xref: /dragonfly/sys/kern/kern_clock.c (revision 5153f92b)
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
35  * Copyright (c) 1982, 1986, 1991, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  * (c) UNIX System Laboratories, Inc.
38  * All or some portions of this file are derived from material licensed
39  * to the University of California by American Telephone and Telegraph
40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41  * the permission of UNIX System Laboratories, Inc.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed by the University of
54  *	California, Berkeley and its contributors.
55  * 4. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
72  * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $
73  * $DragonFly: src/sys/kern/kern_clock.c,v 1.29 2004/12/22 11:01:49 joerg Exp $
74  */
75 
76 #include "opt_ntp.h"
77 
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/dkstat.h>
81 #include <sys/callout.h>
82 #include <sys/kernel.h>
83 #include <sys/kinfo.h>
84 #include <sys/proc.h>
85 #include <sys/malloc.h>
86 #include <sys/resourcevar.h>
87 #include <sys/signalvar.h>
88 #include <sys/timex.h>
89 #include <sys/timepps.h>
90 #include <vm/vm.h>
91 #include <sys/lock.h>
92 #include <vm/pmap.h>
93 #include <vm/vm_map.h>
94 #include <sys/sysctl.h>
95 #include <sys/thread2.h>
96 
97 #include <machine/cpu.h>
98 #include <machine/limits.h>
99 #include <machine/smp.h>
100 
101 #ifdef GPROF
102 #include <sys/gmon.h>
103 #endif
104 
105 #ifdef DEVICE_POLLING
106 extern void init_device_poll(void);
107 extern void hardclock_device_poll(void);
108 #endif /* DEVICE_POLLING */
109 
110 static void initclocks (void *dummy);
111 SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
112 
113 /*
114  * Some of these don't belong here, but it's easiest to concentrate them.
115  * Note that cp_time counts in microseconds, but most userland programs
116  * just compare relative times against the total by delta.
117  */
118 struct cp_time cp_time;
119 
120 SYSCTL_OPAQUE(_kern, OID_AUTO, cp_time, CTLFLAG_RD, &cp_time, sizeof(cp_time),
121     "LU", "CPU time statistics");
122 
123 /*
124  * boottime is used to calculate the 'real' uptime.  Do not confuse this with
125  * microuptime().  microtime() is not drift compensated.  The real uptime
126  * with compensation is nanotime() - bootime.  boottime is recalculated
127  * whenever the real time is set based on the compensated elapsed time
128  * in seconds (gd->gd_time_seconds).
129  *
130  * basetime is used to calculate the compensated real time of day.  Chunky
131  * changes to the time, aka settimeofday(), are made by modifying basetime.
132  *
133  * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic.
134  * Slight adjustments to gd_cpuclock_base are made to phase-lock it to
135  * the real time.
136  */
137 struct timespec boottime;	/* boot time (realtime) for reference only */
138 struct timespec basetime;	/* base time adjusts uptime -> realtime */
139 time_t time_second;		/* read-only 'passive' uptime in seconds */
140 
141 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
142     &boottime, timeval, "System boottime");
143 SYSCTL_STRUCT(_kern, OID_AUTO, basetime, CTLFLAG_RD,
144     &basetime, timeval, "System basetime");
145 
146 static void hardclock(systimer_t info, struct intrframe *frame);
147 static void statclock(systimer_t info, struct intrframe *frame);
148 static void schedclock(systimer_t info, struct intrframe *frame);
149 
150 int	ticks;			/* system master ticks at hz */
151 int	clocks_running;		/* tsleep/timeout clocks operational */
152 int64_t	nsec_adj;		/* ntpd per-tick adjustment in nsec << 32 */
153 int64_t	nsec_acc;		/* accumulator */
154 
155 /*
156  * Finish initializing clock frequencies and start all clocks running.
157  */
158 /* ARGSUSED*/
159 static void
160 initclocks(void *dummy)
161 {
162 	cpu_initclocks();
163 #ifdef DEVICE_POLLING
164 	init_device_poll();
165 #endif
166 	/*psratio = profhz / stathz;*/
167 	initclocks_pcpu();
168 	clocks_running = 1;
169 }
170 
171 /*
172  * Called on a per-cpu basis
173  */
174 void
175 initclocks_pcpu(void)
176 {
177 	struct globaldata *gd = mycpu;
178 
179 	crit_enter();
180 	if (gd->gd_cpuid == 0) {
181 	    gd->gd_time_seconds = 1;
182 	    gd->gd_cpuclock_base = cputimer_count();
183 	} else {
184 	    /* XXX */
185 	    gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds;
186 	    gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base;
187 	}
188 
189 	/*
190 	 * Use a non-queued periodic systimer to prevent multiple ticks from
191 	 * building up if the sysclock jumps forward (8254 gets reset).  The
192 	 * sysclock will never jump backwards.  Our time sync is based on
193 	 * the actual sysclock, not the ticks count.
194 	 */
195 	systimer_init_periodic_nq(&gd->gd_hardclock, hardclock, NULL, hz);
196 	systimer_init_periodic_nq(&gd->gd_statclock, statclock, NULL, stathz);
197 	/* XXX correct the frequency for scheduler / estcpu tests */
198 	systimer_init_periodic_nq(&gd->gd_schedclock, schedclock,
199 				NULL, ESTCPUFREQ);
200 	crit_exit();
201 }
202 
203 /*
204  * This sets the current real time of day.  Timespecs are in seconds and
205  * nanoseconds.  We do not mess with gd_time_seconds and gd_cpuclock_base,
206  * instead we adjust basetime so basetime + gd_* results in the current
207  * time of day.  This way the gd_* fields are guarenteed to represent
208  * a monotonically increasing 'uptime' value.
209  */
210 void
211 set_timeofday(struct timespec *ts)
212 {
213 	struct timespec ts2;
214 
215 	/*
216 	 * XXX SMP / non-atomic basetime updates
217 	 */
218 	crit_enter();
219 	nanouptime(&ts2);
220 	basetime.tv_sec = ts->tv_sec - ts2.tv_sec;
221 	basetime.tv_nsec = ts->tv_nsec - ts2.tv_nsec;
222 	if (basetime.tv_nsec < 0) {
223 	    basetime.tv_nsec += 1000000000;
224 	    --basetime.tv_sec;
225 	}
226 
227 	/*
228 	 * Note that basetime diverges from boottime as the clock drift is
229 	 * compensated for, so we cannot do away with boottime.  When setting
230 	 * the absolute time of day the drift is 0 (for an instant) and we
231 	 * can simply assign boottime to basetime.
232 	 *
233 	 * Note that nanouptime() is based on gd_time_seconds which is drift
234 	 * compensated up to a point (it is guarenteed to remain monotonically
235 	 * increasing).  gd_time_seconds is thus our best uptime guess and
236 	 * suitable for use in the boottime calculation.  It is already taken
237 	 * into account in the basetime calculation above.
238 	 */
239 	boottime.tv_sec = basetime.tv_sec;
240 	timedelta = 0;
241 	crit_exit();
242 }
243 
244 /*
245  * Each cpu has its own hardclock, but we only increments ticks and softticks
246  * on cpu #0.
247  *
248  * NOTE! systimer! the MP lock might not be held here.  We can only safely
249  * manipulate objects owned by the current cpu.
250  */
251 static void
252 hardclock(systimer_t info, struct intrframe *frame)
253 {
254 	sysclock_t cputicks;
255 	struct proc *p;
256 	struct pstats *pstats;
257 	struct globaldata *gd = mycpu;
258 
259 	/*
260 	 * Realtime updates are per-cpu.  Note that timer corrections as
261 	 * returned by microtime() and friends make an additional adjustment
262 	 * using a system-wise 'basetime', but the running time is always
263 	 * taken from the per-cpu globaldata area.  Since the same clock
264 	 * is distributing (XXX SMP) to all cpus, the per-cpu timebases
265 	 * stay in synch.
266 	 *
267 	 * Note that we never allow info->time (aka gd->gd_hardclock.time)
268 	 * to reverse index gd_cpuclock_base, but that it is possible for
269 	 * it to temporarily get behind in the seconds if something in the
270 	 * system locks interrupts for a long period of time.  Since periodic
271 	 * timers count events, though everything should resynch again
272 	 * immediately.
273 	 */
274 	cputicks = info->time - gd->gd_cpuclock_base;
275 	if (cputicks >= cputimer_freq) {
276 		++gd->gd_time_seconds;
277 		gd->gd_cpuclock_base += cputimer_freq;
278 	}
279 
280 	/*
281 	 * The system-wide ticks counter and NTP related timedelta/tickdelta
282 	 * adjustments only occur on cpu #0.  NTP adjustments are accomplished
283 	 * by updating basetime.
284 	 */
285 	if (gd->gd_cpuid == 0) {
286 	    struct timespec nts;
287 	    int leap;
288 
289 	    ++ticks;
290 
291 #ifdef DEVICE_POLLING
292 	    hardclock_device_poll();	/* mpsafe, short and quick */
293 #endif /* DEVICE_POLLING */
294 
295 #if 0
296 	    if (tco->tc_poll_pps)
297 		tco->tc_poll_pps(tco);
298 #endif
299 	    /*
300 	     * Apply adjtime corrections.  At the moment only do this if
301 	     * we can get the MP lock to interlock with adjtime's modification
302 	     * of these variables.  Note that basetime adjustments are not
303 	     * MP safe either XXX.
304 	     */
305 	    if (timedelta != 0 && try_mplock()) {
306 		basetime.tv_nsec += tickdelta * 1000;
307 		if (basetime.tv_nsec >= 1000000000) {
308 		    basetime.tv_nsec -= 1000000000;
309 		    ++basetime.tv_sec;
310 		} else if (basetime.tv_nsec < 0) {
311 		    basetime.tv_nsec += 1000000000;
312 		    --basetime.tv_sec;
313 		}
314 		timedelta -= tickdelta;
315 		rel_mplock();
316 	    }
317 
318 	    /*
319 	     * Apply per-tick compensation.  ticks_adj adjusts for both
320 	     * offset and frequency, and could be negative.
321 	     */
322 	    if (nsec_adj != 0 && try_mplock()) {
323 		nsec_acc += nsec_adj;
324 		if (nsec_acc >= 0x100000000LL) {
325 		    basetime.tv_nsec += nsec_acc >> 32;
326 		    nsec_acc = (nsec_acc & 0xFFFFFFFFLL);
327 		} else if (nsec_acc <= -0x100000000LL) {
328 		    basetime.tv_nsec -= -nsec_acc >> 32;
329 		    nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL);
330 		}
331 		if (basetime.tv_nsec >= 1000000000) {
332 		    basetime.tv_nsec -= 1000000000;
333 		    ++basetime.tv_sec;
334 		} else if (basetime.tv_nsec < 0) {
335 		    basetime.tv_nsec += 1000000000;
336 		    --basetime.tv_sec;
337 		}
338 		rel_mplock();
339 	    }
340 
341 	    /*
342 	     * If the realtime-adjusted seconds hand rolls over then tell
343 	     * ntp_update_second() what we did in the last second so it can
344 	     * calculate what to do in the next second.  It may also add
345 	     * or subtract a leap second.
346 	     */
347 	    getnanotime(&nts);
348 	    if (time_second != nts.tv_sec) {
349 		leap = ntp_update_second(time_second, &nsec_adj);
350 		basetime.tv_sec += leap;
351 		time_second = nts.tv_sec + leap;
352 		nsec_adj /= hz;
353 	    }
354 	}
355 
356 	/*
357 	 * softticks are handled for all cpus
358 	 */
359 	hardclock_softtick(gd);
360 
361 	/*
362 	 * ITimer handling is per-tick, per-cpu.  I don't think psignal()
363 	 * is mpsafe on curproc, so XXX get the mplock.
364 	 */
365 	if ((p = curproc) != NULL && try_mplock()) {
366 		pstats = p->p_stats;
367 		if (frame && CLKF_USERMODE(frame) &&
368 		    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
369 		    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
370 			psignal(p, SIGVTALRM);
371 		if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
372 		    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
373 			psignal(p, SIGPROF);
374 		rel_mplock();
375 	}
376 	setdelayed();
377 }
378 
379 /*
380  * The statistics clock typically runs at a 125Hz rate, and is intended
381  * to be frequency offset from the hardclock (typ 100Hz).  It is per-cpu.
382  *
383  * NOTE! systimer! the MP lock might not be held here.  We can only safely
384  * manipulate objects owned by the current cpu.
385  *
386  * The stats clock is responsible for grabbing a profiling sample.
387  * Most of the statistics are only used by user-level statistics programs.
388  * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and
389  * p->p_estcpu.
390  *
391  * Like the other clocks, the stat clock is called from what is effectively
392  * a fast interrupt, so the context should be the thread/process that got
393  * interrupted.
394  */
395 static void
396 statclock(systimer_t info, struct intrframe *frame)
397 {
398 #ifdef GPROF
399 	struct gmonparam *g;
400 	int i;
401 #endif
402 	thread_t td;
403 	struct proc *p;
404 	int bump;
405 	struct timeval tv;
406 	struct timeval *stv;
407 
408 	/*
409 	 * How big was our timeslice relative to the last time?
410 	 */
411 	microuptime(&tv);	/* mpsafe */
412 	stv = &mycpu->gd_stattv;
413 	if (stv->tv_sec == 0) {
414 	    bump = 1;
415 	} else {
416 	    bump = tv.tv_usec - stv->tv_usec +
417 		(tv.tv_sec - stv->tv_sec) * 1000000;
418 	    if (bump < 0)
419 		bump = 0;
420 	    if (bump > 1000000)
421 		bump = 1000000;
422 	}
423 	*stv = tv;
424 
425 	td = curthread;
426 	p = td->td_proc;
427 
428 	if (frame && CLKF_USERMODE(frame)) {
429 		/*
430 		 * Came from userland, handle user time and deal with
431 		 * possible process.
432 		 */
433 		if (p && (p->p_flag & P_PROFIL))
434 			addupc_intr(p, CLKF_PC(frame), 1);
435 		td->td_uticks += bump;
436 
437 		/*
438 		 * Charge the time as appropriate
439 		 */
440 		if (p && p->p_nice > NZERO)
441 			cp_time.cp_nice += bump;
442 		else
443 			cp_time.cp_user += bump;
444 	} else {
445 #ifdef GPROF
446 		/*
447 		 * Kernel statistics are just like addupc_intr, only easier.
448 		 */
449 		g = &_gmonparam;
450 		if (g->state == GMON_PROF_ON && frame) {
451 			i = CLKF_PC(frame) - g->lowpc;
452 			if (i < g->textsize) {
453 				i /= HISTFRACTION * sizeof(*g->kcount);
454 				g->kcount[i]++;
455 			}
456 		}
457 #endif
458 		/*
459 		 * Came from kernel mode, so we were:
460 		 * - handling an interrupt,
461 		 * - doing syscall or trap work on behalf of the current
462 		 *   user process, or
463 		 * - spinning in the idle loop.
464 		 * Whichever it is, charge the time as appropriate.
465 		 * Note that we charge interrupts to the current process,
466 		 * regardless of whether they are ``for'' that process,
467 		 * so that we know how much of its real time was spent
468 		 * in ``non-process'' (i.e., interrupt) work.
469 		 *
470 		 * XXX assume system if frame is NULL.  A NULL frame
471 		 * can occur if ipi processing is done from an splx().
472 		 */
473 		if (frame && CLKF_INTR(frame))
474 			td->td_iticks += bump;
475 		else
476 			td->td_sticks += bump;
477 
478 		if (frame && CLKF_INTR(frame)) {
479 			cp_time.cp_intr += bump;
480 		} else {
481 			if (td == &mycpu->gd_idlethread)
482 				cp_time.cp_idle += bump;
483 			else
484 				cp_time.cp_sys += bump;
485 		}
486 	}
487 }
488 
489 /*
490  * The scheduler clock typically runs at a 20Hz rate.  NOTE! systimer,
491  * the MP lock might not be held.  We can safely manipulate parts of curproc
492  * but that's about it.
493  */
494 static void
495 schedclock(systimer_t info, struct intrframe *frame)
496 {
497 	struct proc *p;
498 	struct pstats *pstats;
499 	struct rusage *ru;
500 	struct vmspace *vm;
501 	long rss;
502 
503 	schedulerclock(NULL);	/* mpsafe */
504 	if ((p = curproc) != NULL) {
505 		/* Update resource usage integrals and maximums. */
506 		if ((pstats = p->p_stats) != NULL &&
507 		    (ru = &pstats->p_ru) != NULL &&
508 		    (vm = p->p_vmspace) != NULL) {
509 			ru->ru_ixrss += pgtok(vm->vm_tsize);
510 			ru->ru_idrss += pgtok(vm->vm_dsize);
511 			ru->ru_isrss += pgtok(vm->vm_ssize);
512 			rss = pgtok(vmspace_resident_count(vm));
513 			if (ru->ru_maxrss < rss)
514 				ru->ru_maxrss = rss;
515 		}
516 	}
517 }
518 
519 /*
520  * Compute number of ticks for the specified amount of time.  The
521  * return value is intended to be used in a clock interrupt timed
522  * operation and guarenteed to meet or exceed the requested time.
523  * If the representation overflows, return INT_MAX.  The minimum return
524  * value is 1 ticks and the function will average the calculation up.
525  * If any value greater then 0 microseconds is supplied, a value
526  * of at least 2 will be returned to ensure that a near-term clock
527  * interrupt does not cause the timeout to occur (degenerately) early.
528  *
529  * Note that limit checks must take into account microseconds, which is
530  * done simply by using the smaller signed long maximum instead of
531  * the unsigned long maximum.
532  *
533  * If ints have 32 bits, then the maximum value for any timeout in
534  * 10ms ticks is 248 days.
535  */
536 int
537 tvtohz_high(struct timeval *tv)
538 {
539 	int ticks;
540 	long sec, usec;
541 
542 	sec = tv->tv_sec;
543 	usec = tv->tv_usec;
544 	if (usec < 0) {
545 		sec--;
546 		usec += 1000000;
547 	}
548 	if (sec < 0) {
549 #ifdef DIAGNOSTIC
550 		if (usec > 0) {
551 			sec++;
552 			usec -= 1000000;
553 		}
554 		printf("tvotohz: negative time difference %ld sec %ld usec\n",
555 		       sec, usec);
556 #endif
557 		ticks = 1;
558 	} else if (sec <= INT_MAX / hz) {
559 		ticks = (int)(sec * hz +
560 			    ((u_long)usec + (tick - 1)) / tick) + 1;
561 	} else {
562 		ticks = INT_MAX;
563 	}
564 	return (ticks);
565 }
566 
567 /*
568  * Compute number of ticks for the specified amount of time, erroring on
569  * the side of it being too low to ensure that sleeping the returned number
570  * of ticks will not result in a late return.
571  *
572  * The supplied timeval may not be negative and should be normalized.  A
573  * return value of 0 is possible if the timeval converts to less then
574  * 1 tick.
575  *
576  * If ints have 32 bits, then the maximum value for any timeout in
577  * 10ms ticks is 248 days.
578  */
579 int
580 tvtohz_low(struct timeval *tv)
581 {
582 	int ticks;
583 	long sec;
584 
585 	sec = tv->tv_sec;
586 	if (sec <= INT_MAX / hz)
587 		ticks = (int)(sec * hz + (u_long)tv->tv_usec / tick);
588 	else
589 		ticks = INT_MAX;
590 	return (ticks);
591 }
592 
593 
594 /*
595  * Start profiling on a process.
596  *
597  * Kernel profiling passes proc0 which never exits and hence
598  * keeps the profile clock running constantly.
599  */
600 void
601 startprofclock(struct proc *p)
602 {
603 	if ((p->p_flag & P_PROFIL) == 0) {
604 		p->p_flag |= P_PROFIL;
605 #if 0	/* XXX */
606 		if (++profprocs == 1 && stathz != 0) {
607 			s = splstatclock();
608 			psdiv = psratio;
609 			setstatclockrate(profhz);
610 			splx(s);
611 		}
612 #endif
613 	}
614 }
615 
616 /*
617  * Stop profiling on a process.
618  */
619 void
620 stopprofclock(struct proc *p)
621 {
622 	if (p->p_flag & P_PROFIL) {
623 		p->p_flag &= ~P_PROFIL;
624 #if 0	/* XXX */
625 		if (--profprocs == 0 && stathz != 0) {
626 			s = splstatclock();
627 			psdiv = 1;
628 			setstatclockrate(stathz);
629 			splx(s);
630 		}
631 #endif
632 	}
633 }
634 
635 /*
636  * Return information about system clocks.
637  */
638 static int
639 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
640 {
641 	struct kinfo_clockinfo clkinfo;
642 	/*
643 	 * Construct clockinfo structure.
644 	 */
645 	clkinfo.ci_hz = hz;
646 	clkinfo.ci_tick = tick;
647 	clkinfo.ci_tickadj = tickadj;
648 	clkinfo.ci_profhz = profhz;
649 	clkinfo.ci_stathz = stathz ? stathz : hz;
650 	return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
651 }
652 
653 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
654 	0, 0, sysctl_kern_clockrate, "S,clockinfo","");
655 
656 /*
657  * We have eight functions for looking at the clock, four for
658  * microseconds and four for nanoseconds.  For each there is fast
659  * but less precise version "get{nano|micro}[up]time" which will
660  * return a time which is up to 1/HZ previous to the call, whereas
661  * the raw version "{nano|micro}[up]time" will return a timestamp
662  * which is as precise as possible.  The "up" variants return the
663  * time relative to system boot, these are well suited for time
664  * interval measurements.
665  *
666  * Each cpu independantly maintains the current time of day, so all
667  * we need to do to protect ourselves from changes is to do a loop
668  * check on the seconds field changing out from under us.
669  *
670  * The system timer maintains a 32 bit count and due to various issues
671  * it is possible for the calculated delta to occassionally exceed
672  * cputimer_freq.  If this occurs the cputimer_freq64_nsec multiplication
673  * can easily overflow, so we deal with the case.  For uniformity we deal
674  * with the case in the usec case too.
675  */
676 void
677 getmicrouptime(struct timeval *tvp)
678 {
679 	struct globaldata *gd = mycpu;
680 	sysclock_t delta;
681 
682 	do {
683 		tvp->tv_sec = gd->gd_time_seconds;
684 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
685 	} while (tvp->tv_sec != gd->gd_time_seconds);
686 
687 	if (delta >= cputimer_freq) {
688 		tvp->tv_sec += delta / cputimer_freq;
689 		delta %= cputimer_freq;
690 	}
691 	tvp->tv_usec = (cputimer_freq64_usec * delta) >> 32;
692 	if (tvp->tv_usec >= 1000000) {
693 		tvp->tv_usec -= 1000000;
694 		++tvp->tv_sec;
695 	}
696 }
697 
698 void
699 getnanouptime(struct timespec *tsp)
700 {
701 	struct globaldata *gd = mycpu;
702 	sysclock_t delta;
703 
704 	do {
705 		tsp->tv_sec = gd->gd_time_seconds;
706 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
707 	} while (tsp->tv_sec != gd->gd_time_seconds);
708 
709 	if (delta >= cputimer_freq) {
710 		tsp->tv_sec += delta / cputimer_freq;
711 		delta %= cputimer_freq;
712 	}
713 	tsp->tv_nsec = (cputimer_freq64_nsec * delta) >> 32;
714 }
715 
716 void
717 microuptime(struct timeval *tvp)
718 {
719 	struct globaldata *gd = mycpu;
720 	sysclock_t delta;
721 
722 	do {
723 		tvp->tv_sec = gd->gd_time_seconds;
724 		delta = cputimer_count() - gd->gd_cpuclock_base;
725 	} while (tvp->tv_sec != gd->gd_time_seconds);
726 
727 	if (delta >= cputimer_freq) {
728 		tvp->tv_sec += delta / cputimer_freq;
729 		delta %= cputimer_freq;
730 	}
731 	tvp->tv_usec = (cputimer_freq64_usec * delta) >> 32;
732 }
733 
734 void
735 nanouptime(struct timespec *tsp)
736 {
737 	struct globaldata *gd = mycpu;
738 	sysclock_t delta;
739 
740 	do {
741 		tsp->tv_sec = gd->gd_time_seconds;
742 		delta = cputimer_count() - gd->gd_cpuclock_base;
743 	} while (tsp->tv_sec != gd->gd_time_seconds);
744 
745 	if (delta >= cputimer_freq) {
746 		tsp->tv_sec += delta / cputimer_freq;
747 		delta %= cputimer_freq;
748 	}
749 	tsp->tv_nsec = (cputimer_freq64_nsec * delta) >> 32;
750 }
751 
752 /*
753  * realtime routines
754  */
755 
756 void
757 getmicrotime(struct timeval *tvp)
758 {
759 	struct globaldata *gd = mycpu;
760 	sysclock_t delta;
761 
762 	do {
763 		tvp->tv_sec = gd->gd_time_seconds;
764 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
765 	} while (tvp->tv_sec != gd->gd_time_seconds);
766 
767 	if (delta >= cputimer_freq) {
768 		tvp->tv_sec += delta / cputimer_freq;
769 		delta %= cputimer_freq;
770 	}
771 	tvp->tv_usec = (cputimer_freq64_usec * delta) >> 32;
772 
773 	tvp->tv_sec += basetime.tv_sec;
774 	tvp->tv_usec += basetime.tv_nsec / 1000;
775 	while (tvp->tv_usec >= 1000000) {
776 		tvp->tv_usec -= 1000000;
777 		++tvp->tv_sec;
778 	}
779 }
780 
781 void
782 getnanotime(struct timespec *tsp)
783 {
784 	struct globaldata *gd = mycpu;
785 	sysclock_t delta;
786 
787 	do {
788 		tsp->tv_sec = gd->gd_time_seconds;
789 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
790 	} while (tsp->tv_sec != gd->gd_time_seconds);
791 
792 	if (delta >= cputimer_freq) {
793 		tsp->tv_sec += delta / cputimer_freq;
794 		delta %= cputimer_freq;
795 	}
796 	tsp->tv_nsec = (cputimer_freq64_nsec * delta) >> 32;
797 
798 	tsp->tv_sec += basetime.tv_sec;
799 	tsp->tv_nsec += basetime.tv_nsec;
800 	while (tsp->tv_nsec >= 1000000000) {
801 		tsp->tv_nsec -= 1000000000;
802 		++tsp->tv_sec;
803 	}
804 }
805 
806 void
807 microtime(struct timeval *tvp)
808 {
809 	struct globaldata *gd = mycpu;
810 	sysclock_t delta;
811 
812 	do {
813 		tvp->tv_sec = gd->gd_time_seconds;
814 		delta = cputimer_count() - gd->gd_cpuclock_base;
815 	} while (tvp->tv_sec != gd->gd_time_seconds);
816 
817 	if (delta >= cputimer_freq) {
818 		tvp->tv_sec += delta / cputimer_freq;
819 		delta %= cputimer_freq;
820 	}
821 	tvp->tv_usec = (cputimer_freq64_usec * delta) >> 32;
822 
823 	tvp->tv_sec += basetime.tv_sec;
824 	tvp->tv_usec += basetime.tv_nsec / 1000;
825 	while (tvp->tv_usec >= 1000000) {
826 		tvp->tv_usec -= 1000000;
827 		++tvp->tv_sec;
828 	}
829 }
830 
831 void
832 nanotime(struct timespec *tsp)
833 {
834 	struct globaldata *gd = mycpu;
835 	sysclock_t delta;
836 
837 	do {
838 		tsp->tv_sec = gd->gd_time_seconds;
839 		delta = cputimer_count() - gd->gd_cpuclock_base;
840 	} while (tsp->tv_sec != gd->gd_time_seconds);
841 
842 	if (delta >= cputimer_freq) {
843 		tsp->tv_sec += delta / cputimer_freq;
844 		delta %= cputimer_freq;
845 	}
846 	tsp->tv_nsec = (cputimer_freq64_nsec * delta) >> 32;
847 
848 	tsp->tv_sec += basetime.tv_sec;
849 	tsp->tv_nsec += basetime.tv_nsec;
850 	while (tsp->tv_nsec >= 1000000000) {
851 		tsp->tv_nsec -= 1000000000;
852 		++tsp->tv_sec;
853 	}
854 }
855 
856 int
857 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
858 {
859 	pps_params_t *app;
860 	struct pps_fetch_args *fapi;
861 #ifdef PPS_SYNC
862 	struct pps_kcbind_args *kapi;
863 #endif
864 
865 	switch (cmd) {
866 	case PPS_IOC_CREATE:
867 		return (0);
868 	case PPS_IOC_DESTROY:
869 		return (0);
870 	case PPS_IOC_SETPARAMS:
871 		app = (pps_params_t *)data;
872 		if (app->mode & ~pps->ppscap)
873 			return (EINVAL);
874 		pps->ppsparam = *app;
875 		return (0);
876 	case PPS_IOC_GETPARAMS:
877 		app = (pps_params_t *)data;
878 		*app = pps->ppsparam;
879 		app->api_version = PPS_API_VERS_1;
880 		return (0);
881 	case PPS_IOC_GETCAP:
882 		*(int*)data = pps->ppscap;
883 		return (0);
884 	case PPS_IOC_FETCH:
885 		fapi = (struct pps_fetch_args *)data;
886 		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
887 			return (EINVAL);
888 		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
889 			return (EOPNOTSUPP);
890 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
891 		fapi->pps_info_buf = pps->ppsinfo;
892 		return (0);
893 	case PPS_IOC_KCBIND:
894 #ifdef PPS_SYNC
895 		kapi = (struct pps_kcbind_args *)data;
896 		/* XXX Only root should be able to do this */
897 		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
898 			return (EINVAL);
899 		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
900 			return (EINVAL);
901 		if (kapi->edge & ~pps->ppscap)
902 			return (EINVAL);
903 		pps->kcmode = kapi->edge;
904 		return (0);
905 #else
906 		return (EOPNOTSUPP);
907 #endif
908 	default:
909 		return (ENOTTY);
910 	}
911 }
912 
913 void
914 pps_init(struct pps_state *pps)
915 {
916 	pps->ppscap |= PPS_TSFMT_TSPEC;
917 	if (pps->ppscap & PPS_CAPTUREASSERT)
918 		pps->ppscap |= PPS_OFFSETASSERT;
919 	if (pps->ppscap & PPS_CAPTURECLEAR)
920 		pps->ppscap |= PPS_OFFSETCLEAR;
921 }
922 
923 void
924 pps_event(struct pps_state *pps, sysclock_t count, int event)
925 {
926 	struct globaldata *gd;
927 	struct timespec *tsp;
928 	struct timespec *osp;
929 	struct timespec ts;
930 	sysclock_t *pcount;
931 #ifdef PPS_SYNC
932 	sysclock_t tcount;
933 #endif
934 	sysclock_t delta;
935 	pps_seq_t *pseq;
936 	int foff;
937 	int fhard;
938 
939 	gd = mycpu;
940 
941 	/* Things would be easier with arrays... */
942 	if (event == PPS_CAPTUREASSERT) {
943 		tsp = &pps->ppsinfo.assert_timestamp;
944 		osp = &pps->ppsparam.assert_offset;
945 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
946 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
947 		pcount = &pps->ppscount[0];
948 		pseq = &pps->ppsinfo.assert_sequence;
949 	} else {
950 		tsp = &pps->ppsinfo.clear_timestamp;
951 		osp = &pps->ppsparam.clear_offset;
952 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
953 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
954 		pcount = &pps->ppscount[1];
955 		pseq = &pps->ppsinfo.clear_sequence;
956 	}
957 
958 	/* Nothing really happened */
959 	if (*pcount == count)
960 		return;
961 
962 	*pcount = count;
963 
964 	do {
965 		ts.tv_sec = gd->gd_time_seconds;
966 		delta = count - gd->gd_cpuclock_base;
967 	} while (ts.tv_sec != gd->gd_time_seconds);
968 
969 	if (delta >= cputimer_freq) {
970 		ts.tv_sec += delta / cputimer_freq;
971 		delta %= cputimer_freq;
972 	}
973 	ts.tv_nsec = (cputimer_freq64_nsec * delta) >> 32;
974 	ts.tv_sec += basetime.tv_sec;
975 	ts.tv_nsec += basetime.tv_nsec;
976 	while (ts.tv_nsec >= 1000000000) {
977 		ts.tv_nsec -= 1000000000;
978 		++ts.tv_sec;
979 	}
980 
981 	(*pseq)++;
982 	*tsp = ts;
983 
984 	if (foff) {
985 		timespecadd(tsp, osp);
986 		if (tsp->tv_nsec < 0) {
987 			tsp->tv_nsec += 1000000000;
988 			tsp->tv_sec -= 1;
989 		}
990 	}
991 #ifdef PPS_SYNC
992 	if (fhard) {
993 		/* magic, at its best... */
994 		tcount = count - pps->ppscount[2];
995 		pps->ppscount[2] = count;
996 		if (tcount >= cputimer_freq) {
997 			delta = 1000000000 * (tcount / cputimer_freq) +
998 				(cputimer_freq64_nsec *
999 				 (tcount % cputimer_freq)) >> 32;
1000 		} else {
1001 			delta = (cputimer_freq64_nsec * tcount) >> 32;
1002 		}
1003 		hardpps(tsp, delta);
1004 	}
1005 #endif
1006 }
1007 
1008