xref: /dragonfly/sys/kern/kern_clock.c (revision 2d8a3be7)
1 /*-
2  * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
3  * Copyright (c) 1982, 1986, 1991, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  * (c) UNIX System Laboratories, Inc.
6  * All or some portions of this file are derived from material licensed
7  * to the University of California by American Telephone and Telegraph
8  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
9  * the permission of UNIX System Laboratories, Inc.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
40  * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $
41  * $DragonFly: src/sys/kern/kern_clock.c,v 1.12 2003/10/17 07:30:42 dillon Exp $
42  */
43 
44 #include "opt_ntp.h"
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/dkstat.h>
49 #include <sys/callout.h>
50 #include <sys/kernel.h>
51 #include <sys/proc.h>
52 #include <sys/malloc.h>
53 #include <sys/resourcevar.h>
54 #include <sys/signalvar.h>
55 #include <sys/timex.h>
56 #include <sys/timepps.h>
57 #include <vm/vm.h>
58 #include <sys/lock.h>
59 #include <vm/pmap.h>
60 #include <vm/vm_map.h>
61 #include <sys/sysctl.h>
62 
63 #include <machine/cpu.h>
64 #include <machine/limits.h>
65 #include <machine/smp.h>
66 
67 #ifdef GPROF
68 #include <sys/gmon.h>
69 #endif
70 
71 #ifdef DEVICE_POLLING
72 extern void init_device_poll(void);
73 extern void hardclock_device_poll(void);
74 #endif /* DEVICE_POLLING */
75 
76 /*
77  * Number of timecounters used to implement stable storage
78  */
79 #ifndef NTIMECOUNTER
80 #define NTIMECOUNTER	5
81 #endif
82 
83 static MALLOC_DEFINE(M_TIMECOUNTER, "timecounter",
84 	"Timecounter stable storage");
85 
86 static void initclocks (void *dummy);
87 SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
88 
89 static void tco_forward (int force);
90 static void tco_setscales (struct timecounter *tc);
91 static __inline unsigned tco_delta (struct timecounter *tc);
92 
93 /*
94  * Some of these don't belong here, but it's easiest to concentrate them.
95  * Note that cp_time[] counts in microseconds, but most userland programs
96  * just compare relative times against the total by delta.
97  */
98 long cp_time[CPUSTATES];
99 
100 SYSCTL_OPAQUE(_kern, OID_AUTO, cp_time, CTLFLAG_RD, &cp_time, sizeof(cp_time),
101     "LU", "CPU time statistics");
102 
103 long tk_cancc;
104 long tk_nin;
105 long tk_nout;
106 long tk_rawcc;
107 
108 time_t time_second;
109 
110 struct	timeval boottime;
111 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
112     &boottime, timeval, "System boottime");
113 
114 /*
115  * Which update policy to use.
116  *   0 - every tick, bad hardware may fail with "calcru negative..."
117  *   1 - more resistent to the above hardware, but less efficient.
118  */
119 static int tco_method;
120 
121 /*
122  * Implement a dummy timecounter which we can use until we get a real one
123  * in the air.  This allows the console and other early stuff to use
124  * timeservices.
125  */
126 
127 static unsigned
128 dummy_get_timecount(struct timecounter *tc)
129 {
130 	static unsigned now;
131 	return (++now);
132 }
133 
134 static struct timecounter dummy_timecounter = {
135 	dummy_get_timecount,
136 	0,
137 	~0u,
138 	1000000,
139 	"dummy"
140 };
141 
142 struct timecounter *timecounter = &dummy_timecounter;
143 
144 /*
145  * Clock handling routines.
146  *
147  * This code is written to operate with two timers that run independently of
148  * each other.
149  *
150  * The main timer, running hz times per second, is used to trigger interval
151  * timers, timeouts and rescheduling as needed.
152  *
153  * The second timer handles kernel and user profiling,
154  * and does resource use estimation.  If the second timer is programmable,
155  * it is randomized to avoid aliasing between the two clocks.  For example,
156  * the randomization prevents an adversary from always giving up the cpu
157  * just before its quantum expires.  Otherwise, it would never accumulate
158  * cpu ticks.  The mean frequency of the second timer is stathz.
159  *
160  * If no second timer exists, stathz will be zero; in this case we drive
161  * profiling and statistics off the main clock.  This WILL NOT be accurate;
162  * do not do it unless absolutely necessary.
163  *
164  * The statistics clock may (or may not) be run at a higher rate while
165  * profiling.  This profile clock runs at profhz.  We require that profhz
166  * be an integral multiple of stathz.
167  *
168  * If the statistics clock is running fast, it must be divided by the ratio
169  * profhz/stathz for statistics.  (For profiling, every tick counts.)
170  *
171  * Time-of-day is maintained using a "timecounter", which may or may
172  * not be related to the hardware generating the above mentioned
173  * interrupts.
174  */
175 
176 int	stathz;
177 int	profhz;
178 static int profprocs;
179 int	ticks;
180 static int psticks;			/* profiler ticks */
181 static int psdiv;			/* prof / stat divider */
182 int	psratio;			/* ratio: prof * 100 / stat */
183 
184 /*
185  * Initialize clock frequencies and start both clocks running.
186  */
187 /* ARGSUSED*/
188 static void
189 initclocks(dummy)
190 	void *dummy;
191 {
192 	int i;
193 
194 	/*
195 	 * Set divisors to 1 (normal case) and let the machine-specific
196 	 * code do its bit.
197 	 */
198 	psdiv = 1;
199 	cpu_initclocks();
200 
201 #ifdef DEVICE_POLLING
202 	init_device_poll();
203 #endif
204 
205 	/*
206 	 * Compute profhz/stathz, and fix profhz if needed.
207 	 */
208 	i = stathz ? stathz : hz;
209 	if (profhz == 0)
210 		profhz = i;
211 	psratio = profhz / i;
212 }
213 
214 /*
215  * The real-time timer, interrupting hz times per second.  This is implemented
216  * as a FAST interrupt so it is in the context of the thread it interrupted,
217  * and not in an interrupt thread.  YYY needs help.
218  */
219 void
220 hardclock(frame)
221 	struct clockframe *frame;
222 {
223 	struct proc *p;
224 
225 	p = curproc;
226 	if (p) {
227 		struct pstats *pstats;
228 
229 		/*
230 		 * Run current process's virtual and profile time, as needed.
231 		 */
232 		pstats = p->p_stats;
233 		if (CLKF_USERMODE(frame) &&
234 		    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
235 		    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
236 			psignal(p, SIGVTALRM);
237 		if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
238 		    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
239 			psignal(p, SIGPROF);
240 	}
241 
242 #if 0 /* SMP and BETTER_CLOCK */
243 	forward_hardclock(pscnt);
244 #endif
245 
246 	/*
247 	 * If no separate statistics clock is available, run it from here.
248 	 */
249 	if (stathz == 0)
250 		statclock(frame);
251 
252 	tco_forward(0);
253 	ticks++;
254 
255 #ifdef DEVICE_POLLING
256 	hardclock_device_poll();	/* this is very short and quick */
257 #endif /* DEVICE_POLLING */
258 
259 	/*
260 	 * Process callouts at a very low cpu priority, so we don't keep the
261 	 * relatively high clock interrupt priority any longer than necessary.
262 	 */
263 	if (TAILQ_FIRST(&callwheel[ticks & callwheelmask]) != NULL) {
264 		setsoftclock();
265 	} else if (softticks + 1 == ticks) {
266 		++softticks;
267 	}
268 }
269 
270 /*
271  * Compute number of ticks in the specified amount of time.
272  */
273 int
274 tvtohz(tv)
275 	struct timeval *tv;
276 {
277 	unsigned long ticks;
278 	long sec, usec;
279 
280 	/*
281 	 * If the number of usecs in the whole seconds part of the time
282 	 * difference fits in a long, then the total number of usecs will
283 	 * fit in an unsigned long.  Compute the total and convert it to
284 	 * ticks, rounding up and adding 1 to allow for the current tick
285 	 * to expire.  Rounding also depends on unsigned long arithmetic
286 	 * to avoid overflow.
287 	 *
288 	 * Otherwise, if the number of ticks in the whole seconds part of
289 	 * the time difference fits in a long, then convert the parts to
290 	 * ticks separately and add, using similar rounding methods and
291 	 * overflow avoidance.  This method would work in the previous
292 	 * case but it is slightly slower and assumes that hz is integral.
293 	 *
294 	 * Otherwise, round the time difference down to the maximum
295 	 * representable value.
296 	 *
297 	 * If ints have 32 bits, then the maximum value for any timeout in
298 	 * 10ms ticks is 248 days.
299 	 */
300 	sec = tv->tv_sec;
301 	usec = tv->tv_usec;
302 	if (usec < 0) {
303 		sec--;
304 		usec += 1000000;
305 	}
306 	if (sec < 0) {
307 #ifdef DIAGNOSTIC
308 		if (usec > 0) {
309 			sec++;
310 			usec -= 1000000;
311 		}
312 		printf("tvotohz: negative time difference %ld sec %ld usec\n",
313 		       sec, usec);
314 #endif
315 		ticks = 1;
316 	} else if (sec <= LONG_MAX / 1000000)
317 		ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1))
318 			/ tick + 1;
319 	else if (sec <= LONG_MAX / hz)
320 		ticks = sec * hz
321 			+ ((unsigned long)usec + (tick - 1)) / tick + 1;
322 	else
323 		ticks = LONG_MAX;
324 	if (ticks > INT_MAX)
325 		ticks = INT_MAX;
326 	return ((int)ticks);
327 }
328 
329 /*
330  * Start profiling on a process.
331  *
332  * Kernel profiling passes proc0 which never exits and hence
333  * keeps the profile clock running constantly.
334  */
335 void
336 startprofclock(p)
337 	struct proc *p;
338 {
339 	int s;
340 
341 	if ((p->p_flag & P_PROFIL) == 0) {
342 		p->p_flag |= P_PROFIL;
343 		if (++profprocs == 1 && stathz != 0) {
344 			s = splstatclock();
345 			psdiv = psratio;
346 			setstatclockrate(profhz);
347 			splx(s);
348 		}
349 	}
350 }
351 
352 /*
353  * Stop profiling on a process.
354  */
355 void
356 stopprofclock(p)
357 	struct proc *p;
358 {
359 	int s;
360 
361 	if (p->p_flag & P_PROFIL) {
362 		p->p_flag &= ~P_PROFIL;
363 		if (--profprocs == 0 && stathz != 0) {
364 			s = splstatclock();
365 			psdiv = 1;
366 			setstatclockrate(stathz);
367 			splx(s);
368 		}
369 	}
370 }
371 
372 /*
373  * Statistics clock.  Grab profile sample, and if divider reaches 0,
374  * do process and kernel statistics.  Most of the statistics are only
375  * used by user-level statistics programs.  The main exceptions are
376  * p->p_uticks, p->p_sticks, p->p_iticks, and p->p_estcpu.
377  *
378  * The statclock should be called from an exclusive, fast interrupt,
379  * so the context should be the thread/process that got interrupted and
380  * not an interrupt thread.
381  */
382 void
383 statclock(frame)
384 	struct clockframe *frame;
385 {
386 #ifdef GPROF
387 	struct gmonparam *g;
388 	int i;
389 #endif
390 	thread_t td;
391 	struct pstats *pstats;
392 	long rss;
393 	struct rusage *ru;
394 	struct vmspace *vm;
395 	struct proc *p;
396 	int bump;
397 	struct timeval tv;
398 	struct timeval *stv;
399 
400 	/*
401 	 * How big was our timeslice relative to the last time
402 	 */
403 	microuptime(&tv);
404 	stv = &mycpu->gd_stattv;
405 	if (stv->tv_sec == 0) {
406 	    bump = 1;
407 	} else {
408 	    bump = tv.tv_usec - stv->tv_usec +
409 		(tv.tv_sec - stv->tv_sec) * 1000000;
410 	    if (bump < 0)
411 		bump = 0;
412 	    if (bump > 1000000)
413 		bump = 1000000;
414 	}
415 	*stv = tv;
416 
417 	td = curthread;
418 	p = td->td_proc;
419 
420 	if (CLKF_USERMODE(frame)) {
421 		/*
422 		 * Came from userland, handle user time and deal with
423 		 * possible process.
424 		 */
425 		if (p && (p->p_flag & P_PROFIL))
426 			addupc_intr(p, CLKF_PC(frame), 1);
427 #if 0	/* SMP and BETTER_CLOCK */
428 		if (stathz != 0)
429 			forward_statclock(pscnt);
430 #endif
431 		td->td_uticks += bump;
432 
433 		/*
434 		 * Charge the time as appropriate
435 		 */
436 		if (p && p->p_nice > NZERO)
437 			cp_time[CP_NICE] += bump;
438 		else
439 			cp_time[CP_USER] += bump;
440 	} else {
441 #ifdef GPROF
442 		/*
443 		 * Kernel statistics are just like addupc_intr, only easier.
444 		 */
445 		g = &_gmonparam;
446 		if (g->state == GMON_PROF_ON) {
447 			i = CLKF_PC(frame) - g->lowpc;
448 			if (i < g->textsize) {
449 				i /= HISTFRACTION * sizeof(*g->kcount);
450 				g->kcount[i]++;
451 			}
452 		}
453 #endif
454 #if 0	/* SMP and BETTER_CLOCK */
455 		if (stathz != 0)
456 			forward_statclock(pscnt);
457 #endif
458 		/*
459 		 * Came from kernel mode, so we were:
460 		 * - handling an interrupt,
461 		 * - doing syscall or trap work on behalf of the current
462 		 *   user process, or
463 		 * - spinning in the idle loop.
464 		 * Whichever it is, charge the time as appropriate.
465 		 * Note that we charge interrupts to the current process,
466 		 * regardless of whether they are ``for'' that process,
467 		 * so that we know how much of its real time was spent
468 		 * in ``non-process'' (i.e., interrupt) work.
469 		 */
470 		if (CLKF_INTR(frame))
471 			td->td_iticks += bump;
472 		else
473 			td->td_sticks += bump;
474 
475 		if (CLKF_INTR(frame)) {
476 			cp_time[CP_INTR] += bump;
477 		} else {
478 			if (td == &mycpu->gd_idlethread)
479 				cp_time[CP_IDLE] += bump;
480 			else
481 				cp_time[CP_SYS] += bump;
482 		}
483 	}
484 
485 	/*
486 	 * bump psticks and check against gd_psticks.  When we hit the
487 	 * 1*hz mark (psdiv ticks) we do the more expensive stuff.  If
488 	 * psdiv changes we reset everything to avoid confusion.
489 	 */
490 	++psticks;
491 	if (psticks < mycpu->gd_psticks && psdiv == mycpu->gd_psdiv)
492 		return;
493 
494 	mycpu->gd_psdiv = psdiv;
495 	mycpu->gd_psticks = psticks + psdiv;
496 
497 	/*
498 	 * XXX YYY DragonFly... need to rewrite all of this,
499 	 * only schedclock is distributed at the moment
500 	 */
501 	schedclock(NULL);
502 #ifdef SMP
503 	if (smp_started && invltlb_ok && !cold && !panicstr) /* YYY */
504 		lwkt_send_ipiq_mask(mycpu->gd_other_cpus, schedclock, NULL);
505 #endif
506 
507 	if (p != NULL) {
508 		/* Update resource usage integrals and maximums. */
509 		if ((pstats = p->p_stats) != NULL &&
510 		    (ru = &pstats->p_ru) != NULL &&
511 		    (vm = p->p_vmspace) != NULL) {
512 			ru->ru_ixrss += pgtok(vm->vm_tsize);
513 			ru->ru_idrss += pgtok(vm->vm_dsize);
514 			ru->ru_isrss += pgtok(vm->vm_ssize);
515 			rss = pgtok(vmspace_resident_count(vm));
516 			if (ru->ru_maxrss < rss)
517 				ru->ru_maxrss = rss;
518 		}
519 	}
520 }
521 
522 /*
523  * Return information about system clocks.
524  */
525 static int
526 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
527 {
528 	struct clockinfo clkinfo;
529 	/*
530 	 * Construct clockinfo structure.
531 	 */
532 	clkinfo.hz = hz;
533 	clkinfo.tick = tick;
534 	clkinfo.tickadj = tickadj;
535 	clkinfo.profhz = profhz;
536 	clkinfo.stathz = stathz ? stathz : hz;
537 	return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
538 }
539 
540 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
541 	0, 0, sysctl_kern_clockrate, "S,clockinfo","");
542 
543 static __inline unsigned
544 tco_delta(struct timecounter *tc)
545 {
546 
547 	return ((tc->tc_get_timecount(tc) - tc->tc_offset_count) &
548 	    tc->tc_counter_mask);
549 }
550 
551 /*
552  * We have eight functions for looking at the clock, four for
553  * microseconds and four for nanoseconds.  For each there is fast
554  * but less precise version "get{nano|micro}[up]time" which will
555  * return a time which is up to 1/HZ previous to the call, whereas
556  * the raw version "{nano|micro}[up]time" will return a timestamp
557  * which is as precise as possible.  The "up" variants return the
558  * time relative to system boot, these are well suited for time
559  * interval measurements.
560  */
561 
562 void
563 getmicrotime(struct timeval *tvp)
564 {
565 	struct timecounter *tc;
566 
567 	if (!tco_method) {
568 		tc = timecounter;
569 		*tvp = tc->tc_microtime;
570 	} else {
571 		microtime(tvp);
572 	}
573 }
574 
575 void
576 getnanotime(struct timespec *tsp)
577 {
578 	struct timecounter *tc;
579 
580 	if (!tco_method) {
581 		tc = timecounter;
582 		*tsp = tc->tc_nanotime;
583 	} else {
584 		nanotime(tsp);
585 	}
586 }
587 
588 void
589 microtime(struct timeval *tv)
590 {
591 	struct timecounter *tc;
592 
593 	tc = timecounter;
594 	tv->tv_sec = tc->tc_offset_sec;
595 	tv->tv_usec = tc->tc_offset_micro;
596 	tv->tv_usec += ((u_int64_t)tco_delta(tc) * tc->tc_scale_micro) >> 32;
597 	tv->tv_usec += boottime.tv_usec;
598 	tv->tv_sec += boottime.tv_sec;
599 	while (tv->tv_usec < 0) {
600 		tv->tv_usec += 1000000;
601 		if (tv->tv_sec > 0)
602 			tv->tv_sec--;
603 	}
604 	while (tv->tv_usec >= 1000000) {
605 		tv->tv_usec -= 1000000;
606 		tv->tv_sec++;
607 	}
608 }
609 
610 void
611 nanotime(struct timespec *ts)
612 {
613 	unsigned count;
614 	u_int64_t delta;
615 	struct timecounter *tc;
616 
617 	tc = timecounter;
618 	ts->tv_sec = tc->tc_offset_sec;
619 	count = tco_delta(tc);
620 	delta = tc->tc_offset_nano;
621 	delta += ((u_int64_t)count * tc->tc_scale_nano_f);
622 	delta >>= 32;
623 	delta += ((u_int64_t)count * tc->tc_scale_nano_i);
624 	delta += boottime.tv_usec * 1000;
625 	ts->tv_sec += boottime.tv_sec;
626 	while (delta < 0) {
627 		delta += 1000000000;
628 		if (ts->tv_sec > 0)
629 			ts->tv_sec--;
630 	}
631 	while (delta >= 1000000000) {
632 		delta -= 1000000000;
633 		ts->tv_sec++;
634 	}
635 	ts->tv_nsec = delta;
636 }
637 
638 void
639 getmicrouptime(struct timeval *tvp)
640 {
641 	struct timecounter *tc;
642 
643 	if (!tco_method) {
644 		tc = timecounter;
645 		tvp->tv_sec = tc->tc_offset_sec;
646 		tvp->tv_usec = tc->tc_offset_micro;
647 	} else {
648 		microuptime(tvp);
649 	}
650 }
651 
652 void
653 getnanouptime(struct timespec *tsp)
654 {
655 	struct timecounter *tc;
656 
657 	if (!tco_method) {
658 		tc = timecounter;
659 		tsp->tv_sec = tc->tc_offset_sec;
660 		tsp->tv_nsec = tc->tc_offset_nano >> 32;
661 	} else {
662 		nanouptime(tsp);
663 	}
664 }
665 
666 void
667 microuptime(struct timeval *tv)
668 {
669 	struct timecounter *tc;
670 
671 	tc = timecounter;
672 	tv->tv_sec = tc->tc_offset_sec;
673 	tv->tv_usec = tc->tc_offset_micro;
674 	tv->tv_usec += ((u_int64_t)tco_delta(tc) * tc->tc_scale_micro) >> 32;
675 	while (tv->tv_usec < 0) {
676 		tv->tv_usec += 1000000;
677 		if (tv->tv_sec > 0)
678 			tv->tv_sec--;
679 	}
680 	while (tv->tv_usec >= 1000000) {
681 		tv->tv_usec -= 1000000;
682 		tv->tv_sec++;
683 	}
684 }
685 
686 void
687 nanouptime(struct timespec *ts)
688 {
689 	unsigned count;
690 	u_int64_t delta;
691 	struct timecounter *tc;
692 
693 	tc = timecounter;
694 	ts->tv_sec = tc->tc_offset_sec;
695 	count = tco_delta(tc);
696 	delta = tc->tc_offset_nano;
697 	delta += ((u_int64_t)count * tc->tc_scale_nano_f);
698 	delta >>= 32;
699 	delta += ((u_int64_t)count * tc->tc_scale_nano_i);
700 	while (delta < 0) {
701 		delta += 1000000000;
702 		if (ts->tv_sec > 0)
703 			ts->tv_sec--;
704 	}
705 	while (delta >= 1000000000) {
706 		delta -= 1000000000;
707 		ts->tv_sec++;
708 	}
709 	ts->tv_nsec = delta;
710 }
711 
712 static void
713 tco_setscales(struct timecounter *tc)
714 {
715 	u_int64_t scale;
716 
717 	scale = 1000000000LL << 32;
718 	scale += tc->tc_adjustment;
719 	scale /= tc->tc_tweak->tc_frequency;
720 	tc->tc_scale_micro = scale / 1000;
721 	tc->tc_scale_nano_f = scale & 0xffffffff;
722 	tc->tc_scale_nano_i = scale >> 32;
723 }
724 
725 void
726 update_timecounter(struct timecounter *tc)
727 {
728 	tco_setscales(tc);
729 }
730 
731 void
732 init_timecounter(struct timecounter *tc)
733 {
734 	struct timespec ts1;
735 	struct timecounter *t1, *t2, *t3;
736 	unsigned u;
737 	int i;
738 
739 	u = tc->tc_frequency / tc->tc_counter_mask;
740 	if (u > hz) {
741 		printf("Timecounter \"%s\" frequency %lu Hz"
742 		       " -- Insufficient hz, needs at least %u\n",
743 		       tc->tc_name, (u_long) tc->tc_frequency, u);
744 		return;
745 	}
746 
747 	tc->tc_adjustment = 0;
748 	tc->tc_tweak = tc;
749 	tco_setscales(tc);
750 	tc->tc_offset_count = tc->tc_get_timecount(tc);
751 	if (timecounter == &dummy_timecounter)
752 		tc->tc_avail = tc;
753 	else {
754 		tc->tc_avail = timecounter->tc_tweak->tc_avail;
755 		timecounter->tc_tweak->tc_avail = tc;
756 	}
757 	MALLOC(t1, struct timecounter *, sizeof *t1, M_TIMECOUNTER, M_WAITOK);
758 	tc->tc_other = t1;
759 	*t1 = *tc;
760 	t2 = t1;
761 	for (i = 1; i < NTIMECOUNTER; i++) {
762 		MALLOC(t3, struct timecounter *, sizeof *t3,
763 		    M_TIMECOUNTER, M_WAITOK);
764 		*t3 = *tc;
765 		t3->tc_other = t2;
766 		t2 = t3;
767 	}
768 	t1->tc_other = t3;
769 	tc = t1;
770 
771 	printf("Timecounter \"%s\"  frequency %lu Hz\n",
772 	    tc->tc_name, (u_long)tc->tc_frequency);
773 
774 	/* XXX: For now always start using the counter. */
775 	tc->tc_offset_count = tc->tc_get_timecount(tc);
776 	nanouptime(&ts1);
777 	tc->tc_offset_nano = (u_int64_t)ts1.tv_nsec << 32;
778 	tc->tc_offset_micro = ts1.tv_nsec / 1000;
779 	tc->tc_offset_sec = ts1.tv_sec;
780 	timecounter = tc;
781 }
782 
783 void
784 set_timecounter(struct timespec *ts)
785 {
786 	struct timespec ts2;
787 
788 	nanouptime(&ts2);
789 	boottime.tv_sec = ts->tv_sec - ts2.tv_sec;
790 	boottime.tv_usec = (ts->tv_nsec - ts2.tv_nsec) / 1000;
791 	if (boottime.tv_usec < 0) {
792 		boottime.tv_usec += 1000000;
793 		boottime.tv_sec--;
794 	}
795 	/* fiddle all the little crinkly bits around the fiords... */
796 	tco_forward(1);
797 }
798 
799 static void
800 switch_timecounter(struct timecounter *newtc)
801 {
802 	int s;
803 	struct timecounter *tc;
804 	struct timespec ts;
805 
806 	s = splclock();
807 	tc = timecounter;
808 	if (newtc->tc_tweak == tc->tc_tweak) {
809 		splx(s);
810 		return;
811 	}
812 	newtc = newtc->tc_tweak->tc_other;
813 	nanouptime(&ts);
814 	newtc->tc_offset_sec = ts.tv_sec;
815 	newtc->tc_offset_nano = (u_int64_t)ts.tv_nsec << 32;
816 	newtc->tc_offset_micro = ts.tv_nsec / 1000;
817 	newtc->tc_offset_count = newtc->tc_get_timecount(newtc);
818 	tco_setscales(newtc);
819 	timecounter = newtc;
820 	splx(s);
821 }
822 
823 static struct timecounter *
824 sync_other_counter(void)
825 {
826 	struct timecounter *tc, *tcn, *tco;
827 	unsigned delta;
828 
829 	tco = timecounter;
830 	tc = tco->tc_other;
831 	tcn = tc->tc_other;
832 	*tc = *tco;
833 	tc->tc_other = tcn;
834 	delta = tco_delta(tc);
835 	tc->tc_offset_count += delta;
836 	tc->tc_offset_count &= tc->tc_counter_mask;
837 	tc->tc_offset_nano += (u_int64_t)delta * tc->tc_scale_nano_f;
838 	tc->tc_offset_nano += (u_int64_t)delta * tc->tc_scale_nano_i << 32;
839 	return (tc);
840 }
841 
842 static void
843 tco_forward(int force)
844 {
845 	struct timecounter *tc, *tco;
846 	struct timeval tvt;
847 
848 	tco = timecounter;
849 	tc = sync_other_counter();
850 	/*
851 	 * We may be inducing a tiny error here, the tc_poll_pps() may
852 	 * process a latched count which happens after the tco_delta()
853 	 * in sync_other_counter(), which would extend the previous
854 	 * counters parameters into the domain of this new one.
855 	 * Since the timewindow is very small for this, the error is
856 	 * going to be only a few weenieseconds (as Dave Mills would
857 	 * say), so lets just not talk more about it, OK ?
858 	 */
859 	if (tco->tc_poll_pps)
860 		tco->tc_poll_pps(tco);
861 	if (timedelta != 0) {
862 		tvt = boottime;
863 		tvt.tv_usec += tickdelta;
864 		if (tvt.tv_usec >= 1000000) {
865 			tvt.tv_sec++;
866 			tvt.tv_usec -= 1000000;
867 		} else if (tvt.tv_usec < 0) {
868 			tvt.tv_sec--;
869 			tvt.tv_usec += 1000000;
870 		}
871 		boottime = tvt;
872 		timedelta -= tickdelta;
873 	}
874 
875 	while (tc->tc_offset_nano >= 1000000000ULL << 32) {
876 		tc->tc_offset_nano -= 1000000000ULL << 32;
877 		tc->tc_offset_sec++;
878 		ntp_update_second(tc);	/* XXX only needed if xntpd runs */
879 		tco_setscales(tc);
880 		force++;
881 	}
882 
883 	if (tco_method && !force)
884 		return;
885 
886 	tc->tc_offset_micro = (tc->tc_offset_nano / 1000) >> 32;
887 
888 	/* Figure out the wall-clock time */
889 	tc->tc_nanotime.tv_sec = tc->tc_offset_sec + boottime.tv_sec;
890 	tc->tc_nanotime.tv_nsec =
891 	    (tc->tc_offset_nano >> 32) + boottime.tv_usec * 1000;
892 	tc->tc_microtime.tv_usec = tc->tc_offset_micro + boottime.tv_usec;
893 	while (tc->tc_nanotime.tv_nsec >= 1000000000) {
894 		tc->tc_nanotime.tv_nsec -= 1000000000;
895 		tc->tc_microtime.tv_usec -= 1000000;
896 		tc->tc_nanotime.tv_sec++;
897 	}
898 	time_second = tc->tc_microtime.tv_sec = tc->tc_nanotime.tv_sec;
899 
900 	timecounter = tc;
901 }
902 
903 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
904 
905 SYSCTL_INT(_kern_timecounter, OID_AUTO, method, CTLFLAG_RW, &tco_method, 0,
906     "This variable determines the method used for updating timecounters. "
907     "If the default algorithm (0) fails with \"calcru negative...\" messages "
908     "try the alternate algorithm (1) which handles bad hardware better."
909 
910 );
911 
912 static int
913 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
914 {
915 	char newname[32];
916 	struct timecounter *newtc, *tc;
917 	int error;
918 
919 	tc = timecounter->tc_tweak;
920 	strncpy(newname, tc->tc_name, sizeof(newname));
921 	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
922 	if (error == 0 && req->newptr != NULL &&
923 	    strcmp(newname, tc->tc_name) != 0) {
924 		for (newtc = tc->tc_avail; newtc != tc;
925 		    newtc = newtc->tc_avail) {
926 			if (strcmp(newname, newtc->tc_name) == 0) {
927 				/* Warm up new timecounter. */
928 				(void)newtc->tc_get_timecount(newtc);
929 
930 				switch_timecounter(newtc);
931 				return (0);
932 			}
933 		}
934 		return (EINVAL);
935 	}
936 	return (error);
937 }
938 
939 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
940     0, 0, sysctl_kern_timecounter_hardware, "A", "");
941 
942 
943 int
944 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
945 {
946 	pps_params_t *app;
947 	struct pps_fetch_args *fapi;
948 #ifdef PPS_SYNC
949 	struct pps_kcbind_args *kapi;
950 #endif
951 
952 	switch (cmd) {
953 	case PPS_IOC_CREATE:
954 		return (0);
955 	case PPS_IOC_DESTROY:
956 		return (0);
957 	case PPS_IOC_SETPARAMS:
958 		app = (pps_params_t *)data;
959 		if (app->mode & ~pps->ppscap)
960 			return (EINVAL);
961 		pps->ppsparam = *app;
962 		return (0);
963 	case PPS_IOC_GETPARAMS:
964 		app = (pps_params_t *)data;
965 		*app = pps->ppsparam;
966 		app->api_version = PPS_API_VERS_1;
967 		return (0);
968 	case PPS_IOC_GETCAP:
969 		*(int*)data = pps->ppscap;
970 		return (0);
971 	case PPS_IOC_FETCH:
972 		fapi = (struct pps_fetch_args *)data;
973 		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
974 			return (EINVAL);
975 		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
976 			return (EOPNOTSUPP);
977 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
978 		fapi->pps_info_buf = pps->ppsinfo;
979 		return (0);
980 	case PPS_IOC_KCBIND:
981 #ifdef PPS_SYNC
982 		kapi = (struct pps_kcbind_args *)data;
983 		/* XXX Only root should be able to do this */
984 		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
985 			return (EINVAL);
986 		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
987 			return (EINVAL);
988 		if (kapi->edge & ~pps->ppscap)
989 			return (EINVAL);
990 		pps->kcmode = kapi->edge;
991 		return (0);
992 #else
993 		return (EOPNOTSUPP);
994 #endif
995 	default:
996 		return (ENOTTY);
997 	}
998 }
999 
1000 void
1001 pps_init(struct pps_state *pps)
1002 {
1003 	pps->ppscap |= PPS_TSFMT_TSPEC;
1004 	if (pps->ppscap & PPS_CAPTUREASSERT)
1005 		pps->ppscap |= PPS_OFFSETASSERT;
1006 	if (pps->ppscap & PPS_CAPTURECLEAR)
1007 		pps->ppscap |= PPS_OFFSETCLEAR;
1008 }
1009 
1010 void
1011 pps_event(struct pps_state *pps, struct timecounter *tc, unsigned count, int event)
1012 {
1013 	struct timespec ts, *tsp, *osp;
1014 	u_int64_t delta;
1015 	unsigned tcount, *pcount;
1016 	int foff, fhard;
1017 	pps_seq_t	*pseq;
1018 
1019 	/* Things would be easier with arrays... */
1020 	if (event == PPS_CAPTUREASSERT) {
1021 		tsp = &pps->ppsinfo.assert_timestamp;
1022 		osp = &pps->ppsparam.assert_offset;
1023 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1024 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
1025 		pcount = &pps->ppscount[0];
1026 		pseq = &pps->ppsinfo.assert_sequence;
1027 	} else {
1028 		tsp = &pps->ppsinfo.clear_timestamp;
1029 		osp = &pps->ppsparam.clear_offset;
1030 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1031 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
1032 		pcount = &pps->ppscount[1];
1033 		pseq = &pps->ppsinfo.clear_sequence;
1034 	}
1035 
1036 	/* The timecounter changed: bail */
1037 	if (!pps->ppstc ||
1038 	    pps->ppstc->tc_name != tc->tc_name ||
1039 	    tc->tc_name != timecounter->tc_name) {
1040 		pps->ppstc = tc;
1041 		*pcount = count;
1042 		return;
1043 	}
1044 
1045 	/* Nothing really happened */
1046 	if (*pcount == count)
1047 		return;
1048 
1049 	*pcount = count;
1050 
1051 	/* Convert the count to timespec */
1052 	ts.tv_sec = tc->tc_offset_sec;
1053 	tcount = count - tc->tc_offset_count;
1054 	tcount &= tc->tc_counter_mask;
1055 	delta = tc->tc_offset_nano;
1056 	delta += ((u_int64_t)tcount * tc->tc_scale_nano_f);
1057 	delta >>= 32;
1058 	delta += ((u_int64_t)tcount * tc->tc_scale_nano_i);
1059 	delta += boottime.tv_usec * 1000;
1060 	ts.tv_sec += boottime.tv_sec;
1061 	while (delta >= 1000000000) {
1062 		delta -= 1000000000;
1063 		ts.tv_sec++;
1064 	}
1065 	ts.tv_nsec = delta;
1066 
1067 	(*pseq)++;
1068 	*tsp = ts;
1069 
1070 	if (foff) {
1071 		timespecadd(tsp, osp);
1072 		if (tsp->tv_nsec < 0) {
1073 			tsp->tv_nsec += 1000000000;
1074 			tsp->tv_sec -= 1;
1075 		}
1076 	}
1077 #ifdef PPS_SYNC
1078 	if (fhard) {
1079 		/* magic, at its best... */
1080 		tcount = count - pps->ppscount[2];
1081 		pps->ppscount[2] = count;
1082 		tcount &= tc->tc_counter_mask;
1083 		delta = ((u_int64_t)tcount * tc->tc_tweak->tc_scale_nano_f);
1084 		delta >>= 32;
1085 		delta += ((u_int64_t)tcount * tc->tc_tweak->tc_scale_nano_i);
1086 		hardpps(tsp, delta);
1087 	}
1088 #endif
1089 }
1090