1 /* 2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Matthew Dillon <dillon@backplane.com> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 3. Neither the name of The DragonFly Project nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific, prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org> 35 * Copyright (c) 1982, 1986, 1991, 1993 36 * The Regents of the University of California. All rights reserved. 37 * (c) UNIX System Laboratories, Inc. 38 * All or some portions of this file are derived from material licensed 39 * to the University of California by American Telephone and Telegraph 40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 41 * the permission of UNIX System Laboratories, Inc. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. All advertising materials mentioning features or use of this software 52 * must display the following acknowledgement: 53 * This product includes software developed by the University of 54 * California, Berkeley and its contributors. 55 * 4. Neither the name of the University nor the names of its contributors 56 * may be used to endorse or promote products derived from this software 57 * without specific prior written permission. 58 * 59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 69 * SUCH DAMAGE. 70 * 71 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 72 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $ 73 * $DragonFly: src/sys/kern/kern_clock.c,v 1.62 2008/09/09 04:06:13 dillon Exp $ 74 */ 75 76 #include "opt_ntp.h" 77 #include "opt_polling.h" 78 #include "opt_ifpoll.h" 79 #include "opt_pctrack.h" 80 81 #include <sys/param.h> 82 #include <sys/systm.h> 83 #include <sys/callout.h> 84 #include <sys/kernel.h> 85 #include <sys/kinfo.h> 86 #include <sys/proc.h> 87 #include <sys/malloc.h> 88 #include <sys/resourcevar.h> 89 #include <sys/signalvar.h> 90 #include <sys/timex.h> 91 #include <sys/timepps.h> 92 #include <vm/vm.h> 93 #include <sys/lock.h> 94 #include <vm/pmap.h> 95 #include <vm/vm_map.h> 96 #include <vm/vm_extern.h> 97 #include <sys/sysctl.h> 98 99 #include <sys/thread2.h> 100 101 #include <machine/cpu.h> 102 #include <machine/limits.h> 103 #include <machine/smp.h> 104 #include <machine/cpufunc.h> 105 #include <machine/specialreg.h> 106 #include <machine/clock.h> 107 108 #ifdef GPROF 109 #include <sys/gmon.h> 110 #endif 111 112 #ifdef DEVICE_POLLING 113 extern void init_device_poll_pcpu(int); 114 #endif 115 116 #ifdef IFPOLL_ENABLE 117 extern void ifpoll_init_pcpu(int); 118 #endif 119 120 #ifdef DEBUG_PCTRACK 121 static void do_pctrack(struct intrframe *frame, int which); 122 #endif 123 124 static void initclocks (void *dummy); 125 SYSINIT(clocks, SI_BOOT2_CLOCKS, SI_ORDER_FIRST, initclocks, NULL) 126 127 /* 128 * Some of these don't belong here, but it's easiest to concentrate them. 129 * Note that cpu_time counts in microseconds, but most userland programs 130 * just compare relative times against the total by delta. 131 */ 132 struct kinfo_cputime cputime_percpu[MAXCPU]; 133 #ifdef DEBUG_PCTRACK 134 struct kinfo_pcheader cputime_pcheader = { PCTRACK_SIZE, PCTRACK_ARYSIZE }; 135 struct kinfo_pctrack cputime_pctrack[MAXCPU][PCTRACK_SIZE]; 136 #endif 137 138 #ifdef SMP 139 static int 140 sysctl_cputime(SYSCTL_HANDLER_ARGS) 141 { 142 int cpu, error = 0; 143 size_t size = sizeof(struct kinfo_cputime); 144 145 for (cpu = 0; cpu < ncpus; ++cpu) { 146 if ((error = SYSCTL_OUT(req, &cputime_percpu[cpu], size))) 147 break; 148 } 149 150 return (error); 151 } 152 SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0, 153 sysctl_cputime, "S,kinfo_cputime", "CPU time statistics"); 154 #else 155 SYSCTL_STRUCT(_kern, OID_AUTO, cputime, CTLFLAG_RD, &cpu_time, kinfo_cputime, 156 "CPU time statistics"); 157 #endif 158 159 static int 160 sysctl_cp_time(SYSCTL_HANDLER_ARGS) 161 { 162 long cpu_states[5] = {0}; 163 int cpu, error = 0; 164 size_t size = sizeof(cpu_states); 165 166 for (cpu = 0; cpu < ncpus; ++cpu) { 167 cpu_states[0] += cputime_percpu[cpu].cp_user; 168 cpu_states[1] += cputime_percpu[cpu].cp_nice; 169 cpu_states[2] += cputime_percpu[cpu].cp_sys; 170 cpu_states[3] += cputime_percpu[cpu].cp_intr; 171 cpu_states[4] += cputime_percpu[cpu].cp_idle; 172 } 173 174 error = SYSCTL_OUT(req, cpu_states, size); 175 176 return (error); 177 } 178 179 SYSCTL_PROC(_kern, OID_AUTO, cp_time, (CTLTYPE_LONG|CTLFLAG_RD), 0, 0, 180 sysctl_cp_time, "LU", "CPU time statistics"); 181 182 /* 183 * boottime is used to calculate the 'real' uptime. Do not confuse this with 184 * microuptime(). microtime() is not drift compensated. The real uptime 185 * with compensation is nanotime() - bootime. boottime is recalculated 186 * whenever the real time is set based on the compensated elapsed time 187 * in seconds (gd->gd_time_seconds). 188 * 189 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic. 190 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to 191 * the real time. 192 */ 193 struct timespec boottime; /* boot time (realtime) for reference only */ 194 time_t time_second; /* read-only 'passive' uptime in seconds */ 195 196 /* 197 * basetime is used to calculate the compensated real time of day. The 198 * basetime can be modified on a per-tick basis by the adjtime(), 199 * ntp_adjtime(), and sysctl-based time correction APIs. 200 * 201 * Note that frequency corrections can also be made by adjusting 202 * gd_cpuclock_base. 203 * 204 * basetime is a tail-chasing FIFO, updated only by cpu #0. The FIFO is 205 * used on both SMP and UP systems to avoid MP races between cpu's and 206 * interrupt races on UP systems. 207 */ 208 #define BASETIME_ARYSIZE 16 209 #define BASETIME_ARYMASK (BASETIME_ARYSIZE - 1) 210 static struct timespec basetime[BASETIME_ARYSIZE]; 211 static volatile int basetime_index; 212 213 static int 214 sysctl_get_basetime(SYSCTL_HANDLER_ARGS) 215 { 216 struct timespec *bt; 217 int error; 218 int index; 219 220 /* 221 * Because basetime data and index may be updated by another cpu, 222 * a load fence is required to ensure that the data we read has 223 * not been speculatively read relative to a possibly updated index. 224 */ 225 index = basetime_index; 226 cpu_lfence(); 227 bt = &basetime[index]; 228 error = SYSCTL_OUT(req, bt, sizeof(*bt)); 229 return (error); 230 } 231 232 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD, 233 &boottime, timespec, "System boottime"); 234 SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0, 235 sysctl_get_basetime, "S,timespec", "System basetime"); 236 237 static void hardclock(systimer_t info, int, struct intrframe *frame); 238 static void statclock(systimer_t info, int, struct intrframe *frame); 239 static void schedclock(systimer_t info, int, struct intrframe *frame); 240 static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp); 241 242 int ticks; /* system master ticks at hz */ 243 int clocks_running; /* tsleep/timeout clocks operational */ 244 int64_t nsec_adj; /* ntpd per-tick adjustment in nsec << 32 */ 245 int64_t nsec_acc; /* accumulator */ 246 247 /* NTPD time correction fields */ 248 int64_t ntp_tick_permanent; /* per-tick adjustment in nsec << 32 */ 249 int64_t ntp_tick_acc; /* accumulator for per-tick adjustment */ 250 int64_t ntp_delta; /* one-time correction in nsec */ 251 int64_t ntp_big_delta = 1000000000; 252 int32_t ntp_tick_delta; /* current adjustment rate */ 253 int32_t ntp_default_tick_delta; /* adjustment rate for ntp_delta */ 254 time_t ntp_leap_second; /* time of next leap second */ 255 int ntp_leap_insert; /* whether to insert or remove a second */ 256 257 /* 258 * Finish initializing clock frequencies and start all clocks running. 259 */ 260 /* ARGSUSED*/ 261 static void 262 initclocks(void *dummy) 263 { 264 /*psratio = profhz / stathz;*/ 265 initclocks_pcpu(); 266 clocks_running = 1; 267 } 268 269 /* 270 * Called on a per-cpu basis 271 */ 272 void 273 initclocks_pcpu(void) 274 { 275 struct globaldata *gd = mycpu; 276 277 crit_enter(); 278 if (gd->gd_cpuid == 0) { 279 gd->gd_time_seconds = 1; 280 gd->gd_cpuclock_base = sys_cputimer->count(); 281 } else { 282 /* XXX */ 283 gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds; 284 gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base; 285 } 286 287 systimer_intr_enable(); 288 289 #ifdef DEVICE_POLLING 290 init_device_poll_pcpu(gd->gd_cpuid); 291 #endif 292 293 #ifdef IFPOLL_ENABLE 294 ifpoll_init_pcpu(gd->gd_cpuid); 295 #endif 296 297 /* 298 * Use a non-queued periodic systimer to prevent multiple ticks from 299 * building up if the sysclock jumps forward (8254 gets reset). The 300 * sysclock will never jump backwards. Our time sync is based on 301 * the actual sysclock, not the ticks count. 302 */ 303 systimer_init_periodic_nq(&gd->gd_hardclock, hardclock, NULL, hz); 304 systimer_init_periodic_nq(&gd->gd_statclock, statclock, NULL, stathz); 305 /* XXX correct the frequency for scheduler / estcpu tests */ 306 systimer_init_periodic_nq(&gd->gd_schedclock, schedclock, 307 NULL, ESTCPUFREQ); 308 crit_exit(); 309 } 310 311 /* 312 * This sets the current real time of day. Timespecs are in seconds and 313 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base, 314 * instead we adjust basetime so basetime + gd_* results in the current 315 * time of day. This way the gd_* fields are guarenteed to represent 316 * a monotonically increasing 'uptime' value. 317 * 318 * When set_timeofday() is called from userland, the system call forces it 319 * onto cpu #0 since only cpu #0 can update basetime_index. 320 */ 321 void 322 set_timeofday(struct timespec *ts) 323 { 324 struct timespec *nbt; 325 int ni; 326 327 /* 328 * XXX SMP / non-atomic basetime updates 329 */ 330 crit_enter(); 331 ni = (basetime_index + 1) & BASETIME_ARYMASK; 332 nbt = &basetime[ni]; 333 nanouptime(nbt); 334 nbt->tv_sec = ts->tv_sec - nbt->tv_sec; 335 nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec; 336 if (nbt->tv_nsec < 0) { 337 nbt->tv_nsec += 1000000000; 338 --nbt->tv_sec; 339 } 340 341 /* 342 * Note that basetime diverges from boottime as the clock drift is 343 * compensated for, so we cannot do away with boottime. When setting 344 * the absolute time of day the drift is 0 (for an instant) and we 345 * can simply assign boottime to basetime. 346 * 347 * Note that nanouptime() is based on gd_time_seconds which is drift 348 * compensated up to a point (it is guarenteed to remain monotonically 349 * increasing). gd_time_seconds is thus our best uptime guess and 350 * suitable for use in the boottime calculation. It is already taken 351 * into account in the basetime calculation above. 352 */ 353 boottime.tv_sec = nbt->tv_sec; 354 ntp_delta = 0; 355 356 /* 357 * We now have a new basetime, make sure all other cpus have it, 358 * then update the index. 359 */ 360 cpu_sfence(); 361 basetime_index = ni; 362 363 crit_exit(); 364 } 365 366 /* 367 * Each cpu has its own hardclock, but we only increments ticks and softticks 368 * on cpu #0. 369 * 370 * NOTE! systimer! the MP lock might not be held here. We can only safely 371 * manipulate objects owned by the current cpu. 372 */ 373 static void 374 hardclock(systimer_t info, int in_ipi __unused, struct intrframe *frame) 375 { 376 sysclock_t cputicks; 377 struct proc *p; 378 struct globaldata *gd = mycpu; 379 380 /* 381 * Realtime updates are per-cpu. Note that timer corrections as 382 * returned by microtime() and friends make an additional adjustment 383 * using a system-wise 'basetime', but the running time is always 384 * taken from the per-cpu globaldata area. Since the same clock 385 * is distributing (XXX SMP) to all cpus, the per-cpu timebases 386 * stay in synch. 387 * 388 * Note that we never allow info->time (aka gd->gd_hardclock.time) 389 * to reverse index gd_cpuclock_base, but that it is possible for 390 * it to temporarily get behind in the seconds if something in the 391 * system locks interrupts for a long period of time. Since periodic 392 * timers count events, though everything should resynch again 393 * immediately. 394 */ 395 cputicks = info->time - gd->gd_cpuclock_base; 396 if (cputicks >= sys_cputimer->freq) { 397 ++gd->gd_time_seconds; 398 gd->gd_cpuclock_base += sys_cputimer->freq; 399 } 400 401 /* 402 * The system-wide ticks counter and NTP related timedelta/tickdelta 403 * adjustments only occur on cpu #0. NTP adjustments are accomplished 404 * by updating basetime. 405 */ 406 if (gd->gd_cpuid == 0) { 407 struct timespec *nbt; 408 struct timespec nts; 409 int leap; 410 int ni; 411 412 ++ticks; 413 414 #if 0 415 if (tco->tc_poll_pps) 416 tco->tc_poll_pps(tco); 417 #endif 418 419 /* 420 * Calculate the new basetime index. We are in a critical section 421 * on cpu #0 and can safely play with basetime_index. Start 422 * with the current basetime and then make adjustments. 423 */ 424 ni = (basetime_index + 1) & BASETIME_ARYMASK; 425 nbt = &basetime[ni]; 426 *nbt = basetime[basetime_index]; 427 428 /* 429 * Apply adjtime corrections. (adjtime() API) 430 * 431 * adjtime() only runs on cpu #0 so our critical section is 432 * sufficient to access these variables. 433 */ 434 if (ntp_delta != 0) { 435 nbt->tv_nsec += ntp_tick_delta; 436 ntp_delta -= ntp_tick_delta; 437 if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) || 438 (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) { 439 ntp_tick_delta = ntp_delta; 440 } 441 } 442 443 /* 444 * Apply permanent frequency corrections. (sysctl API) 445 */ 446 if (ntp_tick_permanent != 0) { 447 ntp_tick_acc += ntp_tick_permanent; 448 if (ntp_tick_acc >= (1LL << 32)) { 449 nbt->tv_nsec += ntp_tick_acc >> 32; 450 ntp_tick_acc -= (ntp_tick_acc >> 32) << 32; 451 } else if (ntp_tick_acc <= -(1LL << 32)) { 452 /* Negate ntp_tick_acc to avoid shifting the sign bit. */ 453 nbt->tv_nsec -= (-ntp_tick_acc) >> 32; 454 ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32; 455 } 456 } 457 458 if (nbt->tv_nsec >= 1000000000) { 459 nbt->tv_sec++; 460 nbt->tv_nsec -= 1000000000; 461 } else if (nbt->tv_nsec < 0) { 462 nbt->tv_sec--; 463 nbt->tv_nsec += 1000000000; 464 } 465 466 /* 467 * Another per-tick compensation. (for ntp_adjtime() API) 468 */ 469 if (nsec_adj != 0) { 470 nsec_acc += nsec_adj; 471 if (nsec_acc >= 0x100000000LL) { 472 nbt->tv_nsec += nsec_acc >> 32; 473 nsec_acc = (nsec_acc & 0xFFFFFFFFLL); 474 } else if (nsec_acc <= -0x100000000LL) { 475 nbt->tv_nsec -= -nsec_acc >> 32; 476 nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL); 477 } 478 if (nbt->tv_nsec >= 1000000000) { 479 nbt->tv_nsec -= 1000000000; 480 ++nbt->tv_sec; 481 } else if (nbt->tv_nsec < 0) { 482 nbt->tv_nsec += 1000000000; 483 --nbt->tv_sec; 484 } 485 } 486 487 /************************************************************ 488 * LEAP SECOND CORRECTION * 489 ************************************************************ 490 * 491 * Taking into account all the corrections made above, figure 492 * out the new real time. If the seconds field has changed 493 * then apply any pending leap-second corrections. 494 */ 495 getnanotime_nbt(nbt, &nts); 496 497 if (time_second != nts.tv_sec) { 498 /* 499 * Apply leap second (sysctl API). Adjust nts for changes 500 * so we do not have to call getnanotime_nbt again. 501 */ 502 if (ntp_leap_second) { 503 if (ntp_leap_second == nts.tv_sec) { 504 if (ntp_leap_insert) { 505 nbt->tv_sec++; 506 nts.tv_sec++; 507 } else { 508 nbt->tv_sec--; 509 nts.tv_sec--; 510 } 511 ntp_leap_second--; 512 } 513 } 514 515 /* 516 * Apply leap second (ntp_adjtime() API), calculate a new 517 * nsec_adj field. ntp_update_second() returns nsec_adj 518 * as a per-second value but we need it as a per-tick value. 519 */ 520 leap = ntp_update_second(time_second, &nsec_adj); 521 nsec_adj /= hz; 522 nbt->tv_sec += leap; 523 nts.tv_sec += leap; 524 525 /* 526 * Update the time_second 'approximate time' global. 527 */ 528 time_second = nts.tv_sec; 529 } 530 531 /* 532 * Finally, our new basetime is ready to go live! 533 */ 534 cpu_sfence(); 535 basetime_index = ni; 536 } 537 538 /* 539 * lwkt thread scheduler fair queueing 540 */ 541 lwkt_schedulerclock(curthread); 542 543 /* 544 * softticks are handled for all cpus 545 */ 546 hardclock_softtick(gd); 547 548 /* 549 * ITimer handling is per-tick, per-cpu. 550 * 551 * We must acquire the per-process token in order for ksignal() 552 * to be non-blocking. For the moment this requires an AST fault, 553 * the ksignal() cannot be safely issued from this hard interrupt. 554 * 555 * XXX Even the trytoken here isn't right, and itimer operation in 556 * a multi threaded environment is going to be weird at the 557 * very least. 558 */ 559 if ((p = curproc) != NULL && lwkt_trytoken(&p->p_token)) { 560 crit_enter_hard(); 561 if (frame && CLKF_USERMODE(frame) && 562 timevalisset(&p->p_timer[ITIMER_VIRTUAL].it_value) && 563 itimerdecr(&p->p_timer[ITIMER_VIRTUAL], ustick) == 0) { 564 p->p_flags |= P_SIGVTALRM; 565 need_user_resched(); 566 } 567 if (timevalisset(&p->p_timer[ITIMER_PROF].it_value) && 568 itimerdecr(&p->p_timer[ITIMER_PROF], ustick) == 0) { 569 p->p_flags |= P_SIGPROF; 570 need_user_resched(); 571 } 572 crit_exit_hard(); 573 lwkt_reltoken(&p->p_token); 574 } 575 setdelayed(); 576 } 577 578 /* 579 * The statistics clock typically runs at a 125Hz rate, and is intended 580 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu. 581 * 582 * NOTE! systimer! the MP lock might not be held here. We can only safely 583 * manipulate objects owned by the current cpu. 584 * 585 * The stats clock is responsible for grabbing a profiling sample. 586 * Most of the statistics are only used by user-level statistics programs. 587 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and 588 * p->p_estcpu. 589 * 590 * Like the other clocks, the stat clock is called from what is effectively 591 * a fast interrupt, so the context should be the thread/process that got 592 * interrupted. 593 */ 594 static void 595 statclock(systimer_t info, int in_ipi, struct intrframe *frame) 596 { 597 #ifdef GPROF 598 struct gmonparam *g; 599 int i; 600 #endif 601 thread_t td; 602 struct proc *p; 603 int bump; 604 struct timeval tv; 605 struct timeval *stv; 606 607 /* 608 * How big was our timeslice relative to the last time? 609 */ 610 microuptime(&tv); /* mpsafe */ 611 stv = &mycpu->gd_stattv; 612 if (stv->tv_sec == 0) { 613 bump = 1; 614 } else { 615 bump = tv.tv_usec - stv->tv_usec + 616 (tv.tv_sec - stv->tv_sec) * 1000000; 617 if (bump < 0) 618 bump = 0; 619 if (bump > 1000000) 620 bump = 1000000; 621 } 622 *stv = tv; 623 624 td = curthread; 625 p = td->td_proc; 626 627 if (frame && CLKF_USERMODE(frame)) { 628 /* 629 * Came from userland, handle user time and deal with 630 * possible process. 631 */ 632 if (p && (p->p_flags & P_PROFIL)) 633 addupc_intr(p, CLKF_PC(frame), 1); 634 td->td_uticks += bump; 635 636 /* 637 * Charge the time as appropriate 638 */ 639 if (p && p->p_nice > NZERO) 640 cpu_time.cp_nice += bump; 641 else 642 cpu_time.cp_user += bump; 643 } else { 644 int intr_nest = mycpu->gd_intr_nesting_level; 645 646 if (in_ipi) { 647 /* 648 * IPI processing code will bump gd_intr_nesting_level 649 * up by one, which breaks following CLKF_INTR testing, 650 * so we substract it by one here. 651 */ 652 --intr_nest; 653 } 654 #ifdef GPROF 655 /* 656 * Kernel statistics are just like addupc_intr, only easier. 657 */ 658 g = &_gmonparam; 659 if (g->state == GMON_PROF_ON && frame) { 660 i = CLKF_PC(frame) - g->lowpc; 661 if (i < g->textsize) { 662 i /= HISTFRACTION * sizeof(*g->kcount); 663 g->kcount[i]++; 664 } 665 } 666 #endif 667 /* 668 * Came from kernel mode, so we were: 669 * - handling an interrupt, 670 * - doing syscall or trap work on behalf of the current 671 * user process, or 672 * - spinning in the idle loop. 673 * Whichever it is, charge the time as appropriate. 674 * Note that we charge interrupts to the current process, 675 * regardless of whether they are ``for'' that process, 676 * so that we know how much of its real time was spent 677 * in ``non-process'' (i.e., interrupt) work. 678 * 679 * XXX assume system if frame is NULL. A NULL frame 680 * can occur if ipi processing is done from a crit_exit(). 681 */ 682 if (frame && CLKF_INTR(intr_nest)) 683 td->td_iticks += bump; 684 else 685 td->td_sticks += bump; 686 687 if (frame && CLKF_INTR(intr_nest)) { 688 #ifdef DEBUG_PCTRACK 689 do_pctrack(frame, PCTRACK_INT); 690 #endif 691 cpu_time.cp_intr += bump; 692 } else { 693 if (td == &mycpu->gd_idlethread) { 694 cpu_time.cp_idle += bump; 695 } else { 696 #ifdef DEBUG_PCTRACK 697 if (frame) 698 do_pctrack(frame, PCTRACK_SYS); 699 #endif 700 cpu_time.cp_sys += bump; 701 } 702 } 703 } 704 } 705 706 #ifdef DEBUG_PCTRACK 707 /* 708 * Sample the PC when in the kernel or in an interrupt. User code can 709 * retrieve the information and generate a histogram or other output. 710 */ 711 712 static void 713 do_pctrack(struct intrframe *frame, int which) 714 { 715 struct kinfo_pctrack *pctrack; 716 717 pctrack = &cputime_pctrack[mycpu->gd_cpuid][which]; 718 pctrack->pc_array[pctrack->pc_index & PCTRACK_ARYMASK] = 719 (void *)CLKF_PC(frame); 720 ++pctrack->pc_index; 721 } 722 723 static int 724 sysctl_pctrack(SYSCTL_HANDLER_ARGS) 725 { 726 struct kinfo_pcheader head; 727 int error; 728 int cpu; 729 int ntrack; 730 731 head.pc_ntrack = PCTRACK_SIZE; 732 head.pc_arysize = PCTRACK_ARYSIZE; 733 734 if ((error = SYSCTL_OUT(req, &head, sizeof(head))) != 0) 735 return (error); 736 737 for (cpu = 0; cpu < ncpus; ++cpu) { 738 for (ntrack = 0; ntrack < PCTRACK_SIZE; ++ntrack) { 739 error = SYSCTL_OUT(req, &cputime_pctrack[cpu][ntrack], 740 sizeof(struct kinfo_pctrack)); 741 if (error) 742 break; 743 } 744 if (error) 745 break; 746 } 747 return (error); 748 } 749 SYSCTL_PROC(_kern, OID_AUTO, pctrack, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0, 750 sysctl_pctrack, "S,kinfo_pcheader", "CPU PC tracking"); 751 752 #endif 753 754 /* 755 * The scheduler clock typically runs at a 50Hz rate. NOTE! systimer, 756 * the MP lock might not be held. We can safely manipulate parts of curproc 757 * but that's about it. 758 * 759 * Each cpu has its own scheduler clock. 760 */ 761 static void 762 schedclock(systimer_t info, int in_ipi __unused, struct intrframe *frame) 763 { 764 struct lwp *lp; 765 struct rusage *ru; 766 struct vmspace *vm; 767 long rss; 768 769 if ((lp = lwkt_preempted_proc()) != NULL) { 770 /* 771 * Account for cpu time used and hit the scheduler. Note 772 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD 773 * HERE. 774 */ 775 ++lp->lwp_cpticks; 776 lp->lwp_proc->p_usched->schedulerclock(lp, info->periodic, 777 info->time); 778 } 779 if ((lp = curthread->td_lwp) != NULL) { 780 /* 781 * Update resource usage integrals and maximums. 782 */ 783 if ((ru = &lp->lwp_proc->p_ru) && 784 (vm = lp->lwp_proc->p_vmspace) != NULL) { 785 ru->ru_ixrss += pgtok(vm->vm_tsize); 786 ru->ru_idrss += pgtok(vm->vm_dsize); 787 ru->ru_isrss += pgtok(vm->vm_ssize); 788 if (lwkt_trytoken(&vm->vm_map.token)) { 789 rss = pgtok(vmspace_resident_count(vm)); 790 if (ru->ru_maxrss < rss) 791 ru->ru_maxrss = rss; 792 lwkt_reltoken(&vm->vm_map.token); 793 } 794 } 795 } 796 } 797 798 /* 799 * Compute number of ticks for the specified amount of time. The 800 * return value is intended to be used in a clock interrupt timed 801 * operation and guarenteed to meet or exceed the requested time. 802 * If the representation overflows, return INT_MAX. The minimum return 803 * value is 1 ticks and the function will average the calculation up. 804 * If any value greater then 0 microseconds is supplied, a value 805 * of at least 2 will be returned to ensure that a near-term clock 806 * interrupt does not cause the timeout to occur (degenerately) early. 807 * 808 * Note that limit checks must take into account microseconds, which is 809 * done simply by using the smaller signed long maximum instead of 810 * the unsigned long maximum. 811 * 812 * If ints have 32 bits, then the maximum value for any timeout in 813 * 10ms ticks is 248 days. 814 */ 815 int 816 tvtohz_high(struct timeval *tv) 817 { 818 int ticks; 819 long sec, usec; 820 821 sec = tv->tv_sec; 822 usec = tv->tv_usec; 823 if (usec < 0) { 824 sec--; 825 usec += 1000000; 826 } 827 if (sec < 0) { 828 #ifdef DIAGNOSTIC 829 if (usec > 0) { 830 sec++; 831 usec -= 1000000; 832 } 833 kprintf("tvtohz_high: negative time difference " 834 "%ld sec %ld usec\n", 835 sec, usec); 836 #endif 837 ticks = 1; 838 } else if (sec <= INT_MAX / hz) { 839 ticks = (int)(sec * hz + 840 ((u_long)usec + (ustick - 1)) / ustick) + 1; 841 } else { 842 ticks = INT_MAX; 843 } 844 return (ticks); 845 } 846 847 int 848 tstohz_high(struct timespec *ts) 849 { 850 int ticks; 851 long sec, nsec; 852 853 sec = ts->tv_sec; 854 nsec = ts->tv_nsec; 855 if (nsec < 0) { 856 sec--; 857 nsec += 1000000000; 858 } 859 if (sec < 0) { 860 #ifdef DIAGNOSTIC 861 if (nsec > 0) { 862 sec++; 863 nsec -= 1000000000; 864 } 865 kprintf("tstohz_high: negative time difference " 866 "%ld sec %ld nsec\n", 867 sec, nsec); 868 #endif 869 ticks = 1; 870 } else if (sec <= INT_MAX / hz) { 871 ticks = (int)(sec * hz + 872 ((u_long)nsec + (nstick - 1)) / nstick) + 1; 873 } else { 874 ticks = INT_MAX; 875 } 876 return (ticks); 877 } 878 879 880 /* 881 * Compute number of ticks for the specified amount of time, erroring on 882 * the side of it being too low to ensure that sleeping the returned number 883 * of ticks will not result in a late return. 884 * 885 * The supplied timeval may not be negative and should be normalized. A 886 * return value of 0 is possible if the timeval converts to less then 887 * 1 tick. 888 * 889 * If ints have 32 bits, then the maximum value for any timeout in 890 * 10ms ticks is 248 days. 891 */ 892 int 893 tvtohz_low(struct timeval *tv) 894 { 895 int ticks; 896 long sec; 897 898 sec = tv->tv_sec; 899 if (sec <= INT_MAX / hz) 900 ticks = (int)(sec * hz + (u_long)tv->tv_usec / ustick); 901 else 902 ticks = INT_MAX; 903 return (ticks); 904 } 905 906 int 907 tstohz_low(struct timespec *ts) 908 { 909 int ticks; 910 long sec; 911 912 sec = ts->tv_sec; 913 if (sec <= INT_MAX / hz) 914 ticks = (int)(sec * hz + (u_long)ts->tv_nsec / nstick); 915 else 916 ticks = INT_MAX; 917 return (ticks); 918 } 919 920 /* 921 * Start profiling on a process. 922 * 923 * Kernel profiling passes proc0 which never exits and hence 924 * keeps the profile clock running constantly. 925 */ 926 void 927 startprofclock(struct proc *p) 928 { 929 if ((p->p_flags & P_PROFIL) == 0) { 930 p->p_flags |= P_PROFIL; 931 #if 0 /* XXX */ 932 if (++profprocs == 1 && stathz != 0) { 933 crit_enter(); 934 psdiv = psratio; 935 setstatclockrate(profhz); 936 crit_exit(); 937 } 938 #endif 939 } 940 } 941 942 /* 943 * Stop profiling on a process. 944 * 945 * caller must hold p->p_token 946 */ 947 void 948 stopprofclock(struct proc *p) 949 { 950 if (p->p_flags & P_PROFIL) { 951 p->p_flags &= ~P_PROFIL; 952 #if 0 /* XXX */ 953 if (--profprocs == 0 && stathz != 0) { 954 crit_enter(); 955 psdiv = 1; 956 setstatclockrate(stathz); 957 crit_exit(); 958 } 959 #endif 960 } 961 } 962 963 /* 964 * Return information about system clocks. 965 */ 966 static int 967 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS) 968 { 969 struct kinfo_clockinfo clkinfo; 970 /* 971 * Construct clockinfo structure. 972 */ 973 clkinfo.ci_hz = hz; 974 clkinfo.ci_tick = ustick; 975 clkinfo.ci_tickadj = ntp_default_tick_delta / 1000; 976 clkinfo.ci_profhz = profhz; 977 clkinfo.ci_stathz = stathz ? stathz : hz; 978 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req)); 979 } 980 981 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD, 982 0, 0, sysctl_kern_clockrate, "S,clockinfo",""); 983 984 /* 985 * We have eight functions for looking at the clock, four for 986 * microseconds and four for nanoseconds. For each there is fast 987 * but less precise version "get{nano|micro}[up]time" which will 988 * return a time which is up to 1/HZ previous to the call, whereas 989 * the raw version "{nano|micro}[up]time" will return a timestamp 990 * which is as precise as possible. The "up" variants return the 991 * time relative to system boot, these are well suited for time 992 * interval measurements. 993 * 994 * Each cpu independantly maintains the current time of day, so all 995 * we need to do to protect ourselves from changes is to do a loop 996 * check on the seconds field changing out from under us. 997 * 998 * The system timer maintains a 32 bit count and due to various issues 999 * it is possible for the calculated delta to occassionally exceed 1000 * sys_cputimer->freq. If this occurs the sys_cputimer->freq64_nsec 1001 * multiplication can easily overflow, so we deal with the case. For 1002 * uniformity we deal with the case in the usec case too. 1003 * 1004 * All the [get][micro,nano][time,uptime]() routines are MPSAFE. 1005 */ 1006 void 1007 getmicrouptime(struct timeval *tvp) 1008 { 1009 struct globaldata *gd = mycpu; 1010 sysclock_t delta; 1011 1012 do { 1013 tvp->tv_sec = gd->gd_time_seconds; 1014 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1015 } while (tvp->tv_sec != gd->gd_time_seconds); 1016 1017 if (delta >= sys_cputimer->freq) { 1018 tvp->tv_sec += delta / sys_cputimer->freq; 1019 delta %= sys_cputimer->freq; 1020 } 1021 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1022 if (tvp->tv_usec >= 1000000) { 1023 tvp->tv_usec -= 1000000; 1024 ++tvp->tv_sec; 1025 } 1026 } 1027 1028 void 1029 getnanouptime(struct timespec *tsp) 1030 { 1031 struct globaldata *gd = mycpu; 1032 sysclock_t delta; 1033 1034 do { 1035 tsp->tv_sec = gd->gd_time_seconds; 1036 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1037 } while (tsp->tv_sec != gd->gd_time_seconds); 1038 1039 if (delta >= sys_cputimer->freq) { 1040 tsp->tv_sec += delta / sys_cputimer->freq; 1041 delta %= sys_cputimer->freq; 1042 } 1043 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1044 } 1045 1046 void 1047 microuptime(struct timeval *tvp) 1048 { 1049 struct globaldata *gd = mycpu; 1050 sysclock_t delta; 1051 1052 do { 1053 tvp->tv_sec = gd->gd_time_seconds; 1054 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1055 } while (tvp->tv_sec != gd->gd_time_seconds); 1056 1057 if (delta >= sys_cputimer->freq) { 1058 tvp->tv_sec += delta / sys_cputimer->freq; 1059 delta %= sys_cputimer->freq; 1060 } 1061 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1062 } 1063 1064 void 1065 nanouptime(struct timespec *tsp) 1066 { 1067 struct globaldata *gd = mycpu; 1068 sysclock_t delta; 1069 1070 do { 1071 tsp->tv_sec = gd->gd_time_seconds; 1072 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1073 } while (tsp->tv_sec != gd->gd_time_seconds); 1074 1075 if (delta >= sys_cputimer->freq) { 1076 tsp->tv_sec += delta / sys_cputimer->freq; 1077 delta %= sys_cputimer->freq; 1078 } 1079 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1080 } 1081 1082 /* 1083 * realtime routines 1084 */ 1085 void 1086 getmicrotime(struct timeval *tvp) 1087 { 1088 struct globaldata *gd = mycpu; 1089 struct timespec *bt; 1090 sysclock_t delta; 1091 1092 do { 1093 tvp->tv_sec = gd->gd_time_seconds; 1094 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1095 } while (tvp->tv_sec != gd->gd_time_seconds); 1096 1097 if (delta >= sys_cputimer->freq) { 1098 tvp->tv_sec += delta / sys_cputimer->freq; 1099 delta %= sys_cputimer->freq; 1100 } 1101 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1102 1103 bt = &basetime[basetime_index]; 1104 tvp->tv_sec += bt->tv_sec; 1105 tvp->tv_usec += bt->tv_nsec / 1000; 1106 while (tvp->tv_usec >= 1000000) { 1107 tvp->tv_usec -= 1000000; 1108 ++tvp->tv_sec; 1109 } 1110 } 1111 1112 void 1113 getnanotime(struct timespec *tsp) 1114 { 1115 struct globaldata *gd = mycpu; 1116 struct timespec *bt; 1117 sysclock_t delta; 1118 1119 do { 1120 tsp->tv_sec = gd->gd_time_seconds; 1121 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1122 } while (tsp->tv_sec != gd->gd_time_seconds); 1123 1124 if (delta >= sys_cputimer->freq) { 1125 tsp->tv_sec += delta / sys_cputimer->freq; 1126 delta %= sys_cputimer->freq; 1127 } 1128 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1129 1130 bt = &basetime[basetime_index]; 1131 tsp->tv_sec += bt->tv_sec; 1132 tsp->tv_nsec += bt->tv_nsec; 1133 while (tsp->tv_nsec >= 1000000000) { 1134 tsp->tv_nsec -= 1000000000; 1135 ++tsp->tv_sec; 1136 } 1137 } 1138 1139 static void 1140 getnanotime_nbt(struct timespec *nbt, struct timespec *tsp) 1141 { 1142 struct globaldata *gd = mycpu; 1143 sysclock_t delta; 1144 1145 do { 1146 tsp->tv_sec = gd->gd_time_seconds; 1147 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1148 } while (tsp->tv_sec != gd->gd_time_seconds); 1149 1150 if (delta >= sys_cputimer->freq) { 1151 tsp->tv_sec += delta / sys_cputimer->freq; 1152 delta %= sys_cputimer->freq; 1153 } 1154 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1155 1156 tsp->tv_sec += nbt->tv_sec; 1157 tsp->tv_nsec += nbt->tv_nsec; 1158 while (tsp->tv_nsec >= 1000000000) { 1159 tsp->tv_nsec -= 1000000000; 1160 ++tsp->tv_sec; 1161 } 1162 } 1163 1164 1165 void 1166 microtime(struct timeval *tvp) 1167 { 1168 struct globaldata *gd = mycpu; 1169 struct timespec *bt; 1170 sysclock_t delta; 1171 1172 do { 1173 tvp->tv_sec = gd->gd_time_seconds; 1174 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1175 } while (tvp->tv_sec != gd->gd_time_seconds); 1176 1177 if (delta >= sys_cputimer->freq) { 1178 tvp->tv_sec += delta / sys_cputimer->freq; 1179 delta %= sys_cputimer->freq; 1180 } 1181 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1182 1183 bt = &basetime[basetime_index]; 1184 tvp->tv_sec += bt->tv_sec; 1185 tvp->tv_usec += bt->tv_nsec / 1000; 1186 while (tvp->tv_usec >= 1000000) { 1187 tvp->tv_usec -= 1000000; 1188 ++tvp->tv_sec; 1189 } 1190 } 1191 1192 void 1193 nanotime(struct timespec *tsp) 1194 { 1195 struct globaldata *gd = mycpu; 1196 struct timespec *bt; 1197 sysclock_t delta; 1198 1199 do { 1200 tsp->tv_sec = gd->gd_time_seconds; 1201 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1202 } while (tsp->tv_sec != gd->gd_time_seconds); 1203 1204 if (delta >= sys_cputimer->freq) { 1205 tsp->tv_sec += delta / sys_cputimer->freq; 1206 delta %= sys_cputimer->freq; 1207 } 1208 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1209 1210 bt = &basetime[basetime_index]; 1211 tsp->tv_sec += bt->tv_sec; 1212 tsp->tv_nsec += bt->tv_nsec; 1213 while (tsp->tv_nsec >= 1000000000) { 1214 tsp->tv_nsec -= 1000000000; 1215 ++tsp->tv_sec; 1216 } 1217 } 1218 1219 /* 1220 * note: this is not exactly synchronized with real time. To do that we 1221 * would have to do what microtime does and check for a nanoseconds overflow. 1222 */ 1223 time_t 1224 get_approximate_time_t(void) 1225 { 1226 struct globaldata *gd = mycpu; 1227 struct timespec *bt; 1228 1229 bt = &basetime[basetime_index]; 1230 return(gd->gd_time_seconds + bt->tv_sec); 1231 } 1232 1233 int 1234 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps) 1235 { 1236 pps_params_t *app; 1237 struct pps_fetch_args *fapi; 1238 #ifdef PPS_SYNC 1239 struct pps_kcbind_args *kapi; 1240 #endif 1241 1242 switch (cmd) { 1243 case PPS_IOC_CREATE: 1244 return (0); 1245 case PPS_IOC_DESTROY: 1246 return (0); 1247 case PPS_IOC_SETPARAMS: 1248 app = (pps_params_t *)data; 1249 if (app->mode & ~pps->ppscap) 1250 return (EINVAL); 1251 pps->ppsparam = *app; 1252 return (0); 1253 case PPS_IOC_GETPARAMS: 1254 app = (pps_params_t *)data; 1255 *app = pps->ppsparam; 1256 app->api_version = PPS_API_VERS_1; 1257 return (0); 1258 case PPS_IOC_GETCAP: 1259 *(int*)data = pps->ppscap; 1260 return (0); 1261 case PPS_IOC_FETCH: 1262 fapi = (struct pps_fetch_args *)data; 1263 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC) 1264 return (EINVAL); 1265 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) 1266 return (EOPNOTSUPP); 1267 pps->ppsinfo.current_mode = pps->ppsparam.mode; 1268 fapi->pps_info_buf = pps->ppsinfo; 1269 return (0); 1270 case PPS_IOC_KCBIND: 1271 #ifdef PPS_SYNC 1272 kapi = (struct pps_kcbind_args *)data; 1273 /* XXX Only root should be able to do this */ 1274 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC) 1275 return (EINVAL); 1276 if (kapi->kernel_consumer != PPS_KC_HARDPPS) 1277 return (EINVAL); 1278 if (kapi->edge & ~pps->ppscap) 1279 return (EINVAL); 1280 pps->kcmode = kapi->edge; 1281 return (0); 1282 #else 1283 return (EOPNOTSUPP); 1284 #endif 1285 default: 1286 return (ENOTTY); 1287 } 1288 } 1289 1290 void 1291 pps_init(struct pps_state *pps) 1292 { 1293 pps->ppscap |= PPS_TSFMT_TSPEC; 1294 if (pps->ppscap & PPS_CAPTUREASSERT) 1295 pps->ppscap |= PPS_OFFSETASSERT; 1296 if (pps->ppscap & PPS_CAPTURECLEAR) 1297 pps->ppscap |= PPS_OFFSETCLEAR; 1298 } 1299 1300 void 1301 pps_event(struct pps_state *pps, sysclock_t count, int event) 1302 { 1303 struct globaldata *gd; 1304 struct timespec *tsp; 1305 struct timespec *osp; 1306 struct timespec *bt; 1307 struct timespec ts; 1308 sysclock_t *pcount; 1309 #ifdef PPS_SYNC 1310 sysclock_t tcount; 1311 #endif 1312 sysclock_t delta; 1313 pps_seq_t *pseq; 1314 int foff; 1315 int fhard; 1316 1317 gd = mycpu; 1318 1319 /* Things would be easier with arrays... */ 1320 if (event == PPS_CAPTUREASSERT) { 1321 tsp = &pps->ppsinfo.assert_timestamp; 1322 osp = &pps->ppsparam.assert_offset; 1323 foff = pps->ppsparam.mode & PPS_OFFSETASSERT; 1324 fhard = pps->kcmode & PPS_CAPTUREASSERT; 1325 pcount = &pps->ppscount[0]; 1326 pseq = &pps->ppsinfo.assert_sequence; 1327 } else { 1328 tsp = &pps->ppsinfo.clear_timestamp; 1329 osp = &pps->ppsparam.clear_offset; 1330 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR; 1331 fhard = pps->kcmode & PPS_CAPTURECLEAR; 1332 pcount = &pps->ppscount[1]; 1333 pseq = &pps->ppsinfo.clear_sequence; 1334 } 1335 1336 /* Nothing really happened */ 1337 if (*pcount == count) 1338 return; 1339 1340 *pcount = count; 1341 1342 do { 1343 ts.tv_sec = gd->gd_time_seconds; 1344 delta = count - gd->gd_cpuclock_base; 1345 } while (ts.tv_sec != gd->gd_time_seconds); 1346 1347 if (delta >= sys_cputimer->freq) { 1348 ts.tv_sec += delta / sys_cputimer->freq; 1349 delta %= sys_cputimer->freq; 1350 } 1351 ts.tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1352 bt = &basetime[basetime_index]; 1353 ts.tv_sec += bt->tv_sec; 1354 ts.tv_nsec += bt->tv_nsec; 1355 while (ts.tv_nsec >= 1000000000) { 1356 ts.tv_nsec -= 1000000000; 1357 ++ts.tv_sec; 1358 } 1359 1360 (*pseq)++; 1361 *tsp = ts; 1362 1363 if (foff) { 1364 timespecadd(tsp, osp); 1365 if (tsp->tv_nsec < 0) { 1366 tsp->tv_nsec += 1000000000; 1367 tsp->tv_sec -= 1; 1368 } 1369 } 1370 #ifdef PPS_SYNC 1371 if (fhard) { 1372 /* magic, at its best... */ 1373 tcount = count - pps->ppscount[2]; 1374 pps->ppscount[2] = count; 1375 if (tcount >= sys_cputimer->freq) { 1376 delta = (1000000000 * (tcount / sys_cputimer->freq) + 1377 sys_cputimer->freq64_nsec * 1378 (tcount % sys_cputimer->freq)) >> 32; 1379 } else { 1380 delta = (sys_cputimer->freq64_nsec * tcount) >> 32; 1381 } 1382 hardpps(tsp, delta); 1383 } 1384 #endif 1385 } 1386 1387 /* 1388 * Return the tsc target value for a delay of (ns). 1389 * 1390 * Returns -1 if the TSC is not supported. 1391 */ 1392 int64_t 1393 tsc_get_target(int ns) 1394 { 1395 #if defined(_RDTSC_SUPPORTED_) 1396 if (cpu_feature & CPUID_TSC) { 1397 return (rdtsc() + tsc_frequency * ns / (int64_t)1000000000); 1398 } 1399 #endif 1400 return(-1); 1401 } 1402 1403 /* 1404 * Compare the tsc against the passed target 1405 * 1406 * Returns +1 if the target has been reached 1407 * Returns 0 if the target has not yet been reached 1408 * Returns -1 if the TSC is not supported. 1409 * 1410 * Typical use: while (tsc_test_target(target) == 0) { ...poll... } 1411 */ 1412 int 1413 tsc_test_target(int64_t target) 1414 { 1415 #if defined(_RDTSC_SUPPORTED_) 1416 if (cpu_feature & CPUID_TSC) { 1417 if ((int64_t)(target - rdtsc()) <= 0) 1418 return(1); 1419 return(0); 1420 } 1421 #endif 1422 return(-1); 1423 } 1424 1425 /* 1426 * Delay the specified number of nanoseconds using the tsc. This function 1427 * returns immediately if the TSC is not supported. At least one cpu_pause() 1428 * will be issued. 1429 */ 1430 void 1431 tsc_delay(int ns) 1432 { 1433 int64_t clk; 1434 1435 clk = tsc_get_target(ns); 1436 cpu_pause(); 1437 while (tsc_test_target(clk) == 0) 1438 cpu_pause(); 1439 } 1440