xref: /dragonfly/sys/kern/kern_clock.c (revision 28c26f7e)
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
35  * Copyright (c) 1982, 1986, 1991, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  * (c) UNIX System Laboratories, Inc.
38  * All or some portions of this file are derived from material licensed
39  * to the University of California by American Telephone and Telegraph
40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41  * the permission of UNIX System Laboratories, Inc.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed by the University of
54  *	California, Berkeley and its contributors.
55  * 4. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
72  * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $
73  * $DragonFly: src/sys/kern/kern_clock.c,v 1.62 2008/09/09 04:06:13 dillon Exp $
74  */
75 
76 #include "opt_ntp.h"
77 #include "opt_polling.h"
78 #include "opt_ifpoll.h"
79 #include "opt_pctrack.h"
80 
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/callout.h>
84 #include <sys/kernel.h>
85 #include <sys/kinfo.h>
86 #include <sys/proc.h>
87 #include <sys/malloc.h>
88 #include <sys/resourcevar.h>
89 #include <sys/signalvar.h>
90 #include <sys/timex.h>
91 #include <sys/timepps.h>
92 #include <vm/vm.h>
93 #include <sys/lock.h>
94 #include <vm/pmap.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_extern.h>
97 #include <sys/sysctl.h>
98 #include <sys/thread2.h>
99 
100 #include <machine/cpu.h>
101 #include <machine/limits.h>
102 #include <machine/smp.h>
103 #include <machine/cpufunc.h>
104 #include <machine/specialreg.h>
105 #include <machine/clock.h>
106 
107 #ifdef GPROF
108 #include <sys/gmon.h>
109 #endif
110 
111 #ifdef DEVICE_POLLING
112 extern void init_device_poll_pcpu(int);
113 #endif
114 
115 #ifdef IFPOLL_ENABLE
116 extern void ifpoll_init_pcpu(int);
117 #endif
118 
119 #ifdef DEBUG_PCTRACK
120 static void do_pctrack(struct intrframe *frame, int which);
121 #endif
122 
123 static void initclocks (void *dummy);
124 SYSINIT(clocks, SI_BOOT2_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
125 
126 /*
127  * Some of these don't belong here, but it's easiest to concentrate them.
128  * Note that cpu_time counts in microseconds, but most userland programs
129  * just compare relative times against the total by delta.
130  */
131 struct kinfo_cputime cputime_percpu[MAXCPU];
132 #ifdef DEBUG_PCTRACK
133 struct kinfo_pcheader cputime_pcheader = { PCTRACK_SIZE, PCTRACK_ARYSIZE };
134 struct kinfo_pctrack cputime_pctrack[MAXCPU][PCTRACK_SIZE];
135 #endif
136 
137 #ifdef SMP
138 static int
139 sysctl_cputime(SYSCTL_HANDLER_ARGS)
140 {
141 	int cpu, error = 0;
142 	size_t size = sizeof(struct kinfo_cputime);
143 
144 	for (cpu = 0; cpu < ncpus; ++cpu) {
145 		if ((error = SYSCTL_OUT(req, &cputime_percpu[cpu], size)))
146 			break;
147 	}
148 
149 	return (error);
150 }
151 SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
152 	sysctl_cputime, "S,kinfo_cputime", "CPU time statistics");
153 #else
154 SYSCTL_STRUCT(_kern, OID_AUTO, cputime, CTLFLAG_RD, &cpu_time, kinfo_cputime,
155     "CPU time statistics");
156 #endif
157 
158 /*
159  * boottime is used to calculate the 'real' uptime.  Do not confuse this with
160  * microuptime().  microtime() is not drift compensated.  The real uptime
161  * with compensation is nanotime() - bootime.  boottime is recalculated
162  * whenever the real time is set based on the compensated elapsed time
163  * in seconds (gd->gd_time_seconds).
164  *
165  * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic.
166  * Slight adjustments to gd_cpuclock_base are made to phase-lock it to
167  * the real time.
168  */
169 struct timespec boottime;	/* boot time (realtime) for reference only */
170 time_t time_second;		/* read-only 'passive' uptime in seconds */
171 
172 /*
173  * basetime is used to calculate the compensated real time of day.  The
174  * basetime can be modified on a per-tick basis by the adjtime(),
175  * ntp_adjtime(), and sysctl-based time correction APIs.
176  *
177  * Note that frequency corrections can also be made by adjusting
178  * gd_cpuclock_base.
179  *
180  * basetime is a tail-chasing FIFO, updated only by cpu #0.  The FIFO is
181  * used on both SMP and UP systems to avoid MP races between cpu's and
182  * interrupt races on UP systems.
183  */
184 #define BASETIME_ARYSIZE	16
185 #define BASETIME_ARYMASK	(BASETIME_ARYSIZE - 1)
186 static struct timespec basetime[BASETIME_ARYSIZE];
187 static volatile int basetime_index;
188 
189 static int
190 sysctl_get_basetime(SYSCTL_HANDLER_ARGS)
191 {
192 	struct timespec *bt;
193 	int error;
194 	int index;
195 
196 	/*
197 	 * Because basetime data and index may be updated by another cpu,
198 	 * a load fence is required to ensure that the data we read has
199 	 * not been speculatively read relative to a possibly updated index.
200 	 */
201 	index = basetime_index;
202 	cpu_lfence();
203 	bt = &basetime[index];
204 	error = SYSCTL_OUT(req, bt, sizeof(*bt));
205 	return (error);
206 }
207 
208 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
209     &boottime, timespec, "System boottime");
210 SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0,
211     sysctl_get_basetime, "S,timespec", "System basetime");
212 
213 static void hardclock(systimer_t info, struct intrframe *frame);
214 static void statclock(systimer_t info, struct intrframe *frame);
215 static void schedclock(systimer_t info, struct intrframe *frame);
216 static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp);
217 
218 int	ticks;			/* system master ticks at hz */
219 int	clocks_running;		/* tsleep/timeout clocks operational */
220 int64_t	nsec_adj;		/* ntpd per-tick adjustment in nsec << 32 */
221 int64_t	nsec_acc;		/* accumulator */
222 
223 /* NTPD time correction fields */
224 int64_t	ntp_tick_permanent;	/* per-tick adjustment in nsec << 32 */
225 int64_t	ntp_tick_acc;		/* accumulator for per-tick adjustment */
226 int64_t	ntp_delta;		/* one-time correction in nsec */
227 int64_t ntp_big_delta = 1000000000;
228 int32_t	ntp_tick_delta;		/* current adjustment rate */
229 int32_t	ntp_default_tick_delta;	/* adjustment rate for ntp_delta */
230 time_t	ntp_leap_second;	/* time of next leap second */
231 int	ntp_leap_insert;	/* whether to insert or remove a second */
232 
233 /*
234  * Finish initializing clock frequencies and start all clocks running.
235  */
236 /* ARGSUSED*/
237 static void
238 initclocks(void *dummy)
239 {
240 	/*psratio = profhz / stathz;*/
241 	initclocks_pcpu();
242 	clocks_running = 1;
243 }
244 
245 /*
246  * Called on a per-cpu basis
247  */
248 void
249 initclocks_pcpu(void)
250 {
251 	struct globaldata *gd = mycpu;
252 
253 	crit_enter();
254 	if (gd->gd_cpuid == 0) {
255 	    gd->gd_time_seconds = 1;
256 	    gd->gd_cpuclock_base = sys_cputimer->count();
257 	} else {
258 	    /* XXX */
259 	    gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds;
260 	    gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base;
261 	}
262 
263 	systimer_intr_enable();
264 
265 #ifdef DEVICE_POLLING
266 	init_device_poll_pcpu(gd->gd_cpuid);
267 #endif
268 
269 #ifdef IFPOLL_ENABLE
270 	ifpoll_init_pcpu(gd->gd_cpuid);
271 #endif
272 
273 	/*
274 	 * Use a non-queued periodic systimer to prevent multiple ticks from
275 	 * building up if the sysclock jumps forward (8254 gets reset).  The
276 	 * sysclock will never jump backwards.  Our time sync is based on
277 	 * the actual sysclock, not the ticks count.
278 	 */
279 	systimer_init_periodic_nq(&gd->gd_hardclock, hardclock, NULL, hz);
280 	systimer_init_periodic_nq(&gd->gd_statclock, statclock, NULL, stathz);
281 	/* XXX correct the frequency for scheduler / estcpu tests */
282 	systimer_init_periodic_nq(&gd->gd_schedclock, schedclock,
283 				NULL, ESTCPUFREQ);
284 	crit_exit();
285 }
286 
287 /*
288  * This sets the current real time of day.  Timespecs are in seconds and
289  * nanoseconds.  We do not mess with gd_time_seconds and gd_cpuclock_base,
290  * instead we adjust basetime so basetime + gd_* results in the current
291  * time of day.  This way the gd_* fields are guarenteed to represent
292  * a monotonically increasing 'uptime' value.
293  *
294  * When set_timeofday() is called from userland, the system call forces it
295  * onto cpu #0 since only cpu #0 can update basetime_index.
296  */
297 void
298 set_timeofday(struct timespec *ts)
299 {
300 	struct timespec *nbt;
301 	int ni;
302 
303 	/*
304 	 * XXX SMP / non-atomic basetime updates
305 	 */
306 	crit_enter();
307 	ni = (basetime_index + 1) & BASETIME_ARYMASK;
308 	nbt = &basetime[ni];
309 	nanouptime(nbt);
310 	nbt->tv_sec = ts->tv_sec - nbt->tv_sec;
311 	nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec;
312 	if (nbt->tv_nsec < 0) {
313 	    nbt->tv_nsec += 1000000000;
314 	    --nbt->tv_sec;
315 	}
316 
317 	/*
318 	 * Note that basetime diverges from boottime as the clock drift is
319 	 * compensated for, so we cannot do away with boottime.  When setting
320 	 * the absolute time of day the drift is 0 (for an instant) and we
321 	 * can simply assign boottime to basetime.
322 	 *
323 	 * Note that nanouptime() is based on gd_time_seconds which is drift
324 	 * compensated up to a point (it is guarenteed to remain monotonically
325 	 * increasing).  gd_time_seconds is thus our best uptime guess and
326 	 * suitable for use in the boottime calculation.  It is already taken
327 	 * into account in the basetime calculation above.
328 	 */
329 	boottime.tv_sec = nbt->tv_sec;
330 	ntp_delta = 0;
331 
332 	/*
333 	 * We now have a new basetime, make sure all other cpus have it,
334 	 * then update the index.
335 	 */
336 	cpu_sfence();
337 	basetime_index = ni;
338 
339 	crit_exit();
340 }
341 
342 /*
343  * Each cpu has its own hardclock, but we only increments ticks and softticks
344  * on cpu #0.
345  *
346  * NOTE! systimer! the MP lock might not be held here.  We can only safely
347  * manipulate objects owned by the current cpu.
348  */
349 static void
350 hardclock(systimer_t info, struct intrframe *frame)
351 {
352 	sysclock_t cputicks;
353 	struct proc *p;
354 	struct globaldata *gd = mycpu;
355 
356 	/*
357 	 * Realtime updates are per-cpu.  Note that timer corrections as
358 	 * returned by microtime() and friends make an additional adjustment
359 	 * using a system-wise 'basetime', but the running time is always
360 	 * taken from the per-cpu globaldata area.  Since the same clock
361 	 * is distributing (XXX SMP) to all cpus, the per-cpu timebases
362 	 * stay in synch.
363 	 *
364 	 * Note that we never allow info->time (aka gd->gd_hardclock.time)
365 	 * to reverse index gd_cpuclock_base, but that it is possible for
366 	 * it to temporarily get behind in the seconds if something in the
367 	 * system locks interrupts for a long period of time.  Since periodic
368 	 * timers count events, though everything should resynch again
369 	 * immediately.
370 	 */
371 	cputicks = info->time - gd->gd_cpuclock_base;
372 	if (cputicks >= sys_cputimer->freq) {
373 		++gd->gd_time_seconds;
374 		gd->gd_cpuclock_base += sys_cputimer->freq;
375 	}
376 
377 	/*
378 	 * The system-wide ticks counter and NTP related timedelta/tickdelta
379 	 * adjustments only occur on cpu #0.  NTP adjustments are accomplished
380 	 * by updating basetime.
381 	 */
382 	if (gd->gd_cpuid == 0) {
383 	    struct timespec *nbt;
384 	    struct timespec nts;
385 	    int leap;
386 	    int ni;
387 
388 	    ++ticks;
389 
390 #if 0
391 	    if (tco->tc_poll_pps)
392 		tco->tc_poll_pps(tco);
393 #endif
394 
395 	    /*
396 	     * Calculate the new basetime index.  We are in a critical section
397 	     * on cpu #0 and can safely play with basetime_index.  Start
398 	     * with the current basetime and then make adjustments.
399 	     */
400 	    ni = (basetime_index + 1) & BASETIME_ARYMASK;
401 	    nbt = &basetime[ni];
402 	    *nbt = basetime[basetime_index];
403 
404 	    /*
405 	     * Apply adjtime corrections.  (adjtime() API)
406 	     *
407 	     * adjtime() only runs on cpu #0 so our critical section is
408 	     * sufficient to access these variables.
409 	     */
410 	    if (ntp_delta != 0) {
411 		nbt->tv_nsec += ntp_tick_delta;
412 		ntp_delta -= ntp_tick_delta;
413 		if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) ||
414 		    (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) {
415 			ntp_tick_delta = ntp_delta;
416  		}
417  	    }
418 
419 	    /*
420 	     * Apply permanent frequency corrections.  (sysctl API)
421 	     */
422 	    if (ntp_tick_permanent != 0) {
423 		ntp_tick_acc += ntp_tick_permanent;
424 		if (ntp_tick_acc >= (1LL << 32)) {
425 		    nbt->tv_nsec += ntp_tick_acc >> 32;
426 		    ntp_tick_acc -= (ntp_tick_acc >> 32) << 32;
427 		} else if (ntp_tick_acc <= -(1LL << 32)) {
428 		    /* Negate ntp_tick_acc to avoid shifting the sign bit. */
429 		    nbt->tv_nsec -= (-ntp_tick_acc) >> 32;
430 		    ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32;
431 		}
432  	    }
433 
434 	    if (nbt->tv_nsec >= 1000000000) {
435 		    nbt->tv_sec++;
436 		    nbt->tv_nsec -= 1000000000;
437 	    } else if (nbt->tv_nsec < 0) {
438 		    nbt->tv_sec--;
439 		    nbt->tv_nsec += 1000000000;
440 	    }
441 
442 	    /*
443 	     * Another per-tick compensation.  (for ntp_adjtime() API)
444 	     */
445 	    if (nsec_adj != 0) {
446 		nsec_acc += nsec_adj;
447 		if (nsec_acc >= 0x100000000LL) {
448 		    nbt->tv_nsec += nsec_acc >> 32;
449 		    nsec_acc = (nsec_acc & 0xFFFFFFFFLL);
450 		} else if (nsec_acc <= -0x100000000LL) {
451 		    nbt->tv_nsec -= -nsec_acc >> 32;
452 		    nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL);
453 		}
454 		if (nbt->tv_nsec >= 1000000000) {
455 		    nbt->tv_nsec -= 1000000000;
456 		    ++nbt->tv_sec;
457 		} else if (nbt->tv_nsec < 0) {
458 		    nbt->tv_nsec += 1000000000;
459 		    --nbt->tv_sec;
460 		}
461 	    }
462 
463 	    /************************************************************
464 	     *			LEAP SECOND CORRECTION			*
465 	     ************************************************************
466 	     *
467 	     * Taking into account all the corrections made above, figure
468 	     * out the new real time.  If the seconds field has changed
469 	     * then apply any pending leap-second corrections.
470 	     */
471 	    getnanotime_nbt(nbt, &nts);
472 
473 	    if (time_second != nts.tv_sec) {
474 		/*
475 		 * Apply leap second (sysctl API).  Adjust nts for changes
476 		 * so we do not have to call getnanotime_nbt again.
477 		 */
478 		if (ntp_leap_second) {
479 		    if (ntp_leap_second == nts.tv_sec) {
480 			if (ntp_leap_insert) {
481 			    nbt->tv_sec++;
482 			    nts.tv_sec++;
483 			} else {
484 			    nbt->tv_sec--;
485 			    nts.tv_sec--;
486 			}
487 			ntp_leap_second--;
488 		    }
489 		}
490 
491 		/*
492 		 * Apply leap second (ntp_adjtime() API), calculate a new
493 		 * nsec_adj field.  ntp_update_second() returns nsec_adj
494 		 * as a per-second value but we need it as a per-tick value.
495 		 */
496 		leap = ntp_update_second(time_second, &nsec_adj);
497 		nsec_adj /= hz;
498 		nbt->tv_sec += leap;
499 		nts.tv_sec += leap;
500 
501 		/*
502 		 * Update the time_second 'approximate time' global.
503 		 */
504 		time_second = nts.tv_sec;
505 	    }
506 
507 	    /*
508 	     * Finally, our new basetime is ready to go live!
509 	     */
510 	    cpu_sfence();
511 	    basetime_index = ni;
512 
513 	    /*
514 	     * Figure out how badly the system is starved for memory
515 	     */
516 	    vm_fault_ratecheck();
517 	}
518 
519 	/*
520 	 * softticks are handled for all cpus
521 	 */
522 	hardclock_softtick(gd);
523 
524 	/*
525 	 * The LWKT scheduler will generally allow the current process to
526 	 * return to user mode even if there are other runnable LWKT threads
527 	 * running in kernel mode on behalf of a user process.  This will
528 	 * ensure that those other threads have an opportunity to run in
529 	 * fairly short order (but not instantly).
530 	 */
531 	need_lwkt_resched();
532 
533 	/*
534 	 * ITimer handling is per-tick, per-cpu.  I don't think ksignal()
535 	 * is mpsafe on curproc, so XXX get the mplock.
536 	 */
537 	if ((p = curproc) != NULL && try_mplock()) {
538 		if (frame && CLKF_USERMODE(frame) &&
539 		    timevalisset(&p->p_timer[ITIMER_VIRTUAL].it_value) &&
540 		    itimerdecr(&p->p_timer[ITIMER_VIRTUAL], tick) == 0)
541 			ksignal(p, SIGVTALRM);
542 		if (timevalisset(&p->p_timer[ITIMER_PROF].it_value) &&
543 		    itimerdecr(&p->p_timer[ITIMER_PROF], tick) == 0)
544 			ksignal(p, SIGPROF);
545 		rel_mplock();
546 	}
547 	setdelayed();
548 }
549 
550 /*
551  * The statistics clock typically runs at a 125Hz rate, and is intended
552  * to be frequency offset from the hardclock (typ 100Hz).  It is per-cpu.
553  *
554  * NOTE! systimer! the MP lock might not be held here.  We can only safely
555  * manipulate objects owned by the current cpu.
556  *
557  * The stats clock is responsible for grabbing a profiling sample.
558  * Most of the statistics are only used by user-level statistics programs.
559  * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and
560  * p->p_estcpu.
561  *
562  * Like the other clocks, the stat clock is called from what is effectively
563  * a fast interrupt, so the context should be the thread/process that got
564  * interrupted.
565  */
566 static void
567 statclock(systimer_t info, struct intrframe *frame)
568 {
569 #ifdef GPROF
570 	struct gmonparam *g;
571 	int i;
572 #endif
573 	thread_t td;
574 	struct proc *p;
575 	int bump;
576 	struct timeval tv;
577 	struct timeval *stv;
578 
579 	/*
580 	 * How big was our timeslice relative to the last time?
581 	 */
582 	microuptime(&tv);	/* mpsafe */
583 	stv = &mycpu->gd_stattv;
584 	if (stv->tv_sec == 0) {
585 	    bump = 1;
586 	} else {
587 	    bump = tv.tv_usec - stv->tv_usec +
588 		(tv.tv_sec - stv->tv_sec) * 1000000;
589 	    if (bump < 0)
590 		bump = 0;
591 	    if (bump > 1000000)
592 		bump = 1000000;
593 	}
594 	*stv = tv;
595 
596 	td = curthread;
597 	p = td->td_proc;
598 
599 	if (frame && CLKF_USERMODE(frame)) {
600 		/*
601 		 * Came from userland, handle user time and deal with
602 		 * possible process.
603 		 */
604 		if (p && (p->p_flag & P_PROFIL))
605 			addupc_intr(p, CLKF_PC(frame), 1);
606 		td->td_uticks += bump;
607 
608 		/*
609 		 * Charge the time as appropriate
610 		 */
611 		if (p && p->p_nice > NZERO)
612 			cpu_time.cp_nice += bump;
613 		else
614 			cpu_time.cp_user += bump;
615 	} else {
616 #ifdef GPROF
617 		/*
618 		 * Kernel statistics are just like addupc_intr, only easier.
619 		 */
620 		g = &_gmonparam;
621 		if (g->state == GMON_PROF_ON && frame) {
622 			i = CLKF_PC(frame) - g->lowpc;
623 			if (i < g->textsize) {
624 				i /= HISTFRACTION * sizeof(*g->kcount);
625 				g->kcount[i]++;
626 			}
627 		}
628 #endif
629 		/*
630 		 * Came from kernel mode, so we were:
631 		 * - handling an interrupt,
632 		 * - doing syscall or trap work on behalf of the current
633 		 *   user process, or
634 		 * - spinning in the idle loop.
635 		 * Whichever it is, charge the time as appropriate.
636 		 * Note that we charge interrupts to the current process,
637 		 * regardless of whether they are ``for'' that process,
638 		 * so that we know how much of its real time was spent
639 		 * in ``non-process'' (i.e., interrupt) work.
640 		 *
641 		 * XXX assume system if frame is NULL.  A NULL frame
642 		 * can occur if ipi processing is done from a crit_exit().
643 		 */
644 		if (frame && CLKF_INTR(frame))
645 			td->td_iticks += bump;
646 		else
647 			td->td_sticks += bump;
648 
649 		if (frame && CLKF_INTR(frame)) {
650 #ifdef DEBUG_PCTRACK
651 			do_pctrack(frame, PCTRACK_INT);
652 #endif
653 			cpu_time.cp_intr += bump;
654 		} else {
655 			if (td == &mycpu->gd_idlethread) {
656 				cpu_time.cp_idle += bump;
657 			} else {
658 #ifdef DEBUG_PCTRACK
659 				if (frame)
660 					do_pctrack(frame, PCTRACK_SYS);
661 #endif
662 				cpu_time.cp_sys += bump;
663 			}
664 		}
665 	}
666 }
667 
668 #ifdef DEBUG_PCTRACK
669 /*
670  * Sample the PC when in the kernel or in an interrupt.  User code can
671  * retrieve the information and generate a histogram or other output.
672  */
673 
674 static void
675 do_pctrack(struct intrframe *frame, int which)
676 {
677 	struct kinfo_pctrack *pctrack;
678 
679 	pctrack = &cputime_pctrack[mycpu->gd_cpuid][which];
680 	pctrack->pc_array[pctrack->pc_index & PCTRACK_ARYMASK] =
681 		(void *)CLKF_PC(frame);
682 	++pctrack->pc_index;
683 }
684 
685 static int
686 sysctl_pctrack(SYSCTL_HANDLER_ARGS)
687 {
688 	struct kinfo_pcheader head;
689 	int error;
690 	int cpu;
691 	int ntrack;
692 
693 	head.pc_ntrack = PCTRACK_SIZE;
694 	head.pc_arysize = PCTRACK_ARYSIZE;
695 
696 	if ((error = SYSCTL_OUT(req, &head, sizeof(head))) != 0)
697 		return (error);
698 
699 	for (cpu = 0; cpu < ncpus; ++cpu) {
700 		for (ntrack = 0; ntrack < PCTRACK_SIZE; ++ntrack) {
701 			error = SYSCTL_OUT(req, &cputime_pctrack[cpu][ntrack],
702 					   sizeof(struct kinfo_pctrack));
703 			if (error)
704 				break;
705 		}
706 		if (error)
707 			break;
708 	}
709 	return (error);
710 }
711 SYSCTL_PROC(_kern, OID_AUTO, pctrack, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
712 	sysctl_pctrack, "S,kinfo_pcheader", "CPU PC tracking");
713 
714 #endif
715 
716 /*
717  * The scheduler clock typically runs at a 50Hz rate.  NOTE! systimer,
718  * the MP lock might not be held.  We can safely manipulate parts of curproc
719  * but that's about it.
720  *
721  * Each cpu has its own scheduler clock.
722  */
723 static void
724 schedclock(systimer_t info, struct intrframe *frame)
725 {
726 	struct lwp *lp;
727 	struct rusage *ru;
728 	struct vmspace *vm;
729 	long rss;
730 
731 	if ((lp = lwkt_preempted_proc()) != NULL) {
732 		/*
733 		 * Account for cpu time used and hit the scheduler.  Note
734 		 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD
735 		 * HERE.
736 		 */
737 		++lp->lwp_cpticks;
738 		lp->lwp_proc->p_usched->schedulerclock(lp, info->periodic,
739 						       info->time);
740 	}
741 	if ((lp = curthread->td_lwp) != NULL) {
742 		/*
743 		 * Update resource usage integrals and maximums.
744 		 */
745 		if ((ru = &lp->lwp_proc->p_ru) &&
746 		    (vm = lp->lwp_proc->p_vmspace) != NULL) {
747 			ru->ru_ixrss += pgtok(vm->vm_tsize);
748 			ru->ru_idrss += pgtok(vm->vm_dsize);
749 			ru->ru_isrss += pgtok(vm->vm_ssize);
750 			rss = pgtok(vmspace_resident_count(vm));
751 			if (ru->ru_maxrss < rss)
752 				ru->ru_maxrss = rss;
753 		}
754 	}
755 }
756 
757 /*
758  * Compute number of ticks for the specified amount of time.  The
759  * return value is intended to be used in a clock interrupt timed
760  * operation and guarenteed to meet or exceed the requested time.
761  * If the representation overflows, return INT_MAX.  The minimum return
762  * value is 1 ticks and the function will average the calculation up.
763  * If any value greater then 0 microseconds is supplied, a value
764  * of at least 2 will be returned to ensure that a near-term clock
765  * interrupt does not cause the timeout to occur (degenerately) early.
766  *
767  * Note that limit checks must take into account microseconds, which is
768  * done simply by using the smaller signed long maximum instead of
769  * the unsigned long maximum.
770  *
771  * If ints have 32 bits, then the maximum value for any timeout in
772  * 10ms ticks is 248 days.
773  */
774 int
775 tvtohz_high(struct timeval *tv)
776 {
777 	int ticks;
778 	long sec, usec;
779 
780 	sec = tv->tv_sec;
781 	usec = tv->tv_usec;
782 	if (usec < 0) {
783 		sec--;
784 		usec += 1000000;
785 	}
786 	if (sec < 0) {
787 #ifdef DIAGNOSTIC
788 		if (usec > 0) {
789 			sec++;
790 			usec -= 1000000;
791 		}
792 		kprintf("tvtohz_high: negative time difference %ld sec %ld usec\n",
793 		       sec, usec);
794 #endif
795 		ticks = 1;
796 	} else if (sec <= INT_MAX / hz) {
797 		ticks = (int)(sec * hz +
798 			    ((u_long)usec + (tick - 1)) / tick) + 1;
799 	} else {
800 		ticks = INT_MAX;
801 	}
802 	return (ticks);
803 }
804 
805 /*
806  * Compute number of ticks for the specified amount of time, erroring on
807  * the side of it being too low to ensure that sleeping the returned number
808  * of ticks will not result in a late return.
809  *
810  * The supplied timeval may not be negative and should be normalized.  A
811  * return value of 0 is possible if the timeval converts to less then
812  * 1 tick.
813  *
814  * If ints have 32 bits, then the maximum value for any timeout in
815  * 10ms ticks is 248 days.
816  */
817 int
818 tvtohz_low(struct timeval *tv)
819 {
820 	int ticks;
821 	long sec;
822 
823 	sec = tv->tv_sec;
824 	if (sec <= INT_MAX / hz)
825 		ticks = (int)(sec * hz + (u_long)tv->tv_usec / tick);
826 	else
827 		ticks = INT_MAX;
828 	return (ticks);
829 }
830 
831 
832 /*
833  * Start profiling on a process.
834  *
835  * Kernel profiling passes proc0 which never exits and hence
836  * keeps the profile clock running constantly.
837  */
838 void
839 startprofclock(struct proc *p)
840 {
841 	if ((p->p_flag & P_PROFIL) == 0) {
842 		p->p_flag |= P_PROFIL;
843 #if 0	/* XXX */
844 		if (++profprocs == 1 && stathz != 0) {
845 			crit_enter();
846 			psdiv = psratio;
847 			setstatclockrate(profhz);
848 			crit_exit();
849 		}
850 #endif
851 	}
852 }
853 
854 /*
855  * Stop profiling on a process.
856  */
857 void
858 stopprofclock(struct proc *p)
859 {
860 	if (p->p_flag & P_PROFIL) {
861 		p->p_flag &= ~P_PROFIL;
862 #if 0	/* XXX */
863 		if (--profprocs == 0 && stathz != 0) {
864 			crit_enter();
865 			psdiv = 1;
866 			setstatclockrate(stathz);
867 			crit_exit();
868 		}
869 #endif
870 	}
871 }
872 
873 /*
874  * Return information about system clocks.
875  */
876 static int
877 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
878 {
879 	struct kinfo_clockinfo clkinfo;
880 	/*
881 	 * Construct clockinfo structure.
882 	 */
883 	clkinfo.ci_hz = hz;
884 	clkinfo.ci_tick = tick;
885 	clkinfo.ci_tickadj = ntp_default_tick_delta / 1000;
886 	clkinfo.ci_profhz = profhz;
887 	clkinfo.ci_stathz = stathz ? stathz : hz;
888 	return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
889 }
890 
891 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
892 	0, 0, sysctl_kern_clockrate, "S,clockinfo","");
893 
894 /*
895  * We have eight functions for looking at the clock, four for
896  * microseconds and four for nanoseconds.  For each there is fast
897  * but less precise version "get{nano|micro}[up]time" which will
898  * return a time which is up to 1/HZ previous to the call, whereas
899  * the raw version "{nano|micro}[up]time" will return a timestamp
900  * which is as precise as possible.  The "up" variants return the
901  * time relative to system boot, these are well suited for time
902  * interval measurements.
903  *
904  * Each cpu independantly maintains the current time of day, so all
905  * we need to do to protect ourselves from changes is to do a loop
906  * check on the seconds field changing out from under us.
907  *
908  * The system timer maintains a 32 bit count and due to various issues
909  * it is possible for the calculated delta to occassionally exceed
910  * sys_cputimer->freq.  If this occurs the sys_cputimer->freq64_nsec
911  * multiplication can easily overflow, so we deal with the case.  For
912  * uniformity we deal with the case in the usec case too.
913  *
914  * All the [get][micro,nano][time,uptime]() routines are MPSAFE.
915  */
916 void
917 getmicrouptime(struct timeval *tvp)
918 {
919 	struct globaldata *gd = mycpu;
920 	sysclock_t delta;
921 
922 	do {
923 		tvp->tv_sec = gd->gd_time_seconds;
924 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
925 	} while (tvp->tv_sec != gd->gd_time_seconds);
926 
927 	if (delta >= sys_cputimer->freq) {
928 		tvp->tv_sec += delta / sys_cputimer->freq;
929 		delta %= sys_cputimer->freq;
930 	}
931 	tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
932 	if (tvp->tv_usec >= 1000000) {
933 		tvp->tv_usec -= 1000000;
934 		++tvp->tv_sec;
935 	}
936 }
937 
938 void
939 getnanouptime(struct timespec *tsp)
940 {
941 	struct globaldata *gd = mycpu;
942 	sysclock_t delta;
943 
944 	do {
945 		tsp->tv_sec = gd->gd_time_seconds;
946 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
947 	} while (tsp->tv_sec != gd->gd_time_seconds);
948 
949 	if (delta >= sys_cputimer->freq) {
950 		tsp->tv_sec += delta / sys_cputimer->freq;
951 		delta %= sys_cputimer->freq;
952 	}
953 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
954 }
955 
956 void
957 microuptime(struct timeval *tvp)
958 {
959 	struct globaldata *gd = mycpu;
960 	sysclock_t delta;
961 
962 	do {
963 		tvp->tv_sec = gd->gd_time_seconds;
964 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
965 	} while (tvp->tv_sec != gd->gd_time_seconds);
966 
967 	if (delta >= sys_cputimer->freq) {
968 		tvp->tv_sec += delta / sys_cputimer->freq;
969 		delta %= sys_cputimer->freq;
970 	}
971 	tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
972 }
973 
974 void
975 nanouptime(struct timespec *tsp)
976 {
977 	struct globaldata *gd = mycpu;
978 	sysclock_t delta;
979 
980 	do {
981 		tsp->tv_sec = gd->gd_time_seconds;
982 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
983 	} while (tsp->tv_sec != gd->gd_time_seconds);
984 
985 	if (delta >= sys_cputimer->freq) {
986 		tsp->tv_sec += delta / sys_cputimer->freq;
987 		delta %= sys_cputimer->freq;
988 	}
989 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
990 }
991 
992 /*
993  * realtime routines
994  */
995 void
996 getmicrotime(struct timeval *tvp)
997 {
998 	struct globaldata *gd = mycpu;
999 	struct timespec *bt;
1000 	sysclock_t delta;
1001 
1002 	do {
1003 		tvp->tv_sec = gd->gd_time_seconds;
1004 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1005 	} while (tvp->tv_sec != gd->gd_time_seconds);
1006 
1007 	if (delta >= sys_cputimer->freq) {
1008 		tvp->tv_sec += delta / sys_cputimer->freq;
1009 		delta %= sys_cputimer->freq;
1010 	}
1011 	tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1012 
1013 	bt = &basetime[basetime_index];
1014 	tvp->tv_sec += bt->tv_sec;
1015 	tvp->tv_usec += bt->tv_nsec / 1000;
1016 	while (tvp->tv_usec >= 1000000) {
1017 		tvp->tv_usec -= 1000000;
1018 		++tvp->tv_sec;
1019 	}
1020 }
1021 
1022 void
1023 getnanotime(struct timespec *tsp)
1024 {
1025 	struct globaldata *gd = mycpu;
1026 	struct timespec *bt;
1027 	sysclock_t delta;
1028 
1029 	do {
1030 		tsp->tv_sec = gd->gd_time_seconds;
1031 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1032 	} while (tsp->tv_sec != gd->gd_time_seconds);
1033 
1034 	if (delta >= sys_cputimer->freq) {
1035 		tsp->tv_sec += delta / sys_cputimer->freq;
1036 		delta %= sys_cputimer->freq;
1037 	}
1038 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1039 
1040 	bt = &basetime[basetime_index];
1041 	tsp->tv_sec += bt->tv_sec;
1042 	tsp->tv_nsec += bt->tv_nsec;
1043 	while (tsp->tv_nsec >= 1000000000) {
1044 		tsp->tv_nsec -= 1000000000;
1045 		++tsp->tv_sec;
1046 	}
1047 }
1048 
1049 static void
1050 getnanotime_nbt(struct timespec *nbt, struct timespec *tsp)
1051 {
1052 	struct globaldata *gd = mycpu;
1053 	sysclock_t delta;
1054 
1055 	do {
1056 		tsp->tv_sec = gd->gd_time_seconds;
1057 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1058 	} while (tsp->tv_sec != gd->gd_time_seconds);
1059 
1060 	if (delta >= sys_cputimer->freq) {
1061 		tsp->tv_sec += delta / sys_cputimer->freq;
1062 		delta %= sys_cputimer->freq;
1063 	}
1064 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1065 
1066 	tsp->tv_sec += nbt->tv_sec;
1067 	tsp->tv_nsec += nbt->tv_nsec;
1068 	while (tsp->tv_nsec >= 1000000000) {
1069 		tsp->tv_nsec -= 1000000000;
1070 		++tsp->tv_sec;
1071 	}
1072 }
1073 
1074 
1075 void
1076 microtime(struct timeval *tvp)
1077 {
1078 	struct globaldata *gd = mycpu;
1079 	struct timespec *bt;
1080 	sysclock_t delta;
1081 
1082 	do {
1083 		tvp->tv_sec = gd->gd_time_seconds;
1084 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1085 	} while (tvp->tv_sec != gd->gd_time_seconds);
1086 
1087 	if (delta >= sys_cputimer->freq) {
1088 		tvp->tv_sec += delta / sys_cputimer->freq;
1089 		delta %= sys_cputimer->freq;
1090 	}
1091 	tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1092 
1093 	bt = &basetime[basetime_index];
1094 	tvp->tv_sec += bt->tv_sec;
1095 	tvp->tv_usec += bt->tv_nsec / 1000;
1096 	while (tvp->tv_usec >= 1000000) {
1097 		tvp->tv_usec -= 1000000;
1098 		++tvp->tv_sec;
1099 	}
1100 }
1101 
1102 void
1103 nanotime(struct timespec *tsp)
1104 {
1105 	struct globaldata *gd = mycpu;
1106 	struct timespec *bt;
1107 	sysclock_t delta;
1108 
1109 	do {
1110 		tsp->tv_sec = gd->gd_time_seconds;
1111 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1112 	} while (tsp->tv_sec != gd->gd_time_seconds);
1113 
1114 	if (delta >= sys_cputimer->freq) {
1115 		tsp->tv_sec += delta / sys_cputimer->freq;
1116 		delta %= sys_cputimer->freq;
1117 	}
1118 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1119 
1120 	bt = &basetime[basetime_index];
1121 	tsp->tv_sec += bt->tv_sec;
1122 	tsp->tv_nsec += bt->tv_nsec;
1123 	while (tsp->tv_nsec >= 1000000000) {
1124 		tsp->tv_nsec -= 1000000000;
1125 		++tsp->tv_sec;
1126 	}
1127 }
1128 
1129 /*
1130  * note: this is not exactly synchronized with real time.  To do that we
1131  * would have to do what microtime does and check for a nanoseconds overflow.
1132  */
1133 time_t
1134 get_approximate_time_t(void)
1135 {
1136 	struct globaldata *gd = mycpu;
1137 	struct timespec *bt;
1138 
1139 	bt = &basetime[basetime_index];
1140 	return(gd->gd_time_seconds + bt->tv_sec);
1141 }
1142 
1143 int
1144 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1145 {
1146 	pps_params_t *app;
1147 	struct pps_fetch_args *fapi;
1148 #ifdef PPS_SYNC
1149 	struct pps_kcbind_args *kapi;
1150 #endif
1151 
1152 	switch (cmd) {
1153 	case PPS_IOC_CREATE:
1154 		return (0);
1155 	case PPS_IOC_DESTROY:
1156 		return (0);
1157 	case PPS_IOC_SETPARAMS:
1158 		app = (pps_params_t *)data;
1159 		if (app->mode & ~pps->ppscap)
1160 			return (EINVAL);
1161 		pps->ppsparam = *app;
1162 		return (0);
1163 	case PPS_IOC_GETPARAMS:
1164 		app = (pps_params_t *)data;
1165 		*app = pps->ppsparam;
1166 		app->api_version = PPS_API_VERS_1;
1167 		return (0);
1168 	case PPS_IOC_GETCAP:
1169 		*(int*)data = pps->ppscap;
1170 		return (0);
1171 	case PPS_IOC_FETCH:
1172 		fapi = (struct pps_fetch_args *)data;
1173 		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1174 			return (EINVAL);
1175 		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
1176 			return (EOPNOTSUPP);
1177 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
1178 		fapi->pps_info_buf = pps->ppsinfo;
1179 		return (0);
1180 	case PPS_IOC_KCBIND:
1181 #ifdef PPS_SYNC
1182 		kapi = (struct pps_kcbind_args *)data;
1183 		/* XXX Only root should be able to do this */
1184 		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1185 			return (EINVAL);
1186 		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1187 			return (EINVAL);
1188 		if (kapi->edge & ~pps->ppscap)
1189 			return (EINVAL);
1190 		pps->kcmode = kapi->edge;
1191 		return (0);
1192 #else
1193 		return (EOPNOTSUPP);
1194 #endif
1195 	default:
1196 		return (ENOTTY);
1197 	}
1198 }
1199 
1200 void
1201 pps_init(struct pps_state *pps)
1202 {
1203 	pps->ppscap |= PPS_TSFMT_TSPEC;
1204 	if (pps->ppscap & PPS_CAPTUREASSERT)
1205 		pps->ppscap |= PPS_OFFSETASSERT;
1206 	if (pps->ppscap & PPS_CAPTURECLEAR)
1207 		pps->ppscap |= PPS_OFFSETCLEAR;
1208 }
1209 
1210 void
1211 pps_event(struct pps_state *pps, sysclock_t count, int event)
1212 {
1213 	struct globaldata *gd;
1214 	struct timespec *tsp;
1215 	struct timespec *osp;
1216 	struct timespec *bt;
1217 	struct timespec ts;
1218 	sysclock_t *pcount;
1219 #ifdef PPS_SYNC
1220 	sysclock_t tcount;
1221 #endif
1222 	sysclock_t delta;
1223 	pps_seq_t *pseq;
1224 	int foff;
1225 	int fhard;
1226 
1227 	gd = mycpu;
1228 
1229 	/* Things would be easier with arrays... */
1230 	if (event == PPS_CAPTUREASSERT) {
1231 		tsp = &pps->ppsinfo.assert_timestamp;
1232 		osp = &pps->ppsparam.assert_offset;
1233 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1234 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
1235 		pcount = &pps->ppscount[0];
1236 		pseq = &pps->ppsinfo.assert_sequence;
1237 	} else {
1238 		tsp = &pps->ppsinfo.clear_timestamp;
1239 		osp = &pps->ppsparam.clear_offset;
1240 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1241 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
1242 		pcount = &pps->ppscount[1];
1243 		pseq = &pps->ppsinfo.clear_sequence;
1244 	}
1245 
1246 	/* Nothing really happened */
1247 	if (*pcount == count)
1248 		return;
1249 
1250 	*pcount = count;
1251 
1252 	do {
1253 		ts.tv_sec = gd->gd_time_seconds;
1254 		delta = count - gd->gd_cpuclock_base;
1255 	} while (ts.tv_sec != gd->gd_time_seconds);
1256 
1257 	if (delta >= sys_cputimer->freq) {
1258 		ts.tv_sec += delta / sys_cputimer->freq;
1259 		delta %= sys_cputimer->freq;
1260 	}
1261 	ts.tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1262 	bt = &basetime[basetime_index];
1263 	ts.tv_sec += bt->tv_sec;
1264 	ts.tv_nsec += bt->tv_nsec;
1265 	while (ts.tv_nsec >= 1000000000) {
1266 		ts.tv_nsec -= 1000000000;
1267 		++ts.tv_sec;
1268 	}
1269 
1270 	(*pseq)++;
1271 	*tsp = ts;
1272 
1273 	if (foff) {
1274 		timespecadd(tsp, osp);
1275 		if (tsp->tv_nsec < 0) {
1276 			tsp->tv_nsec += 1000000000;
1277 			tsp->tv_sec -= 1;
1278 		}
1279 	}
1280 #ifdef PPS_SYNC
1281 	if (fhard) {
1282 		/* magic, at its best... */
1283 		tcount = count - pps->ppscount[2];
1284 		pps->ppscount[2] = count;
1285 		if (tcount >= sys_cputimer->freq) {
1286 			delta = (1000000000 * (tcount / sys_cputimer->freq) +
1287 				 sys_cputimer->freq64_nsec *
1288 				 (tcount % sys_cputimer->freq)) >> 32;
1289 		} else {
1290 			delta = (sys_cputimer->freq64_nsec * tcount) >> 32;
1291 		}
1292 		hardpps(tsp, delta);
1293 	}
1294 #endif
1295 }
1296 
1297 /*
1298  * Return the tsc target value for a delay of (ns).
1299  *
1300  * Returns -1 if the TSC is not supported.
1301  */
1302 int64_t
1303 tsc_get_target(int ns)
1304 {
1305 #if defined(_RDTSC_SUPPORTED_)
1306 	if (cpu_feature & CPUID_TSC) {
1307 		return (rdtsc() + tsc_frequency * ns / (int64_t)1000000000);
1308 	}
1309 #endif
1310 	return(-1);
1311 }
1312 
1313 /*
1314  * Compare the tsc against the passed target
1315  *
1316  * Returns +1 if the target has been reached
1317  * Returns  0 if the target has not yet been reached
1318  * Returns -1 if the TSC is not supported.
1319  *
1320  * Typical use:		while (tsc_test_target(target) == 0) { ...poll... }
1321  */
1322 int
1323 tsc_test_target(int64_t target)
1324 {
1325 #if defined(_RDTSC_SUPPORTED_)
1326 	if (cpu_feature & CPUID_TSC) {
1327 		if ((int64_t)(target - rdtsc()) <= 0)
1328 			return(1);
1329 		return(0);
1330 	}
1331 #endif
1332 	return(-1);
1333 }
1334