xref: /dragonfly/sys/kern/kern_clock.c (revision c93b565c)
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
35  * Copyright (c) 1982, 1986, 1991, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  * (c) UNIX System Laboratories, Inc.
38  * All or some portions of this file are derived from material licensed
39  * to the University of California by American Telephone and Telegraph
40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41  * the permission of UNIX System Laboratories, Inc.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. Neither the name of the University nor the names of its contributors
52  *    may be used to endorse or promote products derived from this software
53  *    without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65  * SUCH DAMAGE.
66  *
67  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
68  * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $
69  */
70 
71 #include "opt_ntp.h"
72 #include "opt_ifpoll.h"
73 #include "opt_pctrack.h"
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/callout.h>
78 #include <sys/kernel.h>
79 #include <sys/kinfo.h>
80 #include <sys/proc.h>
81 #include <sys/malloc.h>
82 #include <sys/resource.h>
83 #include <sys/resourcevar.h>
84 #include <sys/signalvar.h>
85 #include <sys/timex.h>
86 #include <sys/timepps.h>
87 #include <sys/upmap.h>
88 #include <vm/vm.h>
89 #include <sys/lock.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_extern.h>
93 #include <sys/sysctl.h>
94 
95 #include <sys/thread2.h>
96 #include <sys/mplock2.h>
97 
98 #include <machine/cpu.h>
99 #include <machine/limits.h>
100 #include <machine/smp.h>
101 #include <machine/cpufunc.h>
102 #include <machine/specialreg.h>
103 #include <machine/clock.h>
104 
105 #ifdef GPROF
106 #include <sys/gmon.h>
107 #endif
108 
109 #ifdef IFPOLL_ENABLE
110 extern void ifpoll_init_pcpu(int);
111 #endif
112 
113 #ifdef DEBUG_PCTRACK
114 static void do_pctrack(struct intrframe *frame, int which);
115 #endif
116 
117 static void initclocks (void *dummy);
118 SYSINIT(clocks, SI_BOOT2_CLOCKS, SI_ORDER_FIRST, initclocks, NULL);
119 
120 /*
121  * Some of these don't belong here, but it's easiest to concentrate them.
122  * Note that cpu_time counts in microseconds, but most userland programs
123  * just compare relative times against the total by delta.
124  */
125 struct kinfo_cputime cputime_percpu[MAXCPU];
126 #ifdef DEBUG_PCTRACK
127 struct kinfo_pcheader cputime_pcheader = { PCTRACK_SIZE, PCTRACK_ARYSIZE };
128 struct kinfo_pctrack cputime_pctrack[MAXCPU][PCTRACK_SIZE];
129 #endif
130 
131 static int
132 sysctl_cputime(SYSCTL_HANDLER_ARGS)
133 {
134 	int cpu, error = 0;
135 	size_t size = sizeof(struct kinfo_cputime);
136 
137 	for (cpu = 0; cpu < ncpus; ++cpu) {
138 		if ((error = SYSCTL_OUT(req, &cputime_percpu[cpu], size)))
139 			break;
140 	}
141 
142 	return (error);
143 }
144 SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
145 	sysctl_cputime, "S,kinfo_cputime", "CPU time statistics");
146 
147 static int
148 sysctl_cp_time(SYSCTL_HANDLER_ARGS)
149 {
150 	long cpu_states[5] = {0};
151 	int cpu, error = 0;
152 	size_t size = sizeof(cpu_states);
153 
154 	for (cpu = 0; cpu < ncpus; ++cpu) {
155 		cpu_states[CP_USER] += cputime_percpu[cpu].cp_user;
156 		cpu_states[CP_NICE] += cputime_percpu[cpu].cp_nice;
157 		cpu_states[CP_SYS] += cputime_percpu[cpu].cp_sys;
158 		cpu_states[CP_INTR] += cputime_percpu[cpu].cp_intr;
159 		cpu_states[CP_IDLE] += cputime_percpu[cpu].cp_idle;
160 	}
161 
162 	error = SYSCTL_OUT(req, cpu_states, size);
163 
164 	return (error);
165 }
166 
167 SYSCTL_PROC(_kern, OID_AUTO, cp_time, (CTLTYPE_LONG|CTLFLAG_RD), 0, 0,
168 	sysctl_cp_time, "LU", "CPU time statistics");
169 
170 /*
171  * boottime is used to calculate the 'real' uptime.  Do not confuse this with
172  * microuptime().  microtime() is not drift compensated.  The real uptime
173  * with compensation is nanotime() - bootime.  boottime is recalculated
174  * whenever the real time is set based on the compensated elapsed time
175  * in seconds (gd->gd_time_seconds).
176  *
177  * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic.
178  * Slight adjustments to gd_cpuclock_base are made to phase-lock it to
179  * the real time.
180  *
181  * WARNING! time_second can backstep on time corrections. Also, unlike
182  *          time second, time_uptime is not a "real" time_t (seconds
183  *          since the Epoch) but seconds since booting.
184  */
185 struct timespec boottime;	/* boot time (realtime) for reference only */
186 time_t time_second;		/* read-only 'passive' realtime in seconds */
187 time_t time_uptime;		/* read-only 'passive' uptime in seconds */
188 
189 /*
190  * basetime is used to calculate the compensated real time of day.  The
191  * basetime can be modified on a per-tick basis by the adjtime(),
192  * ntp_adjtime(), and sysctl-based time correction APIs.
193  *
194  * Note that frequency corrections can also be made by adjusting
195  * gd_cpuclock_base.
196  *
197  * basetime is a tail-chasing FIFO, updated only by cpu #0.  The FIFO is
198  * used on both SMP and UP systems to avoid MP races between cpu's and
199  * interrupt races on UP systems.
200  */
201 #define BASETIME_ARYSIZE	16
202 #define BASETIME_ARYMASK	(BASETIME_ARYSIZE - 1)
203 static struct timespec basetime[BASETIME_ARYSIZE];
204 static volatile int basetime_index;
205 
206 static int
207 sysctl_get_basetime(SYSCTL_HANDLER_ARGS)
208 {
209 	struct timespec *bt;
210 	int error;
211 	int index;
212 
213 	/*
214 	 * Because basetime data and index may be updated by another cpu,
215 	 * a load fence is required to ensure that the data we read has
216 	 * not been speculatively read relative to a possibly updated index.
217 	 */
218 	index = basetime_index;
219 	cpu_lfence();
220 	bt = &basetime[index];
221 	error = SYSCTL_OUT(req, bt, sizeof(*bt));
222 	return (error);
223 }
224 
225 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
226     &boottime, timespec, "System boottime");
227 SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0,
228     sysctl_get_basetime, "S,timespec", "System basetime");
229 
230 static void hardclock(systimer_t info, int, struct intrframe *frame);
231 static void statclock(systimer_t info, int, struct intrframe *frame);
232 static void schedclock(systimer_t info, int, struct intrframe *frame);
233 static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp);
234 
235 int	ticks;			/* system master ticks at hz */
236 int	clocks_running;		/* tsleep/timeout clocks operational */
237 int64_t	nsec_adj;		/* ntpd per-tick adjustment in nsec << 32 */
238 int64_t	nsec_acc;		/* accumulator */
239 int	sched_ticks;		/* global schedule clock ticks */
240 
241 /* NTPD time correction fields */
242 int64_t	ntp_tick_permanent;	/* per-tick adjustment in nsec << 32 */
243 int64_t	ntp_tick_acc;		/* accumulator for per-tick adjustment */
244 int64_t	ntp_delta;		/* one-time correction in nsec */
245 int64_t ntp_big_delta = 1000000000;
246 int32_t	ntp_tick_delta;		/* current adjustment rate */
247 int32_t	ntp_default_tick_delta;	/* adjustment rate for ntp_delta */
248 time_t	ntp_leap_second;	/* time of next leap second */
249 int	ntp_leap_insert;	/* whether to insert or remove a second */
250 
251 /*
252  * Finish initializing clock frequencies and start all clocks running.
253  */
254 /* ARGSUSED*/
255 static void
256 initclocks(void *dummy)
257 {
258 	/*psratio = profhz / stathz;*/
259 	initclocks_pcpu();
260 	clocks_running = 1;
261 	if (kpmap) {
262 	    kpmap->tsc_freq = (uint64_t)tsc_frequency;
263 	    kpmap->tick_freq = hz;
264 	}
265 }
266 
267 /*
268  * Called on a per-cpu basis from the idle thread bootstrap on each cpu
269  * during SMP initialization.
270  *
271  * This routine is called concurrently during low-level SMP initialization
272  * and may not block in any way.  Meaning, among other things, we can't
273  * acquire any tokens.
274  */
275 void
276 initclocks_pcpu(void)
277 {
278 	struct globaldata *gd = mycpu;
279 
280 	crit_enter();
281 	if (gd->gd_cpuid == 0) {
282 	    gd->gd_time_seconds = 1;
283 	    gd->gd_cpuclock_base = sys_cputimer->count();
284 	} else {
285 	    /* XXX */
286 	    gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds;
287 	    gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base;
288 	}
289 
290 	systimer_intr_enable();
291 
292 	crit_exit();
293 }
294 
295 /*
296  * This routine is called on just the BSP, just after SMP initialization
297  * completes to * finish initializing any clocks that might contend/block
298  * (e.g. like on a token).  We can't do this in initclocks_pcpu() because
299  * that function is called from the idle thread bootstrap for each cpu and
300  * not allowed to block at all.
301  */
302 static
303 void
304 initclocks_other(void *dummy)
305 {
306 	struct globaldata *ogd = mycpu;
307 	struct globaldata *gd;
308 	int n;
309 
310 	for (n = 0; n < ncpus; ++n) {
311 		lwkt_setcpu_self(globaldata_find(n));
312 		gd = mycpu;
313 
314 		/*
315 		 * Use a non-queued periodic systimer to prevent multiple
316 		 * ticks from building up if the sysclock jumps forward
317 		 * (8254 gets reset).  The sysclock will never jump backwards.
318 		 * Our time sync is based on the actual sysclock, not the
319 		 * ticks count.
320 		 */
321 		systimer_init_periodic_nq(&gd->gd_hardclock, hardclock,
322 					  NULL, hz);
323 		systimer_init_periodic_nq(&gd->gd_statclock, statclock,
324 					  NULL, stathz);
325 		/* XXX correct the frequency for scheduler / estcpu tests */
326 		systimer_init_periodic_nq(&gd->gd_schedclock, schedclock,
327 					  NULL, ESTCPUFREQ);
328 #ifdef IFPOLL_ENABLE
329 		ifpoll_init_pcpu(gd->gd_cpuid);
330 #endif
331 	}
332 	lwkt_setcpu_self(ogd);
333 }
334 SYSINIT(clocks2, SI_BOOT2_POST_SMP, SI_ORDER_ANY, initclocks_other, NULL);
335 
336 /*
337  * This sets the current real time of day.  Timespecs are in seconds and
338  * nanoseconds.  We do not mess with gd_time_seconds and gd_cpuclock_base,
339  * instead we adjust basetime so basetime + gd_* results in the current
340  * time of day.  This way the gd_* fields are guaranteed to represent
341  * a monotonically increasing 'uptime' value.
342  *
343  * When set_timeofday() is called from userland, the system call forces it
344  * onto cpu #0 since only cpu #0 can update basetime_index.
345  */
346 void
347 set_timeofday(struct timespec *ts)
348 {
349 	struct timespec *nbt;
350 	int ni;
351 
352 	/*
353 	 * XXX SMP / non-atomic basetime updates
354 	 */
355 	crit_enter();
356 	ni = (basetime_index + 1) & BASETIME_ARYMASK;
357 	nbt = &basetime[ni];
358 	nanouptime(nbt);
359 	nbt->tv_sec = ts->tv_sec - nbt->tv_sec;
360 	nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec;
361 	if (nbt->tv_nsec < 0) {
362 	    nbt->tv_nsec += 1000000000;
363 	    --nbt->tv_sec;
364 	}
365 
366 	/*
367 	 * Note that basetime diverges from boottime as the clock drift is
368 	 * compensated for, so we cannot do away with boottime.  When setting
369 	 * the absolute time of day the drift is 0 (for an instant) and we
370 	 * can simply assign boottime to basetime.
371 	 *
372 	 * Note that nanouptime() is based on gd_time_seconds which is drift
373 	 * compensated up to a point (it is guaranteed to remain monotonically
374 	 * increasing).  gd_time_seconds is thus our best uptime guess and
375 	 * suitable for use in the boottime calculation.  It is already taken
376 	 * into account in the basetime calculation above.
377 	 */
378 	boottime.tv_sec = nbt->tv_sec;
379 	ntp_delta = 0;
380 
381 	/*
382 	 * We now have a new basetime, make sure all other cpus have it,
383 	 * then update the index.
384 	 */
385 	cpu_sfence();
386 	basetime_index = ni;
387 
388 	crit_exit();
389 }
390 
391 /*
392  * Each cpu has its own hardclock, but we only increments ticks and softticks
393  * on cpu #0.
394  *
395  * NOTE! systimer! the MP lock might not be held here.  We can only safely
396  * manipulate objects owned by the current cpu.
397  */
398 static void
399 hardclock(systimer_t info, int in_ipi, struct intrframe *frame)
400 {
401 	sysclock_t cputicks;
402 	struct proc *p;
403 	struct globaldata *gd = mycpu;
404 
405 	if ((gd->gd_reqflags & RQF_IPIQ) == 0 && lwkt_need_ipiq_process(gd)) {
406 		/* Defer to doreti on passive IPIQ processing */
407 		need_ipiq();
408 	}
409 
410 	/*
411 	 * Realtime updates are per-cpu.  Note that timer corrections as
412 	 * returned by microtime() and friends make an additional adjustment
413 	 * using a system-wise 'basetime', but the running time is always
414 	 * taken from the per-cpu globaldata area.  Since the same clock
415 	 * is distributing (XXX SMP) to all cpus, the per-cpu timebases
416 	 * stay in synch.
417 	 *
418 	 * Note that we never allow info->time (aka gd->gd_hardclock.time)
419 	 * to reverse index gd_cpuclock_base, but that it is possible for
420 	 * it to temporarily get behind in the seconds if something in the
421 	 * system locks interrupts for a long period of time.  Since periodic
422 	 * timers count events, though everything should resynch again
423 	 * immediately.
424 	 */
425 	cputicks = info->time - gd->gd_cpuclock_base;
426 	if (cputicks >= sys_cputimer->freq) {
427 		++gd->gd_time_seconds;
428 		gd->gd_cpuclock_base += sys_cputimer->freq;
429 		if (gd->gd_cpuid == 0)
430 			++time_uptime;	/* uncorrected monotonic 1-sec gran */
431 	}
432 
433 	/*
434 	 * The system-wide ticks counter and NTP related timedelta/tickdelta
435 	 * adjustments only occur on cpu #0.  NTP adjustments are accomplished
436 	 * by updating basetime.
437 	 */
438 	if (gd->gd_cpuid == 0) {
439 	    struct timespec *nbt;
440 	    struct timespec nts;
441 	    int leap;
442 	    int ni;
443 
444 	    ++ticks;
445 
446 #if 0
447 	    if (tco->tc_poll_pps)
448 		tco->tc_poll_pps(tco);
449 #endif
450 
451 	    /*
452 	     * Calculate the new basetime index.  We are in a critical section
453 	     * on cpu #0 and can safely play with basetime_index.  Start
454 	     * with the current basetime and then make adjustments.
455 	     */
456 	    ni = (basetime_index + 1) & BASETIME_ARYMASK;
457 	    nbt = &basetime[ni];
458 	    *nbt = basetime[basetime_index];
459 
460 	    /*
461 	     * Apply adjtime corrections.  (adjtime() API)
462 	     *
463 	     * adjtime() only runs on cpu #0 so our critical section is
464 	     * sufficient to access these variables.
465 	     */
466 	    if (ntp_delta != 0) {
467 		nbt->tv_nsec += ntp_tick_delta;
468 		ntp_delta -= ntp_tick_delta;
469 		if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) ||
470 		    (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) {
471 			ntp_tick_delta = ntp_delta;
472  		}
473  	    }
474 
475 	    /*
476 	     * Apply permanent frequency corrections.  (sysctl API)
477 	     */
478 	    if (ntp_tick_permanent != 0) {
479 		ntp_tick_acc += ntp_tick_permanent;
480 		if (ntp_tick_acc >= (1LL << 32)) {
481 		    nbt->tv_nsec += ntp_tick_acc >> 32;
482 		    ntp_tick_acc -= (ntp_tick_acc >> 32) << 32;
483 		} else if (ntp_tick_acc <= -(1LL << 32)) {
484 		    /* Negate ntp_tick_acc to avoid shifting the sign bit. */
485 		    nbt->tv_nsec -= (-ntp_tick_acc) >> 32;
486 		    ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32;
487 		}
488  	    }
489 
490 	    if (nbt->tv_nsec >= 1000000000) {
491 		    nbt->tv_sec++;
492 		    nbt->tv_nsec -= 1000000000;
493 	    } else if (nbt->tv_nsec < 0) {
494 		    nbt->tv_sec--;
495 		    nbt->tv_nsec += 1000000000;
496 	    }
497 
498 	    /*
499 	     * Another per-tick compensation.  (for ntp_adjtime() API)
500 	     */
501 	    if (nsec_adj != 0) {
502 		nsec_acc += nsec_adj;
503 		if (nsec_acc >= 0x100000000LL) {
504 		    nbt->tv_nsec += nsec_acc >> 32;
505 		    nsec_acc = (nsec_acc & 0xFFFFFFFFLL);
506 		} else if (nsec_acc <= -0x100000000LL) {
507 		    nbt->tv_nsec -= -nsec_acc >> 32;
508 		    nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL);
509 		}
510 		if (nbt->tv_nsec >= 1000000000) {
511 		    nbt->tv_nsec -= 1000000000;
512 		    ++nbt->tv_sec;
513 		} else if (nbt->tv_nsec < 0) {
514 		    nbt->tv_nsec += 1000000000;
515 		    --nbt->tv_sec;
516 		}
517 	    }
518 
519 	    /************************************************************
520 	     *			LEAP SECOND CORRECTION			*
521 	     ************************************************************
522 	     *
523 	     * Taking into account all the corrections made above, figure
524 	     * out the new real time.  If the seconds field has changed
525 	     * then apply any pending leap-second corrections.
526 	     */
527 	    getnanotime_nbt(nbt, &nts);
528 
529 	    if (time_second != nts.tv_sec) {
530 		/*
531 		 * Apply leap second (sysctl API).  Adjust nts for changes
532 		 * so we do not have to call getnanotime_nbt again.
533 		 */
534 		if (ntp_leap_second) {
535 		    if (ntp_leap_second == nts.tv_sec) {
536 			if (ntp_leap_insert) {
537 			    nbt->tv_sec++;
538 			    nts.tv_sec++;
539 			} else {
540 			    nbt->tv_sec--;
541 			    nts.tv_sec--;
542 			}
543 			ntp_leap_second--;
544 		    }
545 		}
546 
547 		/*
548 		 * Apply leap second (ntp_adjtime() API), calculate a new
549 		 * nsec_adj field.  ntp_update_second() returns nsec_adj
550 		 * as a per-second value but we need it as a per-tick value.
551 		 */
552 		leap = ntp_update_second(time_second, &nsec_adj);
553 		nsec_adj /= hz;
554 		nbt->tv_sec += leap;
555 		nts.tv_sec += leap;
556 
557 		/*
558 		 * Update the time_second 'approximate time' global.
559 		 */
560 		time_second = nts.tv_sec;
561 	    }
562 
563 	    /*
564 	     * Finally, our new basetime is ready to go live!
565 	     */
566 	    cpu_sfence();
567 	    basetime_index = ni;
568 
569 	    /*
570 	     * Update kpmap on each tick.  TS updates are integrated with
571 	     * fences and upticks allowing userland to read the data
572 	     * deterministically.
573 	     */
574 	    if (kpmap) {
575 		int w;
576 
577 		w = (kpmap->upticks + 1) & 1;
578 		getnanouptime(&kpmap->ts_uptime[w]);
579 		getnanotime(&kpmap->ts_realtime[w]);
580 		cpu_sfence();
581 		++kpmap->upticks;
582 		cpu_sfence();
583 	    }
584 	}
585 
586 	/*
587 	 * lwkt thread scheduler fair queueing
588 	 */
589 	lwkt_schedulerclock(curthread);
590 
591 	/*
592 	 * softticks are handled for all cpus
593 	 */
594 	hardclock_softtick(gd);
595 
596 	/*
597 	 * ITimer handling is per-tick, per-cpu.
598 	 *
599 	 * We must acquire the per-process token in order for ksignal()
600 	 * to be non-blocking.  For the moment this requires an AST fault,
601 	 * the ksignal() cannot be safely issued from this hard interrupt.
602 	 *
603 	 * XXX Even the trytoken here isn't right, and itimer operation in
604 	 *     a multi threaded environment is going to be weird at the
605 	 *     very least.
606 	 */
607 	if ((p = curproc) != NULL && lwkt_trytoken(&p->p_token)) {
608 		crit_enter_hard();
609 		if (p->p_upmap)
610 			++p->p_upmap->runticks;
611 
612 		if (frame && CLKF_USERMODE(frame) &&
613 		    timevalisset(&p->p_timer[ITIMER_VIRTUAL].it_value) &&
614 		    itimerdecr(&p->p_timer[ITIMER_VIRTUAL], ustick) == 0) {
615 			p->p_flags |= P_SIGVTALRM;
616 			need_user_resched();
617 		}
618 		if (timevalisset(&p->p_timer[ITIMER_PROF].it_value) &&
619 		    itimerdecr(&p->p_timer[ITIMER_PROF], ustick) == 0) {
620 			p->p_flags |= P_SIGPROF;
621 			need_user_resched();
622 		}
623 		crit_exit_hard();
624 		lwkt_reltoken(&p->p_token);
625 	}
626 	setdelayed();
627 }
628 
629 /*
630  * The statistics clock typically runs at a 125Hz rate, and is intended
631  * to be frequency offset from the hardclock (typ 100Hz).  It is per-cpu.
632  *
633  * NOTE! systimer! the MP lock might not be held here.  We can only safely
634  * manipulate objects owned by the current cpu.
635  *
636  * The stats clock is responsible for grabbing a profiling sample.
637  * Most of the statistics are only used by user-level statistics programs.
638  * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and
639  * p->p_estcpu.
640  *
641  * Like the other clocks, the stat clock is called from what is effectively
642  * a fast interrupt, so the context should be the thread/process that got
643  * interrupted.
644  */
645 static void
646 statclock(systimer_t info, int in_ipi, struct intrframe *frame)
647 {
648 #ifdef GPROF
649 	struct gmonparam *g;
650 	int i;
651 #endif
652 	thread_t td;
653 	struct proc *p;
654 	int bump;
655 	sysclock_t cv;
656 	sysclock_t scv;
657 
658 	/*
659 	 * How big was our timeslice relative to the last time?  Calculate
660 	 * in microseconds.
661 	 *
662 	 * NOTE: Use of microuptime() is typically MPSAFE, but usually not
663 	 *	 during early boot.  Just use the systimer count to be nice
664 	 *	 to e.g. qemu.  The systimer has a better chance of being
665 	 *	 MPSAFE at early boot.
666 	 */
667 	cv = sys_cputimer->count();
668 	scv = mycpu->statint.gd_statcv;
669 	if (scv == 0) {
670 		bump = 1;
671 	} else {
672 		bump = (sys_cputimer->freq64_usec * (cv - scv)) >> 32;
673 		if (bump < 0)
674 			bump = 0;
675 		if (bump > 1000000)
676 			bump = 1000000;
677 	}
678 	mycpu->statint.gd_statcv = cv;
679 
680 #if 0
681 	stv = &mycpu->gd_stattv;
682 	if (stv->tv_sec == 0) {
683 	    bump = 1;
684 	} else {
685 	    bump = tv.tv_usec - stv->tv_usec +
686 		(tv.tv_sec - stv->tv_sec) * 1000000;
687 	    if (bump < 0)
688 		bump = 0;
689 	    if (bump > 1000000)
690 		bump = 1000000;
691 	}
692 	*stv = tv;
693 #endif
694 
695 	td = curthread;
696 	p = td->td_proc;
697 
698 	if (frame && CLKF_USERMODE(frame)) {
699 		/*
700 		 * Came from userland, handle user time and deal with
701 		 * possible process.
702 		 */
703 		if (p && (p->p_flags & P_PROFIL))
704 			addupc_intr(p, CLKF_PC(frame), 1);
705 		td->td_uticks += bump;
706 
707 		/*
708 		 * Charge the time as appropriate
709 		 */
710 		if (p && p->p_nice > NZERO)
711 			cpu_time.cp_nice += bump;
712 		else
713 			cpu_time.cp_user += bump;
714 	} else {
715 		int intr_nest = mycpu->gd_intr_nesting_level;
716 
717 		if (in_ipi) {
718 			/*
719 			 * IPI processing code will bump gd_intr_nesting_level
720 			 * up by one, which breaks following CLKF_INTR testing,
721 			 * so we subtract it by one here.
722 			 */
723 			--intr_nest;
724 		}
725 #ifdef GPROF
726 		/*
727 		 * Kernel statistics are just like addupc_intr, only easier.
728 		 */
729 		g = &_gmonparam;
730 		if (g->state == GMON_PROF_ON && frame) {
731 			i = CLKF_PC(frame) - g->lowpc;
732 			if (i < g->textsize) {
733 				i /= HISTFRACTION * sizeof(*g->kcount);
734 				g->kcount[i]++;
735 			}
736 		}
737 #endif
738 
739 #define IS_INTR_RUNNING	((frame && CLKF_INTR(intr_nest)) || CLKF_INTR_TD(td))
740 
741 		/*
742 		 * Came from kernel mode, so we were:
743 		 * - handling an interrupt,
744 		 * - doing syscall or trap work on behalf of the current
745 		 *   user process, or
746 		 * - spinning in the idle loop.
747 		 * Whichever it is, charge the time as appropriate.
748 		 * Note that we charge interrupts to the current process,
749 		 * regardless of whether they are ``for'' that process,
750 		 * so that we know how much of its real time was spent
751 		 * in ``non-process'' (i.e., interrupt) work.
752 		 *
753 		 * XXX assume system if frame is NULL.  A NULL frame
754 		 * can occur if ipi processing is done from a crit_exit().
755 		 */
756 		if (IS_INTR_RUNNING)
757 			td->td_iticks += bump;
758 		else
759 			td->td_sticks += bump;
760 
761 		if (IS_INTR_RUNNING) {
762 			/*
763 			 * If we interrupted an interrupt thread, well,
764 			 * count it as interrupt time.
765 			 */
766 #ifdef DEBUG_PCTRACK
767 			if (frame)
768 				do_pctrack(frame, PCTRACK_INT);
769 #endif
770 			cpu_time.cp_intr += bump;
771 		} else {
772 			if (td == &mycpu->gd_idlethread) {
773 				/*
774 				 * Even if the current thread is the idle
775 				 * thread it could be due to token contention
776 				 * in the LWKT scheduler.  Count such as
777 				 * system time.
778 				 */
779 				if (mycpu->gd_reqflags & RQF_IDLECHECK_WK_MASK)
780 					cpu_time.cp_sys += bump;
781 				else
782 					cpu_time.cp_idle += bump;
783 			} else {
784 				/*
785 				 * System thread was running.
786 				 */
787 #ifdef DEBUG_PCTRACK
788 				if (frame)
789 					do_pctrack(frame, PCTRACK_SYS);
790 #endif
791 				cpu_time.cp_sys += bump;
792 			}
793 		}
794 
795 #undef IS_INTR_RUNNING
796 	}
797 }
798 
799 #ifdef DEBUG_PCTRACK
800 /*
801  * Sample the PC when in the kernel or in an interrupt.  User code can
802  * retrieve the information and generate a histogram or other output.
803  */
804 
805 static void
806 do_pctrack(struct intrframe *frame, int which)
807 {
808 	struct kinfo_pctrack *pctrack;
809 
810 	pctrack = &cputime_pctrack[mycpu->gd_cpuid][which];
811 	pctrack->pc_array[pctrack->pc_index & PCTRACK_ARYMASK] =
812 		(void *)CLKF_PC(frame);
813 	++pctrack->pc_index;
814 }
815 
816 static int
817 sysctl_pctrack(SYSCTL_HANDLER_ARGS)
818 {
819 	struct kinfo_pcheader head;
820 	int error;
821 	int cpu;
822 	int ntrack;
823 
824 	head.pc_ntrack = PCTRACK_SIZE;
825 	head.pc_arysize = PCTRACK_ARYSIZE;
826 
827 	if ((error = SYSCTL_OUT(req, &head, sizeof(head))) != 0)
828 		return (error);
829 
830 	for (cpu = 0; cpu < ncpus; ++cpu) {
831 		for (ntrack = 0; ntrack < PCTRACK_SIZE; ++ntrack) {
832 			error = SYSCTL_OUT(req, &cputime_pctrack[cpu][ntrack],
833 					   sizeof(struct kinfo_pctrack));
834 			if (error)
835 				break;
836 		}
837 		if (error)
838 			break;
839 	}
840 	return (error);
841 }
842 SYSCTL_PROC(_kern, OID_AUTO, pctrack, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
843 	sysctl_pctrack, "S,kinfo_pcheader", "CPU PC tracking");
844 
845 #endif
846 
847 /*
848  * The scheduler clock typically runs at a 50Hz rate.  NOTE! systimer,
849  * the MP lock might not be held.  We can safely manipulate parts of curproc
850  * but that's about it.
851  *
852  * Each cpu has its own scheduler clock.
853  */
854 static void
855 schedclock(systimer_t info, int in_ipi __unused, struct intrframe *frame)
856 {
857 	struct lwp *lp;
858 	struct rusage *ru;
859 	struct vmspace *vm;
860 	long rss;
861 
862 	if ((lp = lwkt_preempted_proc()) != NULL) {
863 		/*
864 		 * Account for cpu time used and hit the scheduler.  Note
865 		 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD
866 		 * HERE.
867 		 */
868 		++lp->lwp_cpticks;
869 		usched_schedulerclock(lp, info->periodic, info->time);
870 	} else {
871 		usched_schedulerclock(NULL, info->periodic, info->time);
872 	}
873 	if ((lp = curthread->td_lwp) != NULL) {
874 		/*
875 		 * Update resource usage integrals and maximums.
876 		 */
877 		if ((ru = &lp->lwp_proc->p_ru) &&
878 		    (vm = lp->lwp_proc->p_vmspace) != NULL) {
879 			ru->ru_ixrss += pgtok(vm->vm_tsize);
880 			ru->ru_idrss += pgtok(vm->vm_dsize);
881 			ru->ru_isrss += pgtok(vm->vm_ssize);
882 			if (lwkt_trytoken(&vm->vm_map.token)) {
883 				rss = pgtok(vmspace_resident_count(vm));
884 				if (ru->ru_maxrss < rss)
885 					ru->ru_maxrss = rss;
886 				lwkt_reltoken(&vm->vm_map.token);
887 			}
888 		}
889 	}
890 	/* Increment the global sched_ticks */
891 	if (mycpu->gd_cpuid == 0)
892 		++sched_ticks;
893 }
894 
895 /*
896  * Compute number of ticks for the specified amount of time.  The
897  * return value is intended to be used in a clock interrupt timed
898  * operation and guaranteed to meet or exceed the requested time.
899  * If the representation overflows, return INT_MAX.  The minimum return
900  * value is 1 ticks and the function will average the calculation up.
901  * If any value greater then 0 microseconds is supplied, a value
902  * of at least 2 will be returned to ensure that a near-term clock
903  * interrupt does not cause the timeout to occur (degenerately) early.
904  *
905  * Note that limit checks must take into account microseconds, which is
906  * done simply by using the smaller signed long maximum instead of
907  * the unsigned long maximum.
908  *
909  * If ints have 32 bits, then the maximum value for any timeout in
910  * 10ms ticks is 248 days.
911  */
912 int
913 tvtohz_high(struct timeval *tv)
914 {
915 	int ticks;
916 	long sec, usec;
917 
918 	sec = tv->tv_sec;
919 	usec = tv->tv_usec;
920 	if (usec < 0) {
921 		sec--;
922 		usec += 1000000;
923 	}
924 	if (sec < 0) {
925 #ifdef DIAGNOSTIC
926 		if (usec > 0) {
927 			sec++;
928 			usec -= 1000000;
929 		}
930 		kprintf("tvtohz_high: negative time difference "
931 			"%ld sec %ld usec\n",
932 			sec, usec);
933 #endif
934 		ticks = 1;
935 	} else if (sec <= INT_MAX / hz) {
936 		ticks = (int)(sec * hz +
937 			    ((u_long)usec + (ustick - 1)) / ustick) + 1;
938 	} else {
939 		ticks = INT_MAX;
940 	}
941 	return (ticks);
942 }
943 
944 int
945 tstohz_high(struct timespec *ts)
946 {
947 	int ticks;
948 	long sec, nsec;
949 
950 	sec = ts->tv_sec;
951 	nsec = ts->tv_nsec;
952 	if (nsec < 0) {
953 		sec--;
954 		nsec += 1000000000;
955 	}
956 	if (sec < 0) {
957 #ifdef DIAGNOSTIC
958 		if (nsec > 0) {
959 			sec++;
960 			nsec -= 1000000000;
961 		}
962 		kprintf("tstohz_high: negative time difference "
963 			"%ld sec %ld nsec\n",
964 			sec, nsec);
965 #endif
966 		ticks = 1;
967 	} else if (sec <= INT_MAX / hz) {
968 		ticks = (int)(sec * hz +
969 			    ((u_long)nsec + (nstick - 1)) / nstick) + 1;
970 	} else {
971 		ticks = INT_MAX;
972 	}
973 	return (ticks);
974 }
975 
976 
977 /*
978  * Compute number of ticks for the specified amount of time, erroring on
979  * the side of it being too low to ensure that sleeping the returned number
980  * of ticks will not result in a late return.
981  *
982  * The supplied timeval may not be negative and should be normalized.  A
983  * return value of 0 is possible if the timeval converts to less then
984  * 1 tick.
985  *
986  * If ints have 32 bits, then the maximum value for any timeout in
987  * 10ms ticks is 248 days.
988  */
989 int
990 tvtohz_low(struct timeval *tv)
991 {
992 	int ticks;
993 	long sec;
994 
995 	sec = tv->tv_sec;
996 	if (sec <= INT_MAX / hz)
997 		ticks = (int)(sec * hz + (u_long)tv->tv_usec / ustick);
998 	else
999 		ticks = INT_MAX;
1000 	return (ticks);
1001 }
1002 
1003 int
1004 tstohz_low(struct timespec *ts)
1005 {
1006 	int ticks;
1007 	long sec;
1008 
1009 	sec = ts->tv_sec;
1010 	if (sec <= INT_MAX / hz)
1011 		ticks = (int)(sec * hz + (u_long)ts->tv_nsec / nstick);
1012 	else
1013 		ticks = INT_MAX;
1014 	return (ticks);
1015 }
1016 
1017 /*
1018  * Start profiling on a process.
1019  *
1020  * Kernel profiling passes proc0 which never exits and hence
1021  * keeps the profile clock running constantly.
1022  */
1023 void
1024 startprofclock(struct proc *p)
1025 {
1026 	if ((p->p_flags & P_PROFIL) == 0) {
1027 		p->p_flags |= P_PROFIL;
1028 #if 0	/* XXX */
1029 		if (++profprocs == 1 && stathz != 0) {
1030 			crit_enter();
1031 			psdiv = psratio;
1032 			setstatclockrate(profhz);
1033 			crit_exit();
1034 		}
1035 #endif
1036 	}
1037 }
1038 
1039 /*
1040  * Stop profiling on a process.
1041  *
1042  * caller must hold p->p_token
1043  */
1044 void
1045 stopprofclock(struct proc *p)
1046 {
1047 	if (p->p_flags & P_PROFIL) {
1048 		p->p_flags &= ~P_PROFIL;
1049 #if 0	/* XXX */
1050 		if (--profprocs == 0 && stathz != 0) {
1051 			crit_enter();
1052 			psdiv = 1;
1053 			setstatclockrate(stathz);
1054 			crit_exit();
1055 		}
1056 #endif
1057 	}
1058 }
1059 
1060 /*
1061  * Return information about system clocks.
1062  */
1063 static int
1064 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
1065 {
1066 	struct kinfo_clockinfo clkinfo;
1067 	/*
1068 	 * Construct clockinfo structure.
1069 	 */
1070 	clkinfo.ci_hz = hz;
1071 	clkinfo.ci_tick = ustick;
1072 	clkinfo.ci_tickadj = ntp_default_tick_delta / 1000;
1073 	clkinfo.ci_profhz = profhz;
1074 	clkinfo.ci_stathz = stathz ? stathz : hz;
1075 	return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
1076 }
1077 
1078 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
1079 	0, 0, sysctl_kern_clockrate, "S,clockinfo","");
1080 
1081 /*
1082  * We have eight functions for looking at the clock, four for
1083  * microseconds and four for nanoseconds.  For each there is fast
1084  * but less precise version "get{nano|micro}[up]time" which will
1085  * return a time which is up to 1/HZ previous to the call, whereas
1086  * the raw version "{nano|micro}[up]time" will return a timestamp
1087  * which is as precise as possible.  The "up" variants return the
1088  * time relative to system boot, these are well suited for time
1089  * interval measurements.
1090  *
1091  * Each cpu independently maintains the current time of day, so all
1092  * we need to do to protect ourselves from changes is to do a loop
1093  * check on the seconds field changing out from under us.
1094  *
1095  * The system timer maintains a 32 bit count and due to various issues
1096  * it is possible for the calculated delta to occasionally exceed
1097  * sys_cputimer->freq.  If this occurs the sys_cputimer->freq64_nsec
1098  * multiplication can easily overflow, so we deal with the case.  For
1099  * uniformity we deal with the case in the usec case too.
1100  *
1101  * All the [get][micro,nano][time,uptime]() routines are MPSAFE.
1102  */
1103 void
1104 getmicrouptime(struct timeval *tvp)
1105 {
1106 	struct globaldata *gd = mycpu;
1107 	sysclock_t delta;
1108 
1109 	do {
1110 		tvp->tv_sec = gd->gd_time_seconds;
1111 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1112 	} while (tvp->tv_sec != gd->gd_time_seconds);
1113 
1114 	if (delta >= sys_cputimer->freq) {
1115 		tvp->tv_sec += delta / sys_cputimer->freq;
1116 		delta %= sys_cputimer->freq;
1117 	}
1118 	tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1119 	if (tvp->tv_usec >= 1000000) {
1120 		tvp->tv_usec -= 1000000;
1121 		++tvp->tv_sec;
1122 	}
1123 }
1124 
1125 void
1126 getnanouptime(struct timespec *tsp)
1127 {
1128 	struct globaldata *gd = mycpu;
1129 	sysclock_t delta;
1130 
1131 	do {
1132 		tsp->tv_sec = gd->gd_time_seconds;
1133 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1134 	} while (tsp->tv_sec != gd->gd_time_seconds);
1135 
1136 	if (delta >= sys_cputimer->freq) {
1137 		tsp->tv_sec += delta / sys_cputimer->freq;
1138 		delta %= sys_cputimer->freq;
1139 	}
1140 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1141 }
1142 
1143 void
1144 microuptime(struct timeval *tvp)
1145 {
1146 	struct globaldata *gd = mycpu;
1147 	sysclock_t delta;
1148 
1149 	do {
1150 		tvp->tv_sec = gd->gd_time_seconds;
1151 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1152 	} while (tvp->tv_sec != gd->gd_time_seconds);
1153 
1154 	if (delta >= sys_cputimer->freq) {
1155 		tvp->tv_sec += delta / sys_cputimer->freq;
1156 		delta %= sys_cputimer->freq;
1157 	}
1158 	tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1159 }
1160 
1161 void
1162 nanouptime(struct timespec *tsp)
1163 {
1164 	struct globaldata *gd = mycpu;
1165 	sysclock_t delta;
1166 
1167 	do {
1168 		tsp->tv_sec = gd->gd_time_seconds;
1169 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1170 	} while (tsp->tv_sec != gd->gd_time_seconds);
1171 
1172 	if (delta >= sys_cputimer->freq) {
1173 		tsp->tv_sec += delta / sys_cputimer->freq;
1174 		delta %= sys_cputimer->freq;
1175 	}
1176 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1177 }
1178 
1179 /*
1180  * realtime routines
1181  */
1182 void
1183 getmicrotime(struct timeval *tvp)
1184 {
1185 	struct globaldata *gd = mycpu;
1186 	struct timespec *bt;
1187 	sysclock_t delta;
1188 
1189 	do {
1190 		tvp->tv_sec = gd->gd_time_seconds;
1191 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1192 	} while (tvp->tv_sec != gd->gd_time_seconds);
1193 
1194 	if (delta >= sys_cputimer->freq) {
1195 		tvp->tv_sec += delta / sys_cputimer->freq;
1196 		delta %= sys_cputimer->freq;
1197 	}
1198 	tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1199 
1200 	bt = &basetime[basetime_index];
1201 	tvp->tv_sec += bt->tv_sec;
1202 	tvp->tv_usec += bt->tv_nsec / 1000;
1203 	while (tvp->tv_usec >= 1000000) {
1204 		tvp->tv_usec -= 1000000;
1205 		++tvp->tv_sec;
1206 	}
1207 }
1208 
1209 void
1210 getnanotime(struct timespec *tsp)
1211 {
1212 	struct globaldata *gd = mycpu;
1213 	struct timespec *bt;
1214 	sysclock_t delta;
1215 
1216 	do {
1217 		tsp->tv_sec = gd->gd_time_seconds;
1218 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1219 	} while (tsp->tv_sec != gd->gd_time_seconds);
1220 
1221 	if (delta >= sys_cputimer->freq) {
1222 		tsp->tv_sec += delta / sys_cputimer->freq;
1223 		delta %= sys_cputimer->freq;
1224 	}
1225 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1226 
1227 	bt = &basetime[basetime_index];
1228 	tsp->tv_sec += bt->tv_sec;
1229 	tsp->tv_nsec += bt->tv_nsec;
1230 	while (tsp->tv_nsec >= 1000000000) {
1231 		tsp->tv_nsec -= 1000000000;
1232 		++tsp->tv_sec;
1233 	}
1234 }
1235 
1236 static void
1237 getnanotime_nbt(struct timespec *nbt, struct timespec *tsp)
1238 {
1239 	struct globaldata *gd = mycpu;
1240 	sysclock_t delta;
1241 
1242 	do {
1243 		tsp->tv_sec = gd->gd_time_seconds;
1244 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1245 	} while (tsp->tv_sec != gd->gd_time_seconds);
1246 
1247 	if (delta >= sys_cputimer->freq) {
1248 		tsp->tv_sec += delta / sys_cputimer->freq;
1249 		delta %= sys_cputimer->freq;
1250 	}
1251 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1252 
1253 	tsp->tv_sec += nbt->tv_sec;
1254 	tsp->tv_nsec += nbt->tv_nsec;
1255 	while (tsp->tv_nsec >= 1000000000) {
1256 		tsp->tv_nsec -= 1000000000;
1257 		++tsp->tv_sec;
1258 	}
1259 }
1260 
1261 
1262 void
1263 microtime(struct timeval *tvp)
1264 {
1265 	struct globaldata *gd = mycpu;
1266 	struct timespec *bt;
1267 	sysclock_t delta;
1268 
1269 	do {
1270 		tvp->tv_sec = gd->gd_time_seconds;
1271 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1272 	} while (tvp->tv_sec != gd->gd_time_seconds);
1273 
1274 	if (delta >= sys_cputimer->freq) {
1275 		tvp->tv_sec += delta / sys_cputimer->freq;
1276 		delta %= sys_cputimer->freq;
1277 	}
1278 	tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1279 
1280 	bt = &basetime[basetime_index];
1281 	tvp->tv_sec += bt->tv_sec;
1282 	tvp->tv_usec += bt->tv_nsec / 1000;
1283 	while (tvp->tv_usec >= 1000000) {
1284 		tvp->tv_usec -= 1000000;
1285 		++tvp->tv_sec;
1286 	}
1287 }
1288 
1289 void
1290 nanotime(struct timespec *tsp)
1291 {
1292 	struct globaldata *gd = mycpu;
1293 	struct timespec *bt;
1294 	sysclock_t delta;
1295 
1296 	do {
1297 		tsp->tv_sec = gd->gd_time_seconds;
1298 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1299 	} while (tsp->tv_sec != gd->gd_time_seconds);
1300 
1301 	if (delta >= sys_cputimer->freq) {
1302 		tsp->tv_sec += delta / sys_cputimer->freq;
1303 		delta %= sys_cputimer->freq;
1304 	}
1305 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1306 
1307 	bt = &basetime[basetime_index];
1308 	tsp->tv_sec += bt->tv_sec;
1309 	tsp->tv_nsec += bt->tv_nsec;
1310 	while (tsp->tv_nsec >= 1000000000) {
1311 		tsp->tv_nsec -= 1000000000;
1312 		++tsp->tv_sec;
1313 	}
1314 }
1315 
1316 /*
1317  * note: this is not exactly synchronized with real time.  To do that we
1318  * would have to do what microtime does and check for a nanoseconds overflow.
1319  */
1320 time_t
1321 get_approximate_time_t(void)
1322 {
1323 	struct globaldata *gd = mycpu;
1324 	struct timespec *bt;
1325 
1326 	bt = &basetime[basetime_index];
1327 	return(gd->gd_time_seconds + bt->tv_sec);
1328 }
1329 
1330 int
1331 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1332 {
1333 	pps_params_t *app;
1334 	struct pps_fetch_args *fapi;
1335 #ifdef PPS_SYNC
1336 	struct pps_kcbind_args *kapi;
1337 #endif
1338 
1339 	switch (cmd) {
1340 	case PPS_IOC_CREATE:
1341 		return (0);
1342 	case PPS_IOC_DESTROY:
1343 		return (0);
1344 	case PPS_IOC_SETPARAMS:
1345 		app = (pps_params_t *)data;
1346 		if (app->mode & ~pps->ppscap)
1347 			return (EINVAL);
1348 		pps->ppsparam = *app;
1349 		return (0);
1350 	case PPS_IOC_GETPARAMS:
1351 		app = (pps_params_t *)data;
1352 		*app = pps->ppsparam;
1353 		app->api_version = PPS_API_VERS_1;
1354 		return (0);
1355 	case PPS_IOC_GETCAP:
1356 		*(int*)data = pps->ppscap;
1357 		return (0);
1358 	case PPS_IOC_FETCH:
1359 		fapi = (struct pps_fetch_args *)data;
1360 		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1361 			return (EINVAL);
1362 		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
1363 			return (EOPNOTSUPP);
1364 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
1365 		fapi->pps_info_buf = pps->ppsinfo;
1366 		return (0);
1367 	case PPS_IOC_KCBIND:
1368 #ifdef PPS_SYNC
1369 		kapi = (struct pps_kcbind_args *)data;
1370 		/* XXX Only root should be able to do this */
1371 		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1372 			return (EINVAL);
1373 		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1374 			return (EINVAL);
1375 		if (kapi->edge & ~pps->ppscap)
1376 			return (EINVAL);
1377 		pps->kcmode = kapi->edge;
1378 		return (0);
1379 #else
1380 		return (EOPNOTSUPP);
1381 #endif
1382 	default:
1383 		return (ENOTTY);
1384 	}
1385 }
1386 
1387 void
1388 pps_init(struct pps_state *pps)
1389 {
1390 	pps->ppscap |= PPS_TSFMT_TSPEC;
1391 	if (pps->ppscap & PPS_CAPTUREASSERT)
1392 		pps->ppscap |= PPS_OFFSETASSERT;
1393 	if (pps->ppscap & PPS_CAPTURECLEAR)
1394 		pps->ppscap |= PPS_OFFSETCLEAR;
1395 }
1396 
1397 void
1398 pps_event(struct pps_state *pps, sysclock_t count, int event)
1399 {
1400 	struct globaldata *gd;
1401 	struct timespec *tsp;
1402 	struct timespec *osp;
1403 	struct timespec *bt;
1404 	struct timespec ts;
1405 	sysclock_t *pcount;
1406 #ifdef PPS_SYNC
1407 	sysclock_t tcount;
1408 #endif
1409 	sysclock_t delta;
1410 	pps_seq_t *pseq;
1411 	int foff;
1412 #ifdef PPS_SYNC
1413 	int fhard;
1414 #else
1415 	int fhard __unused;
1416 #endif
1417 
1418 	gd = mycpu;
1419 
1420 	/* Things would be easier with arrays... */
1421 	if (event == PPS_CAPTUREASSERT) {
1422 		tsp = &pps->ppsinfo.assert_timestamp;
1423 		osp = &pps->ppsparam.assert_offset;
1424 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1425 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
1426 		pcount = &pps->ppscount[0];
1427 		pseq = &pps->ppsinfo.assert_sequence;
1428 	} else {
1429 		tsp = &pps->ppsinfo.clear_timestamp;
1430 		osp = &pps->ppsparam.clear_offset;
1431 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1432 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
1433 		pcount = &pps->ppscount[1];
1434 		pseq = &pps->ppsinfo.clear_sequence;
1435 	}
1436 
1437 	/* Nothing really happened */
1438 	if (*pcount == count)
1439 		return;
1440 
1441 	*pcount = count;
1442 
1443 	do {
1444 		ts.tv_sec = gd->gd_time_seconds;
1445 		delta = count - gd->gd_cpuclock_base;
1446 	} while (ts.tv_sec != gd->gd_time_seconds);
1447 
1448 	if (delta >= sys_cputimer->freq) {
1449 		ts.tv_sec += delta / sys_cputimer->freq;
1450 		delta %= sys_cputimer->freq;
1451 	}
1452 	ts.tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1453 	bt = &basetime[basetime_index];
1454 	ts.tv_sec += bt->tv_sec;
1455 	ts.tv_nsec += bt->tv_nsec;
1456 	while (ts.tv_nsec >= 1000000000) {
1457 		ts.tv_nsec -= 1000000000;
1458 		++ts.tv_sec;
1459 	}
1460 
1461 	(*pseq)++;
1462 	*tsp = ts;
1463 
1464 	if (foff) {
1465 		timespecadd(tsp, osp);
1466 		if (tsp->tv_nsec < 0) {
1467 			tsp->tv_nsec += 1000000000;
1468 			tsp->tv_sec -= 1;
1469 		}
1470 	}
1471 #ifdef PPS_SYNC
1472 	if (fhard) {
1473 		/* magic, at its best... */
1474 		tcount = count - pps->ppscount[2];
1475 		pps->ppscount[2] = count;
1476 		if (tcount >= sys_cputimer->freq) {
1477 			delta = (1000000000 * (tcount / sys_cputimer->freq) +
1478 				 sys_cputimer->freq64_nsec *
1479 				 (tcount % sys_cputimer->freq)) >> 32;
1480 		} else {
1481 			delta = (sys_cputimer->freq64_nsec * tcount) >> 32;
1482 		}
1483 		hardpps(tsp, delta);
1484 	}
1485 #endif
1486 }
1487 
1488 /*
1489  * Return the tsc target value for a delay of (ns).
1490  *
1491  * Returns -1 if the TSC is not supported.
1492  */
1493 int64_t
1494 tsc_get_target(int ns)
1495 {
1496 #if defined(_RDTSC_SUPPORTED_)
1497 	if (cpu_feature & CPUID_TSC) {
1498 		return (rdtsc() + tsc_frequency * ns / (int64_t)1000000000);
1499 	}
1500 #endif
1501 	return(-1);
1502 }
1503 
1504 /*
1505  * Compare the tsc against the passed target
1506  *
1507  * Returns +1 if the target has been reached
1508  * Returns  0 if the target has not yet been reached
1509  * Returns -1 if the TSC is not supported.
1510  *
1511  * Typical use:		while (tsc_test_target(target) == 0) { ...poll... }
1512  */
1513 int
1514 tsc_test_target(int64_t target)
1515 {
1516 #if defined(_RDTSC_SUPPORTED_)
1517 	if (cpu_feature & CPUID_TSC) {
1518 		if ((int64_t)(target - rdtsc()) <= 0)
1519 			return(1);
1520 		return(0);
1521 	}
1522 #endif
1523 	return(-1);
1524 }
1525 
1526 /*
1527  * Delay the specified number of nanoseconds using the tsc.  This function
1528  * returns immediately if the TSC is not supported.  At least one cpu_pause()
1529  * will be issued.
1530  */
1531 void
1532 tsc_delay(int ns)
1533 {
1534 	int64_t clk;
1535 
1536 	clk = tsc_get_target(ns);
1537 	cpu_pause();
1538 	while (tsc_test_target(clk) == 0)
1539 		cpu_pause();
1540 }
1541