xref: /dragonfly/sys/kern/kern_clock.c (revision 8a0bcd56)
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
35  * Copyright (c) 1982, 1986, 1991, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  * (c) UNIX System Laboratories, Inc.
38  * All or some portions of this file are derived from material licensed
39  * to the University of California by American Telephone and Telegraph
40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41  * the permission of UNIX System Laboratories, Inc.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed by the University of
54  *	California, Berkeley and its contributors.
55  * 4. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
72  * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $
73  * $DragonFly: src/sys/kern/kern_clock.c,v 1.62 2008/09/09 04:06:13 dillon Exp $
74  */
75 
76 #include "opt_ntp.h"
77 #include "opt_polling.h"
78 #include "opt_ifpoll.h"
79 #include "opt_pctrack.h"
80 
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/callout.h>
84 #include <sys/kernel.h>
85 #include <sys/kinfo.h>
86 #include <sys/proc.h>
87 #include <sys/malloc.h>
88 #include <sys/resourcevar.h>
89 #include <sys/signalvar.h>
90 #include <sys/timex.h>
91 #include <sys/timepps.h>
92 #include <vm/vm.h>
93 #include <sys/lock.h>
94 #include <vm/pmap.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_extern.h>
97 #include <sys/sysctl.h>
98 
99 #include <sys/thread2.h>
100 #include <sys/mplock2.h>
101 
102 #include <machine/cpu.h>
103 #include <machine/limits.h>
104 #include <machine/smp.h>
105 #include <machine/cpufunc.h>
106 #include <machine/specialreg.h>
107 #include <machine/clock.h>
108 
109 #ifdef GPROF
110 #include <sys/gmon.h>
111 #endif
112 
113 #ifdef DEVICE_POLLING
114 extern void init_device_poll_pcpu(int);
115 #endif
116 
117 #ifdef IFPOLL_ENABLE
118 extern void ifpoll_init_pcpu(int);
119 #endif
120 
121 #ifdef DEBUG_PCTRACK
122 static void do_pctrack(struct intrframe *frame, int which);
123 #endif
124 
125 static void initclocks (void *dummy);
126 SYSINIT(clocks, SI_BOOT2_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
127 
128 /*
129  * Some of these don't belong here, but it's easiest to concentrate them.
130  * Note that cpu_time counts in microseconds, but most userland programs
131  * just compare relative times against the total by delta.
132  */
133 struct kinfo_cputime cputime_percpu[MAXCPU];
134 #ifdef DEBUG_PCTRACK
135 struct kinfo_pcheader cputime_pcheader = { PCTRACK_SIZE, PCTRACK_ARYSIZE };
136 struct kinfo_pctrack cputime_pctrack[MAXCPU][PCTRACK_SIZE];
137 #endif
138 
139 #ifdef SMP
140 static int
141 sysctl_cputime(SYSCTL_HANDLER_ARGS)
142 {
143 	int cpu, error = 0;
144 	size_t size = sizeof(struct kinfo_cputime);
145 
146 	for (cpu = 0; cpu < ncpus; ++cpu) {
147 		if ((error = SYSCTL_OUT(req, &cputime_percpu[cpu], size)))
148 			break;
149 	}
150 
151 	return (error);
152 }
153 SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
154 	sysctl_cputime, "S,kinfo_cputime", "CPU time statistics");
155 #else
156 SYSCTL_STRUCT(_kern, OID_AUTO, cputime, CTLFLAG_RD, &cpu_time, kinfo_cputime,
157     "CPU time statistics");
158 #endif
159 
160 /*
161  * boottime is used to calculate the 'real' uptime.  Do not confuse this with
162  * microuptime().  microtime() is not drift compensated.  The real uptime
163  * with compensation is nanotime() - bootime.  boottime is recalculated
164  * whenever the real time is set based on the compensated elapsed time
165  * in seconds (gd->gd_time_seconds).
166  *
167  * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic.
168  * Slight adjustments to gd_cpuclock_base are made to phase-lock it to
169  * the real time.
170  */
171 struct timespec boottime;	/* boot time (realtime) for reference only */
172 time_t time_second;		/* read-only 'passive' uptime in seconds */
173 
174 /*
175  * basetime is used to calculate the compensated real time of day.  The
176  * basetime can be modified on a per-tick basis by the adjtime(),
177  * ntp_adjtime(), and sysctl-based time correction APIs.
178  *
179  * Note that frequency corrections can also be made by adjusting
180  * gd_cpuclock_base.
181  *
182  * basetime is a tail-chasing FIFO, updated only by cpu #0.  The FIFO is
183  * used on both SMP and UP systems to avoid MP races between cpu's and
184  * interrupt races on UP systems.
185  */
186 #define BASETIME_ARYSIZE	16
187 #define BASETIME_ARYMASK	(BASETIME_ARYSIZE - 1)
188 static struct timespec basetime[BASETIME_ARYSIZE];
189 static volatile int basetime_index;
190 
191 static int
192 sysctl_get_basetime(SYSCTL_HANDLER_ARGS)
193 {
194 	struct timespec *bt;
195 	int error;
196 	int index;
197 
198 	/*
199 	 * Because basetime data and index may be updated by another cpu,
200 	 * a load fence is required to ensure that the data we read has
201 	 * not been speculatively read relative to a possibly updated index.
202 	 */
203 	index = basetime_index;
204 	cpu_lfence();
205 	bt = &basetime[index];
206 	error = SYSCTL_OUT(req, bt, sizeof(*bt));
207 	return (error);
208 }
209 
210 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
211     &boottime, timespec, "System boottime");
212 SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0,
213     sysctl_get_basetime, "S,timespec", "System basetime");
214 
215 static void hardclock(systimer_t info, struct intrframe *frame);
216 static void statclock(systimer_t info, struct intrframe *frame);
217 static void schedclock(systimer_t info, struct intrframe *frame);
218 static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp);
219 
220 int	ticks;			/* system master ticks at hz */
221 int	clocks_running;		/* tsleep/timeout clocks operational */
222 int64_t	nsec_adj;		/* ntpd per-tick adjustment in nsec << 32 */
223 int64_t	nsec_acc;		/* accumulator */
224 
225 /* NTPD time correction fields */
226 int64_t	ntp_tick_permanent;	/* per-tick adjustment in nsec << 32 */
227 int64_t	ntp_tick_acc;		/* accumulator for per-tick adjustment */
228 int64_t	ntp_delta;		/* one-time correction in nsec */
229 int64_t ntp_big_delta = 1000000000;
230 int32_t	ntp_tick_delta;		/* current adjustment rate */
231 int32_t	ntp_default_tick_delta;	/* adjustment rate for ntp_delta */
232 time_t	ntp_leap_second;	/* time of next leap second */
233 int	ntp_leap_insert;	/* whether to insert or remove a second */
234 
235 /*
236  * Finish initializing clock frequencies and start all clocks running.
237  */
238 /* ARGSUSED*/
239 static void
240 initclocks(void *dummy)
241 {
242 	/*psratio = profhz / stathz;*/
243 	initclocks_pcpu();
244 	clocks_running = 1;
245 }
246 
247 /*
248  * Called on a per-cpu basis
249  */
250 void
251 initclocks_pcpu(void)
252 {
253 	struct globaldata *gd = mycpu;
254 
255 	crit_enter();
256 	if (gd->gd_cpuid == 0) {
257 	    gd->gd_time_seconds = 1;
258 	    gd->gd_cpuclock_base = sys_cputimer->count();
259 	} else {
260 	    /* XXX */
261 	    gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds;
262 	    gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base;
263 	}
264 
265 	systimer_intr_enable();
266 
267 #ifdef DEVICE_POLLING
268 	init_device_poll_pcpu(gd->gd_cpuid);
269 #endif
270 
271 #ifdef IFPOLL_ENABLE
272 	ifpoll_init_pcpu(gd->gd_cpuid);
273 #endif
274 
275 	/*
276 	 * Use a non-queued periodic systimer to prevent multiple ticks from
277 	 * building up if the sysclock jumps forward (8254 gets reset).  The
278 	 * sysclock will never jump backwards.  Our time sync is based on
279 	 * the actual sysclock, not the ticks count.
280 	 */
281 	systimer_init_periodic_nq(&gd->gd_hardclock, hardclock, NULL, hz);
282 	systimer_init_periodic_nq(&gd->gd_statclock, statclock, NULL, stathz);
283 	/* XXX correct the frequency for scheduler / estcpu tests */
284 	systimer_init_periodic_nq(&gd->gd_schedclock, schedclock,
285 				NULL, ESTCPUFREQ);
286 	crit_exit();
287 }
288 
289 /*
290  * This sets the current real time of day.  Timespecs are in seconds and
291  * nanoseconds.  We do not mess with gd_time_seconds and gd_cpuclock_base,
292  * instead we adjust basetime so basetime + gd_* results in the current
293  * time of day.  This way the gd_* fields are guarenteed to represent
294  * a monotonically increasing 'uptime' value.
295  *
296  * When set_timeofday() is called from userland, the system call forces it
297  * onto cpu #0 since only cpu #0 can update basetime_index.
298  */
299 void
300 set_timeofday(struct timespec *ts)
301 {
302 	struct timespec *nbt;
303 	int ni;
304 
305 	/*
306 	 * XXX SMP / non-atomic basetime updates
307 	 */
308 	crit_enter();
309 	ni = (basetime_index + 1) & BASETIME_ARYMASK;
310 	nbt = &basetime[ni];
311 	nanouptime(nbt);
312 	nbt->tv_sec = ts->tv_sec - nbt->tv_sec;
313 	nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec;
314 	if (nbt->tv_nsec < 0) {
315 	    nbt->tv_nsec += 1000000000;
316 	    --nbt->tv_sec;
317 	}
318 
319 	/*
320 	 * Note that basetime diverges from boottime as the clock drift is
321 	 * compensated for, so we cannot do away with boottime.  When setting
322 	 * the absolute time of day the drift is 0 (for an instant) and we
323 	 * can simply assign boottime to basetime.
324 	 *
325 	 * Note that nanouptime() is based on gd_time_seconds which is drift
326 	 * compensated up to a point (it is guarenteed to remain monotonically
327 	 * increasing).  gd_time_seconds is thus our best uptime guess and
328 	 * suitable for use in the boottime calculation.  It is already taken
329 	 * into account in the basetime calculation above.
330 	 */
331 	boottime.tv_sec = nbt->tv_sec;
332 	ntp_delta = 0;
333 
334 	/*
335 	 * We now have a new basetime, make sure all other cpus have it,
336 	 * then update the index.
337 	 */
338 	cpu_sfence();
339 	basetime_index = ni;
340 
341 	crit_exit();
342 }
343 
344 /*
345  * Each cpu has its own hardclock, but we only increments ticks and softticks
346  * on cpu #0.
347  *
348  * NOTE! systimer! the MP lock might not be held here.  We can only safely
349  * manipulate objects owned by the current cpu.
350  */
351 static void
352 hardclock(systimer_t info, struct intrframe *frame)
353 {
354 	sysclock_t cputicks;
355 	struct proc *p;
356 	struct globaldata *gd = mycpu;
357 
358 	/*
359 	 * Realtime updates are per-cpu.  Note that timer corrections as
360 	 * returned by microtime() and friends make an additional adjustment
361 	 * using a system-wise 'basetime', but the running time is always
362 	 * taken from the per-cpu globaldata area.  Since the same clock
363 	 * is distributing (XXX SMP) to all cpus, the per-cpu timebases
364 	 * stay in synch.
365 	 *
366 	 * Note that we never allow info->time (aka gd->gd_hardclock.time)
367 	 * to reverse index gd_cpuclock_base, but that it is possible for
368 	 * it to temporarily get behind in the seconds if something in the
369 	 * system locks interrupts for a long period of time.  Since periodic
370 	 * timers count events, though everything should resynch again
371 	 * immediately.
372 	 */
373 	cputicks = info->time - gd->gd_cpuclock_base;
374 	if (cputicks >= sys_cputimer->freq) {
375 		++gd->gd_time_seconds;
376 		gd->gd_cpuclock_base += sys_cputimer->freq;
377 	}
378 
379 	/*
380 	 * The system-wide ticks counter and NTP related timedelta/tickdelta
381 	 * adjustments only occur on cpu #0.  NTP adjustments are accomplished
382 	 * by updating basetime.
383 	 */
384 	if (gd->gd_cpuid == 0) {
385 	    struct timespec *nbt;
386 	    struct timespec nts;
387 	    int leap;
388 	    int ni;
389 
390 	    ++ticks;
391 
392 #if 0
393 	    if (tco->tc_poll_pps)
394 		tco->tc_poll_pps(tco);
395 #endif
396 
397 	    /*
398 	     * Calculate the new basetime index.  We are in a critical section
399 	     * on cpu #0 and can safely play with basetime_index.  Start
400 	     * with the current basetime and then make adjustments.
401 	     */
402 	    ni = (basetime_index + 1) & BASETIME_ARYMASK;
403 	    nbt = &basetime[ni];
404 	    *nbt = basetime[basetime_index];
405 
406 	    /*
407 	     * Apply adjtime corrections.  (adjtime() API)
408 	     *
409 	     * adjtime() only runs on cpu #0 so our critical section is
410 	     * sufficient to access these variables.
411 	     */
412 	    if (ntp_delta != 0) {
413 		nbt->tv_nsec += ntp_tick_delta;
414 		ntp_delta -= ntp_tick_delta;
415 		if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) ||
416 		    (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) {
417 			ntp_tick_delta = ntp_delta;
418  		}
419  	    }
420 
421 	    /*
422 	     * Apply permanent frequency corrections.  (sysctl API)
423 	     */
424 	    if (ntp_tick_permanent != 0) {
425 		ntp_tick_acc += ntp_tick_permanent;
426 		if (ntp_tick_acc >= (1LL << 32)) {
427 		    nbt->tv_nsec += ntp_tick_acc >> 32;
428 		    ntp_tick_acc -= (ntp_tick_acc >> 32) << 32;
429 		} else if (ntp_tick_acc <= -(1LL << 32)) {
430 		    /* Negate ntp_tick_acc to avoid shifting the sign bit. */
431 		    nbt->tv_nsec -= (-ntp_tick_acc) >> 32;
432 		    ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32;
433 		}
434  	    }
435 
436 	    if (nbt->tv_nsec >= 1000000000) {
437 		    nbt->tv_sec++;
438 		    nbt->tv_nsec -= 1000000000;
439 	    } else if (nbt->tv_nsec < 0) {
440 		    nbt->tv_sec--;
441 		    nbt->tv_nsec += 1000000000;
442 	    }
443 
444 	    /*
445 	     * Another per-tick compensation.  (for ntp_adjtime() API)
446 	     */
447 	    if (nsec_adj != 0) {
448 		nsec_acc += nsec_adj;
449 		if (nsec_acc >= 0x100000000LL) {
450 		    nbt->tv_nsec += nsec_acc >> 32;
451 		    nsec_acc = (nsec_acc & 0xFFFFFFFFLL);
452 		} else if (nsec_acc <= -0x100000000LL) {
453 		    nbt->tv_nsec -= -nsec_acc >> 32;
454 		    nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL);
455 		}
456 		if (nbt->tv_nsec >= 1000000000) {
457 		    nbt->tv_nsec -= 1000000000;
458 		    ++nbt->tv_sec;
459 		} else if (nbt->tv_nsec < 0) {
460 		    nbt->tv_nsec += 1000000000;
461 		    --nbt->tv_sec;
462 		}
463 	    }
464 
465 	    /************************************************************
466 	     *			LEAP SECOND CORRECTION			*
467 	     ************************************************************
468 	     *
469 	     * Taking into account all the corrections made above, figure
470 	     * out the new real time.  If the seconds field has changed
471 	     * then apply any pending leap-second corrections.
472 	     */
473 	    getnanotime_nbt(nbt, &nts);
474 
475 	    if (time_second != nts.tv_sec) {
476 		/*
477 		 * Apply leap second (sysctl API).  Adjust nts for changes
478 		 * so we do not have to call getnanotime_nbt again.
479 		 */
480 		if (ntp_leap_second) {
481 		    if (ntp_leap_second == nts.tv_sec) {
482 			if (ntp_leap_insert) {
483 			    nbt->tv_sec++;
484 			    nts.tv_sec++;
485 			} else {
486 			    nbt->tv_sec--;
487 			    nts.tv_sec--;
488 			}
489 			ntp_leap_second--;
490 		    }
491 		}
492 
493 		/*
494 		 * Apply leap second (ntp_adjtime() API), calculate a new
495 		 * nsec_adj field.  ntp_update_second() returns nsec_adj
496 		 * as a per-second value but we need it as a per-tick value.
497 		 */
498 		leap = ntp_update_second(time_second, &nsec_adj);
499 		nsec_adj /= hz;
500 		nbt->tv_sec += leap;
501 		nts.tv_sec += leap;
502 
503 		/*
504 		 * Update the time_second 'approximate time' global.
505 		 */
506 		time_second = nts.tv_sec;
507 	    }
508 
509 	    /*
510 	     * Finally, our new basetime is ready to go live!
511 	     */
512 	    cpu_sfence();
513 	    basetime_index = ni;
514 
515 	    /*
516 	     * Figure out how badly the system is starved for memory
517 	     */
518 	    vm_fault_ratecheck();
519 	}
520 
521 	/*
522 	 * lwkt thread scheduler fair queueing
523 	 */
524 	lwkt_fairq_schedulerclock(curthread);
525 
526 	/*
527 	 * softticks are handled for all cpus
528 	 */
529 	hardclock_softtick(gd);
530 
531 	/*
532 	 * The LWKT scheduler will generally allow the current process to
533 	 * return to user mode even if there are other runnable LWKT threads
534 	 * running in kernel mode on behalf of a user process.  This will
535 	 * ensure that those other threads have an opportunity to run in
536 	 * fairly short order (but not instantly).
537 	 */
538 	need_lwkt_resched();
539 
540 	/*
541 	 * ITimer handling is per-tick, per-cpu.  I don't think ksignal()
542 	 * is mpsafe on curproc, so XXX get the mplock.
543 	 */
544 	if ((p = curproc) != NULL && lwkt_trytoken(&proc_token)) {
545 		crit_enter_hard();
546 		if (frame && CLKF_USERMODE(frame) &&
547 		    timevalisset(&p->p_timer[ITIMER_VIRTUAL].it_value) &&
548 		    itimerdecr(&p->p_timer[ITIMER_VIRTUAL], ustick) == 0)
549 			ksignal(p, SIGVTALRM);
550 		if (timevalisset(&p->p_timer[ITIMER_PROF].it_value) &&
551 		    itimerdecr(&p->p_timer[ITIMER_PROF], ustick) == 0)
552 			ksignal(p, SIGPROF);
553 		crit_exit_hard();
554 		lwkt_reltoken(&proc_token);
555 	}
556 	setdelayed();
557 }
558 
559 /*
560  * The statistics clock typically runs at a 125Hz rate, and is intended
561  * to be frequency offset from the hardclock (typ 100Hz).  It is per-cpu.
562  *
563  * NOTE! systimer! the MP lock might not be held here.  We can only safely
564  * manipulate objects owned by the current cpu.
565  *
566  * The stats clock is responsible for grabbing a profiling sample.
567  * Most of the statistics are only used by user-level statistics programs.
568  * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and
569  * p->p_estcpu.
570  *
571  * Like the other clocks, the stat clock is called from what is effectively
572  * a fast interrupt, so the context should be the thread/process that got
573  * interrupted.
574  */
575 static void
576 statclock(systimer_t info, struct intrframe *frame)
577 {
578 #ifdef GPROF
579 	struct gmonparam *g;
580 	int i;
581 #endif
582 	thread_t td;
583 	struct proc *p;
584 	int bump;
585 	struct timeval tv;
586 	struct timeval *stv;
587 
588 	/*
589 	 * How big was our timeslice relative to the last time?
590 	 */
591 	microuptime(&tv);	/* mpsafe */
592 	stv = &mycpu->gd_stattv;
593 	if (stv->tv_sec == 0) {
594 	    bump = 1;
595 	} else {
596 	    bump = tv.tv_usec - stv->tv_usec +
597 		(tv.tv_sec - stv->tv_sec) * 1000000;
598 	    if (bump < 0)
599 		bump = 0;
600 	    if (bump > 1000000)
601 		bump = 1000000;
602 	}
603 	*stv = tv;
604 
605 	td = curthread;
606 	p = td->td_proc;
607 
608 	if (frame && CLKF_USERMODE(frame)) {
609 		/*
610 		 * Came from userland, handle user time and deal with
611 		 * possible process.
612 		 */
613 		if (p && (p->p_flag & P_PROFIL))
614 			addupc_intr(p, CLKF_PC(frame), 1);
615 		td->td_uticks += bump;
616 
617 		/*
618 		 * Charge the time as appropriate
619 		 */
620 		if (p && p->p_nice > NZERO)
621 			cpu_time.cp_nice += bump;
622 		else
623 			cpu_time.cp_user += bump;
624 	} else {
625 #ifdef GPROF
626 		/*
627 		 * Kernel statistics are just like addupc_intr, only easier.
628 		 */
629 		g = &_gmonparam;
630 		if (g->state == GMON_PROF_ON && frame) {
631 			i = CLKF_PC(frame) - g->lowpc;
632 			if (i < g->textsize) {
633 				i /= HISTFRACTION * sizeof(*g->kcount);
634 				g->kcount[i]++;
635 			}
636 		}
637 #endif
638 		/*
639 		 * Came from kernel mode, so we were:
640 		 * - handling an interrupt,
641 		 * - doing syscall or trap work on behalf of the current
642 		 *   user process, or
643 		 * - spinning in the idle loop.
644 		 * Whichever it is, charge the time as appropriate.
645 		 * Note that we charge interrupts to the current process,
646 		 * regardless of whether they are ``for'' that process,
647 		 * so that we know how much of its real time was spent
648 		 * in ``non-process'' (i.e., interrupt) work.
649 		 *
650 		 * XXX assume system if frame is NULL.  A NULL frame
651 		 * can occur if ipi processing is done from a crit_exit().
652 		 */
653 		if (frame && CLKF_INTR(frame))
654 			td->td_iticks += bump;
655 		else
656 			td->td_sticks += bump;
657 
658 		if (frame && CLKF_INTR(frame)) {
659 #ifdef DEBUG_PCTRACK
660 			do_pctrack(frame, PCTRACK_INT);
661 #endif
662 			cpu_time.cp_intr += bump;
663 		} else {
664 			if (td == &mycpu->gd_idlethread) {
665 				cpu_time.cp_idle += bump;
666 			} else {
667 #ifdef DEBUG_PCTRACK
668 				if (frame)
669 					do_pctrack(frame, PCTRACK_SYS);
670 #endif
671 				cpu_time.cp_sys += bump;
672 			}
673 		}
674 	}
675 }
676 
677 #ifdef DEBUG_PCTRACK
678 /*
679  * Sample the PC when in the kernel or in an interrupt.  User code can
680  * retrieve the information and generate a histogram or other output.
681  */
682 
683 static void
684 do_pctrack(struct intrframe *frame, int which)
685 {
686 	struct kinfo_pctrack *pctrack;
687 
688 	pctrack = &cputime_pctrack[mycpu->gd_cpuid][which];
689 	pctrack->pc_array[pctrack->pc_index & PCTRACK_ARYMASK] =
690 		(void *)CLKF_PC(frame);
691 	++pctrack->pc_index;
692 }
693 
694 static int
695 sysctl_pctrack(SYSCTL_HANDLER_ARGS)
696 {
697 	struct kinfo_pcheader head;
698 	int error;
699 	int cpu;
700 	int ntrack;
701 
702 	head.pc_ntrack = PCTRACK_SIZE;
703 	head.pc_arysize = PCTRACK_ARYSIZE;
704 
705 	if ((error = SYSCTL_OUT(req, &head, sizeof(head))) != 0)
706 		return (error);
707 
708 	for (cpu = 0; cpu < ncpus; ++cpu) {
709 		for (ntrack = 0; ntrack < PCTRACK_SIZE; ++ntrack) {
710 			error = SYSCTL_OUT(req, &cputime_pctrack[cpu][ntrack],
711 					   sizeof(struct kinfo_pctrack));
712 			if (error)
713 				break;
714 		}
715 		if (error)
716 			break;
717 	}
718 	return (error);
719 }
720 SYSCTL_PROC(_kern, OID_AUTO, pctrack, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
721 	sysctl_pctrack, "S,kinfo_pcheader", "CPU PC tracking");
722 
723 #endif
724 
725 /*
726  * The scheduler clock typically runs at a 50Hz rate.  NOTE! systimer,
727  * the MP lock might not be held.  We can safely manipulate parts of curproc
728  * but that's about it.
729  *
730  * Each cpu has its own scheduler clock.
731  */
732 static void
733 schedclock(systimer_t info, struct intrframe *frame)
734 {
735 	struct lwp *lp;
736 	struct rusage *ru;
737 	struct vmspace *vm;
738 	long rss;
739 
740 	if ((lp = lwkt_preempted_proc()) != NULL) {
741 		/*
742 		 * Account for cpu time used and hit the scheduler.  Note
743 		 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD
744 		 * HERE.
745 		 */
746 		++lp->lwp_cpticks;
747 		lp->lwp_proc->p_usched->schedulerclock(lp, info->periodic,
748 						       info->time);
749 	}
750 	if ((lp = curthread->td_lwp) != NULL) {
751 		/*
752 		 * Update resource usage integrals and maximums.
753 		 */
754 		if ((ru = &lp->lwp_proc->p_ru) &&
755 		    (vm = lp->lwp_proc->p_vmspace) != NULL) {
756 			ru->ru_ixrss += pgtok(vm->vm_tsize);
757 			ru->ru_idrss += pgtok(vm->vm_dsize);
758 			ru->ru_isrss += pgtok(vm->vm_ssize);
759 			rss = pgtok(vmspace_resident_count(vm));
760 			if (ru->ru_maxrss < rss)
761 				ru->ru_maxrss = rss;
762 		}
763 	}
764 }
765 
766 /*
767  * Compute number of ticks for the specified amount of time.  The
768  * return value is intended to be used in a clock interrupt timed
769  * operation and guarenteed to meet or exceed the requested time.
770  * If the representation overflows, return INT_MAX.  The minimum return
771  * value is 1 ticks and the function will average the calculation up.
772  * If any value greater then 0 microseconds is supplied, a value
773  * of at least 2 will be returned to ensure that a near-term clock
774  * interrupt does not cause the timeout to occur (degenerately) early.
775  *
776  * Note that limit checks must take into account microseconds, which is
777  * done simply by using the smaller signed long maximum instead of
778  * the unsigned long maximum.
779  *
780  * If ints have 32 bits, then the maximum value for any timeout in
781  * 10ms ticks is 248 days.
782  */
783 int
784 tvtohz_high(struct timeval *tv)
785 {
786 	int ticks;
787 	long sec, usec;
788 
789 	sec = tv->tv_sec;
790 	usec = tv->tv_usec;
791 	if (usec < 0) {
792 		sec--;
793 		usec += 1000000;
794 	}
795 	if (sec < 0) {
796 #ifdef DIAGNOSTIC
797 		if (usec > 0) {
798 			sec++;
799 			usec -= 1000000;
800 		}
801 		kprintf("tvtohz_high: negative time difference "
802 			"%ld sec %ld usec\n",
803 			sec, usec);
804 #endif
805 		ticks = 1;
806 	} else if (sec <= INT_MAX / hz) {
807 		ticks = (int)(sec * hz +
808 			    ((u_long)usec + (ustick - 1)) / ustick) + 1;
809 	} else {
810 		ticks = INT_MAX;
811 	}
812 	return (ticks);
813 }
814 
815 int
816 tstohz_high(struct timespec *ts)
817 {
818 	int ticks;
819 	long sec, nsec;
820 
821 	sec = ts->tv_sec;
822 	nsec = ts->tv_nsec;
823 	if (nsec < 0) {
824 		sec--;
825 		nsec += 1000000000;
826 	}
827 	if (sec < 0) {
828 #ifdef DIAGNOSTIC
829 		if (nsec > 0) {
830 			sec++;
831 			nsec -= 1000000000;
832 		}
833 		kprintf("tstohz_high: negative time difference "
834 			"%ld sec %ld nsec\n",
835 			sec, nsec);
836 #endif
837 		ticks = 1;
838 	} else if (sec <= INT_MAX / hz) {
839 		ticks = (int)(sec * hz +
840 			    ((u_long)nsec + (nstick - 1)) / nstick) + 1;
841 	} else {
842 		ticks = INT_MAX;
843 	}
844 	return (ticks);
845 }
846 
847 
848 /*
849  * Compute number of ticks for the specified amount of time, erroring on
850  * the side of it being too low to ensure that sleeping the returned number
851  * of ticks will not result in a late return.
852  *
853  * The supplied timeval may not be negative and should be normalized.  A
854  * return value of 0 is possible if the timeval converts to less then
855  * 1 tick.
856  *
857  * If ints have 32 bits, then the maximum value for any timeout in
858  * 10ms ticks is 248 days.
859  */
860 int
861 tvtohz_low(struct timeval *tv)
862 {
863 	int ticks;
864 	long sec;
865 
866 	sec = tv->tv_sec;
867 	if (sec <= INT_MAX / hz)
868 		ticks = (int)(sec * hz + (u_long)tv->tv_usec / ustick);
869 	else
870 		ticks = INT_MAX;
871 	return (ticks);
872 }
873 
874 int
875 tstohz_low(struct timespec *ts)
876 {
877 	int ticks;
878 	long sec;
879 
880 	sec = ts->tv_sec;
881 	if (sec <= INT_MAX / hz)
882 		ticks = (int)(sec * hz + (u_long)ts->tv_nsec / nstick);
883 	else
884 		ticks = INT_MAX;
885 	return (ticks);
886 }
887 
888 /*
889  * Start profiling on a process.
890  *
891  * Kernel profiling passes proc0 which never exits and hence
892  * keeps the profile clock running constantly.
893  */
894 void
895 startprofclock(struct proc *p)
896 {
897 	if ((p->p_flag & P_PROFIL) == 0) {
898 		p->p_flag |= P_PROFIL;
899 #if 0	/* XXX */
900 		if (++profprocs == 1 && stathz != 0) {
901 			crit_enter();
902 			psdiv = psratio;
903 			setstatclockrate(profhz);
904 			crit_exit();
905 		}
906 #endif
907 	}
908 }
909 
910 /*
911  * Stop profiling on a process.
912  */
913 void
914 stopprofclock(struct proc *p)
915 {
916 	if (p->p_flag & P_PROFIL) {
917 		p->p_flag &= ~P_PROFIL;
918 #if 0	/* XXX */
919 		if (--profprocs == 0 && stathz != 0) {
920 			crit_enter();
921 			psdiv = 1;
922 			setstatclockrate(stathz);
923 			crit_exit();
924 		}
925 #endif
926 	}
927 }
928 
929 /*
930  * Return information about system clocks.
931  */
932 static int
933 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
934 {
935 	struct kinfo_clockinfo clkinfo;
936 	/*
937 	 * Construct clockinfo structure.
938 	 */
939 	clkinfo.ci_hz = hz;
940 	clkinfo.ci_tick = ustick;
941 	clkinfo.ci_tickadj = ntp_default_tick_delta / 1000;
942 	clkinfo.ci_profhz = profhz;
943 	clkinfo.ci_stathz = stathz ? stathz : hz;
944 	return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
945 }
946 
947 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
948 	0, 0, sysctl_kern_clockrate, "S,clockinfo","");
949 
950 /*
951  * We have eight functions for looking at the clock, four for
952  * microseconds and four for nanoseconds.  For each there is fast
953  * but less precise version "get{nano|micro}[up]time" which will
954  * return a time which is up to 1/HZ previous to the call, whereas
955  * the raw version "{nano|micro}[up]time" will return a timestamp
956  * which is as precise as possible.  The "up" variants return the
957  * time relative to system boot, these are well suited for time
958  * interval measurements.
959  *
960  * Each cpu independantly maintains the current time of day, so all
961  * we need to do to protect ourselves from changes is to do a loop
962  * check on the seconds field changing out from under us.
963  *
964  * The system timer maintains a 32 bit count and due to various issues
965  * it is possible for the calculated delta to occassionally exceed
966  * sys_cputimer->freq.  If this occurs the sys_cputimer->freq64_nsec
967  * multiplication can easily overflow, so we deal with the case.  For
968  * uniformity we deal with the case in the usec case too.
969  *
970  * All the [get][micro,nano][time,uptime]() routines are MPSAFE.
971  */
972 void
973 getmicrouptime(struct timeval *tvp)
974 {
975 	struct globaldata *gd = mycpu;
976 	sysclock_t delta;
977 
978 	do {
979 		tvp->tv_sec = gd->gd_time_seconds;
980 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
981 	} while (tvp->tv_sec != gd->gd_time_seconds);
982 
983 	if (delta >= sys_cputimer->freq) {
984 		tvp->tv_sec += delta / sys_cputimer->freq;
985 		delta %= sys_cputimer->freq;
986 	}
987 	tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
988 	if (tvp->tv_usec >= 1000000) {
989 		tvp->tv_usec -= 1000000;
990 		++tvp->tv_sec;
991 	}
992 }
993 
994 void
995 getnanouptime(struct timespec *tsp)
996 {
997 	struct globaldata *gd = mycpu;
998 	sysclock_t delta;
999 
1000 	do {
1001 		tsp->tv_sec = gd->gd_time_seconds;
1002 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1003 	} while (tsp->tv_sec != gd->gd_time_seconds);
1004 
1005 	if (delta >= sys_cputimer->freq) {
1006 		tsp->tv_sec += delta / sys_cputimer->freq;
1007 		delta %= sys_cputimer->freq;
1008 	}
1009 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1010 }
1011 
1012 void
1013 microuptime(struct timeval *tvp)
1014 {
1015 	struct globaldata *gd = mycpu;
1016 	sysclock_t delta;
1017 
1018 	do {
1019 		tvp->tv_sec = gd->gd_time_seconds;
1020 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1021 	} while (tvp->tv_sec != gd->gd_time_seconds);
1022 
1023 	if (delta >= sys_cputimer->freq) {
1024 		tvp->tv_sec += delta / sys_cputimer->freq;
1025 		delta %= sys_cputimer->freq;
1026 	}
1027 	tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1028 }
1029 
1030 void
1031 nanouptime(struct timespec *tsp)
1032 {
1033 	struct globaldata *gd = mycpu;
1034 	sysclock_t delta;
1035 
1036 	do {
1037 		tsp->tv_sec = gd->gd_time_seconds;
1038 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1039 	} while (tsp->tv_sec != gd->gd_time_seconds);
1040 
1041 	if (delta >= sys_cputimer->freq) {
1042 		tsp->tv_sec += delta / sys_cputimer->freq;
1043 		delta %= sys_cputimer->freq;
1044 	}
1045 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1046 }
1047 
1048 /*
1049  * realtime routines
1050  */
1051 void
1052 getmicrotime(struct timeval *tvp)
1053 {
1054 	struct globaldata *gd = mycpu;
1055 	struct timespec *bt;
1056 	sysclock_t delta;
1057 
1058 	do {
1059 		tvp->tv_sec = gd->gd_time_seconds;
1060 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1061 	} while (tvp->tv_sec != gd->gd_time_seconds);
1062 
1063 	if (delta >= sys_cputimer->freq) {
1064 		tvp->tv_sec += delta / sys_cputimer->freq;
1065 		delta %= sys_cputimer->freq;
1066 	}
1067 	tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1068 
1069 	bt = &basetime[basetime_index];
1070 	tvp->tv_sec += bt->tv_sec;
1071 	tvp->tv_usec += bt->tv_nsec / 1000;
1072 	while (tvp->tv_usec >= 1000000) {
1073 		tvp->tv_usec -= 1000000;
1074 		++tvp->tv_sec;
1075 	}
1076 }
1077 
1078 void
1079 getnanotime(struct timespec *tsp)
1080 {
1081 	struct globaldata *gd = mycpu;
1082 	struct timespec *bt;
1083 	sysclock_t delta;
1084 
1085 	do {
1086 		tsp->tv_sec = gd->gd_time_seconds;
1087 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1088 	} while (tsp->tv_sec != gd->gd_time_seconds);
1089 
1090 	if (delta >= sys_cputimer->freq) {
1091 		tsp->tv_sec += delta / sys_cputimer->freq;
1092 		delta %= sys_cputimer->freq;
1093 	}
1094 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1095 
1096 	bt = &basetime[basetime_index];
1097 	tsp->tv_sec += bt->tv_sec;
1098 	tsp->tv_nsec += bt->tv_nsec;
1099 	while (tsp->tv_nsec >= 1000000000) {
1100 		tsp->tv_nsec -= 1000000000;
1101 		++tsp->tv_sec;
1102 	}
1103 }
1104 
1105 static void
1106 getnanotime_nbt(struct timespec *nbt, struct timespec *tsp)
1107 {
1108 	struct globaldata *gd = mycpu;
1109 	sysclock_t delta;
1110 
1111 	do {
1112 		tsp->tv_sec = gd->gd_time_seconds;
1113 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1114 	} while (tsp->tv_sec != gd->gd_time_seconds);
1115 
1116 	if (delta >= sys_cputimer->freq) {
1117 		tsp->tv_sec += delta / sys_cputimer->freq;
1118 		delta %= sys_cputimer->freq;
1119 	}
1120 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1121 
1122 	tsp->tv_sec += nbt->tv_sec;
1123 	tsp->tv_nsec += nbt->tv_nsec;
1124 	while (tsp->tv_nsec >= 1000000000) {
1125 		tsp->tv_nsec -= 1000000000;
1126 		++tsp->tv_sec;
1127 	}
1128 }
1129 
1130 
1131 void
1132 microtime(struct timeval *tvp)
1133 {
1134 	struct globaldata *gd = mycpu;
1135 	struct timespec *bt;
1136 	sysclock_t delta;
1137 
1138 	do {
1139 		tvp->tv_sec = gd->gd_time_seconds;
1140 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1141 	} while (tvp->tv_sec != gd->gd_time_seconds);
1142 
1143 	if (delta >= sys_cputimer->freq) {
1144 		tvp->tv_sec += delta / sys_cputimer->freq;
1145 		delta %= sys_cputimer->freq;
1146 	}
1147 	tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1148 
1149 	bt = &basetime[basetime_index];
1150 	tvp->tv_sec += bt->tv_sec;
1151 	tvp->tv_usec += bt->tv_nsec / 1000;
1152 	while (tvp->tv_usec >= 1000000) {
1153 		tvp->tv_usec -= 1000000;
1154 		++tvp->tv_sec;
1155 	}
1156 }
1157 
1158 void
1159 nanotime(struct timespec *tsp)
1160 {
1161 	struct globaldata *gd = mycpu;
1162 	struct timespec *bt;
1163 	sysclock_t delta;
1164 
1165 	do {
1166 		tsp->tv_sec = gd->gd_time_seconds;
1167 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1168 	} while (tsp->tv_sec != gd->gd_time_seconds);
1169 
1170 	if (delta >= sys_cputimer->freq) {
1171 		tsp->tv_sec += delta / sys_cputimer->freq;
1172 		delta %= sys_cputimer->freq;
1173 	}
1174 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1175 
1176 	bt = &basetime[basetime_index];
1177 	tsp->tv_sec += bt->tv_sec;
1178 	tsp->tv_nsec += bt->tv_nsec;
1179 	while (tsp->tv_nsec >= 1000000000) {
1180 		tsp->tv_nsec -= 1000000000;
1181 		++tsp->tv_sec;
1182 	}
1183 }
1184 
1185 /*
1186  * note: this is not exactly synchronized with real time.  To do that we
1187  * would have to do what microtime does and check for a nanoseconds overflow.
1188  */
1189 time_t
1190 get_approximate_time_t(void)
1191 {
1192 	struct globaldata *gd = mycpu;
1193 	struct timespec *bt;
1194 
1195 	bt = &basetime[basetime_index];
1196 	return(gd->gd_time_seconds + bt->tv_sec);
1197 }
1198 
1199 int
1200 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1201 {
1202 	pps_params_t *app;
1203 	struct pps_fetch_args *fapi;
1204 #ifdef PPS_SYNC
1205 	struct pps_kcbind_args *kapi;
1206 #endif
1207 
1208 	switch (cmd) {
1209 	case PPS_IOC_CREATE:
1210 		return (0);
1211 	case PPS_IOC_DESTROY:
1212 		return (0);
1213 	case PPS_IOC_SETPARAMS:
1214 		app = (pps_params_t *)data;
1215 		if (app->mode & ~pps->ppscap)
1216 			return (EINVAL);
1217 		pps->ppsparam = *app;
1218 		return (0);
1219 	case PPS_IOC_GETPARAMS:
1220 		app = (pps_params_t *)data;
1221 		*app = pps->ppsparam;
1222 		app->api_version = PPS_API_VERS_1;
1223 		return (0);
1224 	case PPS_IOC_GETCAP:
1225 		*(int*)data = pps->ppscap;
1226 		return (0);
1227 	case PPS_IOC_FETCH:
1228 		fapi = (struct pps_fetch_args *)data;
1229 		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1230 			return (EINVAL);
1231 		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
1232 			return (EOPNOTSUPP);
1233 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
1234 		fapi->pps_info_buf = pps->ppsinfo;
1235 		return (0);
1236 	case PPS_IOC_KCBIND:
1237 #ifdef PPS_SYNC
1238 		kapi = (struct pps_kcbind_args *)data;
1239 		/* XXX Only root should be able to do this */
1240 		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1241 			return (EINVAL);
1242 		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1243 			return (EINVAL);
1244 		if (kapi->edge & ~pps->ppscap)
1245 			return (EINVAL);
1246 		pps->kcmode = kapi->edge;
1247 		return (0);
1248 #else
1249 		return (EOPNOTSUPP);
1250 #endif
1251 	default:
1252 		return (ENOTTY);
1253 	}
1254 }
1255 
1256 void
1257 pps_init(struct pps_state *pps)
1258 {
1259 	pps->ppscap |= PPS_TSFMT_TSPEC;
1260 	if (pps->ppscap & PPS_CAPTUREASSERT)
1261 		pps->ppscap |= PPS_OFFSETASSERT;
1262 	if (pps->ppscap & PPS_CAPTURECLEAR)
1263 		pps->ppscap |= PPS_OFFSETCLEAR;
1264 }
1265 
1266 void
1267 pps_event(struct pps_state *pps, sysclock_t count, int event)
1268 {
1269 	struct globaldata *gd;
1270 	struct timespec *tsp;
1271 	struct timespec *osp;
1272 	struct timespec *bt;
1273 	struct timespec ts;
1274 	sysclock_t *pcount;
1275 #ifdef PPS_SYNC
1276 	sysclock_t tcount;
1277 #endif
1278 	sysclock_t delta;
1279 	pps_seq_t *pseq;
1280 	int foff;
1281 	int fhard;
1282 
1283 	gd = mycpu;
1284 
1285 	/* Things would be easier with arrays... */
1286 	if (event == PPS_CAPTUREASSERT) {
1287 		tsp = &pps->ppsinfo.assert_timestamp;
1288 		osp = &pps->ppsparam.assert_offset;
1289 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1290 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
1291 		pcount = &pps->ppscount[0];
1292 		pseq = &pps->ppsinfo.assert_sequence;
1293 	} else {
1294 		tsp = &pps->ppsinfo.clear_timestamp;
1295 		osp = &pps->ppsparam.clear_offset;
1296 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1297 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
1298 		pcount = &pps->ppscount[1];
1299 		pseq = &pps->ppsinfo.clear_sequence;
1300 	}
1301 
1302 	/* Nothing really happened */
1303 	if (*pcount == count)
1304 		return;
1305 
1306 	*pcount = count;
1307 
1308 	do {
1309 		ts.tv_sec = gd->gd_time_seconds;
1310 		delta = count - gd->gd_cpuclock_base;
1311 	} while (ts.tv_sec != gd->gd_time_seconds);
1312 
1313 	if (delta >= sys_cputimer->freq) {
1314 		ts.tv_sec += delta / sys_cputimer->freq;
1315 		delta %= sys_cputimer->freq;
1316 	}
1317 	ts.tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1318 	bt = &basetime[basetime_index];
1319 	ts.tv_sec += bt->tv_sec;
1320 	ts.tv_nsec += bt->tv_nsec;
1321 	while (ts.tv_nsec >= 1000000000) {
1322 		ts.tv_nsec -= 1000000000;
1323 		++ts.tv_sec;
1324 	}
1325 
1326 	(*pseq)++;
1327 	*tsp = ts;
1328 
1329 	if (foff) {
1330 		timespecadd(tsp, osp);
1331 		if (tsp->tv_nsec < 0) {
1332 			tsp->tv_nsec += 1000000000;
1333 			tsp->tv_sec -= 1;
1334 		}
1335 	}
1336 #ifdef PPS_SYNC
1337 	if (fhard) {
1338 		/* magic, at its best... */
1339 		tcount = count - pps->ppscount[2];
1340 		pps->ppscount[2] = count;
1341 		if (tcount >= sys_cputimer->freq) {
1342 			delta = (1000000000 * (tcount / sys_cputimer->freq) +
1343 				 sys_cputimer->freq64_nsec *
1344 				 (tcount % sys_cputimer->freq)) >> 32;
1345 		} else {
1346 			delta = (sys_cputimer->freq64_nsec * tcount) >> 32;
1347 		}
1348 		hardpps(tsp, delta);
1349 	}
1350 #endif
1351 }
1352 
1353 /*
1354  * Return the tsc target value for a delay of (ns).
1355  *
1356  * Returns -1 if the TSC is not supported.
1357  */
1358 int64_t
1359 tsc_get_target(int ns)
1360 {
1361 #if defined(_RDTSC_SUPPORTED_)
1362 	if (cpu_feature & CPUID_TSC) {
1363 		return (rdtsc() + tsc_frequency * ns / (int64_t)1000000000);
1364 	}
1365 #endif
1366 	return(-1);
1367 }
1368 
1369 /*
1370  * Compare the tsc against the passed target
1371  *
1372  * Returns +1 if the target has been reached
1373  * Returns  0 if the target has not yet been reached
1374  * Returns -1 if the TSC is not supported.
1375  *
1376  * Typical use:		while (tsc_test_target(target) == 0) { ...poll... }
1377  */
1378 int
1379 tsc_test_target(int64_t target)
1380 {
1381 #if defined(_RDTSC_SUPPORTED_)
1382 	if (cpu_feature & CPUID_TSC) {
1383 		if ((int64_t)(target - rdtsc()) <= 0)
1384 			return(1);
1385 		return(0);
1386 	}
1387 #endif
1388 	return(-1);
1389 }
1390