xref: /dragonfly/sys/kern/kern_clock.c (revision 6b5c5d0d)
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
35  * Copyright (c) 1982, 1986, 1991, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  * (c) UNIX System Laboratories, Inc.
38  * All or some portions of this file are derived from material licensed
39  * to the University of California by American Telephone and Telegraph
40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41  * the permission of UNIX System Laboratories, Inc.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed by the University of
54  *	California, Berkeley and its contributors.
55  * 4. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
72  * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $
73  * $DragonFly: src/sys/kern/kern_clock.c,v 1.61 2007/09/30 04:37:27 sephe Exp $
74  */
75 
76 #include "opt_ntp.h"
77 #include "opt_polling.h"
78 #include "opt_pctrack.h"
79 
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/kernel.h>
84 #include <sys/kinfo.h>
85 #include <sys/proc.h>
86 #include <sys/malloc.h>
87 #include <sys/resourcevar.h>
88 #include <sys/signalvar.h>
89 #include <sys/timex.h>
90 #include <sys/timepps.h>
91 #include <vm/vm.h>
92 #include <sys/lock.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_extern.h>
96 #include <sys/sysctl.h>
97 #include <sys/thread2.h>
98 
99 #include <machine/cpu.h>
100 #include <machine/limits.h>
101 #include <machine/smp.h>
102 
103 #ifdef GPROF
104 #include <sys/gmon.h>
105 #endif
106 
107 #ifdef DEVICE_POLLING
108 extern void init_device_poll_pcpu(int);
109 #endif
110 
111 #ifdef DEBUG_PCTRACK
112 static void do_pctrack(struct intrframe *frame, int which);
113 #endif
114 
115 static void initclocks (void *dummy);
116 SYSINIT(clocks, SI_BOOT2_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
117 
118 /*
119  * Some of these don't belong here, but it's easiest to concentrate them.
120  * Note that cpu_time counts in microseconds, but most userland programs
121  * just compare relative times against the total by delta.
122  */
123 struct kinfo_cputime cputime_percpu[MAXCPU];
124 #ifdef DEBUG_PCTRACK
125 struct kinfo_pcheader cputime_pcheader = { PCTRACK_SIZE, PCTRACK_ARYSIZE };
126 struct kinfo_pctrack cputime_pctrack[MAXCPU][PCTRACK_SIZE];
127 #endif
128 
129 #ifdef SMP
130 static int
131 sysctl_cputime(SYSCTL_HANDLER_ARGS)
132 {
133 	int cpu, error = 0;
134 	size_t size = sizeof(struct kinfo_cputime);
135 
136 	for (cpu = 0; cpu < ncpus; ++cpu) {
137 		if ((error = SYSCTL_OUT(req, &cputime_percpu[cpu], size)))
138 			break;
139 	}
140 
141 	return (error);
142 }
143 SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
144 	sysctl_cputime, "S,kinfo_cputime", "CPU time statistics");
145 #else
146 SYSCTL_STRUCT(_kern, OID_AUTO, cputime, CTLFLAG_RD, &cpu_time, kinfo_cputime,
147     "CPU time statistics");
148 #endif
149 
150 /*
151  * boottime is used to calculate the 'real' uptime.  Do not confuse this with
152  * microuptime().  microtime() is not drift compensated.  The real uptime
153  * with compensation is nanotime() - bootime.  boottime is recalculated
154  * whenever the real time is set based on the compensated elapsed time
155  * in seconds (gd->gd_time_seconds).
156  *
157  * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic.
158  * Slight adjustments to gd_cpuclock_base are made to phase-lock it to
159  * the real time.
160  */
161 struct timespec boottime;	/* boot time (realtime) for reference only */
162 time_t time_second;		/* read-only 'passive' uptime in seconds */
163 
164 /*
165  * basetime is used to calculate the compensated real time of day.  The
166  * basetime can be modified on a per-tick basis by the adjtime(),
167  * ntp_adjtime(), and sysctl-based time correction APIs.
168  *
169  * Note that frequency corrections can also be made by adjusting
170  * gd_cpuclock_base.
171  *
172  * basetime is a tail-chasing FIFO, updated only by cpu #0.  The FIFO is
173  * used on both SMP and UP systems to avoid MP races between cpu's and
174  * interrupt races on UP systems.
175  */
176 #define BASETIME_ARYSIZE	16
177 #define BASETIME_ARYMASK	(BASETIME_ARYSIZE - 1)
178 static struct timespec basetime[BASETIME_ARYSIZE];
179 static volatile int basetime_index;
180 
181 static int
182 sysctl_get_basetime(SYSCTL_HANDLER_ARGS)
183 {
184 	struct timespec *bt;
185 	int error;
186 	int index;
187 
188 	/*
189 	 * Because basetime data and index may be updated by another cpu,
190 	 * a load fence is required to ensure that the data we read has
191 	 * not been speculatively read relative to a possibly updated index.
192 	 */
193 	index = basetime_index;
194 	cpu_lfence();
195 	bt = &basetime[index];
196 	error = SYSCTL_OUT(req, bt, sizeof(*bt));
197 	return (error);
198 }
199 
200 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
201     &boottime, timespec, "System boottime");
202 SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0,
203     sysctl_get_basetime, "S,timespec", "System basetime");
204 
205 static void hardclock(systimer_t info, struct intrframe *frame);
206 static void statclock(systimer_t info, struct intrframe *frame);
207 static void schedclock(systimer_t info, struct intrframe *frame);
208 static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp);
209 
210 int	ticks;			/* system master ticks at hz */
211 int	clocks_running;		/* tsleep/timeout clocks operational */
212 int64_t	nsec_adj;		/* ntpd per-tick adjustment in nsec << 32 */
213 int64_t	nsec_acc;		/* accumulator */
214 
215 /* NTPD time correction fields */
216 int64_t	ntp_tick_permanent;	/* per-tick adjustment in nsec << 32 */
217 int64_t	ntp_tick_acc;		/* accumulator for per-tick adjustment */
218 int64_t	ntp_delta;		/* one-time correction in nsec */
219 int64_t ntp_big_delta = 1000000000;
220 int32_t	ntp_tick_delta;		/* current adjustment rate */
221 int32_t	ntp_default_tick_delta;	/* adjustment rate for ntp_delta */
222 time_t	ntp_leap_second;	/* time of next leap second */
223 int	ntp_leap_insert;	/* whether to insert or remove a second */
224 
225 /*
226  * Finish initializing clock frequencies and start all clocks running.
227  */
228 /* ARGSUSED*/
229 static void
230 initclocks(void *dummy)
231 {
232 	/*psratio = profhz / stathz;*/
233 	initclocks_pcpu();
234 	clocks_running = 1;
235 }
236 
237 /*
238  * Called on a per-cpu basis
239  */
240 void
241 initclocks_pcpu(void)
242 {
243 	struct globaldata *gd = mycpu;
244 
245 	crit_enter();
246 	if (gd->gd_cpuid == 0) {
247 	    gd->gd_time_seconds = 1;
248 	    gd->gd_cpuclock_base = sys_cputimer->count();
249 	} else {
250 	    /* XXX */
251 	    gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds;
252 	    gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base;
253 	}
254 
255 #ifdef DEVICE_POLLING
256 	init_device_poll_pcpu(gd->gd_cpuid);
257 #endif
258 
259 	/*
260 	 * Use a non-queued periodic systimer to prevent multiple ticks from
261 	 * building up if the sysclock jumps forward (8254 gets reset).  The
262 	 * sysclock will never jump backwards.  Our time sync is based on
263 	 * the actual sysclock, not the ticks count.
264 	 */
265 	systimer_init_periodic_nq(&gd->gd_hardclock, hardclock, NULL, hz);
266 	systimer_init_periodic_nq(&gd->gd_statclock, statclock, NULL, stathz);
267 	/* XXX correct the frequency for scheduler / estcpu tests */
268 	systimer_init_periodic_nq(&gd->gd_schedclock, schedclock,
269 				NULL, ESTCPUFREQ);
270 	crit_exit();
271 }
272 
273 /*
274  * This sets the current real time of day.  Timespecs are in seconds and
275  * nanoseconds.  We do not mess with gd_time_seconds and gd_cpuclock_base,
276  * instead we adjust basetime so basetime + gd_* results in the current
277  * time of day.  This way the gd_* fields are guarenteed to represent
278  * a monotonically increasing 'uptime' value.
279  *
280  * When set_timeofday() is called from userland, the system call forces it
281  * onto cpu #0 since only cpu #0 can update basetime_index.
282  */
283 void
284 set_timeofday(struct timespec *ts)
285 {
286 	struct timespec *nbt;
287 	int ni;
288 
289 	/*
290 	 * XXX SMP / non-atomic basetime updates
291 	 */
292 	crit_enter();
293 	ni = (basetime_index + 1) & BASETIME_ARYMASK;
294 	nbt = &basetime[ni];
295 	nanouptime(nbt);
296 	nbt->tv_sec = ts->tv_sec - nbt->tv_sec;
297 	nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec;
298 	if (nbt->tv_nsec < 0) {
299 	    nbt->tv_nsec += 1000000000;
300 	    --nbt->tv_sec;
301 	}
302 
303 	/*
304 	 * Note that basetime diverges from boottime as the clock drift is
305 	 * compensated for, so we cannot do away with boottime.  When setting
306 	 * the absolute time of day the drift is 0 (for an instant) and we
307 	 * can simply assign boottime to basetime.
308 	 *
309 	 * Note that nanouptime() is based on gd_time_seconds which is drift
310 	 * compensated up to a point (it is guarenteed to remain monotonically
311 	 * increasing).  gd_time_seconds is thus our best uptime guess and
312 	 * suitable for use in the boottime calculation.  It is already taken
313 	 * into account in the basetime calculation above.
314 	 */
315 	boottime.tv_sec = nbt->tv_sec;
316 	ntp_delta = 0;
317 
318 	/*
319 	 * We now have a new basetime, make sure all other cpus have it,
320 	 * then update the index.
321 	 */
322 	cpu_sfence();
323 	basetime_index = ni;
324 
325 	crit_exit();
326 }
327 
328 /*
329  * Each cpu has its own hardclock, but we only increments ticks and softticks
330  * on cpu #0.
331  *
332  * NOTE! systimer! the MP lock might not be held here.  We can only safely
333  * manipulate objects owned by the current cpu.
334  */
335 static void
336 hardclock(systimer_t info, struct intrframe *frame)
337 {
338 	sysclock_t cputicks;
339 	struct proc *p;
340 	struct globaldata *gd = mycpu;
341 
342 	/*
343 	 * Realtime updates are per-cpu.  Note that timer corrections as
344 	 * returned by microtime() and friends make an additional adjustment
345 	 * using a system-wise 'basetime', but the running time is always
346 	 * taken from the per-cpu globaldata area.  Since the same clock
347 	 * is distributing (XXX SMP) to all cpus, the per-cpu timebases
348 	 * stay in synch.
349 	 *
350 	 * Note that we never allow info->time (aka gd->gd_hardclock.time)
351 	 * to reverse index gd_cpuclock_base, but that it is possible for
352 	 * it to temporarily get behind in the seconds if something in the
353 	 * system locks interrupts for a long period of time.  Since periodic
354 	 * timers count events, though everything should resynch again
355 	 * immediately.
356 	 */
357 	cputicks = info->time - gd->gd_cpuclock_base;
358 	if (cputicks >= sys_cputimer->freq) {
359 		++gd->gd_time_seconds;
360 		gd->gd_cpuclock_base += sys_cputimer->freq;
361 	}
362 
363 	/*
364 	 * The system-wide ticks counter and NTP related timedelta/tickdelta
365 	 * adjustments only occur on cpu #0.  NTP adjustments are accomplished
366 	 * by updating basetime.
367 	 */
368 	if (gd->gd_cpuid == 0) {
369 	    struct timespec *nbt;
370 	    struct timespec nts;
371 	    int leap;
372 	    int ni;
373 
374 	    ++ticks;
375 
376 #if 0
377 	    if (tco->tc_poll_pps)
378 		tco->tc_poll_pps(tco);
379 #endif
380 
381 	    /*
382 	     * Calculate the new basetime index.  We are in a critical section
383 	     * on cpu #0 and can safely play with basetime_index.  Start
384 	     * with the current basetime and then make adjustments.
385 	     */
386 	    ni = (basetime_index + 1) & BASETIME_ARYMASK;
387 	    nbt = &basetime[ni];
388 	    *nbt = basetime[basetime_index];
389 
390 	    /*
391 	     * Apply adjtime corrections.  (adjtime() API)
392 	     *
393 	     * adjtime() only runs on cpu #0 so our critical section is
394 	     * sufficient to access these variables.
395 	     */
396 	    if (ntp_delta != 0) {
397 		nbt->tv_nsec += ntp_tick_delta;
398 		ntp_delta -= ntp_tick_delta;
399 		if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) ||
400 		    (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) {
401 			ntp_tick_delta = ntp_delta;
402  		}
403  	    }
404 
405 	    /*
406 	     * Apply permanent frequency corrections.  (sysctl API)
407 	     */
408 	    if (ntp_tick_permanent != 0) {
409 		ntp_tick_acc += ntp_tick_permanent;
410 		if (ntp_tick_acc >= (1LL << 32)) {
411 		    nbt->tv_nsec += ntp_tick_acc >> 32;
412 		    ntp_tick_acc -= (ntp_tick_acc >> 32) << 32;
413 		} else if (ntp_tick_acc <= -(1LL << 32)) {
414 		    /* Negate ntp_tick_acc to avoid shifting the sign bit. */
415 		    nbt->tv_nsec -= (-ntp_tick_acc) >> 32;
416 		    ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32;
417 		}
418  	    }
419 
420 	    if (nbt->tv_nsec >= 1000000000) {
421 		    nbt->tv_sec++;
422 		    nbt->tv_nsec -= 1000000000;
423 	    } else if (nbt->tv_nsec < 0) {
424 		    nbt->tv_sec--;
425 		    nbt->tv_nsec += 1000000000;
426 	    }
427 
428 	    /*
429 	     * Another per-tick compensation.  (for ntp_adjtime() API)
430 	     */
431 	    if (nsec_adj != 0) {
432 		nsec_acc += nsec_adj;
433 		if (nsec_acc >= 0x100000000LL) {
434 		    nbt->tv_nsec += nsec_acc >> 32;
435 		    nsec_acc = (nsec_acc & 0xFFFFFFFFLL);
436 		} else if (nsec_acc <= -0x100000000LL) {
437 		    nbt->tv_nsec -= -nsec_acc >> 32;
438 		    nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL);
439 		}
440 		if (nbt->tv_nsec >= 1000000000) {
441 		    nbt->tv_nsec -= 1000000000;
442 		    ++nbt->tv_sec;
443 		} else if (nbt->tv_nsec < 0) {
444 		    nbt->tv_nsec += 1000000000;
445 		    --nbt->tv_sec;
446 		}
447 	    }
448 
449 	    /************************************************************
450 	     *			LEAP SECOND CORRECTION			*
451 	     ************************************************************
452 	     *
453 	     * Taking into account all the corrections made above, figure
454 	     * out the new real time.  If the seconds field has changed
455 	     * then apply any pending leap-second corrections.
456 	     */
457 	    getnanotime_nbt(nbt, &nts);
458 
459 	    if (time_second != nts.tv_sec) {
460 		/*
461 		 * Apply leap second (sysctl API).  Adjust nts for changes
462 		 * so we do not have to call getnanotime_nbt again.
463 		 */
464 		if (ntp_leap_second) {
465 		    if (ntp_leap_second == nts.tv_sec) {
466 			if (ntp_leap_insert) {
467 			    nbt->tv_sec++;
468 			    nts.tv_sec++;
469 			} else {
470 			    nbt->tv_sec--;
471 			    nts.tv_sec--;
472 			}
473 			ntp_leap_second--;
474 		    }
475 		}
476 
477 		/*
478 		 * Apply leap second (ntp_adjtime() API), calculate a new
479 		 * nsec_adj field.  ntp_update_second() returns nsec_adj
480 		 * as a per-second value but we need it as a per-tick value.
481 		 */
482 		leap = ntp_update_second(time_second, &nsec_adj);
483 		nsec_adj /= hz;
484 		nbt->tv_sec += leap;
485 		nts.tv_sec += leap;
486 
487 		/*
488 		 * Update the time_second 'approximate time' global.
489 		 */
490 		time_second = nts.tv_sec;
491 	    }
492 
493 	    /*
494 	     * Finally, our new basetime is ready to go live!
495 	     */
496 	    cpu_sfence();
497 	    basetime_index = ni;
498 
499 	    /*
500 	     * Figure out how badly the system is starved for memory
501 	     */
502 	    vm_fault_ratecheck();
503 	}
504 
505 	/*
506 	 * softticks are handled for all cpus
507 	 */
508 	hardclock_softtick(gd);
509 
510 	/*
511 	 * ITimer handling is per-tick, per-cpu.  I don't think ksignal()
512 	 * is mpsafe on curproc, so XXX get the mplock.
513 	 */
514 	if ((p = curproc) != NULL && try_mplock()) {
515 		if (frame && CLKF_USERMODE(frame) &&
516 		    timevalisset(&p->p_timer[ITIMER_VIRTUAL].it_value) &&
517 		    itimerdecr(&p->p_timer[ITIMER_VIRTUAL], tick) == 0)
518 			ksignal(p, SIGVTALRM);
519 		if (timevalisset(&p->p_timer[ITIMER_PROF].it_value) &&
520 		    itimerdecr(&p->p_timer[ITIMER_PROF], tick) == 0)
521 			ksignal(p, SIGPROF);
522 		rel_mplock();
523 	}
524 	setdelayed();
525 }
526 
527 /*
528  * The statistics clock typically runs at a 125Hz rate, and is intended
529  * to be frequency offset from the hardclock (typ 100Hz).  It is per-cpu.
530  *
531  * NOTE! systimer! the MP lock might not be held here.  We can only safely
532  * manipulate objects owned by the current cpu.
533  *
534  * The stats clock is responsible for grabbing a profiling sample.
535  * Most of the statistics are only used by user-level statistics programs.
536  * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and
537  * p->p_estcpu.
538  *
539  * Like the other clocks, the stat clock is called from what is effectively
540  * a fast interrupt, so the context should be the thread/process that got
541  * interrupted.
542  */
543 static void
544 statclock(systimer_t info, struct intrframe *frame)
545 {
546 #ifdef GPROF
547 	struct gmonparam *g;
548 	int i;
549 #endif
550 	thread_t td;
551 	struct proc *p;
552 	int bump;
553 	struct timeval tv;
554 	struct timeval *stv;
555 
556 	/*
557 	 * How big was our timeslice relative to the last time?
558 	 */
559 	microuptime(&tv);	/* mpsafe */
560 	stv = &mycpu->gd_stattv;
561 	if (stv->tv_sec == 0) {
562 	    bump = 1;
563 	} else {
564 	    bump = tv.tv_usec - stv->tv_usec +
565 		(tv.tv_sec - stv->tv_sec) * 1000000;
566 	    if (bump < 0)
567 		bump = 0;
568 	    if (bump > 1000000)
569 		bump = 1000000;
570 	}
571 	*stv = tv;
572 
573 	td = curthread;
574 	p = td->td_proc;
575 
576 	if (frame && CLKF_USERMODE(frame)) {
577 		/*
578 		 * Came from userland, handle user time and deal with
579 		 * possible process.
580 		 */
581 		if (p && (p->p_flag & P_PROFIL))
582 			addupc_intr(p, CLKF_PC(frame), 1);
583 		td->td_uticks += bump;
584 
585 		/*
586 		 * Charge the time as appropriate
587 		 */
588 		if (p && p->p_nice > NZERO)
589 			cpu_time.cp_nice += bump;
590 		else
591 			cpu_time.cp_user += bump;
592 	} else {
593 #ifdef GPROF
594 		/*
595 		 * Kernel statistics are just like addupc_intr, only easier.
596 		 */
597 		g = &_gmonparam;
598 		if (g->state == GMON_PROF_ON && frame) {
599 			i = CLKF_PC(frame) - g->lowpc;
600 			if (i < g->textsize) {
601 				i /= HISTFRACTION * sizeof(*g->kcount);
602 				g->kcount[i]++;
603 			}
604 		}
605 #endif
606 		/*
607 		 * Came from kernel mode, so we were:
608 		 * - handling an interrupt,
609 		 * - doing syscall or trap work on behalf of the current
610 		 *   user process, or
611 		 * - spinning in the idle loop.
612 		 * Whichever it is, charge the time as appropriate.
613 		 * Note that we charge interrupts to the current process,
614 		 * regardless of whether they are ``for'' that process,
615 		 * so that we know how much of its real time was spent
616 		 * in ``non-process'' (i.e., interrupt) work.
617 		 *
618 		 * XXX assume system if frame is NULL.  A NULL frame
619 		 * can occur if ipi processing is done from a crit_exit().
620 		 */
621 		if (frame && CLKF_INTR(frame))
622 			td->td_iticks += bump;
623 		else
624 			td->td_sticks += bump;
625 
626 		if (frame && CLKF_INTR(frame)) {
627 #ifdef DEBUG_PCTRACK
628 			do_pctrack(frame, PCTRACK_INT);
629 #endif
630 			cpu_time.cp_intr += bump;
631 		} else {
632 			if (td == &mycpu->gd_idlethread) {
633 				cpu_time.cp_idle += bump;
634 			} else {
635 #ifdef DEBUG_PCTRACK
636 				if (frame)
637 					do_pctrack(frame, PCTRACK_SYS);
638 #endif
639 				cpu_time.cp_sys += bump;
640 			}
641 		}
642 	}
643 }
644 
645 #ifdef DEBUG_PCTRACK
646 /*
647  * Sample the PC when in the kernel or in an interrupt.  User code can
648  * retrieve the information and generate a histogram or other output.
649  */
650 
651 static void
652 do_pctrack(struct intrframe *frame, int which)
653 {
654 	struct kinfo_pctrack *pctrack;
655 
656 	pctrack = &cputime_pctrack[mycpu->gd_cpuid][which];
657 	pctrack->pc_array[pctrack->pc_index & PCTRACK_ARYMASK] =
658 		(void *)CLKF_PC(frame);
659 	++pctrack->pc_index;
660 }
661 
662 static int
663 sysctl_pctrack(SYSCTL_HANDLER_ARGS)
664 {
665 	struct kinfo_pcheader head;
666 	int error;
667 	int cpu;
668 	int ntrack;
669 
670 	head.pc_ntrack = PCTRACK_SIZE;
671 	head.pc_arysize = PCTRACK_ARYSIZE;
672 
673 	if ((error = SYSCTL_OUT(req, &head, sizeof(head))) != 0)
674 		return (error);
675 
676 	for (cpu = 0; cpu < ncpus; ++cpu) {
677 		for (ntrack = 0; ntrack < PCTRACK_SIZE; ++ntrack) {
678 			error = SYSCTL_OUT(req, &cputime_pctrack[cpu][ntrack],
679 					   sizeof(struct kinfo_pctrack));
680 			if (error)
681 				break;
682 		}
683 		if (error)
684 			break;
685 	}
686 	return (error);
687 }
688 SYSCTL_PROC(_kern, OID_AUTO, pctrack, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
689 	sysctl_pctrack, "S,kinfo_pcheader", "CPU PC tracking");
690 
691 #endif
692 
693 /*
694  * The scheduler clock typically runs at a 50Hz rate.  NOTE! systimer,
695  * the MP lock might not be held.  We can safely manipulate parts of curproc
696  * but that's about it.
697  *
698  * Each cpu has its own scheduler clock.
699  */
700 static void
701 schedclock(systimer_t info, struct intrframe *frame)
702 {
703 	struct lwp *lp;
704 	struct rusage *ru;
705 	struct vmspace *vm;
706 	long rss;
707 
708 	if ((lp = lwkt_preempted_proc()) != NULL) {
709 		/*
710 		 * Account for cpu time used and hit the scheduler.  Note
711 		 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD
712 		 * HERE.
713 		 */
714 		++lp->lwp_cpticks;
715 		lp->lwp_proc->p_usched->schedulerclock(lp, info->periodic,
716 						       info->time);
717 	}
718 	if ((lp = curthread->td_lwp) != NULL) {
719 		/*
720 		 * Update resource usage integrals and maximums.
721 		 */
722 		if ((ru = &lp->lwp_proc->p_ru) &&
723 		    (vm = lp->lwp_proc->p_vmspace) != NULL) {
724 			ru->ru_ixrss += pgtok(vm->vm_tsize);
725 			ru->ru_idrss += pgtok(vm->vm_dsize);
726 			ru->ru_isrss += pgtok(vm->vm_ssize);
727 			rss = pgtok(vmspace_resident_count(vm));
728 			if (ru->ru_maxrss < rss)
729 				ru->ru_maxrss = rss;
730 		}
731 	}
732 }
733 
734 /*
735  * Compute number of ticks for the specified amount of time.  The
736  * return value is intended to be used in a clock interrupt timed
737  * operation and guarenteed to meet or exceed the requested time.
738  * If the representation overflows, return INT_MAX.  The minimum return
739  * value is 1 ticks and the function will average the calculation up.
740  * If any value greater then 0 microseconds is supplied, a value
741  * of at least 2 will be returned to ensure that a near-term clock
742  * interrupt does not cause the timeout to occur (degenerately) early.
743  *
744  * Note that limit checks must take into account microseconds, which is
745  * done simply by using the smaller signed long maximum instead of
746  * the unsigned long maximum.
747  *
748  * If ints have 32 bits, then the maximum value for any timeout in
749  * 10ms ticks is 248 days.
750  */
751 int
752 tvtohz_high(struct timeval *tv)
753 {
754 	int ticks;
755 	long sec, usec;
756 
757 	sec = tv->tv_sec;
758 	usec = tv->tv_usec;
759 	if (usec < 0) {
760 		sec--;
761 		usec += 1000000;
762 	}
763 	if (sec < 0) {
764 #ifdef DIAGNOSTIC
765 		if (usec > 0) {
766 			sec++;
767 			usec -= 1000000;
768 		}
769 		kprintf("tvtohz_high: negative time difference %ld sec %ld usec\n",
770 		       sec, usec);
771 #endif
772 		ticks = 1;
773 	} else if (sec <= INT_MAX / hz) {
774 		ticks = (int)(sec * hz +
775 			    ((u_long)usec + (tick - 1)) / tick) + 1;
776 	} else {
777 		ticks = INT_MAX;
778 	}
779 	return (ticks);
780 }
781 
782 /*
783  * Compute number of ticks for the specified amount of time, erroring on
784  * the side of it being too low to ensure that sleeping the returned number
785  * of ticks will not result in a late return.
786  *
787  * The supplied timeval may not be negative and should be normalized.  A
788  * return value of 0 is possible if the timeval converts to less then
789  * 1 tick.
790  *
791  * If ints have 32 bits, then the maximum value for any timeout in
792  * 10ms ticks is 248 days.
793  */
794 int
795 tvtohz_low(struct timeval *tv)
796 {
797 	int ticks;
798 	long sec;
799 
800 	sec = tv->tv_sec;
801 	if (sec <= INT_MAX / hz)
802 		ticks = (int)(sec * hz + (u_long)tv->tv_usec / tick);
803 	else
804 		ticks = INT_MAX;
805 	return (ticks);
806 }
807 
808 
809 /*
810  * Start profiling on a process.
811  *
812  * Kernel profiling passes proc0 which never exits and hence
813  * keeps the profile clock running constantly.
814  */
815 void
816 startprofclock(struct proc *p)
817 {
818 	if ((p->p_flag & P_PROFIL) == 0) {
819 		p->p_flag |= P_PROFIL;
820 #if 0	/* XXX */
821 		if (++profprocs == 1 && stathz != 0) {
822 			crit_enter();
823 			psdiv = psratio;
824 			setstatclockrate(profhz);
825 			crit_exit();
826 		}
827 #endif
828 	}
829 }
830 
831 /*
832  * Stop profiling on a process.
833  */
834 void
835 stopprofclock(struct proc *p)
836 {
837 	if (p->p_flag & P_PROFIL) {
838 		p->p_flag &= ~P_PROFIL;
839 #if 0	/* XXX */
840 		if (--profprocs == 0 && stathz != 0) {
841 			crit_enter();
842 			psdiv = 1;
843 			setstatclockrate(stathz);
844 			crit_exit();
845 		}
846 #endif
847 	}
848 }
849 
850 /*
851  * Return information about system clocks.
852  */
853 static int
854 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
855 {
856 	struct kinfo_clockinfo clkinfo;
857 	/*
858 	 * Construct clockinfo structure.
859 	 */
860 	clkinfo.ci_hz = hz;
861 	clkinfo.ci_tick = tick;
862 	clkinfo.ci_tickadj = ntp_default_tick_delta / 1000;
863 	clkinfo.ci_profhz = profhz;
864 	clkinfo.ci_stathz = stathz ? stathz : hz;
865 	return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
866 }
867 
868 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
869 	0, 0, sysctl_kern_clockrate, "S,clockinfo","");
870 
871 /*
872  * We have eight functions for looking at the clock, four for
873  * microseconds and four for nanoseconds.  For each there is fast
874  * but less precise version "get{nano|micro}[up]time" which will
875  * return a time which is up to 1/HZ previous to the call, whereas
876  * the raw version "{nano|micro}[up]time" will return a timestamp
877  * which is as precise as possible.  The "up" variants return the
878  * time relative to system boot, these are well suited for time
879  * interval measurements.
880  *
881  * Each cpu independantly maintains the current time of day, so all
882  * we need to do to protect ourselves from changes is to do a loop
883  * check on the seconds field changing out from under us.
884  *
885  * The system timer maintains a 32 bit count and due to various issues
886  * it is possible for the calculated delta to occassionally exceed
887  * sys_cputimer->freq.  If this occurs the sys_cputimer->freq64_nsec
888  * multiplication can easily overflow, so we deal with the case.  For
889  * uniformity we deal with the case in the usec case too.
890  */
891 void
892 getmicrouptime(struct timeval *tvp)
893 {
894 	struct globaldata *gd = mycpu;
895 	sysclock_t delta;
896 
897 	do {
898 		tvp->tv_sec = gd->gd_time_seconds;
899 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
900 	} while (tvp->tv_sec != gd->gd_time_seconds);
901 
902 	if (delta >= sys_cputimer->freq) {
903 		tvp->tv_sec += delta / sys_cputimer->freq;
904 		delta %= sys_cputimer->freq;
905 	}
906 	tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
907 	if (tvp->tv_usec >= 1000000) {
908 		tvp->tv_usec -= 1000000;
909 		++tvp->tv_sec;
910 	}
911 }
912 
913 void
914 getnanouptime(struct timespec *tsp)
915 {
916 	struct globaldata *gd = mycpu;
917 	sysclock_t delta;
918 
919 	do {
920 		tsp->tv_sec = gd->gd_time_seconds;
921 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
922 	} while (tsp->tv_sec != gd->gd_time_seconds);
923 
924 	if (delta >= sys_cputimer->freq) {
925 		tsp->tv_sec += delta / sys_cputimer->freq;
926 		delta %= sys_cputimer->freq;
927 	}
928 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
929 }
930 
931 void
932 microuptime(struct timeval *tvp)
933 {
934 	struct globaldata *gd = mycpu;
935 	sysclock_t delta;
936 
937 	do {
938 		tvp->tv_sec = gd->gd_time_seconds;
939 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
940 	} while (tvp->tv_sec != gd->gd_time_seconds);
941 
942 	if (delta >= sys_cputimer->freq) {
943 		tvp->tv_sec += delta / sys_cputimer->freq;
944 		delta %= sys_cputimer->freq;
945 	}
946 	tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
947 }
948 
949 void
950 nanouptime(struct timespec *tsp)
951 {
952 	struct globaldata *gd = mycpu;
953 	sysclock_t delta;
954 
955 	do {
956 		tsp->tv_sec = gd->gd_time_seconds;
957 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
958 	} while (tsp->tv_sec != gd->gd_time_seconds);
959 
960 	if (delta >= sys_cputimer->freq) {
961 		tsp->tv_sec += delta / sys_cputimer->freq;
962 		delta %= sys_cputimer->freq;
963 	}
964 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
965 }
966 
967 /*
968  * realtime routines
969  */
970 
971 void
972 getmicrotime(struct timeval *tvp)
973 {
974 	struct globaldata *gd = mycpu;
975 	struct timespec *bt;
976 	sysclock_t delta;
977 
978 	do {
979 		tvp->tv_sec = gd->gd_time_seconds;
980 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
981 	} while (tvp->tv_sec != gd->gd_time_seconds);
982 
983 	if (delta >= sys_cputimer->freq) {
984 		tvp->tv_sec += delta / sys_cputimer->freq;
985 		delta %= sys_cputimer->freq;
986 	}
987 	tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
988 
989 	bt = &basetime[basetime_index];
990 	tvp->tv_sec += bt->tv_sec;
991 	tvp->tv_usec += bt->tv_nsec / 1000;
992 	while (tvp->tv_usec >= 1000000) {
993 		tvp->tv_usec -= 1000000;
994 		++tvp->tv_sec;
995 	}
996 }
997 
998 void
999 getnanotime(struct timespec *tsp)
1000 {
1001 	struct globaldata *gd = mycpu;
1002 	struct timespec *bt;
1003 	sysclock_t delta;
1004 
1005 	do {
1006 		tsp->tv_sec = gd->gd_time_seconds;
1007 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1008 	} while (tsp->tv_sec != gd->gd_time_seconds);
1009 
1010 	if (delta >= sys_cputimer->freq) {
1011 		tsp->tv_sec += delta / sys_cputimer->freq;
1012 		delta %= sys_cputimer->freq;
1013 	}
1014 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1015 
1016 	bt = &basetime[basetime_index];
1017 	tsp->tv_sec += bt->tv_sec;
1018 	tsp->tv_nsec += bt->tv_nsec;
1019 	while (tsp->tv_nsec >= 1000000000) {
1020 		tsp->tv_nsec -= 1000000000;
1021 		++tsp->tv_sec;
1022 	}
1023 }
1024 
1025 static void
1026 getnanotime_nbt(struct timespec *nbt, struct timespec *tsp)
1027 {
1028 	struct globaldata *gd = mycpu;
1029 	sysclock_t delta;
1030 
1031 	do {
1032 		tsp->tv_sec = gd->gd_time_seconds;
1033 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1034 	} while (tsp->tv_sec != gd->gd_time_seconds);
1035 
1036 	if (delta >= sys_cputimer->freq) {
1037 		tsp->tv_sec += delta / sys_cputimer->freq;
1038 		delta %= sys_cputimer->freq;
1039 	}
1040 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1041 
1042 	tsp->tv_sec += nbt->tv_sec;
1043 	tsp->tv_nsec += nbt->tv_nsec;
1044 	while (tsp->tv_nsec >= 1000000000) {
1045 		tsp->tv_nsec -= 1000000000;
1046 		++tsp->tv_sec;
1047 	}
1048 }
1049 
1050 
1051 void
1052 microtime(struct timeval *tvp)
1053 {
1054 	struct globaldata *gd = mycpu;
1055 	struct timespec *bt;
1056 	sysclock_t delta;
1057 
1058 	do {
1059 		tvp->tv_sec = gd->gd_time_seconds;
1060 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1061 	} while (tvp->tv_sec != gd->gd_time_seconds);
1062 
1063 	if (delta >= sys_cputimer->freq) {
1064 		tvp->tv_sec += delta / sys_cputimer->freq;
1065 		delta %= sys_cputimer->freq;
1066 	}
1067 	tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1068 
1069 	bt = &basetime[basetime_index];
1070 	tvp->tv_sec += bt->tv_sec;
1071 	tvp->tv_usec += bt->tv_nsec / 1000;
1072 	while (tvp->tv_usec >= 1000000) {
1073 		tvp->tv_usec -= 1000000;
1074 		++tvp->tv_sec;
1075 	}
1076 }
1077 
1078 void
1079 nanotime(struct timespec *tsp)
1080 {
1081 	struct globaldata *gd = mycpu;
1082 	struct timespec *bt;
1083 	sysclock_t delta;
1084 
1085 	do {
1086 		tsp->tv_sec = gd->gd_time_seconds;
1087 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1088 	} while (tsp->tv_sec != gd->gd_time_seconds);
1089 
1090 	if (delta >= sys_cputimer->freq) {
1091 		tsp->tv_sec += delta / sys_cputimer->freq;
1092 		delta %= sys_cputimer->freq;
1093 	}
1094 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1095 
1096 	bt = &basetime[basetime_index];
1097 	tsp->tv_sec += bt->tv_sec;
1098 	tsp->tv_nsec += bt->tv_nsec;
1099 	while (tsp->tv_nsec >= 1000000000) {
1100 		tsp->tv_nsec -= 1000000000;
1101 		++tsp->tv_sec;
1102 	}
1103 }
1104 
1105 /*
1106  * note: this is not exactly synchronized with real time.  To do that we
1107  * would have to do what microtime does and check for a nanoseconds overflow.
1108  */
1109 time_t
1110 get_approximate_time_t(void)
1111 {
1112 	struct globaldata *gd = mycpu;
1113 	struct timespec *bt;
1114 
1115 	bt = &basetime[basetime_index];
1116 	return(gd->gd_time_seconds + bt->tv_sec);
1117 }
1118 
1119 int
1120 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1121 {
1122 	pps_params_t *app;
1123 	struct pps_fetch_args *fapi;
1124 #ifdef PPS_SYNC
1125 	struct pps_kcbind_args *kapi;
1126 #endif
1127 
1128 	switch (cmd) {
1129 	case PPS_IOC_CREATE:
1130 		return (0);
1131 	case PPS_IOC_DESTROY:
1132 		return (0);
1133 	case PPS_IOC_SETPARAMS:
1134 		app = (pps_params_t *)data;
1135 		if (app->mode & ~pps->ppscap)
1136 			return (EINVAL);
1137 		pps->ppsparam = *app;
1138 		return (0);
1139 	case PPS_IOC_GETPARAMS:
1140 		app = (pps_params_t *)data;
1141 		*app = pps->ppsparam;
1142 		app->api_version = PPS_API_VERS_1;
1143 		return (0);
1144 	case PPS_IOC_GETCAP:
1145 		*(int*)data = pps->ppscap;
1146 		return (0);
1147 	case PPS_IOC_FETCH:
1148 		fapi = (struct pps_fetch_args *)data;
1149 		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1150 			return (EINVAL);
1151 		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
1152 			return (EOPNOTSUPP);
1153 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
1154 		fapi->pps_info_buf = pps->ppsinfo;
1155 		return (0);
1156 	case PPS_IOC_KCBIND:
1157 #ifdef PPS_SYNC
1158 		kapi = (struct pps_kcbind_args *)data;
1159 		/* XXX Only root should be able to do this */
1160 		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1161 			return (EINVAL);
1162 		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1163 			return (EINVAL);
1164 		if (kapi->edge & ~pps->ppscap)
1165 			return (EINVAL);
1166 		pps->kcmode = kapi->edge;
1167 		return (0);
1168 #else
1169 		return (EOPNOTSUPP);
1170 #endif
1171 	default:
1172 		return (ENOTTY);
1173 	}
1174 }
1175 
1176 void
1177 pps_init(struct pps_state *pps)
1178 {
1179 	pps->ppscap |= PPS_TSFMT_TSPEC;
1180 	if (pps->ppscap & PPS_CAPTUREASSERT)
1181 		pps->ppscap |= PPS_OFFSETASSERT;
1182 	if (pps->ppscap & PPS_CAPTURECLEAR)
1183 		pps->ppscap |= PPS_OFFSETCLEAR;
1184 }
1185 
1186 void
1187 pps_event(struct pps_state *pps, sysclock_t count, int event)
1188 {
1189 	struct globaldata *gd;
1190 	struct timespec *tsp;
1191 	struct timespec *osp;
1192 	struct timespec *bt;
1193 	struct timespec ts;
1194 	sysclock_t *pcount;
1195 #ifdef PPS_SYNC
1196 	sysclock_t tcount;
1197 #endif
1198 	sysclock_t delta;
1199 	pps_seq_t *pseq;
1200 	int foff;
1201 	int fhard;
1202 
1203 	gd = mycpu;
1204 
1205 	/* Things would be easier with arrays... */
1206 	if (event == PPS_CAPTUREASSERT) {
1207 		tsp = &pps->ppsinfo.assert_timestamp;
1208 		osp = &pps->ppsparam.assert_offset;
1209 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1210 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
1211 		pcount = &pps->ppscount[0];
1212 		pseq = &pps->ppsinfo.assert_sequence;
1213 	} else {
1214 		tsp = &pps->ppsinfo.clear_timestamp;
1215 		osp = &pps->ppsparam.clear_offset;
1216 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1217 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
1218 		pcount = &pps->ppscount[1];
1219 		pseq = &pps->ppsinfo.clear_sequence;
1220 	}
1221 
1222 	/* Nothing really happened */
1223 	if (*pcount == count)
1224 		return;
1225 
1226 	*pcount = count;
1227 
1228 	do {
1229 		ts.tv_sec = gd->gd_time_seconds;
1230 		delta = count - gd->gd_cpuclock_base;
1231 	} while (ts.tv_sec != gd->gd_time_seconds);
1232 
1233 	if (delta >= sys_cputimer->freq) {
1234 		ts.tv_sec += delta / sys_cputimer->freq;
1235 		delta %= sys_cputimer->freq;
1236 	}
1237 	ts.tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1238 	bt = &basetime[basetime_index];
1239 	ts.tv_sec += bt->tv_sec;
1240 	ts.tv_nsec += bt->tv_nsec;
1241 	while (ts.tv_nsec >= 1000000000) {
1242 		ts.tv_nsec -= 1000000000;
1243 		++ts.tv_sec;
1244 	}
1245 
1246 	(*pseq)++;
1247 	*tsp = ts;
1248 
1249 	if (foff) {
1250 		timespecadd(tsp, osp);
1251 		if (tsp->tv_nsec < 0) {
1252 			tsp->tv_nsec += 1000000000;
1253 			tsp->tv_sec -= 1;
1254 		}
1255 	}
1256 #ifdef PPS_SYNC
1257 	if (fhard) {
1258 		/* magic, at its best... */
1259 		tcount = count - pps->ppscount[2];
1260 		pps->ppscount[2] = count;
1261 		if (tcount >= sys_cputimer->freq) {
1262 			delta = (1000000000 * (tcount / sys_cputimer->freq) +
1263 				 sys_cputimer->freq64_nsec *
1264 				 (tcount % sys_cputimer->freq)) >> 32;
1265 		} else {
1266 			delta = (sys_cputimer->freq64_nsec * tcount) >> 32;
1267 		}
1268 		hardpps(tsp, delta);
1269 	}
1270 #endif
1271 }
1272 
1273