL_INT(_kern_elf32, OID_AUTO, fallback_brand, CTLFLAG_RW,
117     &elf32_fallback_brand, 0, "ELF32 brand of last resort");
118 TUNABLE_INT("kern.elf32.fallback_brand", &elf32_fallback_brand);
119 SYSCTL_INT(_kern_elf32, OID_AUTO, pie_base_mmap, CTLFLAG_RW,
120     &elf_pie_base_mmap, 0,
121     "choose a base address for PIE as if it is mapped with mmap()");
122 TUNABLE_INT("kern.elf32.pie_base_mmap", &elf_pie_base_mmap);
123 #endif
124 
125 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS];
126 
127 static const char DRAGONFLY_ABI_VENDOR[] = "DragonFly";
128 
129 Elf_Brandnote __elfN(dragonfly_brandnote) = {
130 	.hdr.n_namesz	= sizeof(DRAGONFLY_ABI_VENDOR),
131 	.hdr.n_descsz	= sizeof(int32_t),
132 	.hdr.n_type	= 1,
133 	.vendor		= DRAGONFLY_ABI_VENDOR,
134 	.flags		= BN_TRANSLATE_OSREL,
135 	.trans_osrel	= __elfN(bsd_trans_osrel),
136 };
137 
138 int
139 __elfN(insert_brand_entry)(Elf_Brandinfo *entry)
140 {
141 	int i;
142 
143 	for (i = 0; i < MAX_BRANDS; i++) {
144 		if (elf_brand_list[i] == NULL) {
145 			elf_brand_list[i] = entry;
146 			break;
147 		}
148 	}
149 	if (i == MAX_BRANDS) {
150 		uprintf("WARNING: %s: could not insert brandinfo entry: %p\n",
151 			__func__, entry);
152 		return (-1);
153 	}
154 	return (0);
155 }
156 
157 int
158 __elfN(remove_brand_entry)(Elf_Brandinfo *entry)
159 {
160 	int i;
161 
162 	for (i = 0; i < MAX_BRANDS; i++) {
163 		if (elf_brand_list[i] == entry) {
164 			elf_brand_list[i] = NULL;
165 			break;
166 		}
167 	}
168 	if (i == MAX_BRANDS)
169 		return (-1);
170 	return (0);
171 }
172 
173 /*
174  * Check if an elf brand is being used anywhere in the system.
175  *
176  * Used by the linux emulation module unloader.  This isn't safe from
177  * races.
178  */
179 struct elf_brand_inuse_info {
180 	int rval;
181 	Elf_Brandinfo *entry;
182 };
183 
184 static int elf_brand_inuse_callback(struct proc *p, void *data);
185 
186 int
187 __elfN(brand_inuse)(Elf_Brandinfo *entry)
188 {
189 	struct elf_brand_inuse_info info;
190 
191 	info.rval = FALSE;
192 	info.entry = entry;
193 	allproc_scan(elf_brand_inuse_callback, &info, 0);
194 	return (info.rval);
195 }
196 
197 static
198 int
199 elf_brand_inuse_callback(struct proc *p, void *data)
200 {
201 	struct elf_brand_inuse_info *info = data;
202 
203 	if (p->p_sysent == info->entry->sysvec) {
204 		info->rval = TRUE;
205 		return (-1);
206 	}
207 	return (0);
208 }
209 
210 static int
211 __elfN(check_header)(const Elf_Ehdr *hdr)
212 {
213 	Elf_Brandinfo *bi;
214 	int i;
215 
216 	if (!IS_ELF(*hdr) ||
217 	    hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS ||
218 	    hdr->e_ident[EI_DATA] != ELF_TARG_DATA ||
219 	    hdr->e_ident[EI_VERSION] != EV_CURRENT ||
220 	    hdr->e_phentsize != sizeof(Elf_Phdr) ||
221 	    hdr->e_ehsize != sizeof(Elf_Ehdr) ||
222 	    hdr->e_version != ELF_TARG_VER)
223 		return (ENOEXEC);
224 
225 	/*
226 	 * Make sure we have at least one brand for this machine.
227 	 */
228 
229 	for (i = 0; i < MAX_BRANDS; i++) {
230 		bi = elf_brand_list[i];
231 		if (bi != NULL && bi->machine == hdr->e_machine)
232 			break;
233 	}
234 	if (i == MAX_BRANDS)
235 		return (ENOEXEC);
236 
237 	return (0);
238 }
239 
240 static int
241 __elfN(load_section)(struct proc *p, struct vmspace *vmspace, struct vnode *vp,
242 		 vm_offset_t offset, caddr_t vmaddr, size_t memsz,
243 		 size_t filsz, vm_prot_t prot)
244 {
245 	size_t map_len;
246 	vm_offset_t map_addr;
247 	int error, rv, cow;
248 	int count;
249 	int shared;
250 	size_t copy_len;
251 	vm_object_t object;
252 	vm_offset_t file_addr;
253 
254 	object = vp->v_object;
255 	error = 0;
256 
257 	/*
258 	 * In most cases we will be able to use a shared lock on the
259 	 * object we are inserting into the map.  The lock will be
260 	 * upgraded in situations where new VM pages must be allocated.
261 	 */
262 	vm_object_hold_shared(object);
263 	shared = 1;
264 
265 	/*
266 	 * It's necessary to fail if the filsz + offset taken from the
267 	 * header is greater than the actual file pager object's size.
268 	 * If we were to allow this, then the vm_map_find() below would
269 	 * walk right off the end of the file object and into the ether.
270 	 *
271 	 * While I'm here, might as well check for something else that
272 	 * is invalid: filsz cannot be greater than memsz.
273 	 */
274 	if ((off_t)filsz + offset > vp->v_filesize || filsz > memsz) {
275 		uprintf("elf_load_section: truncated ELF file\n");
276 		vm_object_drop(object);
277 		return (ENOEXEC);
278 	}
279 
280 	map_addr = trunc_page((vm_offset_t)vmaddr);
281 	file_addr = trunc_page(offset);
282 
283 	/*
284 	 * We have two choices.  We can either clear the data in the last page
285 	 * of an oversized mapping, or we can start the anon mapping a page
286 	 * early and copy the initialized data into that first page.  We
287 	 * choose the second..
288 	 */
289 	if (memsz > filsz)
290 		map_len = trunc_page(offset+filsz) - file_addr;
291 	else
292 		map_len = round_page(offset+filsz) - file_addr;
293 
294 	if (map_len != 0) {
295 		vm_object_reference_locked(object);
296 
297 		/* cow flags: don't dump readonly sections in core */
298 		cow = MAP_COPY_ON_WRITE | MAP_PREFAULT;
299 		if ((prot & VM_PROT_WRITE) == 0)
300 			cow |= MAP_DISABLE_COREDUMP;
301 		if (shared == 0)
302 			cow |= MAP_PREFAULT_RELOCK;
303 
304 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
305 		vm_map_lock(&vmspace->vm_map);
306 		rv = vm_map_insert(&vmspace->vm_map, &count,
307 				      object, NULL,
308 				      file_addr,	/* file offset */
309 				      map_addr,		/* virtual start */
310 				      map_addr + map_len,/* virtual end */
311 				      VM_MAPTYPE_NORMAL,
312 				      VM_SUBSYS_IMGACT,
313 				      prot, VM_PROT_ALL, cow);
314 		vm_map_unlock(&vmspace->vm_map);
315 		vm_map_entry_release(count);
316 
317 		/*
318 		 * NOTE: Object must have a hold ref when calling
319 		 * vm_object_deallocate().
320 		 */
321 		if (rv != KERN_SUCCESS) {
322 			vm_object_drop(object);
323 			vm_object_deallocate(object);
324 			return (EINVAL);
325 		}
326 
327 		/* we can stop now if we've covered it all */
328 		if (memsz == filsz) {
329 			vm_object_drop(object);
330 			return (0);
331 		}
332 	}
333 
334 	/*
335 	 * We have to get the remaining bit of the file into the first part
336 	 * of the oversized map segment.  This is normally because the .data
337 	 * segment in the file is extended to provide bss.  It's a neat idea
338 	 * to try and save a page, but it's a pain in the behind to implement.
339 	 */
340 	copy_len = (offset + filsz) - trunc_page(offset + filsz);
341 	map_addr = trunc_page((vm_offset_t)vmaddr + filsz);
342 	map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr;
343 
344 	/* This had damn well better be true! */
345         if (map_len != 0) {
346 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
347 		vm_map_lock(&vmspace->vm_map);
348 		rv = vm_map_insert(&vmspace->vm_map, &count,
349 					NULL, NULL,
350 					0,
351 					map_addr,
352 					map_addr + map_len,
353 					VM_MAPTYPE_NORMAL,
354 					VM_SUBSYS_IMGACT,
355 					VM_PROT_ALL, VM_PROT_ALL, 0);
356 		vm_map_unlock(&vmspace->vm_map);
357 		vm_map_entry_release(count);
358 		if (rv != KERN_SUCCESS) {
359 			vm_object_drop(object);
360 			return (EINVAL);
361 		}
362 	}
363 
364 	if (copy_len != 0) {
365 		struct lwbuf *lwb;
366 		struct lwbuf lwb_cache;
367 		vm_page_t m;
368 
369 		m = vm_fault_object_page(object, trunc_page(offset + filsz),
370 					 VM_PROT_READ, 0, &shared, &error);
371 		vm_object_drop(object);
372 		if (m) {
373 			lwb = lwbuf_alloc(m, &lwb_cache);
374 			error = copyout((caddr_t)lwbuf_kva(lwb),
375 					(caddr_t)map_addr, copy_len);
376 			lwbuf_free(lwb);
377 			vm_page_unhold(m);
378 		}
379 	} else {
380 		vm_object_drop(object);
381 	}
382 
383 	/*
384 	 * set it to the specified protection
385 	 */
386 	if (error == 0) {
387 		vm_map_protect(&vmspace->vm_map,
388 			       map_addr, map_addr + map_len,
389 			       prot, FALSE);
390 	}
391 	return (error);
392 }
393 
394 /*
395  * Load the file "file" into memory.  It may be either a shared object
396  * or an executable.
397  *
398  * The "addr" reference parameter is in/out.  On entry, it specifies
399  * the address where a shared object should be loaded.  If the file is
400  * an executable, this value is ignored.  On exit, "addr" specifies
401  * where the file was actually loaded.
402  *
403  * The "entry" reference parameter is out only.  On exit, it specifies
404  * the entry point for the loaded file.
405  */
406 static int
407 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, u_long *entry)
408 {
409 	struct {
410 		struct nlookupdata nd;
411 		struct vattr attr;
412 		struct image_params image_params;
413 	} *tempdata;
414 	const Elf_Ehdr *hdr = NULL;
415 	const Elf_Phdr *phdr = NULL;
416 	struct nlookupdata *nd;
417 	struct vmspace *vmspace = p->p_vmspace;
418 	struct vattr *attr;
419 	struct image_params *imgp;
420 	struct mount *topmnt;
421 	vm_prot_t prot;
422 	u_long rbase;
423 	u_long base_addr = 0;
424 	int error, i, numsegs;
425 
426 	tempdata = kmalloc(sizeof(*tempdata), M_TEMP, M_WAITOK);
427 	nd = &tempdata->nd;
428 	attr = &tempdata->attr;
429 	imgp = &tempdata->image_params;
430 
431 	/*
432 	 * Initialize part of the common data
433 	 */
434 	imgp->proc = p;
435 	imgp->attr = attr;
436 	imgp->firstpage = NULL;
437 	imgp->image_header = NULL;
438 	imgp->vp = NULL;
439 
440 	error = nlookup_init(nd, file, UIO_SYSSPACE, NLC_FOLLOW);
441 	if (error == 0)
442 		error = nlookup(nd);
443 	if (error == 0)
444 		error = cache_vget(&nd->nl_nch, nd->nl_cred,
445 				   LK_SHARED, &imgp->vp);
446 	topmnt = nd->nl_nch.mount;
447 	nlookup_done(nd);
448 	if (error)
449 		goto fail;
450 
451 	/*
452 	 * Check permissions, modes, uid, etc on the file, and "open" it.
453 	 */
454 	error = exec_check_permissions(imgp, topmnt);
455 	if (error) {
456 		vn_unlock(imgp->vp);
457 		goto fail;
458 	}
459 
460 	error = exec_map_first_page(imgp);
461 	/*
462 	 * Also make certain that the interpreter stays the same, so set
463 	 * its VTEXT flag, too.
464 	 */
465 	if (error == 0)
466 		vsetflags(imgp->vp, VTEXT);
467 	vn_unlock(imgp->vp);
468 	if (error)
469                 goto fail;
470 
471 	hdr = (const Elf_Ehdr *)imgp->image_header;
472 	if ((error = __elfN(check_header)(hdr)) != 0)
473 		goto fail;
474 	if (hdr->e_type == ET_DYN)
475 		rbase = *addr;
476 	else if (hdr->e_type == ET_EXEC)
477 		rbase = 0;
478 	else {
479 		error = ENOEXEC;
480 		goto fail;
481 	}
482 
483 	/* Only support headers that fit within first page for now      */
484 	/*    (multiplication of two Elf_Half fields will not overflow) */
485 	if ((hdr->e_phoff > PAGE_SIZE) ||
486 	    (hdr->e_phentsize * hdr->e_phnum) > PAGE_SIZE - hdr->e_phoff) {
487 		error = ENOEXEC;
488 		goto fail;
489 	}
490 
491 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
492 	if (!aligned(phdr, Elf_Addr)) {
493 		error = ENOEXEC;
494 		goto fail;
495 	}
496 
497 	for (i = 0, numsegs = 0; i < hdr->e_phnum; i++) {
498 		if (phdr[i].p_type == PT_LOAD && phdr[i].p_memsz != 0) {
499 			/* Loadable segment */
500 			prot = __elfN(trans_prot)(phdr[i].p_flags);
501 			error = __elfN(load_section)(
502 				    p, vmspace, imgp->vp,
503 				    phdr[i].p_offset,
504 				    (caddr_t)phdr[i].p_vaddr +
505 				    rbase,
506 				    phdr[i].p_memsz,
507 				    phdr[i].p_filesz, prot);
508 			if (error != 0)
509 				goto fail;
510 			/*
511 			 * Establish the base address if this is the
512 			 * first segment.
513 			 */
514 			if (numsegs == 0)
515   				base_addr = trunc_page(phdr[i].p_vaddr + rbase);
516 			numsegs++;
517 		}
518 	}
519 	*addr = base_addr;
520 	*entry = (unsigned long)hdr->e_entry + rbase;
521 
522 fail:
523 	if (imgp->firstpage)
524 		exec_unmap_first_page(imgp);
525 	if (imgp->vp) {
526 		vrele(imgp->vp);
527 		imgp->vp = NULL;
528 	}
529 	kfree(tempdata, M_TEMP);
530 
531 	return (error);
532 }
533 
534 static Elf_Brandinfo *
535 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp,
536     int32_t *osrel)
537 {
538 	const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header;
539 	Elf_Brandinfo *bi;
540 	boolean_t ret;
541 	int i;
542 
543 	/* We support four types of branding -- (1) the ELF EI_OSABI field
544 	 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string
545 	 * branding within the ELF header, (3) path of the `interp_path' field,
546 	 * and (4) the ".note.ABI-tag" ELF section.
547 	 */
548 
549 	/* Look for an ".note.ABI-tag" ELF section */
550 	for (i = 0; i < MAX_BRANDS; i++) {
551 		bi = elf_brand_list[i];
552 
553 		if (bi == NULL)
554 			continue;
555 		if (hdr->e_machine == bi->machine && (bi->flags &
556 		    (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) {
557 			ret = __elfN(check_note)(imgp, bi->brand_note, osrel);
558 			if (ret)
559 				return (bi);
560 		}
561 	}
562 
563 	/* If the executable has a brand, search for it in the brand list. */
564 	for (i = 0;  i < MAX_BRANDS;  i++) {
565 		bi = elf_brand_list[i];
566 
567                 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY)
568 			continue;
569 		if (hdr->e_machine == bi->machine &&
570 		    (hdr->e_ident[EI_OSABI] == bi->brand ||
571 		    strncmp((const char *)&hdr->e_ident[OLD_EI_BRAND],
572 		    bi->compat_3_brand, strlen(bi->compat_3_brand)) == 0))
573 			return (bi);
574 	}
575 
576 	/* Lacking a known brand, search for a recognized interpreter. */
577 	if (interp != NULL) {
578 		for (i = 0;  i < MAX_BRANDS;  i++) {
579 			bi = elf_brand_list[i];
580 
581                         if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY)
582 				continue;
583 			if (hdr->e_machine == bi->machine &&
584 			    strcmp(interp, bi->interp_path) == 0)
585 				return (bi);
586 		}
587 	}
588 
589 	/* Lacking a recognized interpreter, try the default brand */
590 	for (i = 0; i < MAX_BRANDS; i++) {
591 		bi = elf_brand_list[i];
592 
593 		if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY)
594 			continue;
595 		if (hdr->e_machine == bi->machine &&
596 		    __elfN(fallback_brand) == bi->brand)
597 			return (bi);
598 	}
599 	return (NULL);
600 }
601 
602 static int
603 __CONCAT(exec_,__elfN(imgact))(struct image_params *imgp)
604 {
605 	const Elf_Ehdr *hdr = (const Elf_Ehdr *) imgp->image_header;
606 	const Elf_Phdr *phdr;
607 	Elf_Auxargs *elf_auxargs;
608 	struct vmspace *vmspace;
609 	vm_prot_t prot;
610 	u_long text_size = 0, data_size = 0, total_size = 0;
611 	u_long text_addr = 0, data_addr = 0;
612 	u_long seg_size, seg_addr;
613 	u_long addr, baddr, et_dyn_addr = 0, entry = 0, proghdr = 0;
614 	int32_t osrel = 0;
615 	int error = 0, i, n;
616 	boolean_t failure;
617 	char *interp = NULL;
618 	const char *newinterp = NULL;
619 	Elf_Brandinfo *brand_info;
620 	char *path;
621 
622 	/*
623 	 * Do we have a valid ELF header ?
624 	 *
625 	 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later if a particular
626 	 * brand doesn't support it.  Both DragonFly platforms do by default.
627 	 */
628 	if (__elfN(check_header)(hdr) != 0 ||
629 	    (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN))
630 		return (-1);
631 
632 	/*
633 	 * From here on down, we return an errno, not -1, as we've
634 	 * detected an ELF file.
635 	 */
636 
637 	if ((hdr->e_phoff > PAGE_SIZE) ||
638 	    (hdr->e_phoff + hdr->e_phentsize * hdr->e_phnum) > PAGE_SIZE) {
639 		/* Only support headers in first page for now */
640 		return (ENOEXEC);
641 	}
642 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
643 	if (!aligned(phdr, Elf_Addr))
644 		return (ENOEXEC);
645 	n = 0;
646 	baddr = 0;
647 	for (i = 0; i < hdr->e_phnum; i++) {
648 		if (phdr[i].p_type == PT_LOAD) {
649 			if (n == 0)
650 				baddr = phdr[i].p_vaddr;
651 			n++;
652 			continue;
653 		}
654 		if (phdr[i].p_type == PT_INTERP) {
655 			/*
656 			 * If interp is already defined there are more than
657 			 * one PT_INTERP program headers present.  Take only
658 			 * the first one and ignore the rest.
659 			 */
660 			if (interp != NULL)
661 				continue;
662 
663 			if (phdr[i].p_filesz == 0 ||
664 			    phdr[i].p_filesz > PAGE_SIZE ||
665 			    phdr[i].p_filesz > MAXPATHLEN)
666 				return (ENOEXEC);
667 
668 			interp = kmalloc(phdr[i].p_filesz, M_TEMP, M_WAITOK);
669 			failure = extract_interpreter(imgp, &phdr[i], interp);
670 			if (failure) {
671 				kfree(interp, M_TEMP);
672 				return (ENOEXEC);
673 			}
674 			continue;
675 		}
676 	}
677 
678 	brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel);
679 	if (brand_info == NULL) {
680 		uprintf("ELF binary type \"%u\" not known.\n",
681 		    hdr->e_ident[EI_OSABI]);
682 		if (interp != NULL)
683 			kfree(interp, M_TEMP);
684 		return (ENOEXEC);
685 	}
686 	if (hdr->e_type == ET_DYN) {
687 		if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) {
688 			if (interp != NULL)
689 				kfree(interp, M_TEMP);
690 			return (ENOEXEC);
691 		}
692 		/*
693 		 * If p_vaddr field of PT_LOAD program header is zero and type of an
694 		 * executale is ET_DYN, then it must be a position independent
695 		 * executable (PIE). In this case the system needs to pick a base
696 		 * address for us. Set et_dyn_addr to non-zero and choose the actual
697 		 * address when we are ready.
698 		 */
699 		if (baddr == 0)
700 			et_dyn_addr = 1;
701 	}
702 
703 	if (interp != NULL && brand_info->interp_newpath != NULL)
704 		newinterp = brand_info->interp_newpath;
705 
706 	exec_new_vmspace(imgp, NULL);
707 
708 	/*
709 	 * Yeah, I'm paranoid.  There is every reason in the world to get
710 	 * VTEXT now since from here on out, there are places we can have
711 	 * a context switch.  Better safe than sorry; I really don't want
712 	 * the file to change while it's being loaded.
713 	 */
714 	vsetflags(imgp->vp, VTEXT);
715 
716 	vmspace = imgp->proc->p_vmspace;
717 	/* Choose the base address for dynamic executables if we need to. */
718 	if (et_dyn_addr)
719 		et_dyn_addr = pie_base_hint(imgp->proc);
720 
721 	for (i = 0; i < hdr->e_phnum; i++) {
722 		switch (phdr[i].p_type) {
723 		case PT_LOAD:	/* Loadable segment */
724 			if (phdr[i].p_memsz == 0)
725 				break;
726 			prot = __elfN(trans_prot)(phdr[i].p_flags);
727 
728 			if ((error = __elfN(load_section)(
729 					imgp->proc,
730 					vmspace,
731 					imgp->vp,
732 					phdr[i].p_offset,
733 					(caddr_t)phdr[i].p_vaddr + et_dyn_addr,
734 					phdr[i].p_memsz,
735 					phdr[i].p_filesz,
736 					prot)) != 0) {
737                                 if (interp != NULL)
738                                         kfree (interp, M_TEMP);
739 				return (error);
740                         }
741 
742 			/*
743 			 * If this segment contains the program headers,
744 			 * remember their virtual address for the AT_PHDR
745 			 * aux entry. Static binaries don't usually include
746 			 * a PT_PHDR entry.
747 			 */
748 			if (phdr[i].p_offset == 0 &&
749 			    hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize
750 				<= phdr[i].p_filesz)
751 				proghdr = phdr[i].p_vaddr + hdr->e_phoff +
752 				    et_dyn_addr;
753 
754 			seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr);
755 			seg_size = round_page(phdr[i].p_memsz +
756 			    phdr[i].p_vaddr + et_dyn_addr - seg_addr);
757 
758 			/*
759 			 * Is this .text or .data?  We can't use
760 			 * VM_PROT_WRITE or VM_PROT_EXEC, it breaks the
761 			 * alpha terribly and possibly does other bad
762 			 * things so we stick to the old way of figuring
763 			 * it out:  If the segment contains the program
764 			 * entry point, it's a text segment, otherwise it
765 			 * is a data segment.
766 			 *
767 			 * Note that obreak() assumes that data_addr +
768 			 * data_size == end of data load area, and the ELF
769 			 * file format expects segments to be sorted by
770 			 * address.  If multiple data segments exist, the
771 			 * last one will be used.
772 			 */
773 			if (hdr->e_entry >= phdr[i].p_vaddr &&
774 			    hdr->e_entry < (phdr[i].p_vaddr +
775 			    phdr[i].p_memsz)) {
776 				text_size = seg_size;
777 				text_addr = seg_addr;
778 				entry = (u_long)hdr->e_entry + et_dyn_addr;
779 			} else {
780 				data_size = seg_size;
781 				data_addr = seg_addr;
782 			}
783 			total_size += seg_size;
784 
785 			/*
786 			 * Check limits.  It should be safe to check the
787 			 * limits after loading the segment since we do
788 			 * not actually fault in all the segment's pages.
789 			 */
790 			if (data_size >
791 			    imgp->proc->p_rlimit[RLIMIT_DATA].rlim_cur ||
792 			    text_size > maxtsiz ||
793 			    total_size >
794 			    imgp->proc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
795 				if (interp != NULL)
796 					kfree(interp, M_TEMP);
797 				error = ENOMEM;
798 				return (error);
799 			}
800 			break;
801 		case PT_PHDR: 	/* Program header table info */
802 			proghdr = phdr[i].p_vaddr + et_dyn_addr;
803 			break;
804 		default:
805 			break;
806 		}
807 	}
808 
809 	vmspace->vm_tsize = text_size;		/* in bytes */
810 	vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr;
811 	vmspace->vm_dsize = data_size;		/* in bytes */
812 	vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr;
813 
814 	addr = ELF_RTLD_ADDR(vmspace);
815 
816 	imgp->entry_addr = entry;
817 
818 	imgp->proc->p_sysent = brand_info->sysvec;
819 
820 	if (interp != NULL) {
821 		int have_interp = FALSE;
822 		if (brand_info->emul_path != NULL &&
823 		    brand_info->emul_path[0] != '\0') {
824 			path = kmalloc(MAXPATHLEN, M_TEMP, M_WAITOK);
825 		        ksnprintf(path, MAXPATHLEN, "%s%s",
826 			    brand_info->emul_path, interp);
827 			error = __elfN(load_file)(imgp->proc, path, &addr,
828 			    &imgp->entry_addr);
829 			kfree(path, M_TEMP);
830 			if (error == 0)
831 				have_interp = TRUE;
832 		}
833 		if (!have_interp && newinterp != NULL) {
834 			error = __elfN(load_file)(imgp->proc, newinterp,
835 			    &addr, &imgp->entry_addr);
836 			if (error == 0)
837 				have_interp = TRUE;
838 		}
839 		if (!have_interp) {
840 			error = __elfN(load_file)(imgp->proc, interp, &addr,
841 			    &imgp->entry_addr);
842 		}
843 		if (error != 0) {
844 			uprintf("ELF interpreter %s not found\n", interp);
845 			kfree(interp, M_TEMP);
846 			return (error);
847 		}
848 		kfree(interp, M_TEMP);
849 	} else
850 		addr = et_dyn_addr;
851 
852 	/*
853 	 * Construct auxargs table (used by the fixup routine)
854 	 */
855 	elf_auxargs = kmalloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK);
856 	elf_auxargs->execfd = -1;
857 	elf_auxargs->phdr = proghdr;
858 	elf_auxargs->phent = hdr->e_phentsize;
859 	elf_auxargs->phnum = hdr->e_phnum;
860 	elf_auxargs->pagesz = PAGE_SIZE;
861 	elf_auxargs->base = addr;
862 	elf_auxargs->flags = 0;
863 	elf_auxargs->entry = entry;
864 
865 	imgp->auxargs = elf_auxargs;
866 	imgp->interpreted = 0;
867 	imgp->proc->p_osrel = osrel;
868 
869 	return (error);
870 }
871 
872 int
873 __elfN(dragonfly_fixup)(register_t **stack_base, struct image_params *imgp)
874 {
875 	Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs;
876 	Elf_Addr *base;
877 	Elf_Addr *pos;
878 
879 	base = (Elf_Addr *)*stack_base;
880 	pos = base + (imgp->args->argc + imgp->args->envc + 2);
881 
882 	if (args->execfd != -1)
883 		AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd);
884 	AUXARGS_ENTRY(pos, AT_PHDR, args->phdr);
885 	AUXARGS_ENTRY(pos, AT_PHENT, args->phent);
886 	AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum);
887 	AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz);
888 	AUXARGS_ENTRY(pos, AT_FLAGS, args->flags);
889 	AUXARGS_ENTRY(pos, AT_ENTRY, args->entry);
890 	AUXARGS_ENTRY(pos, AT_BASE, args->base);
891 	if (imgp->execpathp != 0)
892 		AUXARGS_ENTRY(pos, AT_EXECPATH, imgp->execpathp);
893 	AUXARGS_ENTRY(pos, AT_OSRELDATE, osreldate);
894 	AUXARGS_ENTRY(pos, AT_NULL, 0);
895 
896 	kfree(imgp->auxargs, M_TEMP);
897 	imgp->auxargs = NULL;
898 
899 	base--;
900 	suword64(base, (long)imgp->args->argc);
901 	*stack_base = (register_t *)base;
902 	return (0);
903 }
904 
905 /*
906  * Code for generating ELF core dumps.
907  */
908 
909 typedef int (*segment_callback)(vm_map_entry_t, void *);
910 
911 /* Closure for cb_put_phdr(). */
912 struct phdr_closure {
913 	Elf_Phdr *phdr;		/* Program header to fill in (incremented) */
914 	Elf_Phdr *phdr_max;	/* Pointer bound for error check */
915 	Elf_Off offset;		/* Offset of segment in core file */
916 };
917 
918 /* Closure for cb_size_segment(). */
919 struct sseg_closure {
920 	int count;		/* Count of writable segments. */
921 	size_t vsize;		/* Total size of all writable segments. */
922 };
923 
924 /* Closure for cb_put_fp(). */
925 struct fp_closure {
926 	struct vn_hdr *vnh;
927 	struct vn_hdr *vnh_max;
928 	int count;
929 	struct stat *sb;
930 };
931 
932 typedef struct elf_buf {
933 	char	*buf;
934 	size_t	off;
935 	size_t	off_max;
936 } *elf_buf_t;
937 
938 static void *target_reserve(elf_buf_t target, size_t bytes, int *error);
939 
940 static int cb_put_phdr (vm_map_entry_t, void *);
941 static int cb_size_segment (vm_map_entry_t, void *);
942 static int cb_fpcount_segment(vm_map_entry_t, void *);
943 static int cb_put_fp(vm_map_entry_t, void *);
944 
945 
946 static int each_segment (struct proc *, segment_callback, void *, int);
947 static int __elfN(corehdr)(struct lwp *, int, struct file *, struct ucred *,
948 			int, elf_buf_t);
949 enum putmode { WRITE, DRYRUN };
950 static int __elfN(puthdr)(struct lwp *, elf_buf_t, int sig, enum putmode,
951 			int, struct file *);
952 static int elf_putallnotes(struct lwp *, elf_buf_t, int, enum putmode);
953 static int __elfN(putnote)(elf_buf_t, const char *, int, const void *, size_t);
954 
955 static int elf_putsigs(struct lwp *, elf_buf_t);
956 static int elf_puttextvp(struct proc *, elf_buf_t);
957 static int elf_putfiles(struct proc *, elf_buf_t, struct file *);
958 
959 int
960 __elfN(coredump)(struct lwp *lp, int sig, struct vnode *vp, off_t limit)
961 {
962 	struct file *fp;
963 	int error;
964 
965 	if ((error = falloc(NULL, &fp, NULL)) != 0)
966 		return (error);
967 	fsetcred(fp, lp->lwp_proc->p_ucred);
968 
969 	/*
970 	 * XXX fixme.
971 	 */
972 	fp->f_type = DTYPE_VNODE;
973 	fp->f_flag = O_CREAT|O_WRONLY|O_NOFOLLOW;
974 	fp->f_ops = &vnode_fileops;
975 	fp->f_data = vp;
976 
977 	error = generic_elf_coredump(lp, sig, fp, limit);
978 
979 	fp->f_type = 0;
980 	fp->f_flag = 0;
981 	fp->f_ops = &badfileops;
982 	fp->f_data = NULL;
983 	fdrop(fp);
984 	return (error);
985 }
986 
987 int
988 generic_elf_coredump(struct lwp *lp, int sig, struct file *fp, off_t limit)
989 {
990 	struct proc *p = lp->lwp_proc;
991 	struct ucred *cred = p->p_ucred;
992 	int error = 0;
993 	struct sseg_closure seginfo;
994 	struct elf_buf target;
995 
996 	if (!fp)
997 		kprintf("can't dump core - null fp\n");
998 
999 	/*
1000 	 * Size the program segments
1001 	 */
1002 	seginfo.count = 0;
1003 	seginfo.vsize = 0;
1004 	each_segment(p, cb_size_segment, &seginfo, 1);
1005 
1006 	/*
1007 	 * Calculate the size of the core file header area by making
1008 	 * a dry run of generating it.  Nothing is written, but the
1009 	 * size is calculated.
1010 	 */
1011 	bzero(&target, sizeof(target));
1012 	__elfN(puthdr)(lp, &target, sig, DRYRUN, seginfo.count, fp);
1013 
1014 	if (target.off + seginfo.vsize >= limit)
1015 		return (EFAULT);
1016 
1017 	/*
1018 	 * Allocate memory for building the header, fill it up,
1019 	 * and write it out.
1020 	 */
1021 	target.off_max = target.off;
1022 	target.off = 0;
1023 	target.buf = kmalloc(target.off_max, M_TEMP, M_WAITOK|M_ZERO);
1024 
1025 	error = __elfN(corehdr)(lp, sig, fp, cred, seginfo.count, &target);
1026 
1027 	/* Write the contents of all of the writable segments. */
1028 	if (error == 0) {
1029 		Elf_Phdr *php;
1030 		int i;
1031 		ssize_t nbytes;
1032 
1033 		php = (Elf_Phdr *)(target.buf + sizeof(Elf_Ehdr)) + 1;
1034 		for (i = 0; i < seginfo.count; i++) {
1035 			error = fp_write(fp, (caddr_t)php->p_vaddr,
1036 					php->p_filesz, &nbytes, UIO_USERSPACE);
1037 			if (error != 0)
1038 				break;
1039 			php++;
1040 		}
1041 	}
1042 	kfree(target.buf, M_TEMP);
1043 
1044 	return (error);
1045 }
1046 
1047 /*
1048  * A callback for each_segment() to write out the segment's
1049  * program header entry.
1050  */
1051 static int
1052 cb_put_phdr(vm_map_entry_t entry, void *closure)
1053 {
1054 	struct phdr_closure *phc = closure;
1055 	Elf_Phdr *phdr = phc->phdr;
1056 
1057 	if (phc->phdr == phc->phdr_max)
1058 		return (EINVAL);
1059 
1060 	phc->offset = round_page(phc->offset);
1061 
1062 	phdr->p_type = PT_LOAD;
1063 	phdr->p_offset = phc->offset;
1064 	phdr->p_vaddr = entry->start;
1065 	phdr->p_paddr = 0;
1066 	phdr->p_filesz = phdr->p_memsz = entry->end - entry->start;
1067 	phdr->p_align = PAGE_SIZE;
1068 	phdr->p_flags = __elfN(untrans_prot)(entry->protection);
1069 
1070 	phc->offset += phdr->p_filesz;
1071 	++phc->phdr;
1072 	return (0);
1073 }
1074 
1075 /*
1076  * A callback for each_writable_segment() to gather information about
1077  * the number of segments and their total size.
1078  */
1079 static int
1080 cb_size_segment(vm_map_entry_t entry, void *closure)
1081 {
1082 	struct sseg_closure *ssc = closure;
1083 
1084 	++ssc->count;
1085 	ssc->vsize += entry->end - entry->start;
1086 	return (0);
1087 }
1088 
1089 /*
1090  * A callback for each_segment() to gather information about
1091  * the number of text segments.
1092  */
1093 static int
1094 cb_fpcount_segment(vm_map_entry_t entry, void *closure)
1095 {
1096 	int *count = closure;
1097 	struct vnode *vp;
1098 
1099 	if (entry->object.vm_object->type == OBJT_VNODE) {
1100 		vp = (struct vnode *)entry->object.vm_object->handle;
1101 		if ((vp->v_flag & VCKPT) && curproc->p_textvp == vp)
1102 			return (0);
1103 		++*count;
1104 	}
1105 	return (0);
1106 }
1107 
1108 static int
1109 cb_put_fp(vm_map_entry_t entry, void *closure)
1110 {
1111 	struct fp_closure *fpc = closure;
1112 	struct vn_hdr *vnh = fpc->vnh;
1113 	Elf_Phdr *phdr = &vnh->vnh_phdr;
1114 	struct vnode *vp;
1115 	int error;
1116 
1117 	/*
1118 	 * If an entry represents a vnode then write out a file handle.
1119 	 *
1120 	 * If we are checkpointing a checkpoint-restored program we do
1121 	 * NOT record the filehandle for the old checkpoint vnode (which
1122 	 * is mapped all over the place).  Instead we rely on the fact
1123 	 * that a checkpoint-restored program does not mmap() the checkpt
1124 	 * vnode NOCORE, so its contents will be written out to the
1125 	 * new checkpoint file.  This is necessary because the 'old'
1126 	 * checkpoint file is typically destroyed when a new one is created
1127 	 * and thus cannot be used to restore the new checkpoint.
1128 	 *
1129 	 * Theoretically we could create a chain of checkpoint files and
1130 	 * operate the checkpointing operation kinda like an incremental
1131 	 * checkpoint, but a checkpoint restore would then likely wind up
1132 	 * referencing many prior checkpoint files and that is a bit over
1133 	 * the top for the purpose of the checkpoint API.
1134 	 */
1135 	if (entry->object.vm_object->type == OBJT_VNODE) {
1136 		vp = (struct vnode *)entry->object.vm_object->handle;
1137 		if ((vp->v_flag & VCKPT) && curproc->p_textvp == vp)
1138 			return (0);
1139 		if (vnh == fpc->vnh_max)
1140 			return (EINVAL);
1141 
1142 		if (vp->v_mount)
1143 			vnh->vnh_fh.fh_fsid = vp->v_mount->mnt_stat.f_fsid;
1144 		error = VFS_VPTOFH(vp, &vnh->vnh_fh.fh_fid);
1145 		if (error) {
1146 			char *freepath, *fullpath;
1147 
1148 			/*
1149 			 * This is actually a relatively common occurance,
1150 			 * so don't spew on the console by default.
1151 			 */
1152 			if (vn_fullpath(curproc, vp, &fullpath, &freepath, 0)) {
1153 				if (bootverbose)
1154 					kprintf("Warning: coredump, error %d: cannot store file handle for vnode %p\n", error, vp);
1155 			} else {
1156 				if (bootverbose)
1157 					kprintf("Warning: coredump, error %d: cannot store file handle for %s\n", error, fullpath);
1158 				kfree(freepath, M_TEMP);
1159 			}
1160 			error = 0;
1161 		}
1162 
1163 		phdr->p_type = PT_LOAD;
1164 		phdr->p_offset = 0;        /* not written to core */
1165 		phdr->p_vaddr = entry->start;
1166 		phdr->p_paddr = 0;
1167 		phdr->p_filesz = phdr->p_memsz = entry->end - entry->start;
1168 		phdr->p_align = PAGE_SIZE;
1169 		phdr->p_flags = 0;
1170 		if (entry->protection & VM_PROT_READ)
1171 			phdr->p_flags |= PF_R;
1172 		if (entry->protection & VM_PROT_WRITE)
1173 			phdr->p_flags |= PF_W;
1174 		if (entry->protection & VM_PROT_EXECUTE)
1175 			phdr->p_flags |= PF_X;
1176 		++fpc->vnh;
1177 		++fpc->count;
1178 	}
1179 	return (0);
1180 }
1181 
1182 /*
1183  * For each writable segment in the process's memory map, call the given
1184  * function with a pointer to the map entry and some arbitrary
1185  * caller-supplied data.
1186  */
1187 static int
1188 each_segment(struct proc *p, segment_callback func, void *closure, int writable)
1189 {
1190 	int error = 0;
1191 	vm_map_t map = &p->p_vmspace->vm_map;
1192 	vm_map_entry_t entry;
1193 
1194 	RB_FOREACH(entry, vm_map_rb_tree, &map->rb_root) {
1195 		vm_object_t obj;
1196 		vm_object_t lobj;
1197 		vm_object_t tobj;
1198 
1199 		/*
1200 		 * Don't dump inaccessible mappings, deal with legacy
1201 		 * coredump mode.
1202 		 *
1203 		 * Note that read-only segments related to the elf binary
1204 		 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer
1205 		 * need to arbitrarily ignore such segments.
1206 		 */
1207 		if (elf_legacy_coredump) {
1208 			if (writable && (entry->protection & VM_PROT_RW) != VM_PROT_RW)
1209 				continue;
1210 		} else {
1211 			if (writable && (entry->protection & VM_PROT_ALL) == 0)
1212 				continue;
1213 		}
1214 
1215 		/*
1216 		 * Dont include memory segment in the coredump if
1217 		 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in
1218 		 * madvise(2).
1219 		 *
1220 		 * Currently we only dump normal VM object maps.  We do
1221 		 * not dump submaps or virtual page tables.
1222 		 */
1223 		if (writable && (entry->eflags & MAP_ENTRY_NOCOREDUMP))
1224 			continue;
1225 		if (entry->maptype != VM_MAPTYPE_NORMAL)
1226 			continue;
1227 		if ((obj = entry->object.vm_object) == NULL)
1228 			continue;
1229 
1230 		/*
1231 		 * Find the bottom-most object, leaving the base object
1232 		 * and the bottom-most object held (but only one hold
1233 		 * if they happen to be the same).
1234 		 */
1235 		vm_object_hold_shared(obj);
1236 
1237 		lobj = obj;
1238 		while (lobj && (tobj = lobj->backing_object) != NULL) {
1239 			KKASSERT(tobj != obj);
1240 			vm_object_hold_shared(tobj);
1241 			if (tobj == lobj->backing_object) {
1242 				if (lobj != obj) {
1243 					vm_object_lock_swap();
1244 					vm_object_drop(lobj);
1245 				}
1246 				lobj = tobj;
1247 			} else {
1248 				vm_object_drop(tobj);
1249 			}
1250 		}
1251 
1252 		/*
1253 		 * The callback only applies to default, swap, or vnode
1254 		 * objects.  Other types of objects such as memory-mapped
1255 		 * devices are ignored.
1256 		 */
1257 		if (lobj->type == OBJT_DEFAULT || lobj->type == OBJT_SWAP ||
1258 		    lobj->type == OBJT_VNODE) {
1259 			error = (*func)(entry, closure);
1260 		}
1261 		if (lobj != obj)
1262 			vm_object_drop(lobj);
1263 		vm_object_drop(obj);
1264 	}
1265 	return (error);
1266 }
1267 
1268 static
1269 void *
1270 target_reserve(elf_buf_t target, size_t bytes, int *error)
1271 {
1272     void *res = NULL;
1273 
1274     if (target->buf) {
1275 	    if (target->off + bytes > target->off_max)
1276 		    *error = EINVAL;
1277 	    else
1278 		    res = target->buf + target->off;
1279     }
1280     target->off += bytes;
1281     return (res);
1282 }
1283 
1284 /*
1285  * Write the core file header to the file, including padding up to
1286  * the page boundary.
1287  */
1288 static int
1289 __elfN(corehdr)(struct lwp *lp, int sig, struct file *fp, struct ucred *cred,
1290 	    int numsegs, elf_buf_t target)
1291 {
1292 	int error;
1293 	ssize_t nbytes;
1294 
1295 	/*
1296 	 * Fill in the header.  The fp is passed so we can detect and flag
1297 	 * a checkpoint file pointer within the core file itself, because
1298 	 * it may not be restored from the same file handle.
1299 	 */
1300 	error = __elfN(puthdr)(lp, target, sig, WRITE, numsegs, fp);
1301 
1302 	/* Write it to the core file. */
1303 	if (error == 0) {
1304 		error = fp_write(fp, target->buf, target->off, &nbytes,
1305 				 UIO_SYSSPACE);
1306 	}
1307 	return (error);
1308 }
1309 
1310 static int
1311 __elfN(puthdr)(struct lwp *lp, elf_buf_t target, int sig, enum putmode mode,
1312     int numsegs, struct file *fp)
1313 {
1314 	struct proc *p = lp->lwp_proc;
1315 	int error = 0;
1316 	size_t phoff;
1317 	size_t noteoff;
1318 	size_t notesz;
1319 	Elf_Ehdr *ehdr;
1320 	Elf_Phdr *phdr;
1321 
1322 	ehdr = target_reserve(target, sizeof(Elf_Ehdr), &error);
1323 
1324 	phoff = target->off;
1325 	phdr = target_reserve(target, (numsegs + 1) * sizeof(Elf_Phdr), &error);
1326 
1327 	noteoff = target->off;
1328 	if (error == 0)
1329 		elf_putallnotes(lp, target, sig, mode);
1330 	notesz = target->off - noteoff;
1331 
1332 	/*
1333 	 * put extra cruft for dumping process state here
1334 	 *  - we really want it be before all the program
1335 	 *    mappings
1336 	 *  - we just need to update the offset accordingly
1337 	 *    and GDB will be none the wiser.
1338 	 */
1339 	if (error == 0)
1340 		error = elf_puttextvp(p, target);
1341 	if (error == 0)
1342 		error = elf_putsigs(lp, target);
1343 	if (error == 0)
1344 		error = elf_putfiles(p, target, fp);
1345 
1346 	/*
1347 	 * Align up to a page boundary for the program segments.  The
1348 	 * actual data will be written to the outptu file, not to elf_buf_t,
1349 	 * so we do not have to do any further bounds checking.
1350 	 */
1351 	target->off = round_page(target->off);
1352 	if (error == 0 && ehdr != NULL) {
1353 		/*
1354 		 * Fill in the ELF header.
1355 		 */
1356 		ehdr->e_ident[EI_MAG0] = ELFMAG0;
1357 		ehdr->e_ident[EI_MAG1] = ELFMAG1;
1358 		ehdr->e_ident[EI_MAG2] = ELFMAG2;
1359 		ehdr->e_ident[EI_MAG3] = ELFMAG3;
1360 		ehdr->e_ident[EI_CLASS] = ELF_CLASS;
1361 		ehdr->e_ident[EI_DATA] = ELF_DATA;
1362 		ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1363 		ehdr->e_ident[EI_OSABI] = ELFOSABI_NONE;
1364 		ehdr->e_ident[EI_ABIVERSION] = 0;
1365 		ehdr->e_ident[EI_PAD] = 0;
1366 		ehdr->e_type = ET_CORE;
1367 		ehdr->e_machine = ELF_ARCH;
1368 		ehdr->e_version = EV_CURRENT;
1369 		ehdr->e_entry = 0;
1370 		ehdr->e_phoff = phoff;
1371 		ehdr->e_flags = 0;
1372 		ehdr->e_ehsize = sizeof(Elf_Ehdr);
1373 		ehdr->e_phentsize = sizeof(Elf_Phdr);
1374 		ehdr->e_phnum = numsegs + 1;
1375 		ehdr->e_shentsize = sizeof(Elf_Shdr);
1376 		ehdr->e_shnum = 0;
1377 		ehdr->e_shstrndx = SHN_UNDEF;
1378 	}
1379 	if (error == 0 && phdr != NULL) {
1380 		/*
1381 		 * Fill in the program header entries.
1382 		 */
1383 		struct phdr_closure phc;
1384 
1385 		/* The note segement. */
1386 		phdr->p_type = PT_NOTE;
1387 		phdr->p_offset = noteoff;
1388 		phdr->p_vaddr = 0;
1389 		phdr->p_paddr = 0;
1390 		phdr->p_filesz = notesz;
1391 		phdr->p_memsz = 0;
1392 		phdr->p_flags = 0;
1393 		phdr->p_align = 0;
1394 		++phdr;
1395 
1396 		/* All the writable segments from the program. */
1397 		phc.phdr = phdr;
1398 		phc.phdr_max = phdr + numsegs;
1399 		phc.offset = target->off;
1400 		each_segment(p, cb_put_phdr, &phc, 1);
1401 	}
1402 	return (error);
1403 }
1404 
1405 /*
1406  * Append core dump notes to target ELF buffer or simply update target size
1407  * if dryrun selected.
1408  */
1409 static int
1410 elf_putallnotes(struct lwp *corelp, elf_buf_t target, int sig,
1411     enum putmode mode)
1412 {
1413 	struct proc *p = corelp->lwp_proc;
1414 	int error;
1415 	struct {
1416 		prstatus_t status;
1417 		prfpregset_t fpregs;
1418 		prpsinfo_t psinfo;
1419 	} *tmpdata;
1420 	prstatus_t *status;
1421 	prfpregset_t *fpregs;
1422 	prpsinfo_t *psinfo;
1423 	struct lwp *lp;
1424 
1425 	/*
1426 	 * Allocate temporary storage for notes on heap to avoid stack overflow.
1427 	 */
1428 	if (mode != DRYRUN) {
1429 		tmpdata = kmalloc(sizeof(*tmpdata), M_TEMP, M_ZERO | M_WAITOK);
1430 		status = &tmpdata->status;
1431 		fpregs = &tmpdata->fpregs;
1432 		psinfo = &tmpdata->psinfo;
1433 	} else {
1434 		tmpdata = NULL;
1435 		status = NULL;
1436 		fpregs = NULL;
1437 		psinfo = NULL;
1438 	}
1439 
1440 	/*
1441 	 * Append LWP-agnostic note.
1442 	 */
1443 	if (mode != DRYRUN) {
1444 		psinfo->pr_version = PRPSINFO_VERSION;
1445 		psinfo->pr_psinfosz = sizeof(prpsinfo_t);
1446 		strlcpy(psinfo->pr_fname, p->p_comm,
1447 			sizeof(psinfo->pr_fname));
1448 		/*
1449 		 * XXX - We don't fill in the command line arguments
1450 		 * properly yet.
1451 		 */
1452 		strlcpy(psinfo->pr_psargs, p->p_comm,
1453 			sizeof(psinfo->pr_psargs));
1454 	}
1455 	error =
1456 	    __elfN(putnote)(target, "CORE", NT_PRPSINFO, psinfo, sizeof *psinfo);
1457 	if (error)
1458 		goto exit;
1459 
1460 	/*
1461 	 * Append first note for LWP that triggered core so that it is
1462 	 * the selected one when the debugger starts.
1463 	 */
1464 	if (mode != DRYRUN) {
1465 		status->pr_version = PRSTATUS_VERSION;
1466 		status->pr_statussz = sizeof(prstatus_t);
1467 		status->pr_gregsetsz = sizeof(gregset_t);
1468 		status->pr_fpregsetsz = sizeof(fpregset_t);
1469 		status->pr_osreldate = osreldate;
1470 		status->pr_cursig = sig;
1471 		status->pr_pid = corelp->lwp_tid;
1472 		fill_regs(corelp, &status->pr_reg);
1473 		fill_fpregs(corelp, fpregs);
1474 	}
1475 	error =
1476 	    __elfN(putnote)(target, "CORE", NT_PRSTATUS, status, sizeof *status);
1477 	if (error)
1478 		goto exit;
1479 	error =
1480 	    __elfN(putnote)(target, "CORE", NT_FPREGSET, fpregs, sizeof *fpregs);
1481 	if (error)
1482 		goto exit;
1483 
1484 	/*
1485 	 * Then append notes for other LWPs.
1486 	 */
1487 	FOREACH_LWP_IN_PROC(lp, p) {
1488 		if (lp == corelp)
1489 			continue;
1490 		/* skip lwps being created */
1491 		if (lp->lwp_thread == NULL)
1492 			continue;
1493 		if (mode != DRYRUN) {
1494 			status->pr_pid = lp->lwp_tid;
1495 			fill_regs(lp, &status->pr_reg);
1496 			fill_fpregs(lp, fpregs);
1497 		}
1498 		error = __elfN(putnote)(target, "CORE", NT_PRSTATUS,
1499 					status, sizeof *status);
1500 		if (error)
1501 			goto exit;
1502 		error = __elfN(putnote)(target, "CORE", NT_FPREGSET,
1503 					fpregs, sizeof *fpregs);
1504 		if (error)
1505 			goto exit;
1506 	}
1507 
1508 exit:
1509 	if (tmpdata != NULL)
1510 		kfree(tmpdata, M_TEMP);
1511 	return (error);
1512 }
1513 
1514 /*
1515  * Generate a note sub-structure.
1516  *
1517  * NOTE: 4-byte alignment.
1518  */
1519 static int
1520 __elfN(putnote)(elf_buf_t target, const char *name, int type,
1521 	    const void *desc, size_t descsz)
1522 {
1523 	int error = 0;
1524 	char *dst;
1525 	Elf_Note note;
1526 
1527 	note.n_namesz = strlen(name) + 1;
1528 	note.n_descsz = descsz;
1529 	note.n_type = type;
1530 	dst = target_reserve(target, sizeof(note), &error);
1531 	if (dst != NULL)
1532 		bcopy(&note, dst, sizeof note);
1533 	dst = target_reserve(target, note.n_namesz, &error);
1534 	if (dst != NULL)
1535 		bcopy(name, dst, note.n_namesz);
1536 	target->off = roundup2(target->off, sizeof(Elf_Word));
1537 	dst = target_reserve(target, note.n_descsz, &error);
1538 	if (dst != NULL)
1539 		bcopy(desc, dst, note.n_descsz);
1540 	target->off = roundup2(target->off, sizeof(Elf_Word));
1541 	return (error);
1542 }
1543 
1544 
1545 static int
1546 elf_putsigs(struct lwp *lp, elf_buf_t target)
1547 {
1548 	/* XXX lwp handle more than one lwp */
1549 	struct proc *p = lp->lwp_proc;
1550 	int error = 0;
1551 	struct ckpt_siginfo *csi;
1552 
1553 	csi = target_reserve(target, sizeof(struct ckpt_siginfo), &error);
1554 	if (csi) {
1555 		csi->csi_ckptpisz = sizeof(struct ckpt_siginfo);
1556 		bcopy(p->p_sigacts, &csi->csi_sigacts, sizeof(*p->p_sigacts));
1557 		bcopy(&p->p_realtimer, &csi->csi_itimerval, sizeof(struct itimerval));
1558 		bcopy(&lp->lwp_sigmask, &csi->csi_sigmask,
1559 			sizeof(sigset_t));
1560 		csi->csi_sigparent = p->p_sigparent;
1561 	}
1562 	return (error);
1563 }
1564 
1565 static int
1566 elf_putfiles(struct proc *p, elf_buf_t target, struct file *ckfp)
1567 {
1568 	thread_t td = curthread;
1569 	int error = 0;
1570 	int i;
1571 	struct ckpt_filehdr *cfh = NULL;
1572 	struct ckpt_fileinfo *cfi;
1573 	struct file *fp;
1574 	struct vnode *vp;
1575 
1576 	/*
1577 	 * the duplicated loop is gross, but it was the only way
1578 	 * to eliminate uninitialized variable warnings
1579 	 */
1580 	cfh = target_reserve(target, sizeof(struct ckpt_filehdr), &error);
1581 	if (cfh) {
1582 		cfh->cfh_nfiles = 0;
1583 	}
1584 
1585 	/*
1586 	 * ignore STDIN/STDERR/STDOUT.
1587 	 */
1588 	KKASSERT(td->td_proc == p);
1589 	for (i = 3; error == 0 && i < p->p_fd->fd_nfiles; i++) {
1590 		fp = holdfp(td, i, -1);
1591 		if (fp == NULL)
1592 			continue;
1593 		/*
1594 		 * XXX Only checkpoint vnodes for now.
1595 		 */
1596 		if (fp->f_type != DTYPE_VNODE) {
1597 			fdrop(fp);
1598 			continue;
1599 		}
1600 		cfi = target_reserve(target, sizeof(struct ckpt_fileinfo),
1601 					&error);
1602 		if (cfi == NULL) {
1603 			fdrop(fp);
1604 			continue;
1605 		}
1606 		cfi->cfi_index = -1;
1607 		cfi->cfi_type = fp->f_type;
1608 		cfi->cfi_flags = fp->f_flag;
1609 		cfi->cfi_offset = fp->f_offset;
1610 		cfi->cfi_ckflags = 0;
1611 
1612 		if (fp == ckfp)
1613 			cfi->cfi_ckflags |= CKFIF_ISCKPTFD;
1614 		/* f_count and f_msgcount should not be saved/restored */
1615 		/* XXX save cred info */
1616 
1617 		switch(fp->f_type) {
1618 		case DTYPE_VNODE:
1619 			vp = (struct vnode *)fp->f_data;
1620 			/*
1621 			 * it looks like a bug in ptrace is marking
1622 			 * a non-vnode as a vnode - until we find the
1623 			 * root cause this will at least prevent
1624 			 * further panics from truss
1625 			 */
1626 			if (vp == NULL || vp->v_mount == NULL)
1627 				break;
1628 			cfh->cfh_nfiles++;
1629 			cfi->cfi_index = i;
1630 			cfi->cfi_fh.fh_fsid = vp->v_mount->mnt_stat.f_fsid;
1631 			error = VFS_VPTOFH(vp, &cfi->cfi_fh.fh_fid);
1632 			break;
1633 		default:
1634 			break;
1635 		}
1636 		fdrop(fp);
1637 	}
1638 	return (error);
1639 }
1640 
1641 static int
1642 elf_puttextvp(struct proc *p, elf_buf_t target)
1643 {
1644 	int error = 0;
1645 	int *vn_count;
1646 	struct fp_closure fpc;
1647 	struct ckpt_vminfo *vminfo;
1648 
1649 	vminfo = target_reserve(target, sizeof(struct ckpt_vminfo), &error);
1650 	if (vminfo != NULL) {
1651 		vminfo->cvm_dsize = btoc(p->p_vmspace->vm_dsize); /* pages */
1652 		vminfo->cvm_tsize = btoc(p->p_vmspace->vm_tsize); /* pages */
1653 		vminfo->cvm_daddr = p->p_vmspace->vm_daddr;
1654 		vminfo->cvm_taddr = p->p_vmspace->vm_taddr;
1655 	}
1656 
1657 	fpc.count = 0;
1658 	vn_count = target_reserve(target, sizeof(int), &error);
1659 	if (target->buf != NULL) {
1660 		fpc.vnh = (struct vn_hdr *)(target->buf + target->off);
1661 		fpc.vnh_max = fpc.vnh +
1662 			(target->off_max - target->off) / sizeof(struct vn_hdr);
1663 		error = each_segment(p, cb_put_fp, &fpc, 0);
1664 		if (vn_count)
1665 			*vn_count = fpc.count;
1666 	} else {
1667 		error = each_segment(p, cb_fpcount_segment, &fpc.count, 0);
1668 	}
1669 	target->off += fpc.count * sizeof(struct vn_hdr);
1670 	return (error);
1671 }
1672 
1673 /*
1674  * Try to find the appropriate ABI-note section for checknote,
1675  * The entire image is searched if necessary, not only the first page.
1676  */
1677 static boolean_t
1678 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *checknote,
1679     int32_t *osrel)
1680 {
1681 	boolean_t valid_note_found;
1682 	const Elf_Phdr *phdr, *pnote;
1683 	const Elf_Ehdr *hdr;
1684 	int i;
1685 
1686 	valid_note_found = FALSE;
1687 	hdr = (const Elf_Ehdr *)imgp->image_header;
1688 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
1689 
1690 	for (i = 0; i < hdr->e_phnum; i++) {
1691 		if (phdr[i].p_type == PT_NOTE) {
1692 			pnote = &phdr[i];
1693 			valid_note_found = check_PT_NOTE (imgp, checknote,
1694 				osrel, pnote);
1695 			if (valid_note_found)
1696 				break;
1697 		}
1698 	}
1699 	return valid_note_found;
1700 }
1701 
1702 /*
1703  * Be careful not to create new overflow conditions when checking
1704  * for overflow.
1705  */
1706 static boolean_t
1707 note_overflow(const Elf_Note *note, size_t maxsize)
1708 {
1709 	if (sizeof(*note) > maxsize)
1710 		return TRUE;
1711 	if (note->n_namesz > maxsize - sizeof(*note))
1712 		return TRUE;
1713 	return FALSE;
1714 }
1715 
1716 static boolean_t
1717 hdr_overflow(__ElfN(Off) off_beg, __ElfN(Size) size)
1718 {
1719 	__ElfN(Off) off_end;
1720 
1721 	off_end = off_beg + size;
1722 	if (off_end < off_beg)
1723 		return TRUE;
1724 	return FALSE;
1725 }
1726 
1727 static boolean_t
1728 check_PT_NOTE(struct image_params *imgp, Elf_Brandnote *checknote,
1729 	      int32_t *osrel, const Elf_Phdr * pnote)
1730 {
1731 	boolean_t limited_to_first_page;
1732 	boolean_t found = FALSE;
1733 	const Elf_Note *note, *note0, *note_end;
1734 	const char *note_name;
1735 	__ElfN(Off) noteloc, firstloc;
1736 	__ElfN(Size) notesz, firstlen, endbyte;
1737 	struct lwbuf *lwb;
1738 	struct lwbuf lwb_cache;
1739 	const char *page;
1740 	char *data = NULL;
1741 	int n;
1742 
1743 	if (hdr_overflow(pnote->p_offset, pnote->p_filesz))
1744 		return (FALSE);
1745 	notesz = pnote->p_filesz;
1746 	noteloc = pnote->p_offset;
1747 	endbyte = noteloc + notesz;
1748 	limited_to_first_page = noteloc < PAGE_SIZE && endbyte < PAGE_SIZE;
1749 
1750 	if (limited_to_first_page) {
1751 		note = (const Elf_Note *)(imgp->image_header + noteloc);
1752 		note_end = (const Elf_Note *)(imgp->image_header + endbyte);
1753 		note0 = note;
1754 	} else {
1755 		firstloc = noteloc & PAGE_MASK;
1756 		firstlen = PAGE_SIZE - firstloc;
1757 		if (notesz < sizeof(Elf_Note) || notesz > PAGE_SIZE)
1758 			return (FALSE);
1759 
1760 		lwb = &lwb_cache;
1761 		if (exec_map_page(imgp, noteloc >> PAGE_SHIFT, &lwb, &page))
1762 			return (FALSE);
1763 		if (firstlen < notesz) {         /* crosses page boundary */
1764 			data = kmalloc(notesz, M_TEMP, M_WAITOK);
1765 			bcopy(page + firstloc, data, firstlen);
1766 
1767 			exec_unmap_page(lwb);
1768 			lwb = &lwb_cache;
1769 			if (exec_map_page(imgp, (noteloc >> PAGE_SHIFT) + 1,
1770 				&lwb, &page)) {
1771 				kfree(data, M_TEMP);
1772 				return (FALSE);
1773 			}
1774 			bcopy(page, data + firstlen, notesz - firstlen);
1775 			note = note0 = (const Elf_Note *)(data);
1776 			note_end = (const Elf_Note *)(data + notesz);
1777 		} else {
1778 			note = note0 = (const Elf_Note *)(page + firstloc);
1779 			note_end = (const Elf_Note *)(page + firstloc +
1780 				firstlen);
1781 		}
1782 	}
1783 
1784 	for (n = 0; n < 100 && note >= note0 && note < note_end; n++) {
1785 		if (!aligned(note, Elf32_Addr))
1786 			break;
1787 		if (note_overflow(note, (const char *)note_end -
1788 					(const char *)note)) {
1789 			break;
1790 		}
1791 		note_name = (const char *)(note + 1);
1792 
1793 		if (note->n_namesz == checknote->hdr.n_namesz
1794 		    && note->n_descsz == checknote->hdr.n_descsz
1795 		    && note->n_type == checknote->hdr.n_type
1796 		    && (strncmp(checknote->vendor, note_name,
1797 			checknote->hdr.n_namesz) == 0)) {
1798 			/* Fetch osreldata from ABI.note-tag */
1799 			if ((checknote->flags & BN_TRANSLATE_OSREL) != 0 &&
1800 			    checknote->trans_osrel != NULL)
1801 				checknote->trans_osrel(note, osrel);
1802 			found = TRUE;
1803 			break;
1804 		}
1805 		note = (const Elf_Note *)((const char *)(note + 1) +
1806 		    roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1807 		    roundup2(note->n_descsz, sizeof(Elf32_Addr)));
1808 	}
1809 
1810 	if (!limited_to_first_page) {
1811 		if (data != NULL)
1812 			kfree(data, M_TEMP);
1813 		exec_unmap_page(lwb);
1814 	}
1815 	return (found);
1816 }
1817 
1818 /*
1819  * The interpreter program header may be located beyond the first page, so
1820  * regardless of its location, a copy of the interpreter path is created so
1821  * that it may be safely referenced by the calling function in all case.  The
1822  * memory is allocated by calling function, and the copying is done here.
1823  */
1824 static boolean_t
1825 extract_interpreter(struct image_params *imgp, const Elf_Phdr *pinterpreter,
1826 		    char *data)
1827 {
1828 	boolean_t limited_to_first_page;
1829 	const boolean_t result_success = FALSE;
1830 	const boolean_t result_failure = TRUE;
1831 	__ElfN(Off) pathloc, firstloc;
1832 	__ElfN(Size) pathsz, firstlen, endbyte;
1833 	struct lwbuf *lwb;
1834 	struct lwbuf lwb_cache;
1835 	const char *page;
1836 
1837 	if (hdr_overflow(pinterpreter->p_offset, pinterpreter->p_filesz))
1838 		return (result_failure);
1839 	pathsz  = pinterpreter->p_filesz;
1840 	pathloc = pinterpreter->p_offset;
1841 	endbyte = pathloc + pathsz;
1842 
1843 	limited_to_first_page = pathloc < PAGE_SIZE && endbyte < PAGE_SIZE;
1844 	if (limited_to_first_page) {
1845 	        bcopy(imgp->image_header + pathloc, data, pathsz);
1846 	        return (result_success);
1847 	}
1848 
1849 	firstloc = pathloc & PAGE_MASK;
1850 	firstlen = PAGE_SIZE - firstloc;
1851 
1852 	lwb = &lwb_cache;
1853 	if (exec_map_page(imgp, pathloc >> PAGE_SHIFT, &lwb, &page))
1854 		return (result_failure);
1855 
1856 	if (firstlen < pathsz) {         /* crosses page boundary */
1857 		bcopy(page + firstloc, data, firstlen);
1858 
1859 		exec_unmap_page(lwb);
1860 		lwb = &lwb_cache;
1861 		if (exec_map_page(imgp, (pathloc >> PAGE_SHIFT) + 1, &lwb,
1862 			&page))
1863 			return (result_failure);
1864 		bcopy(page, data + firstlen, pathsz - firstlen);
1865 	} else
1866 		bcopy(page + firstloc, data, pathsz);
1867 
1868 	exec_unmap_page(lwb);
1869 	return (result_success);
1870 }
1871 
1872 static boolean_t
1873 __elfN(bsd_trans_osrel)(const Elf_Note *note, int32_t *osrel)
1874 {
1875 	uintptr_t p;
1876 
1877 	p = (uintptr_t)(note + 1);
1878 	p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1879 	*osrel = *(const int32_t *)(p);
1880 
1881 	return (TRUE);
1882 }
1883 
1884 /*
1885  * Tell kern_execve.c about it, with a little help from the linker.
1886  */
1887 #if defined(__x86_64__)
1888 static struct execsw elf_execsw = {exec_elf64_imgact, "ELF64"};
1889 EXEC_SET_ORDERED(elf64, elf_execsw, SI_ORDER_FIRST);
1890 #else /* i386 assumed */
1891 static struct execsw elf_execsw = {exec_elf32_imgact, "ELF32"};
1892 EXEC_SET_ORDERED(elf32, elf_execsw, SI_ORDER_FIRST);
1893 #endif
1894 
1895 static vm_prot_t
1896 __elfN(trans_prot)(Elf_Word flags)
1897 {
1898 	vm_prot_t prot;
1899 
1900 	prot = 0;
1901 	if (flags & PF_X)
1902 		prot |= VM_PROT_EXECUTE;
1903 	if (flags & PF_W)
1904 		prot |= VM_PROT_WRITE;
1905 	if (flags & PF_R)
1906 		prot |= VM_PROT_READ;
1907 	return (prot);
1908 }
1909 
1910 static Elf_Word
1911 __elfN(untrans_prot)(vm_prot_t prot)
1912 {
1913 	Elf_Word flags;
1914 
1915 	flags = 0;
1916 	if (prot & VM_PROT_EXECUTE)
1917 		flags |= PF_X;
1918 	if (prot & VM_PROT_READ)
1919 		flags |= PF_R;
1920 	if (prot & VM_PROT_WRITE)
1921 		flags |= PF_W;
1922 	return (flags);
1923 }
1924 
1925 static u_long
1926 pie_base_hint(struct proc *p)
1927 {
1928 	u_long base;
1929 
1930 	if (elf_pie_base_mmap)
1931 		base = vm_map_hint(p, 0, VM_PROT_READ | VM_PROT_EXECUTE);
1932 	else
1933 		base = ET_DYN_LOAD_ADDR;
1934 	return base;
1935 }
1936