xref: /dragonfly/sys/kern/kern_descrip.c (revision 409b4c59)
1 /*
2  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Jeffrey Hsu.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *
35  * Copyright (c) 1982, 1986, 1989, 1991, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  * (c) UNIX System Laboratories, Inc.
38  * All or some portions of this file are derived from material licensed
39  * to the University of California by American Telephone and Telegraph
40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41  * the permission of UNIX System Laboratories, Inc.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed by the University of
54  *	California, Berkeley and its contributors.
55  * 4. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  *	@(#)kern_descrip.c	8.6 (Berkeley) 4/19/94
72  * $FreeBSD: src/sys/kern/kern_descrip.c,v 1.81.2.19 2004/02/28 00:43:31 tegge Exp $
73  * $DragonFly: src/sys/kern/kern_descrip.c,v 1.79 2008/08/31 13:18:28 aggelos Exp $
74  */
75 
76 #include "opt_compat.h"
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/malloc.h>
80 #include <sys/sysproto.h>
81 #include <sys/conf.h>
82 #include <sys/device.h>
83 #include <sys/filedesc.h>
84 #include <sys/kernel.h>
85 #include <sys/sysctl.h>
86 #include <sys/vnode.h>
87 #include <sys/proc.h>
88 #include <sys/nlookup.h>
89 #include <sys/file.h>
90 #include <sys/stat.h>
91 #include <sys/filio.h>
92 #include <sys/fcntl.h>
93 #include <sys/unistd.h>
94 #include <sys/resourcevar.h>
95 #include <sys/event.h>
96 #include <sys/kern_syscall.h>
97 #include <sys/kcore.h>
98 #include <sys/kinfo.h>
99 #include <sys/un.h>
100 
101 #include <vm/vm.h>
102 #include <vm/vm_extern.h>
103 
104 #include <sys/thread2.h>
105 #include <sys/file2.h>
106 #include <sys/spinlock2.h>
107 
108 static void fsetfd_locked(struct filedesc *fdp, struct file *fp, int fd);
109 static void fdreserve_locked (struct filedesc *fdp, int fd0, int incr);
110 static struct file *funsetfd_locked (struct filedesc *fdp, int fd);
111 static int checkfpclosed(struct filedesc *fdp, int fd, struct file *fp);
112 static void ffree(struct file *fp);
113 
114 static MALLOC_DEFINE(M_FILEDESC, "file desc", "Open file descriptor table");
115 static MALLOC_DEFINE(M_FILEDESC_TO_LEADER, "file desc to leader",
116 		     "file desc to leader structures");
117 MALLOC_DEFINE(M_FILE, "file", "Open file structure");
118 static MALLOC_DEFINE(M_SIGIO, "sigio", "sigio structures");
119 
120 static	 d_open_t  fdopen;
121 #define NUMFDESC 64
122 
123 #define CDEV_MAJOR 22
124 static struct dev_ops fildesc_ops = {
125 	{ "FD", CDEV_MAJOR, 0 },
126 	.d_open =	fdopen,
127 };
128 
129 static int badfo_readwrite (struct file *fp, struct uio *uio,
130     struct ucred *cred, int flags);
131 static int badfo_ioctl (struct file *fp, u_long com, caddr_t data,
132     struct ucred *cred);
133 static int badfo_poll (struct file *fp, int events, struct ucred *cred);
134 static int badfo_kqfilter (struct file *fp, struct knote *kn);
135 static int badfo_stat (struct file *fp, struct stat *sb, struct ucred *cred);
136 static int badfo_close (struct file *fp);
137 static int badfo_shutdown (struct file *fp, int how);
138 
139 /*
140  * Descriptor management.
141  */
142 static struct filelist filehead = LIST_HEAD_INITIALIZER(&filehead);
143 static struct spinlock filehead_spin = SPINLOCK_INITIALIZER(&filehead_spin);
144 static int nfiles;		/* actual number of open files */
145 extern int cmask;
146 
147 /*
148  * Fixup fd_freefile and fd_lastfile after a descriptor has been cleared.
149  *
150  * MPSAFE - must be called with fdp->fd_spin exclusively held
151  */
152 static __inline
153 void
154 fdfixup_locked(struct filedesc *fdp, int fd)
155 {
156 	if (fd < fdp->fd_freefile) {
157 	       fdp->fd_freefile = fd;
158 	}
159 	while (fdp->fd_lastfile >= 0 &&
160 	       fdp->fd_files[fdp->fd_lastfile].fp == NULL &&
161 	       fdp->fd_files[fdp->fd_lastfile].reserved == 0
162 	) {
163 		--fdp->fd_lastfile;
164 	}
165 }
166 
167 /*
168  * System calls on descriptors.
169  *
170  * MPSAFE
171  */
172 int
173 sys_getdtablesize(struct getdtablesize_args *uap)
174 {
175 	struct proc *p = curproc;
176 	struct plimit *limit = p->p_limit;
177 
178 	spin_lock_rd(&limit->p_spin);
179 	uap->sysmsg_result =
180 	    min((int)limit->pl_rlimit[RLIMIT_NOFILE].rlim_cur, maxfilesperproc);
181 	spin_unlock_rd(&limit->p_spin);
182 	return (0);
183 }
184 
185 /*
186  * Duplicate a file descriptor to a particular value.
187  *
188  * note: keep in mind that a potential race condition exists when closing
189  * descriptors from a shared descriptor table (via rfork).
190  *
191  * MPSAFE
192  */
193 int
194 sys_dup2(struct dup2_args *uap)
195 {
196 	int error;
197 
198 	error = kern_dup(DUP_FIXED, uap->from, uap->to, uap->sysmsg_fds);
199 
200 	return (error);
201 }
202 
203 /*
204  * Duplicate a file descriptor.
205  *
206  * MPSAFE
207  */
208 int
209 sys_dup(struct dup_args *uap)
210 {
211 	int error;
212 
213 	error = kern_dup(DUP_VARIABLE, uap->fd, 0, uap->sysmsg_fds);
214 
215 	return (error);
216 }
217 
218 /*
219  * MPALMOSTSAFE - acquires mplock for fp operations
220  */
221 int
222 kern_fcntl(int fd, int cmd, union fcntl_dat *dat, struct ucred *cred)
223 {
224 	struct thread *td = curthread;
225 	struct proc *p = td->td_proc;
226 	struct file *fp;
227 	struct vnode *vp;
228 	u_int newmin;
229 	u_int oflags;
230 	int tmp, error, flg = F_POSIX;
231 
232 	KKASSERT(p);
233 
234 	/*
235 	 * Operations on file descriptors that do not require a file pointer.
236 	 */
237 	switch (cmd) {
238 	case F_GETFD:
239 		error = fgetfdflags(p->p_fd, fd, &tmp);
240 		if (error == 0)
241 			dat->fc_cloexec = (tmp & UF_EXCLOSE) ? FD_CLOEXEC : 0;
242 		return (error);
243 
244 	case F_SETFD:
245 		if (dat->fc_cloexec & FD_CLOEXEC)
246 			error = fsetfdflags(p->p_fd, fd, UF_EXCLOSE);
247 		else
248 			error = fclrfdflags(p->p_fd, fd, UF_EXCLOSE);
249 		return (error);
250 	case F_DUPFD:
251 		newmin = dat->fc_fd;
252 		error = kern_dup(DUP_VARIABLE, fd, newmin, &dat->fc_fd);
253 		return (error);
254 	default:
255 		break;
256 	}
257 
258 	/*
259 	 * Operations on file pointers
260 	 */
261 	if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
262 		return (EBADF);
263 
264 	get_mplock();
265 	switch (cmd) {
266 	case F_GETFL:
267 		dat->fc_flags = OFLAGS(fp->f_flag);
268 		error = 0;
269 		break;
270 
271 	case F_SETFL:
272 		oflags = fp->f_flag & FCNTLFLAGS;
273 		fp->f_flag &= ~FCNTLFLAGS;
274 		fp->f_flag |= FFLAGS(dat->fc_flags & ~O_ACCMODE) & FCNTLFLAGS;
275 		error = 0;
276 		if ((fp->f_flag ^ oflags) & FASYNC) {
277 			tmp = fp->f_flag & FASYNC;
278 			error = fo_ioctl(fp, FIOASYNC, (caddr_t)&tmp, cred);
279 		}
280 		if (error)
281 			fp->f_flag = (fp->f_flag & ~FCNTLFLAGS) | oflags;
282 		break;
283 
284 	case F_GETOWN:
285 		error = fo_ioctl(fp, FIOGETOWN, (caddr_t)&dat->fc_owner, cred);
286 		break;
287 
288 	case F_SETOWN:
289 		error = fo_ioctl(fp, FIOSETOWN, (caddr_t)&dat->fc_owner, cred);
290 		break;
291 
292 	case F_SETLKW:
293 		flg |= F_WAIT;
294 		/* Fall into F_SETLK */
295 
296 	case F_SETLK:
297 		if (fp->f_type != DTYPE_VNODE) {
298 			error = EBADF;
299 			break;
300 		}
301 		vp = (struct vnode *)fp->f_data;
302 
303 		/*
304 		 * copyin/lockop may block
305 		 */
306 		if (dat->fc_flock.l_whence == SEEK_CUR)
307 			dat->fc_flock.l_start += fp->f_offset;
308 
309 		switch (dat->fc_flock.l_type) {
310 		case F_RDLCK:
311 			if ((fp->f_flag & FREAD) == 0) {
312 				error = EBADF;
313 				break;
314 			}
315 			p->p_leader->p_flag |= P_ADVLOCK;
316 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
317 			    &dat->fc_flock, flg);
318 			break;
319 		case F_WRLCK:
320 			if ((fp->f_flag & FWRITE) == 0) {
321 				error = EBADF;
322 				break;
323 			}
324 			p->p_leader->p_flag |= P_ADVLOCK;
325 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
326 			    &dat->fc_flock, flg);
327 			break;
328 		case F_UNLCK:
329 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
330 				&dat->fc_flock, F_POSIX);
331 			break;
332 		default:
333 			error = EINVAL;
334 			break;
335 		}
336 
337 		/*
338 		 * It is possible to race a close() on the descriptor while
339 		 * we were blocked getting the lock.  If this occurs the
340 		 * close might not have caught the lock.
341 		 */
342 		if (checkfpclosed(p->p_fd, fd, fp)) {
343 			dat->fc_flock.l_whence = SEEK_SET;
344 			dat->fc_flock.l_start = 0;
345 			dat->fc_flock.l_len = 0;
346 			dat->fc_flock.l_type = F_UNLCK;
347 			(void) VOP_ADVLOCK(vp, (caddr_t)p->p_leader,
348 					   F_UNLCK, &dat->fc_flock, F_POSIX);
349 		}
350 		break;
351 
352 	case F_GETLK:
353 		if (fp->f_type != DTYPE_VNODE) {
354 			error = EBADF;
355 			break;
356 		}
357 		vp = (struct vnode *)fp->f_data;
358 		/*
359 		 * copyin/lockop may block
360 		 */
361 		if (dat->fc_flock.l_type != F_RDLCK &&
362 		    dat->fc_flock.l_type != F_WRLCK &&
363 		    dat->fc_flock.l_type != F_UNLCK) {
364 			error = EINVAL;
365 			break;
366 		}
367 		if (dat->fc_flock.l_whence == SEEK_CUR)
368 			dat->fc_flock.l_start += fp->f_offset;
369 		error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_GETLK,
370 			    &dat->fc_flock, F_POSIX);
371 		break;
372 	default:
373 		error = EINVAL;
374 		break;
375 	}
376 	rel_mplock();
377 
378 	fdrop(fp);
379 	return (error);
380 }
381 
382 /*
383  * The file control system call.
384  *
385  * MPSAFE
386  */
387 int
388 sys_fcntl(struct fcntl_args *uap)
389 {
390 	union fcntl_dat dat;
391 	int error;
392 
393 	switch (uap->cmd) {
394 	case F_DUPFD:
395 		dat.fc_fd = uap->arg;
396 		break;
397 	case F_SETFD:
398 		dat.fc_cloexec = uap->arg;
399 		break;
400 	case F_SETFL:
401 		dat.fc_flags = uap->arg;
402 		break;
403 	case F_SETOWN:
404 		dat.fc_owner = uap->arg;
405 		break;
406 	case F_SETLKW:
407 	case F_SETLK:
408 	case F_GETLK:
409 		error = copyin((caddr_t)uap->arg, &dat.fc_flock,
410 			       sizeof(struct flock));
411 		if (error)
412 			return (error);
413 		break;
414 	}
415 
416 	error = kern_fcntl(uap->fd, uap->cmd, &dat, curproc->p_ucred);
417 
418 	if (error == 0) {
419 		switch (uap->cmd) {
420 		case F_DUPFD:
421 			uap->sysmsg_result = dat.fc_fd;
422 			break;
423 		case F_GETFD:
424 			uap->sysmsg_result = dat.fc_cloexec;
425 			break;
426 		case F_GETFL:
427 			uap->sysmsg_result = dat.fc_flags;
428 			break;
429 		case F_GETOWN:
430 			uap->sysmsg_result = dat.fc_owner;
431 		case F_GETLK:
432 			error = copyout(&dat.fc_flock, (caddr_t)uap->arg,
433 			    sizeof(struct flock));
434 			break;
435 		}
436 	}
437 
438 	return (error);
439 }
440 
441 /*
442  * Common code for dup, dup2, and fcntl(F_DUPFD).
443  *
444  * The type flag can be either DUP_FIXED or DUP_VARIABLE.  DUP_FIXED tells
445  * kern_dup() to destructively dup over an existing file descriptor if new
446  * is already open.  DUP_VARIABLE tells kern_dup() to find the lowest
447  * unused file descriptor that is greater than or equal to new.
448  *
449  * MPSAFE
450  */
451 int
452 kern_dup(enum dup_type type, int old, int new, int *res)
453 {
454 	struct thread *td = curthread;
455 	struct proc *p = td->td_proc;
456 	struct filedesc *fdp = p->p_fd;
457 	struct file *fp;
458 	struct file *delfp;
459 	int oldflags;
460 	int holdleaders;
461 	int error, newfd;
462 
463 	/*
464 	 * Verify that we have a valid descriptor to dup from and
465 	 * possibly to dup to.
466 	 */
467 retry:
468 	spin_lock_wr(&fdp->fd_spin);
469 	if (new < 0 || new > p->p_rlimit[RLIMIT_NOFILE].rlim_cur ||
470 	    new >= maxfilesperproc) {
471 		spin_unlock_wr(&fdp->fd_spin);
472 		return (EINVAL);
473 	}
474 	if ((unsigned)old >= fdp->fd_nfiles || fdp->fd_files[old].fp == NULL) {
475 		spin_unlock_wr(&fdp->fd_spin);
476 		return (EBADF);
477 	}
478 	if (type == DUP_FIXED && old == new) {
479 		*res = new;
480 		spin_unlock_wr(&fdp->fd_spin);
481 		return (0);
482 	}
483 	fp = fdp->fd_files[old].fp;
484 	oldflags = fdp->fd_files[old].fileflags;
485 	fhold(fp);	/* MPSAFE - can be called with a spinlock held */
486 
487 	/*
488 	 * Allocate a new descriptor if DUP_VARIABLE, or expand the table
489 	 * if the requested descriptor is beyond the current table size.
490 	 *
491 	 * This can block.  Retry if the source descriptor no longer matches
492 	 * or if our expectation in the expansion case races.
493 	 *
494 	 * If we are not expanding or allocating a new decriptor, then reset
495 	 * the target descriptor to a reserved state so we have a uniform
496 	 * setup for the next code block.
497 	 */
498 	if (type == DUP_VARIABLE || new >= fdp->fd_nfiles) {
499 		spin_unlock_wr(&fdp->fd_spin);
500 		error = fdalloc(p, new, &newfd);
501 		spin_lock_wr(&fdp->fd_spin);
502 		if (error) {
503 			spin_unlock_wr(&fdp->fd_spin);
504 			fdrop(fp);
505 			return (error);
506 		}
507 		/*
508 		 * Check for ripout
509 		 */
510 		if (old >= fdp->fd_nfiles || fdp->fd_files[old].fp != fp) {
511 			fsetfd_locked(fdp, NULL, newfd);
512 			spin_unlock_wr(&fdp->fd_spin);
513 			fdrop(fp);
514 			goto retry;
515 		}
516 		/*
517 		 * Check for expansion race
518 		 */
519 		if (type != DUP_VARIABLE && new != newfd) {
520 			fsetfd_locked(fdp, NULL, newfd);
521 			spin_unlock_wr(&fdp->fd_spin);
522 			fdrop(fp);
523 			goto retry;
524 		}
525 		/*
526 		 * Check for ripout, newfd reused old (this case probably
527 		 * can't occur).
528 		 */
529 		if (old == newfd) {
530 			fsetfd_locked(fdp, NULL, newfd);
531 			spin_unlock_wr(&fdp->fd_spin);
532 			fdrop(fp);
533 			goto retry;
534 		}
535 		new = newfd;
536 		delfp = NULL;
537 	} else {
538 		if (fdp->fd_files[new].reserved) {
539 			spin_unlock_wr(&fdp->fd_spin);
540 			fdrop(fp);
541 			kprintf("Warning: dup(): target descriptor %d is reserved, waiting for it to be resolved\n", new);
542 			tsleep(fdp, 0, "fdres", hz);
543 			goto retry;
544 		}
545 
546 		/*
547 		 * If the target descriptor was never allocated we have
548 		 * to allocate it.  If it was we have to clean out the
549 		 * old descriptor.  delfp inherits the ref from the
550 		 * descriptor table.
551 		 */
552 		delfp = fdp->fd_files[new].fp;
553 		fdp->fd_files[new].fp = NULL;
554 		fdp->fd_files[new].reserved = 1;
555 		if (delfp == NULL) {
556 			fdreserve_locked(fdp, new, 1);
557 			if (new > fdp->fd_lastfile)
558 				fdp->fd_lastfile = new;
559 		}
560 
561 	}
562 
563 	/*
564 	 * NOTE: still holding an exclusive spinlock
565 	 */
566 
567 	/*
568 	 * If a descriptor is being overwritten we may hve to tell
569 	 * fdfree() to sleep to ensure that all relevant process
570 	 * leaders can be traversed in closef().
571 	 */
572 	if (delfp != NULL && p->p_fdtol != NULL) {
573 		fdp->fd_holdleaderscount++;
574 		holdleaders = 1;
575 	} else {
576 		holdleaders = 0;
577 	}
578 	KASSERT(delfp == NULL || type == DUP_FIXED,
579 		("dup() picked an open file"));
580 
581 	/*
582 	 * Duplicate the source descriptor, update lastfile.  If the new
583 	 * descriptor was not allocated and we aren't replacing an existing
584 	 * descriptor we have to mark the descriptor as being in use.
585 	 *
586 	 * The fd_files[] array inherits fp's hold reference.
587 	 */
588 	fsetfd_locked(fdp, fp, new);
589 	fdp->fd_files[new].fileflags = oldflags & ~UF_EXCLOSE;
590 	spin_unlock_wr(&fdp->fd_spin);
591 	fdrop(fp);
592 	*res = new;
593 
594 	/*
595 	 * If we dup'd over a valid file, we now own the reference to it
596 	 * and must dispose of it using closef() semantics (as if a
597 	 * close() were performed on it).
598 	 */
599 	if (delfp) {
600 		closef(delfp, p);
601 		if (holdleaders) {
602 			spin_lock_wr(&fdp->fd_spin);
603 			fdp->fd_holdleaderscount--;
604 			if (fdp->fd_holdleaderscount == 0 &&
605 			    fdp->fd_holdleaderswakeup != 0) {
606 				fdp->fd_holdleaderswakeup = 0;
607 				spin_unlock_wr(&fdp->fd_spin);
608 				wakeup(&fdp->fd_holdleaderscount);
609 			} else {
610 				spin_unlock_wr(&fdp->fd_spin);
611 			}
612 		}
613 	}
614 	return (0);
615 }
616 
617 /*
618  * If sigio is on the list associated with a process or process group,
619  * disable signalling from the device, remove sigio from the list and
620  * free sigio.
621  */
622 void
623 funsetown(struct sigio *sigio)
624 {
625 	if (sigio == NULL)
626 		return;
627 	crit_enter();
628 	*(sigio->sio_myref) = NULL;
629 	crit_exit();
630 	if (sigio->sio_pgid < 0) {
631 		SLIST_REMOVE(&sigio->sio_pgrp->pg_sigiolst, sigio,
632 			     sigio, sio_pgsigio);
633 	} else /* if ((*sigiop)->sio_pgid > 0) */ {
634 		SLIST_REMOVE(&sigio->sio_proc->p_sigiolst, sigio,
635 			     sigio, sio_pgsigio);
636 	}
637 	crfree(sigio->sio_ucred);
638 	kfree(sigio, M_SIGIO);
639 }
640 
641 /* Free a list of sigio structures. */
642 void
643 funsetownlst(struct sigiolst *sigiolst)
644 {
645 	struct sigio *sigio;
646 
647 	while ((sigio = SLIST_FIRST(sigiolst)) != NULL)
648 		funsetown(sigio);
649 }
650 
651 /*
652  * This is common code for FIOSETOWN ioctl called by fcntl(fd, F_SETOWN, arg).
653  *
654  * After permission checking, add a sigio structure to the sigio list for
655  * the process or process group.
656  */
657 int
658 fsetown(pid_t pgid, struct sigio **sigiop)
659 {
660 	struct proc *proc;
661 	struct pgrp *pgrp;
662 	struct sigio *sigio;
663 
664 	if (pgid == 0) {
665 		funsetown(*sigiop);
666 		return (0);
667 	}
668 	if (pgid > 0) {
669 		proc = pfind(pgid);
670 		if (proc == NULL)
671 			return (ESRCH);
672 
673 		/*
674 		 * Policy - Don't allow a process to FSETOWN a process
675 		 * in another session.
676 		 *
677 		 * Remove this test to allow maximum flexibility or
678 		 * restrict FSETOWN to the current process or process
679 		 * group for maximum safety.
680 		 */
681 		if (proc->p_session != curproc->p_session)
682 			return (EPERM);
683 
684 		pgrp = NULL;
685 	} else /* if (pgid < 0) */ {
686 		pgrp = pgfind(-pgid);
687 		if (pgrp == NULL)
688 			return (ESRCH);
689 
690 		/*
691 		 * Policy - Don't allow a process to FSETOWN a process
692 		 * in another session.
693 		 *
694 		 * Remove this test to allow maximum flexibility or
695 		 * restrict FSETOWN to the current process or process
696 		 * group for maximum safety.
697 		 */
698 		if (pgrp->pg_session != curproc->p_session)
699 			return (EPERM);
700 
701 		proc = NULL;
702 	}
703 	funsetown(*sigiop);
704 	sigio = kmalloc(sizeof(struct sigio), M_SIGIO, M_WAITOK);
705 	if (pgid > 0) {
706 		SLIST_INSERT_HEAD(&proc->p_sigiolst, sigio, sio_pgsigio);
707 		sigio->sio_proc = proc;
708 	} else {
709 		SLIST_INSERT_HEAD(&pgrp->pg_sigiolst, sigio, sio_pgsigio);
710 		sigio->sio_pgrp = pgrp;
711 	}
712 	sigio->sio_pgid = pgid;
713 	sigio->sio_ucred = crhold(curproc->p_ucred);
714 	/* It would be convenient if p_ruid was in ucred. */
715 	sigio->sio_ruid = curproc->p_ucred->cr_ruid;
716 	sigio->sio_myref = sigiop;
717 	crit_enter();
718 	*sigiop = sigio;
719 	crit_exit();
720 	return (0);
721 }
722 
723 /*
724  * This is common code for FIOGETOWN ioctl called by fcntl(fd, F_GETOWN, arg).
725  */
726 pid_t
727 fgetown(struct sigio *sigio)
728 {
729 	return (sigio != NULL ? sigio->sio_pgid : 0);
730 }
731 
732 /*
733  * Close many file descriptors.
734  *
735  * MPSAFE
736  */
737 int
738 sys_closefrom(struct closefrom_args *uap)
739 {
740 	return(kern_closefrom(uap->fd));
741 }
742 
743 /*
744  * Close all file descriptors greater then or equal to fd
745  *
746  * MPSAFE
747  */
748 int
749 kern_closefrom(int fd)
750 {
751 	struct thread *td = curthread;
752 	struct proc *p = td->td_proc;
753 	struct filedesc *fdp;
754 
755 	KKASSERT(p);
756 	fdp = p->p_fd;
757 
758 	if (fd < 0)
759 		return (EINVAL);
760 
761 	/*
762 	 * NOTE: This function will skip unassociated descriptors and
763 	 * reserved descriptors that have not yet been assigned.
764 	 * fd_lastfile can change as a side effect of kern_close().
765 	 */
766 	spin_lock_wr(&fdp->fd_spin);
767 	while (fd <= fdp->fd_lastfile) {
768 		if (fdp->fd_files[fd].fp != NULL) {
769 			spin_unlock_wr(&fdp->fd_spin);
770 			/* ok if this races another close */
771 			if (kern_close(fd) == EINTR)
772 				return (EINTR);
773 			spin_lock_wr(&fdp->fd_spin);
774 		}
775 		++fd;
776 	}
777 	spin_unlock_wr(&fdp->fd_spin);
778 	return (0);
779 }
780 
781 /*
782  * Close a file descriptor.
783  *
784  * MPSAFE
785  */
786 int
787 sys_close(struct close_args *uap)
788 {
789 	return(kern_close(uap->fd));
790 }
791 
792 /*
793  * MPALMOSTSAFE - acquires mplock around knote_fdclose() calls
794  */
795 int
796 kern_close(int fd)
797 {
798 	struct thread *td = curthread;
799 	struct proc *p = td->td_proc;
800 	struct filedesc *fdp;
801 	struct file *fp;
802 	int error;
803 	int holdleaders;
804 
805 	KKASSERT(p);
806 	fdp = p->p_fd;
807 
808 	spin_lock_wr(&fdp->fd_spin);
809 	if ((fp = funsetfd_locked(fdp, fd)) == NULL) {
810 		spin_unlock_wr(&fdp->fd_spin);
811 		return (EBADF);
812 	}
813 	holdleaders = 0;
814 	if (p->p_fdtol != NULL) {
815 		/*
816 		 * Ask fdfree() to sleep to ensure that all relevant
817 		 * process leaders can be traversed in closef().
818 		 */
819 		fdp->fd_holdleaderscount++;
820 		holdleaders = 1;
821 	}
822 
823 	/*
824 	 * we now hold the fp reference that used to be owned by the descriptor
825 	 * array.
826 	 */
827 	spin_unlock_wr(&fdp->fd_spin);
828 	if (fd < fdp->fd_knlistsize) {
829 		get_mplock();
830 		if (fd < fdp->fd_knlistsize)
831 			knote_fdclose(p, fd);
832 		rel_mplock();
833 	}
834 	error = closef(fp, p);
835 	if (holdleaders) {
836 		spin_lock_wr(&fdp->fd_spin);
837 		fdp->fd_holdleaderscount--;
838 		if (fdp->fd_holdleaderscount == 0 &&
839 		    fdp->fd_holdleaderswakeup != 0) {
840 			fdp->fd_holdleaderswakeup = 0;
841 			spin_unlock_wr(&fdp->fd_spin);
842 			wakeup(&fdp->fd_holdleaderscount);
843 		} else {
844 			spin_unlock_wr(&fdp->fd_spin);
845 		}
846 	}
847 	return (error);
848 }
849 
850 /*
851  * shutdown_args(int fd, int how)
852  */
853 int
854 kern_shutdown(int fd, int how)
855 {
856 	struct thread *td = curthread;
857 	struct proc *p = td->td_proc;
858 	struct file *fp;
859 	int error;
860 
861 	KKASSERT(p);
862 
863 	if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
864 		return (EBADF);
865 	error = fo_shutdown(fp, how);
866 	fdrop(fp);
867 
868 	return (error);
869 }
870 
871 int
872 sys_shutdown(struct shutdown_args *uap)
873 {
874 	int error;
875 
876 	error = kern_shutdown(uap->s, uap->how);
877 
878 	return (error);
879 }
880 
881 int
882 kern_fstat(int fd, struct stat *ub)
883 {
884 	struct thread *td = curthread;
885 	struct proc *p = td->td_proc;
886 	struct file *fp;
887 	int error;
888 
889 	KKASSERT(p);
890 
891 	if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
892 		return (EBADF);
893 	error = fo_stat(fp, ub, p->p_ucred);
894 	fdrop(fp);
895 
896 	return (error);
897 }
898 
899 /*
900  * Return status information about a file descriptor.
901  */
902 int
903 sys_fstat(struct fstat_args *uap)
904 {
905 	struct stat st;
906 	int error;
907 
908 	error = kern_fstat(uap->fd, &st);
909 
910 	if (error == 0)
911 		error = copyout(&st, uap->sb, sizeof(st));
912 	return (error);
913 }
914 
915 /*
916  * Return pathconf information about a file descriptor.
917  */
918 /* ARGSUSED */
919 int
920 sys_fpathconf(struct fpathconf_args *uap)
921 {
922 	struct thread *td = curthread;
923 	struct proc *p = td->td_proc;
924 	struct file *fp;
925 	struct vnode *vp;
926 	int error = 0;
927 
928 	KKASSERT(p);
929 
930 	if ((fp = holdfp(p->p_fd, uap->fd, -1)) == NULL)
931 		return (EBADF);
932 
933 	switch (fp->f_type) {
934 	case DTYPE_PIPE:
935 	case DTYPE_SOCKET:
936 		if (uap->name != _PC_PIPE_BUF) {
937 			error = EINVAL;
938 		} else {
939 			uap->sysmsg_result = PIPE_BUF;
940 			error = 0;
941 		}
942 		break;
943 	case DTYPE_FIFO:
944 	case DTYPE_VNODE:
945 		vp = (struct vnode *)fp->f_data;
946 		error = VOP_PATHCONF(vp, uap->name, uap->sysmsg_fds);
947 		break;
948 	default:
949 		error = EOPNOTSUPP;
950 		break;
951 	}
952 	fdrop(fp);
953 	return(error);
954 }
955 
956 static int fdexpand;
957 SYSCTL_INT(_debug, OID_AUTO, fdexpand, CTLFLAG_RD, &fdexpand, 0, "");
958 
959 /*
960  * Grow the file table so it can hold through descriptor (want).
961  *
962  * The fdp's spinlock must be held exclusively on entry and may be held
963  * exclusively on return.  The spinlock may be cycled by the routine.
964  *
965  * MPSAFE
966  */
967 static void
968 fdgrow_locked(struct filedesc *fdp, int want)
969 {
970 	struct fdnode *newfiles;
971 	struct fdnode *oldfiles;
972 	int nf, extra;
973 
974 	nf = fdp->fd_nfiles;
975 	do {
976 		/* nf has to be of the form 2^n - 1 */
977 		nf = 2 * nf + 1;
978 	} while (nf <= want);
979 
980 	spin_unlock_wr(&fdp->fd_spin);
981 	newfiles = kmalloc(nf * sizeof(struct fdnode), M_FILEDESC, M_WAITOK);
982 	spin_lock_wr(&fdp->fd_spin);
983 
984 	/*
985 	 * We could have raced another extend while we were not holding
986 	 * the spinlock.
987 	 */
988 	if (fdp->fd_nfiles >= nf) {
989 		spin_unlock_wr(&fdp->fd_spin);
990 		kfree(newfiles, M_FILEDESC);
991 		spin_lock_wr(&fdp->fd_spin);
992 		return;
993 	}
994 	/*
995 	 * Copy the existing ofile and ofileflags arrays
996 	 * and zero the new portion of each array.
997 	 */
998 	extra = nf - fdp->fd_nfiles;
999 	bcopy(fdp->fd_files, newfiles, fdp->fd_nfiles * sizeof(struct fdnode));
1000 	bzero(&newfiles[fdp->fd_nfiles], extra * sizeof(struct fdnode));
1001 
1002 	oldfiles = fdp->fd_files;
1003 	fdp->fd_files = newfiles;
1004 	fdp->fd_nfiles = nf;
1005 
1006 	if (oldfiles != fdp->fd_builtin_files) {
1007 		spin_unlock_wr(&fdp->fd_spin);
1008 		kfree(oldfiles, M_FILEDESC);
1009 		spin_lock_wr(&fdp->fd_spin);
1010 	}
1011 	fdexpand++;
1012 }
1013 
1014 /*
1015  * Number of nodes in right subtree, including the root.
1016  */
1017 static __inline int
1018 right_subtree_size(int n)
1019 {
1020 	return (n ^ (n | (n + 1)));
1021 }
1022 
1023 /*
1024  * Bigger ancestor.
1025  */
1026 static __inline int
1027 right_ancestor(int n)
1028 {
1029 	return (n | (n + 1));
1030 }
1031 
1032 /*
1033  * Smaller ancestor.
1034  */
1035 static __inline int
1036 left_ancestor(int n)
1037 {
1038 	return ((n & (n + 1)) - 1);
1039 }
1040 
1041 /*
1042  * Traverse the in-place binary tree buttom-up adjusting the allocation
1043  * count so scans can determine where free descriptors are located.
1044  *
1045  * MPSAFE - caller must be holding an exclusive spinlock on fdp
1046  */
1047 static
1048 void
1049 fdreserve_locked(struct filedesc *fdp, int fd, int incr)
1050 {
1051 	while (fd >= 0) {
1052 		fdp->fd_files[fd].allocated += incr;
1053 		KKASSERT(fdp->fd_files[fd].allocated >= 0);
1054 		fd = left_ancestor(fd);
1055 	}
1056 }
1057 
1058 /*
1059  * Reserve a file descriptor for the process.  If no error occurs, the
1060  * caller MUST at some point call fsetfd() or assign a file pointer
1061  * or dispose of the reservation.
1062  *
1063  * MPSAFE
1064  */
1065 int
1066 fdalloc(struct proc *p, int want, int *result)
1067 {
1068 	struct filedesc *fdp = p->p_fd;
1069 	int fd, rsize, rsum, node, lim;
1070 
1071 	spin_lock_rd(&p->p_limit->p_spin);
1072 	lim = min((int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur, maxfilesperproc);
1073 	spin_unlock_rd(&p->p_limit->p_spin);
1074 	if (want >= lim)
1075 		return (EMFILE);
1076 	spin_lock_wr(&fdp->fd_spin);
1077 	if (want >= fdp->fd_nfiles)
1078 		fdgrow_locked(fdp, want);
1079 
1080 	/*
1081 	 * Search for a free descriptor starting at the higher
1082 	 * of want or fd_freefile.  If that fails, consider
1083 	 * expanding the ofile array.
1084 	 *
1085 	 * NOTE! the 'allocated' field is a cumulative recursive allocation
1086 	 * count.  If we happen to see a value of 0 then we can shortcut
1087 	 * our search.  Otherwise we run through through the tree going
1088 	 * down branches we know have free descriptor(s) until we hit a
1089 	 * leaf node.  The leaf node will be free but will not necessarily
1090 	 * have an allocated field of 0.
1091 	 */
1092 retry:
1093 	/* move up the tree looking for a subtree with a free node */
1094 	for (fd = max(want, fdp->fd_freefile); fd < min(fdp->fd_nfiles, lim);
1095 	     fd = right_ancestor(fd)) {
1096 		if (fdp->fd_files[fd].allocated == 0)
1097 			goto found;
1098 
1099 		rsize = right_subtree_size(fd);
1100 		if (fdp->fd_files[fd].allocated == rsize)
1101 			continue;	/* right subtree full */
1102 
1103 		/*
1104 		 * Free fd is in the right subtree of the tree rooted at fd.
1105 		 * Call that subtree R.  Look for the smallest (leftmost)
1106 		 * subtree of R with an unallocated fd: continue moving
1107 		 * down the left branch until encountering a full left
1108 		 * subtree, then move to the right.
1109 		 */
1110 		for (rsum = 0, rsize /= 2; rsize > 0; rsize /= 2) {
1111 			node = fd + rsize;
1112 			rsum += fdp->fd_files[node].allocated;
1113 			if (fdp->fd_files[fd].allocated == rsum + rsize) {
1114 				fd = node;	/* move to the right */
1115 				if (fdp->fd_files[node].allocated == 0)
1116 					goto found;
1117 				rsum = 0;
1118 			}
1119 		}
1120 		goto found;
1121 	}
1122 
1123 	/*
1124 	 * No space in current array.  Expand?
1125 	 */
1126 	if (fdp->fd_nfiles >= lim) {
1127 		spin_unlock_wr(&fdp->fd_spin);
1128 		return (EMFILE);
1129 	}
1130 	fdgrow_locked(fdp, want);
1131 	goto retry;
1132 
1133 found:
1134 	KKASSERT(fd < fdp->fd_nfiles);
1135 	if (fd > fdp->fd_lastfile)
1136 		fdp->fd_lastfile = fd;
1137 	if (want <= fdp->fd_freefile)
1138 		fdp->fd_freefile = fd;
1139 	*result = fd;
1140 	KKASSERT(fdp->fd_files[fd].fp == NULL);
1141 	KKASSERT(fdp->fd_files[fd].reserved == 0);
1142 	fdp->fd_files[fd].fileflags = 0;
1143 	fdp->fd_files[fd].reserved = 1;
1144 	fdreserve_locked(fdp, fd, 1);
1145 	spin_unlock_wr(&fdp->fd_spin);
1146 	return (0);
1147 }
1148 
1149 /*
1150  * Check to see whether n user file descriptors
1151  * are available to the process p.
1152  *
1153  * MPSAFE
1154  */
1155 int
1156 fdavail(struct proc *p, int n)
1157 {
1158 	struct filedesc *fdp = p->p_fd;
1159 	struct fdnode *fdnode;
1160 	int i, lim, last;
1161 
1162 	spin_lock_rd(&p->p_limit->p_spin);
1163 	lim = min((int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur, maxfilesperproc);
1164 	spin_unlock_rd(&p->p_limit->p_spin);
1165 
1166 	spin_lock_rd(&fdp->fd_spin);
1167 	if ((i = lim - fdp->fd_nfiles) > 0 && (n -= i) <= 0) {
1168 		spin_unlock_rd(&fdp->fd_spin);
1169 		return (1);
1170 	}
1171 	last = min(fdp->fd_nfiles, lim);
1172 	fdnode = &fdp->fd_files[fdp->fd_freefile];
1173 	for (i = last - fdp->fd_freefile; --i >= 0; ++fdnode) {
1174 		if (fdnode->fp == NULL && --n <= 0) {
1175 			spin_unlock_rd(&fdp->fd_spin);
1176 			return (1);
1177 		}
1178 	}
1179 	spin_unlock_rd(&fdp->fd_spin);
1180 	return (0);
1181 }
1182 
1183 /*
1184  * Revoke open descriptors referencing (f_data, f_type)
1185  *
1186  * Any revoke executed within a prison is only able to
1187  * revoke descriptors for processes within that prison.
1188  *
1189  * Returns 0 on success or an error code.
1190  */
1191 struct fdrevoke_info {
1192 	void *data;
1193 	short type;
1194 	short unused;
1195 	int count;
1196 	int intransit;
1197 	struct ucred *cred;
1198 	struct file *nfp;
1199 };
1200 
1201 static int fdrevoke_check_callback(struct file *fp, void *vinfo);
1202 static int fdrevoke_proc_callback(struct proc *p, void *vinfo);
1203 
1204 int
1205 fdrevoke(void *f_data, short f_type, struct ucred *cred)
1206 {
1207 	struct fdrevoke_info info;
1208 	int error;
1209 
1210 	bzero(&info, sizeof(info));
1211 	info.data = f_data;
1212 	info.type = f_type;
1213 	info.cred = cred;
1214 	error = falloc(NULL, &info.nfp, NULL);
1215 	if (error)
1216 		return (error);
1217 
1218 	/*
1219 	 * Scan the file pointer table once.  dups do not dup file pointers,
1220 	 * only descriptors, so there is no leak.  Set FREVOKED on the fps
1221 	 * being revoked.
1222 	 */
1223 	allfiles_scan_exclusive(fdrevoke_check_callback, &info);
1224 
1225 	/*
1226 	 * If any fps were marked track down the related descriptors
1227 	 * and close them.  Any dup()s at this point will notice
1228 	 * the FREVOKED already set in the fp and do the right thing.
1229 	 *
1230 	 * Any fps with non-zero msgcounts (aka sent over a unix-domain
1231 	 * socket) bumped the intransit counter and will require a
1232 	 * scan.  Races against fps leaving the socket are closed by
1233 	 * the socket code checking for FREVOKED.
1234 	 */
1235 	if (info.count)
1236 		allproc_scan(fdrevoke_proc_callback, &info);
1237 	if (info.intransit)
1238 		unp_revoke_gc(info.nfp);
1239 	fdrop(info.nfp);
1240 	return(0);
1241 }
1242 
1243 /*
1244  * Locate matching file pointers directly.
1245  */
1246 static int
1247 fdrevoke_check_callback(struct file *fp, void *vinfo)
1248 {
1249 	struct fdrevoke_info *info = vinfo;
1250 
1251 	/*
1252 	 * File pointers already flagged for revokation are skipped.
1253 	 */
1254 	if (fp->f_flag & FREVOKED)
1255 		return(0);
1256 
1257 	/*
1258 	 * If revoking from a prison file pointers created outside of
1259 	 * that prison, or file pointers without creds, cannot be revoked.
1260 	 */
1261 	if (info->cred->cr_prison &&
1262 	    (fp->f_cred == NULL ||
1263 	     info->cred->cr_prison != fp->f_cred->cr_prison)) {
1264 		return(0);
1265 	}
1266 
1267 	/*
1268 	 * If the file pointer matches then mark it for revocation.  The
1269 	 * flag is currently only used by unp_revoke_gc().
1270 	 *
1271 	 * info->count is a heuristic and can race in a SMP environment.
1272 	 */
1273 	if (info->data == fp->f_data && info->type == fp->f_type) {
1274 		atomic_set_int(&fp->f_flag, FREVOKED);
1275 		info->count += fp->f_count;
1276 		if (fp->f_msgcount)
1277 			++info->intransit;
1278 	}
1279 	return(0);
1280 }
1281 
1282 /*
1283  * Locate matching file pointers via process descriptor tables.
1284  */
1285 static int
1286 fdrevoke_proc_callback(struct proc *p, void *vinfo)
1287 {
1288 	struct fdrevoke_info *info = vinfo;
1289 	struct filedesc *fdp;
1290 	struct file *fp;
1291 	int n;
1292 
1293 	if (p->p_stat == SIDL || p->p_stat == SZOMB)
1294 		return(0);
1295 	if (info->cred->cr_prison &&
1296 	    info->cred->cr_prison != p->p_ucred->cr_prison) {
1297 		return(0);
1298 	}
1299 
1300 	/*
1301 	 * If the controlling terminal of the process matches the
1302 	 * vnode being revoked we clear the controlling terminal.
1303 	 *
1304 	 * The normal spec_close() may not catch this because it
1305 	 * uses curproc instead of p.
1306 	 */
1307 	if (p->p_session && info->type == DTYPE_VNODE &&
1308 	    info->data == p->p_session->s_ttyvp) {
1309 		p->p_session->s_ttyvp = NULL;
1310 		vrele(info->data);
1311 	}
1312 
1313 	/*
1314 	 * Locate and close any matching file descriptors.
1315 	 */
1316 	if ((fdp = p->p_fd) == NULL)
1317 		return(0);
1318 	spin_lock_wr(&fdp->fd_spin);
1319 	for (n = 0; n < fdp->fd_nfiles; ++n) {
1320 		if ((fp = fdp->fd_files[n].fp) == NULL)
1321 			continue;
1322 		if (fp->f_flag & FREVOKED) {
1323 			fhold(info->nfp);
1324 			fdp->fd_files[n].fp = info->nfp;
1325 			spin_unlock_wr(&fdp->fd_spin);
1326 			closef(fp, p);
1327 			spin_lock_wr(&fdp->fd_spin);
1328 			--info->count;
1329 		}
1330 	}
1331 	spin_unlock_wr(&fdp->fd_spin);
1332 	return(0);
1333 }
1334 
1335 /*
1336  * falloc:
1337  *	Create a new open file structure and reserve a file decriptor
1338  *	for the process that refers to it.
1339  *
1340  *	Root creds are checked using p, or assumed if p is NULL.  If
1341  *	resultfd is non-NULL then p must also be non-NULL.  No file
1342  *	descriptor is reserved if resultfd is NULL.
1343  *
1344  *	A file pointer with a refcount of 1 is returned.  Note that the
1345  *	file pointer is NOT associated with the descriptor.  If falloc
1346  *	returns success, fsetfd() MUST be called to either associate the
1347  *	file pointer or clear the reservation.
1348  *
1349  * MPSAFE
1350  */
1351 int
1352 falloc(struct proc *p, struct file **resultfp, int *resultfd)
1353 {
1354 	static struct timeval lastfail;
1355 	static int curfail;
1356 	struct file *fp;
1357 	int error;
1358 
1359 	fp = NULL;
1360 
1361 	/*
1362 	 * Handle filetable full issues and root overfill.
1363 	 */
1364 	if (nfiles >= maxfiles - maxfilesrootres &&
1365 	    ((p && p->p_ucred->cr_ruid != 0) || nfiles >= maxfiles)) {
1366 		if (ppsratecheck(&lastfail, &curfail, 1)) {
1367 			kprintf("kern.maxfiles limit exceeded by uid %d, please see tuning(7).\n",
1368 				(p ? p->p_ucred->cr_ruid : -1));
1369 		}
1370 		error = ENFILE;
1371 		goto done;
1372 	}
1373 
1374 	/*
1375 	 * Allocate a new file descriptor.
1376 	 */
1377 	fp = kmalloc(sizeof(struct file), M_FILE, M_WAITOK | M_ZERO);
1378 	spin_init(&fp->f_spin);
1379 	fp->f_count = 1;
1380 	fp->f_ops = &badfileops;
1381 	fp->f_seqcount = 1;
1382 	if (p)
1383 		fp->f_cred = crhold(p->p_ucred);
1384 	else
1385 		fp->f_cred = crhold(proc0.p_ucred);
1386 	spin_lock_wr(&filehead_spin);
1387 	nfiles++;
1388 	LIST_INSERT_HEAD(&filehead, fp, f_list);
1389 	spin_unlock_wr(&filehead_spin);
1390 	if (resultfd) {
1391 		if ((error = fdalloc(p, 0, resultfd)) != 0) {
1392 			fdrop(fp);
1393 			fp = NULL;
1394 		}
1395 	} else {
1396 		error = 0;
1397 	}
1398 done:
1399 	*resultfp = fp;
1400 	return (error);
1401 }
1402 
1403 /*
1404  * MPSAFE
1405  */
1406 static
1407 int
1408 checkfpclosed(struct filedesc *fdp, int fd, struct file *fp)
1409 {
1410 	int error;
1411 
1412 	spin_lock_rd(&fdp->fd_spin);
1413 	if ((unsigned) fd >= fdp->fd_nfiles || fp != fdp->fd_files[fd].fp)
1414 		error = EBADF;
1415 	else
1416 		error = 0;
1417 	spin_unlock_rd(&fdp->fd_spin);
1418 	return (error);
1419 }
1420 
1421 /*
1422  * Associate a file pointer with a previously reserved file descriptor.
1423  * This function always succeeds.
1424  *
1425  * If fp is NULL, the file descriptor is returned to the pool.
1426  */
1427 
1428 /*
1429  * MPSAFE (exclusive spinlock must be held on call)
1430  */
1431 static void
1432 fsetfd_locked(struct filedesc *fdp, struct file *fp, int fd)
1433 {
1434 	KKASSERT((unsigned)fd < fdp->fd_nfiles);
1435 	KKASSERT(fdp->fd_files[fd].reserved != 0);
1436 	if (fp) {
1437 		fhold(fp);
1438 		fdp->fd_files[fd].fp = fp;
1439 		fdp->fd_files[fd].reserved = 0;
1440 		if (fp->f_type == DTYPE_KQUEUE) {
1441 			if (fdp->fd_knlistsize < 0)
1442 				fdp->fd_knlistsize = 0;
1443 		}
1444 	} else {
1445 		fdp->fd_files[fd].reserved = 0;
1446 		fdreserve_locked(fdp, fd, -1);
1447 		fdfixup_locked(fdp, fd);
1448 	}
1449 }
1450 
1451 /*
1452  * MPSAFE
1453  */
1454 void
1455 fsetfd(struct proc *p, struct file *fp, int fd)
1456 {
1457 	struct filedesc *fdp = p->p_fd;
1458 
1459 	spin_lock_wr(&fdp->fd_spin);
1460 	fsetfd_locked(fdp, fp, fd);
1461 	spin_unlock_wr(&fdp->fd_spin);
1462 }
1463 
1464 /*
1465  * MPSAFE (exclusive spinlock must be held on call)
1466  */
1467 static
1468 struct file *
1469 funsetfd_locked(struct filedesc *fdp, int fd)
1470 {
1471 	struct file *fp;
1472 
1473 	if ((unsigned)fd >= fdp->fd_nfiles)
1474 		return (NULL);
1475 	if ((fp = fdp->fd_files[fd].fp) == NULL)
1476 		return (NULL);
1477 	fdp->fd_files[fd].fp = NULL;
1478 	fdp->fd_files[fd].fileflags = 0;
1479 
1480 	fdreserve_locked(fdp, fd, -1);
1481 	fdfixup_locked(fdp, fd);
1482 	return(fp);
1483 }
1484 
1485 /*
1486  * MPSAFE
1487  */
1488 int
1489 fgetfdflags(struct filedesc *fdp, int fd, int *flagsp)
1490 {
1491 	int error;
1492 
1493 	spin_lock_rd(&fdp->fd_spin);
1494 	if (((u_int)fd) >= fdp->fd_nfiles) {
1495 		error = EBADF;
1496 	} else if (fdp->fd_files[fd].fp == NULL) {
1497 		error = EBADF;
1498 	} else {
1499 		*flagsp = fdp->fd_files[fd].fileflags;
1500 		error = 0;
1501 	}
1502 	spin_unlock_rd(&fdp->fd_spin);
1503 	return (error);
1504 }
1505 
1506 /*
1507  * MPSAFE
1508  */
1509 int
1510 fsetfdflags(struct filedesc *fdp, int fd, int add_flags)
1511 {
1512 	int error;
1513 
1514 	spin_lock_wr(&fdp->fd_spin);
1515 	if (((u_int)fd) >= fdp->fd_nfiles) {
1516 		error = EBADF;
1517 	} else if (fdp->fd_files[fd].fp == NULL) {
1518 		error = EBADF;
1519 	} else {
1520 		fdp->fd_files[fd].fileflags |= add_flags;
1521 		error = 0;
1522 	}
1523 	spin_unlock_wr(&fdp->fd_spin);
1524 	return (error);
1525 }
1526 
1527 /*
1528  * MPSAFE
1529  */
1530 int
1531 fclrfdflags(struct filedesc *fdp, int fd, int rem_flags)
1532 {
1533 	int error;
1534 
1535 	spin_lock_wr(&fdp->fd_spin);
1536 	if (((u_int)fd) >= fdp->fd_nfiles) {
1537 		error = EBADF;
1538 	} else if (fdp->fd_files[fd].fp == NULL) {
1539 		error = EBADF;
1540 	} else {
1541 		fdp->fd_files[fd].fileflags &= ~rem_flags;
1542 		error = 0;
1543 	}
1544 	spin_unlock_wr(&fdp->fd_spin);
1545 	return (error);
1546 }
1547 
1548 void
1549 fsetcred(struct file *fp, struct ucred *cr)
1550 {
1551 	crhold(cr);
1552 	crfree(fp->f_cred);
1553 	fp->f_cred = cr;
1554 }
1555 
1556 /*
1557  * Free a file descriptor.
1558  */
1559 static
1560 void
1561 ffree(struct file *fp)
1562 {
1563 	KASSERT((fp->f_count == 0), ("ffree: fp_fcount not 0!"));
1564 	spin_lock_wr(&filehead_spin);
1565 	LIST_REMOVE(fp, f_list);
1566 	nfiles--;
1567 	spin_unlock_wr(&filehead_spin);
1568 	crfree(fp->f_cred);
1569 	if (fp->f_nchandle.ncp)
1570 	    cache_drop(&fp->f_nchandle);
1571 	kfree(fp, M_FILE);
1572 }
1573 
1574 /*
1575  * called from init_main, initialize filedesc0 for proc0.
1576  */
1577 void
1578 fdinit_bootstrap(struct proc *p0, struct filedesc *fdp0, int cmask)
1579 {
1580 	p0->p_fd = fdp0;
1581 	p0->p_fdtol = NULL;
1582 	fdp0->fd_refcnt = 1;
1583 	fdp0->fd_cmask = cmask;
1584 	fdp0->fd_files = fdp0->fd_builtin_files;
1585 	fdp0->fd_nfiles = NDFILE;
1586 	fdp0->fd_lastfile = -1;
1587 	spin_init(&fdp0->fd_spin);
1588 }
1589 
1590 /*
1591  * Build a new filedesc structure.
1592  *
1593  * NOT MPSAFE (vref)
1594  */
1595 struct filedesc *
1596 fdinit(struct proc *p)
1597 {
1598 	struct filedesc *newfdp;
1599 	struct filedesc *fdp = p->p_fd;
1600 
1601 	newfdp = kmalloc(sizeof(struct filedesc), M_FILEDESC, M_WAITOK|M_ZERO);
1602 	spin_lock_rd(&fdp->fd_spin);
1603 	if (fdp->fd_cdir) {
1604 		newfdp->fd_cdir = fdp->fd_cdir;
1605 		vref(newfdp->fd_cdir);
1606 		cache_copy(&fdp->fd_ncdir, &newfdp->fd_ncdir);
1607 	}
1608 
1609 	/*
1610 	 * rdir may not be set in e.g. proc0 or anything vm_fork'd off of
1611 	 * proc0, but should unconditionally exist in other processes.
1612 	 */
1613 	if (fdp->fd_rdir) {
1614 		newfdp->fd_rdir = fdp->fd_rdir;
1615 		vref(newfdp->fd_rdir);
1616 		cache_copy(&fdp->fd_nrdir, &newfdp->fd_nrdir);
1617 	}
1618 	if (fdp->fd_jdir) {
1619 		newfdp->fd_jdir = fdp->fd_jdir;
1620 		vref(newfdp->fd_jdir);
1621 		cache_copy(&fdp->fd_njdir, &newfdp->fd_njdir);
1622 	}
1623 	spin_unlock_rd(&fdp->fd_spin);
1624 
1625 	/* Create the file descriptor table. */
1626 	newfdp->fd_refcnt = 1;
1627 	newfdp->fd_cmask = cmask;
1628 	newfdp->fd_files = newfdp->fd_builtin_files;
1629 	newfdp->fd_nfiles = NDFILE;
1630 	newfdp->fd_knlistsize = -1;
1631 	newfdp->fd_lastfile = -1;
1632 	spin_init(&newfdp->fd_spin);
1633 
1634 	return (newfdp);
1635 }
1636 
1637 /*
1638  * Share a filedesc structure.
1639  *
1640  * MPSAFE
1641  */
1642 struct filedesc *
1643 fdshare(struct proc *p)
1644 {
1645 	struct filedesc *fdp;
1646 
1647 	fdp = p->p_fd;
1648 	spin_lock_wr(&fdp->fd_spin);
1649 	fdp->fd_refcnt++;
1650 	spin_unlock_wr(&fdp->fd_spin);
1651 	return (fdp);
1652 }
1653 
1654 /*
1655  * Copy a filedesc structure.
1656  *
1657  * MPSAFE
1658  */
1659 struct filedesc *
1660 fdcopy(struct proc *p)
1661 {
1662 	struct filedesc *fdp = p->p_fd;
1663 	struct filedesc *newfdp;
1664 	struct fdnode *fdnode;
1665 	int i;
1666 	int ni;
1667 
1668 	/*
1669 	 * Certain daemons might not have file descriptors.
1670 	 */
1671 	if (fdp == NULL)
1672 		return (NULL);
1673 
1674 	/*
1675 	 * Allocate the new filedesc and fd_files[] array.  This can race
1676 	 * with operations by other threads on the fdp so we have to be
1677 	 * careful.
1678 	 */
1679 	newfdp = kmalloc(sizeof(struct filedesc), M_FILEDESC, M_WAITOK | M_ZERO);
1680 again:
1681 	spin_lock_rd(&fdp->fd_spin);
1682 	if (fdp->fd_lastfile < NDFILE) {
1683 		newfdp->fd_files = newfdp->fd_builtin_files;
1684 		i = NDFILE;
1685 	} else {
1686 		/*
1687 		 * We have to allocate (N^2-1) entries for our in-place
1688 		 * binary tree.  Allow the table to shrink.
1689 		 */
1690 		i = fdp->fd_nfiles;
1691 		ni = (i - 1) / 2;
1692 		while (ni > fdp->fd_lastfile && ni > NDFILE) {
1693 			i = ni;
1694 			ni = (i - 1) / 2;
1695 		}
1696 		spin_unlock_rd(&fdp->fd_spin);
1697 		newfdp->fd_files = kmalloc(i * sizeof(struct fdnode),
1698 					  M_FILEDESC, M_WAITOK | M_ZERO);
1699 
1700 		/*
1701 		 * Check for race, retry
1702 		 */
1703 		spin_lock_rd(&fdp->fd_spin);
1704 		if (i <= fdp->fd_lastfile) {
1705 			spin_unlock_rd(&fdp->fd_spin);
1706 			kfree(newfdp->fd_files, M_FILEDESC);
1707 			goto again;
1708 		}
1709 	}
1710 
1711 	/*
1712 	 * Dup the remaining fields. vref() and cache_hold() can be
1713 	 * safely called while holding the read spinlock on fdp.
1714 	 *
1715 	 * The read spinlock on fdp is still being held.
1716 	 *
1717 	 * NOTE: vref and cache_hold calls for the case where the vnode
1718 	 * or cache entry already has at least one ref may be called
1719 	 * while holding spin locks.
1720 	 */
1721 	if ((newfdp->fd_cdir = fdp->fd_cdir) != NULL) {
1722 		vref(newfdp->fd_cdir);
1723 		cache_copy(&fdp->fd_ncdir, &newfdp->fd_ncdir);
1724 	}
1725 	/*
1726 	 * We must check for fd_rdir here, at least for now because
1727 	 * the init process is created before we have access to the
1728 	 * rootvode to take a reference to it.
1729 	 */
1730 	if ((newfdp->fd_rdir = fdp->fd_rdir) != NULL) {
1731 		vref(newfdp->fd_rdir);
1732 		cache_copy(&fdp->fd_nrdir, &newfdp->fd_nrdir);
1733 	}
1734 	if ((newfdp->fd_jdir = fdp->fd_jdir) != NULL) {
1735 		vref(newfdp->fd_jdir);
1736 		cache_copy(&fdp->fd_njdir, &newfdp->fd_njdir);
1737 	}
1738 	newfdp->fd_refcnt = 1;
1739 	newfdp->fd_nfiles = i;
1740 	newfdp->fd_lastfile = fdp->fd_lastfile;
1741 	newfdp->fd_freefile = fdp->fd_freefile;
1742 	newfdp->fd_cmask = fdp->fd_cmask;
1743 	newfdp->fd_knlist = NULL;
1744 	newfdp->fd_knlistsize = -1;
1745 	newfdp->fd_knhash = NULL;
1746 	newfdp->fd_knhashmask = 0;
1747 	spin_init(&newfdp->fd_spin);
1748 
1749 	/*
1750 	 * Copy the descriptor table through (i).  This also copies the
1751 	 * allocation state.   Then go through and ref the file pointers
1752 	 * and clean up any KQ descriptors.
1753 	 *
1754 	 * kq descriptors cannot be copied.  Since we haven't ref'd the
1755 	 * copied files yet we can ignore the return value from funsetfd().
1756 	 *
1757 	 * The read spinlock on fdp is still being held.
1758 	 */
1759 	bcopy(fdp->fd_files, newfdp->fd_files, i * sizeof(struct fdnode));
1760 	for (i = 0 ; i < newfdp->fd_nfiles; ++i) {
1761 		fdnode = &newfdp->fd_files[i];
1762 		if (fdnode->reserved) {
1763 			fdreserve_locked(newfdp, i, -1);
1764 			fdnode->reserved = 0;
1765 			fdfixup_locked(newfdp, i);
1766 		} else if (fdnode->fp) {
1767 			if (fdnode->fp->f_type == DTYPE_KQUEUE) {
1768 				(void)funsetfd_locked(newfdp, i);
1769 			} else {
1770 				fhold(fdnode->fp);
1771 			}
1772 		}
1773 	}
1774 	spin_unlock_rd(&fdp->fd_spin);
1775 	return (newfdp);
1776 }
1777 
1778 /*
1779  * Release a filedesc structure.
1780  *
1781  * NOT MPSAFE (MPSAFE for refs > 1, but the final cleanup code is not MPSAFE)
1782  */
1783 void
1784 fdfree(struct proc *p)
1785 {
1786 	struct filedesc *fdp = p->p_fd;
1787 	struct fdnode *fdnode;
1788 	int i;
1789 	struct filedesc_to_leader *fdtol;
1790 	struct file *fp;
1791 	struct vnode *vp;
1792 	struct flock lf;
1793 
1794 	/* Certain daemons might not have file descriptors. */
1795 	if (fdp == NULL)
1796 		return;
1797 
1798 	/*
1799 	 * Severe messing around to follow
1800 	 */
1801 	spin_lock_wr(&fdp->fd_spin);
1802 
1803 	/* Check for special need to clear POSIX style locks */
1804 	fdtol = p->p_fdtol;
1805 	if (fdtol != NULL) {
1806 		KASSERT(fdtol->fdl_refcount > 0,
1807 			("filedesc_to_refcount botch: fdl_refcount=%d",
1808 			 fdtol->fdl_refcount));
1809 		if (fdtol->fdl_refcount == 1 &&
1810 		    (p->p_leader->p_flag & P_ADVLOCK) != 0) {
1811 			for (i = 0; i <= fdp->fd_lastfile; ++i) {
1812 				fdnode = &fdp->fd_files[i];
1813 				if (fdnode->fp == NULL ||
1814 				    fdnode->fp->f_type != DTYPE_VNODE) {
1815 					continue;
1816 				}
1817 				fp = fdnode->fp;
1818 				fhold(fp);
1819 				spin_unlock_wr(&fdp->fd_spin);
1820 
1821 				lf.l_whence = SEEK_SET;
1822 				lf.l_start = 0;
1823 				lf.l_len = 0;
1824 				lf.l_type = F_UNLCK;
1825 				vp = (struct vnode *)fp->f_data;
1826 				(void) VOP_ADVLOCK(vp,
1827 						   (caddr_t)p->p_leader,
1828 						   F_UNLCK,
1829 						   &lf,
1830 						   F_POSIX);
1831 				fdrop(fp);
1832 				spin_lock_wr(&fdp->fd_spin);
1833 			}
1834 		}
1835 	retry:
1836 		if (fdtol->fdl_refcount == 1) {
1837 			if (fdp->fd_holdleaderscount > 0 &&
1838 			    (p->p_leader->p_flag & P_ADVLOCK) != 0) {
1839 				/*
1840 				 * close() or do_dup() has cleared a reference
1841 				 * in a shared file descriptor table.
1842 				 */
1843 				fdp->fd_holdleaderswakeup = 1;
1844 				msleep(&fdp->fd_holdleaderscount,
1845 				       &fdp->fd_spin, 0, "fdlhold", 0);
1846 				goto retry;
1847 			}
1848 			if (fdtol->fdl_holdcount > 0) {
1849 				/*
1850 				 * Ensure that fdtol->fdl_leader
1851 				 * remains valid in closef().
1852 				 */
1853 				fdtol->fdl_wakeup = 1;
1854 				msleep(fdtol, &fdp->fd_spin, 0, "fdlhold", 0);
1855 				goto retry;
1856 			}
1857 		}
1858 		fdtol->fdl_refcount--;
1859 		if (fdtol->fdl_refcount == 0 &&
1860 		    fdtol->fdl_holdcount == 0) {
1861 			fdtol->fdl_next->fdl_prev = fdtol->fdl_prev;
1862 			fdtol->fdl_prev->fdl_next = fdtol->fdl_next;
1863 		} else {
1864 			fdtol = NULL;
1865 		}
1866 		p->p_fdtol = NULL;
1867 		if (fdtol != NULL) {
1868 			spin_unlock_wr(&fdp->fd_spin);
1869 			kfree(fdtol, M_FILEDESC_TO_LEADER);
1870 			spin_lock_wr(&fdp->fd_spin);
1871 		}
1872 	}
1873 	if (--fdp->fd_refcnt > 0) {
1874 		spin_unlock_wr(&fdp->fd_spin);
1875 		return;
1876 	}
1877 	spin_unlock_wr(&fdp->fd_spin);
1878 
1879 	/*
1880 	 * we are the last reference to the structure, we can
1881 	 * safely assume it will not change out from under us.
1882 	 */
1883 	for (i = 0; i <= fdp->fd_lastfile; ++i) {
1884 		if (fdp->fd_files[i].fp)
1885 			closef(fdp->fd_files[i].fp, p);
1886 	}
1887 	if (fdp->fd_files != fdp->fd_builtin_files)
1888 		kfree(fdp->fd_files, M_FILEDESC);
1889 	if (fdp->fd_cdir) {
1890 		cache_drop(&fdp->fd_ncdir);
1891 		vrele(fdp->fd_cdir);
1892 	}
1893 	if (fdp->fd_rdir) {
1894 		cache_drop(&fdp->fd_nrdir);
1895 		vrele(fdp->fd_rdir);
1896 	}
1897 	if (fdp->fd_jdir) {
1898 		cache_drop(&fdp->fd_njdir);
1899 		vrele(fdp->fd_jdir);
1900 	}
1901 	if (fdp->fd_knlist)
1902 		kfree(fdp->fd_knlist, M_KQUEUE);
1903 	if (fdp->fd_knhash)
1904 		kfree(fdp->fd_knhash, M_KQUEUE);
1905 	kfree(fdp, M_FILEDESC);
1906 }
1907 
1908 /*
1909  * Retrieve and reference the file pointer associated with a descriptor.
1910  *
1911  * MPSAFE
1912  */
1913 struct file *
1914 holdfp(struct filedesc *fdp, int fd, int flag)
1915 {
1916 	struct file* fp;
1917 
1918 	spin_lock_rd(&fdp->fd_spin);
1919 	if (((u_int)fd) >= fdp->fd_nfiles) {
1920 		fp = NULL;
1921 		goto done;
1922 	}
1923 	if ((fp = fdp->fd_files[fd].fp) == NULL)
1924 		goto done;
1925 	if ((fp->f_flag & flag) == 0 && flag != -1) {
1926 		fp = NULL;
1927 		goto done;
1928 	}
1929 	fhold(fp);
1930 done:
1931 	spin_unlock_rd(&fdp->fd_spin);
1932 	return (fp);
1933 }
1934 
1935 /*
1936  * holdsock() - load the struct file pointer associated
1937  * with a socket into *fpp.  If an error occurs, non-zero
1938  * will be returned and *fpp will be set to NULL.
1939  *
1940  * MPSAFE
1941  */
1942 int
1943 holdsock(struct filedesc *fdp, int fd, struct file **fpp)
1944 {
1945 	struct file *fp;
1946 	int error;
1947 
1948 	spin_lock_rd(&fdp->fd_spin);
1949 	if ((unsigned)fd >= fdp->fd_nfiles) {
1950 		error = EBADF;
1951 		fp = NULL;
1952 		goto done;
1953 	}
1954 	if ((fp = fdp->fd_files[fd].fp) == NULL) {
1955 		error = EBADF;
1956 		goto done;
1957 	}
1958 	if (fp->f_type != DTYPE_SOCKET) {
1959 		error = ENOTSOCK;
1960 		goto done;
1961 	}
1962 	fhold(fp);
1963 	error = 0;
1964 done:
1965 	spin_unlock_rd(&fdp->fd_spin);
1966 	*fpp = fp;
1967 	return (error);
1968 }
1969 
1970 /*
1971  * Convert a user file descriptor to a held file pointer.
1972  *
1973  * MPSAFE
1974  */
1975 int
1976 holdvnode(struct filedesc *fdp, int fd, struct file **fpp)
1977 {
1978 	struct file *fp;
1979 	int error;
1980 
1981 	spin_lock_rd(&fdp->fd_spin);
1982 	if ((unsigned)fd >= fdp->fd_nfiles) {
1983 		error = EBADF;
1984 		fp = NULL;
1985 		goto done;
1986 	}
1987 	if ((fp = fdp->fd_files[fd].fp) == NULL) {
1988 		error = EBADF;
1989 		goto done;
1990 	}
1991 	if (fp->f_type != DTYPE_VNODE && fp->f_type != DTYPE_FIFO) {
1992 		fp = NULL;
1993 		error = EINVAL;
1994 		goto done;
1995 	}
1996 	fhold(fp);
1997 	error = 0;
1998 done:
1999 	spin_unlock_rd(&fdp->fd_spin);
2000 	*fpp = fp;
2001 	return (error);
2002 }
2003 
2004 /*
2005  * For setugid programs, we don't want to people to use that setugidness
2006  * to generate error messages which write to a file which otherwise would
2007  * otherwise be off-limits to the process.
2008  *
2009  * This is a gross hack to plug the hole.  A better solution would involve
2010  * a special vop or other form of generalized access control mechanism.  We
2011  * go ahead and just reject all procfs file systems accesses as dangerous.
2012  *
2013  * Since setugidsafety calls this only for fd 0, 1 and 2, this check is
2014  * sufficient.  We also don't for check setugidness since we know we are.
2015  */
2016 static int
2017 is_unsafe(struct file *fp)
2018 {
2019 	if (fp->f_type == DTYPE_VNODE &&
2020 	    ((struct vnode *)(fp->f_data))->v_tag == VT_PROCFS)
2021 		return (1);
2022 	return (0);
2023 }
2024 
2025 /*
2026  * Make this setguid thing safe, if at all possible.
2027  *
2028  * NOT MPSAFE - scans fdp without spinlocks, calls knote_fdclose()
2029  */
2030 void
2031 setugidsafety(struct proc *p)
2032 {
2033 	struct filedesc *fdp = p->p_fd;
2034 	int i;
2035 
2036 	/* Certain daemons might not have file descriptors. */
2037 	if (fdp == NULL)
2038 		return;
2039 
2040 	/*
2041 	 * note: fdp->fd_files may be reallocated out from under us while
2042 	 * we are blocked in a close.  Be careful!
2043 	 */
2044 	for (i = 0; i <= fdp->fd_lastfile; i++) {
2045 		if (i > 2)
2046 			break;
2047 		if (fdp->fd_files[i].fp && is_unsafe(fdp->fd_files[i].fp)) {
2048 			struct file *fp;
2049 
2050 			if (i < fdp->fd_knlistsize)
2051 				knote_fdclose(p, i);
2052 			/*
2053 			 * NULL-out descriptor prior to close to avoid
2054 			 * a race while close blocks.
2055 			 */
2056 			if ((fp = funsetfd_locked(fdp, i)) != NULL)
2057 				closef(fp, p);
2058 		}
2059 	}
2060 }
2061 
2062 /*
2063  * Close any files on exec?
2064  *
2065  * NOT MPSAFE - scans fdp without spinlocks, calls knote_fdclose()
2066  */
2067 void
2068 fdcloseexec(struct proc *p)
2069 {
2070 	struct filedesc *fdp = p->p_fd;
2071 	int i;
2072 
2073 	/* Certain daemons might not have file descriptors. */
2074 	if (fdp == NULL)
2075 		return;
2076 
2077 	/*
2078 	 * We cannot cache fd_files since operations may block and rip
2079 	 * them out from under us.
2080 	 */
2081 	for (i = 0; i <= fdp->fd_lastfile; i++) {
2082 		if (fdp->fd_files[i].fp != NULL &&
2083 		    (fdp->fd_files[i].fileflags & UF_EXCLOSE)) {
2084 			struct file *fp;
2085 
2086 			if (i < fdp->fd_knlistsize)
2087 				knote_fdclose(p, i);
2088 			/*
2089 			 * NULL-out descriptor prior to close to avoid
2090 			 * a race while close blocks.
2091 			 */
2092 			if ((fp = funsetfd_locked(fdp, i)) != NULL)
2093 				closef(fp, p);
2094 		}
2095 	}
2096 }
2097 
2098 /*
2099  * It is unsafe for set[ug]id processes to be started with file
2100  * descriptors 0..2 closed, as these descriptors are given implicit
2101  * significance in the Standard C library.  fdcheckstd() will create a
2102  * descriptor referencing /dev/null for each of stdin, stdout, and
2103  * stderr that is not already open.
2104  *
2105  * NOT MPSAFE - calls falloc, vn_open, etc
2106  */
2107 int
2108 fdcheckstd(struct proc *p)
2109 {
2110 	struct nlookupdata nd;
2111 	struct filedesc *fdp;
2112 	struct file *fp;
2113 	register_t retval;
2114 	int i, error, flags, devnull;
2115 
2116 	fdp = p->p_fd;
2117 	if (fdp == NULL)
2118 		return (0);
2119 	devnull = -1;
2120 	error = 0;
2121 	for (i = 0; i < 3; i++) {
2122 		if (fdp->fd_files[i].fp != NULL)
2123 			continue;
2124 		if (devnull < 0) {
2125 			if ((error = falloc(p, &fp, &devnull)) != 0)
2126 				break;
2127 
2128 			error = nlookup_init(&nd, "/dev/null", UIO_SYSSPACE,
2129 						NLC_FOLLOW|NLC_LOCKVP);
2130 			flags = FREAD | FWRITE;
2131 			if (error == 0)
2132 				error = vn_open(&nd, fp, flags, 0);
2133 			if (error == 0)
2134 				fsetfd(p, fp, devnull);
2135 			else
2136 				fsetfd(p, NULL, devnull);
2137 			fdrop(fp);
2138 			nlookup_done(&nd);
2139 			if (error)
2140 				break;
2141 			KKASSERT(i == devnull);
2142 		} else {
2143 			error = kern_dup(DUP_FIXED, devnull, i, &retval);
2144 			if (error != 0)
2145 				break;
2146 		}
2147 	}
2148 	return (error);
2149 }
2150 
2151 /*
2152  * Internal form of close.
2153  * Decrement reference count on file structure.
2154  * Note: td and/or p may be NULL when closing a file
2155  * that was being passed in a message.
2156  *
2157  * MPALMOSTSAFE - acquires mplock for VOP operations
2158  */
2159 int
2160 closef(struct file *fp, struct proc *p)
2161 {
2162 	struct vnode *vp;
2163 	struct flock lf;
2164 	struct filedesc_to_leader *fdtol;
2165 
2166 	if (fp == NULL)
2167 		return (0);
2168 
2169 	/*
2170 	 * POSIX record locking dictates that any close releases ALL
2171 	 * locks owned by this process.  This is handled by setting
2172 	 * a flag in the unlock to free ONLY locks obeying POSIX
2173 	 * semantics, and not to free BSD-style file locks.
2174 	 * If the descriptor was in a message, POSIX-style locks
2175 	 * aren't passed with the descriptor.
2176 	 */
2177 	if (p != NULL && fp->f_type == DTYPE_VNODE &&
2178 	    (((struct vnode *)fp->f_data)->v_flag & VMAYHAVELOCKS)
2179 	) {
2180 		get_mplock();
2181 		if ((p->p_leader->p_flag & P_ADVLOCK) != 0) {
2182 			lf.l_whence = SEEK_SET;
2183 			lf.l_start = 0;
2184 			lf.l_len = 0;
2185 			lf.l_type = F_UNLCK;
2186 			vp = (struct vnode *)fp->f_data;
2187 			(void) VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
2188 					   &lf, F_POSIX);
2189 		}
2190 		fdtol = p->p_fdtol;
2191 		if (fdtol != NULL) {
2192 			/*
2193 			 * Handle special case where file descriptor table
2194 			 * is shared between multiple process leaders.
2195 			 */
2196 			for (fdtol = fdtol->fdl_next;
2197 			     fdtol != p->p_fdtol;
2198 			     fdtol = fdtol->fdl_next) {
2199 				if ((fdtol->fdl_leader->p_flag &
2200 				     P_ADVLOCK) == 0)
2201 					continue;
2202 				fdtol->fdl_holdcount++;
2203 				lf.l_whence = SEEK_SET;
2204 				lf.l_start = 0;
2205 				lf.l_len = 0;
2206 				lf.l_type = F_UNLCK;
2207 				vp = (struct vnode *)fp->f_data;
2208 				(void) VOP_ADVLOCK(vp,
2209 						   (caddr_t)fdtol->fdl_leader,
2210 						   F_UNLCK, &lf, F_POSIX);
2211 				fdtol->fdl_holdcount--;
2212 				if (fdtol->fdl_holdcount == 0 &&
2213 				    fdtol->fdl_wakeup != 0) {
2214 					fdtol->fdl_wakeup = 0;
2215 					wakeup(fdtol);
2216 				}
2217 			}
2218 		}
2219 		rel_mplock();
2220 	}
2221 	return (fdrop(fp));
2222 }
2223 
2224 /*
2225  * MPSAFE
2226  *
2227  * fhold() can only be called if f_count is already at least 1 (i.e. the
2228  * caller of fhold() already has a reference to the file pointer in some
2229  * manner or other).
2230  *
2231  * f_count is not spin-locked.  Instead, atomic ops are used for
2232  * incrementing, decrementing, and handling the 1->0 transition.
2233  */
2234 void
2235 fhold(struct file *fp)
2236 {
2237 	atomic_add_int(&fp->f_count, 1);
2238 }
2239 
2240 /*
2241  * fdrop() - drop a reference to a descriptor
2242  *
2243  * MPALMOSTSAFE - acquires mplock for final close sequence
2244  */
2245 int
2246 fdrop(struct file *fp)
2247 {
2248 	struct flock lf;
2249 	struct vnode *vp;
2250 	int error;
2251 
2252 	/*
2253 	 * A combined fetch and subtract is needed to properly detect
2254 	 * 1->0 transitions, otherwise two cpus dropping from a ref
2255 	 * count of 2 might both try to run the 1->0 code.
2256 	 */
2257 	if (atomic_fetchadd_int(&fp->f_count, -1) > 1)
2258 		return (0);
2259 
2260 	get_mplock();
2261 
2262 	/*
2263 	 * The last reference has gone away, we own the fp structure free
2264 	 * and clear.
2265 	 */
2266 	if (fp->f_count < 0)
2267 		panic("fdrop: count < 0");
2268 	if ((fp->f_flag & FHASLOCK) && fp->f_type == DTYPE_VNODE &&
2269 	    (((struct vnode *)fp->f_data)->v_flag & VMAYHAVELOCKS)
2270 	) {
2271 		lf.l_whence = SEEK_SET;
2272 		lf.l_start = 0;
2273 		lf.l_len = 0;
2274 		lf.l_type = F_UNLCK;
2275 		vp = (struct vnode *)fp->f_data;
2276 		(void) VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, 0);
2277 	}
2278 	if (fp->f_ops != &badfileops)
2279 		error = fo_close(fp);
2280 	else
2281 		error = 0;
2282 	ffree(fp);
2283 	rel_mplock();
2284 	return (error);
2285 }
2286 
2287 /*
2288  * Apply an advisory lock on a file descriptor.
2289  *
2290  * Just attempt to get a record lock of the requested type on
2291  * the entire file (l_whence = SEEK_SET, l_start = 0, l_len = 0).
2292  */
2293 int
2294 sys_flock(struct flock_args *uap)
2295 {
2296 	struct proc *p = curproc;
2297 	struct file *fp;
2298 	struct vnode *vp;
2299 	struct flock lf;
2300 	int error;
2301 
2302 	if ((fp = holdfp(p->p_fd, uap->fd, -1)) == NULL)
2303 		return (EBADF);
2304 	if (fp->f_type != DTYPE_VNODE) {
2305 		error = EOPNOTSUPP;
2306 		goto done;
2307 	}
2308 	vp = (struct vnode *)fp->f_data;
2309 	lf.l_whence = SEEK_SET;
2310 	lf.l_start = 0;
2311 	lf.l_len = 0;
2312 	if (uap->how & LOCK_UN) {
2313 		lf.l_type = F_UNLCK;
2314 		fp->f_flag &= ~FHASLOCK;
2315 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, 0);
2316 		goto done;
2317 	}
2318 	if (uap->how & LOCK_EX)
2319 		lf.l_type = F_WRLCK;
2320 	else if (uap->how & LOCK_SH)
2321 		lf.l_type = F_RDLCK;
2322 	else {
2323 		error = EBADF;
2324 		goto done;
2325 	}
2326 	fp->f_flag |= FHASLOCK;
2327 	if (uap->how & LOCK_NB)
2328 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, 0);
2329 	else
2330 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, F_WAIT);
2331 done:
2332 	fdrop(fp);
2333 	return (error);
2334 }
2335 
2336 /*
2337  * File Descriptor pseudo-device driver (/dev/fd/).
2338  *
2339  * Opening minor device N dup()s the file (if any) connected to file
2340  * descriptor N belonging to the calling process.  Note that this driver
2341  * consists of only the ``open()'' routine, because all subsequent
2342  * references to this file will be direct to the other driver.
2343  */
2344 /* ARGSUSED */
2345 static int
2346 fdopen(struct dev_open_args *ap)
2347 {
2348 	thread_t td = curthread;
2349 
2350 	KKASSERT(td->td_lwp != NULL);
2351 
2352 	/*
2353 	 * XXX Kludge: set curlwp->lwp_dupfd to contain the value of the
2354 	 * the file descriptor being sought for duplication. The error
2355 	 * return ensures that the vnode for this device will be released
2356 	 * by vn_open. Open will detect this special error and take the
2357 	 * actions in dupfdopen below. Other callers of vn_open or VOP_OPEN
2358 	 * will simply report the error.
2359 	 */
2360 	td->td_lwp->lwp_dupfd = minor(ap->a_head.a_dev);
2361 	return (ENODEV);
2362 }
2363 
2364 /*
2365  * The caller has reserved the file descriptor dfd for us.  On success we
2366  * must fsetfd() it.  On failure the caller will clean it up.
2367  *
2368  * NOT MPSAFE - isn't getting spinlocks, possibly other things
2369  */
2370 int
2371 dupfdopen(struct proc *p, int dfd, int sfd, int mode, int error)
2372 {
2373 	struct filedesc *fdp = p->p_fd;
2374 	struct file *wfp;
2375 	struct file *xfp;
2376 	int werror;
2377 
2378 	if ((wfp = holdfp(fdp, sfd, -1)) == NULL)
2379 		return (EBADF);
2380 
2381 	/*
2382 	 * Close a revoke/dup race.  Duping a descriptor marked as revoked
2383 	 * will dup a dummy descriptor instead of the real one.
2384 	 */
2385 	if (wfp->f_flag & FREVOKED) {
2386 		kprintf("Warning: attempt to dup() a revoked descriptor\n");
2387 		fdrop(wfp);
2388 		wfp = NULL;
2389 		werror = falloc(NULL, &wfp, NULL);
2390 		if (werror)
2391 			return (werror);
2392 	}
2393 
2394 	/*
2395 	 * There are two cases of interest here.
2396 	 *
2397 	 * For ENODEV simply dup sfd to file descriptor dfd and return.
2398 	 *
2399 	 * For ENXIO steal away the file structure from sfd and store it
2400 	 * dfd.  sfd is effectively closed by this operation.
2401 	 *
2402 	 * Any other error code is just returned.
2403 	 */
2404 	switch (error) {
2405 	case ENODEV:
2406 		/*
2407 		 * Check that the mode the file is being opened for is a
2408 		 * subset of the mode of the existing descriptor.
2409 		 */
2410 		if (((mode & (FREAD|FWRITE)) | wfp->f_flag) != wfp->f_flag) {
2411 			error = EACCES;
2412 			break;
2413 		}
2414 		fdp->fd_files[dfd].fileflags = fdp->fd_files[sfd].fileflags;
2415 		fsetfd(p, wfp, dfd);
2416 		error = 0;
2417 		break;
2418 	case ENXIO:
2419 		/*
2420 		 * Steal away the file pointer from dfd, and stuff it into indx.
2421 		 */
2422 		fdp->fd_files[dfd].fileflags = fdp->fd_files[sfd].fileflags;
2423 		fsetfd(p, wfp, dfd);
2424 		if ((xfp = funsetfd_locked(fdp, sfd)) != NULL)
2425 			fdrop(xfp);
2426 		error = 0;
2427 		break;
2428 	default:
2429 		break;
2430 	}
2431 	fdrop(wfp);
2432 	return (error);
2433 }
2434 
2435 /*
2436  * NOT MPSAFE - I think these refer to a common file descriptor table
2437  * and we need to spinlock that to link fdtol in.
2438  */
2439 struct filedesc_to_leader *
2440 filedesc_to_leader_alloc(struct filedesc_to_leader *old,
2441 			 struct proc *leader)
2442 {
2443 	struct filedesc_to_leader *fdtol;
2444 
2445 	fdtol = kmalloc(sizeof(struct filedesc_to_leader),
2446 			M_FILEDESC_TO_LEADER, M_WAITOK);
2447 	fdtol->fdl_refcount = 1;
2448 	fdtol->fdl_holdcount = 0;
2449 	fdtol->fdl_wakeup = 0;
2450 	fdtol->fdl_leader = leader;
2451 	if (old != NULL) {
2452 		fdtol->fdl_next = old->fdl_next;
2453 		fdtol->fdl_prev = old;
2454 		old->fdl_next = fdtol;
2455 		fdtol->fdl_next->fdl_prev = fdtol;
2456 	} else {
2457 		fdtol->fdl_next = fdtol;
2458 		fdtol->fdl_prev = fdtol;
2459 	}
2460 	return fdtol;
2461 }
2462 
2463 /*
2464  * Scan all file pointers in the system.  The callback is made with
2465  * the master list spinlock held exclusively.
2466  *
2467  * MPSAFE
2468  */
2469 void
2470 allfiles_scan_exclusive(int (*callback)(struct file *, void *), void *data)
2471 {
2472 	struct file *fp;
2473 	int res;
2474 
2475 	spin_lock_wr(&filehead_spin);
2476 	LIST_FOREACH(fp, &filehead, f_list) {
2477 		res = callback(fp, data);
2478 		if (res < 0)
2479 			break;
2480 	}
2481 	spin_unlock_wr(&filehead_spin);
2482 }
2483 
2484 /*
2485  * Get file structures.
2486  *
2487  * NOT MPSAFE - process list scan, SYSCTL_OUT (probably not mpsafe)
2488  */
2489 
2490 struct sysctl_kern_file_info {
2491 	int count;
2492 	int error;
2493 	struct sysctl_req *req;
2494 };
2495 
2496 static int sysctl_kern_file_callback(struct proc *p, void *data);
2497 
2498 static int
2499 sysctl_kern_file(SYSCTL_HANDLER_ARGS)
2500 {
2501 	struct sysctl_kern_file_info info;
2502 
2503 	/*
2504 	 * Note: because the number of file descriptors is calculated
2505 	 * in different ways for sizing vs returning the data,
2506 	 * there is information leakage from the first loop.  However,
2507 	 * it is of a similar order of magnitude to the leakage from
2508 	 * global system statistics such as kern.openfiles.
2509 	 *
2510 	 * When just doing a count, note that we cannot just count
2511 	 * the elements and add f_count via the filehead list because
2512 	 * threaded processes share their descriptor table and f_count might
2513 	 * still be '1' in that case.
2514 	 *
2515 	 * Since the SYSCTL op can block, we must hold the process to
2516 	 * prevent it being ripped out from under us either in the
2517 	 * file descriptor loop or in the greater LIST_FOREACH.  The
2518 	 * process may be in varying states of disrepair.  If the process
2519 	 * is in SZOMB we may have caught it just as it is being removed
2520 	 * from the allproc list, we must skip it in that case to maintain
2521 	 * an unbroken chain through the allproc list.
2522 	 */
2523 	info.count = 0;
2524 	info.error = 0;
2525 	info.req = req;
2526 	allproc_scan(sysctl_kern_file_callback, &info);
2527 
2528 	/*
2529 	 * When just calculating the size, overestimate a bit to try to
2530 	 * prevent system activity from causing the buffer-fill call
2531 	 * to fail later on.
2532 	 */
2533 	if (req->oldptr == NULL) {
2534 		info.count = (info.count + 16) + (info.count / 10);
2535 		info.error = SYSCTL_OUT(req, NULL,
2536 					info.count * sizeof(struct kinfo_file));
2537 	}
2538 	return (info.error);
2539 }
2540 
2541 static int
2542 sysctl_kern_file_callback(struct proc *p, void *data)
2543 {
2544 	struct sysctl_kern_file_info *info = data;
2545 	struct kinfo_file kf;
2546 	struct filedesc *fdp;
2547 	struct file *fp;
2548 	uid_t uid;
2549 	int n;
2550 
2551 	if (p->p_stat == SIDL || p->p_stat == SZOMB)
2552 		return(0);
2553 	if (!PRISON_CHECK(info->req->td->td_proc->p_ucred, p->p_ucred) != 0)
2554 		return(0);
2555 	if ((fdp = p->p_fd) == NULL)
2556 		return(0);
2557 	spin_lock_rd(&fdp->fd_spin);
2558 	for (n = 0; n < fdp->fd_nfiles; ++n) {
2559 		if ((fp = fdp->fd_files[n].fp) == NULL)
2560 			continue;
2561 		if (info->req->oldptr == NULL) {
2562 			++info->count;
2563 		} else {
2564 			uid = p->p_ucred ? p->p_ucred->cr_uid : -1;
2565 			kcore_make_file(&kf, fp, p->p_pid, uid, n);
2566 			spin_unlock_rd(&fdp->fd_spin);
2567 			info->error = SYSCTL_OUT(info->req, &kf, sizeof(kf));
2568 			spin_lock_rd(&fdp->fd_spin);
2569 			if (info->error)
2570 				break;
2571 		}
2572 	}
2573 	spin_unlock_rd(&fdp->fd_spin);
2574 	if (info->error)
2575 		return(-1);
2576 	return(0);
2577 }
2578 
2579 SYSCTL_PROC(_kern, KERN_FILE, file, CTLTYPE_OPAQUE|CTLFLAG_RD,
2580     0, 0, sysctl_kern_file, "S,file", "Entire file table");
2581 
2582 SYSCTL_INT(_kern, KERN_MAXFILESPERPROC, maxfilesperproc, CTLFLAG_RW,
2583     &maxfilesperproc, 0, "Maximum files allowed open per process");
2584 
2585 SYSCTL_INT(_kern, KERN_MAXFILES, maxfiles, CTLFLAG_RW,
2586     &maxfiles, 0, "Maximum number of files");
2587 
2588 SYSCTL_INT(_kern, OID_AUTO, maxfilesrootres, CTLFLAG_RW,
2589     &maxfilesrootres, 0, "Descriptors reserved for root use");
2590 
2591 SYSCTL_INT(_kern, OID_AUTO, openfiles, CTLFLAG_RD,
2592 	&nfiles, 0, "System-wide number of open files");
2593 
2594 static void
2595 fildesc_drvinit(void *unused)
2596 {
2597 	int fd;
2598 
2599 	dev_ops_add(&fildesc_ops, 0, 0);
2600 	for (fd = 0; fd < NUMFDESC; fd++) {
2601 		make_dev(&fildesc_ops, fd,
2602 		    UID_BIN, GID_BIN, 0666, "fd/%d", fd);
2603 	}
2604 	make_dev(&fildesc_ops, 0, UID_ROOT, GID_WHEEL, 0666, "stdin");
2605 	make_dev(&fildesc_ops, 1, UID_ROOT, GID_WHEEL, 0666, "stdout");
2606 	make_dev(&fildesc_ops, 2, UID_ROOT, GID_WHEEL, 0666, "stderr");
2607 }
2608 
2609 /*
2610  * MPSAFE
2611  */
2612 struct fileops badfileops = {
2613 	.fo_read = badfo_readwrite,
2614 	.fo_write = badfo_readwrite,
2615 	.fo_ioctl = badfo_ioctl,
2616 	.fo_poll = badfo_poll,
2617 	.fo_kqfilter = badfo_kqfilter,
2618 	.fo_stat = badfo_stat,
2619 	.fo_close = badfo_close,
2620 	.fo_shutdown = badfo_shutdown
2621 };
2622 
2623 /*
2624  * MPSAFE
2625  */
2626 static int
2627 badfo_readwrite(
2628 	struct file *fp,
2629 	struct uio *uio,
2630 	struct ucred *cred,
2631 	int flags
2632 ) {
2633 	return (EBADF);
2634 }
2635 
2636 /*
2637  * MPSAFE
2638  */
2639 static int
2640 badfo_ioctl(struct file *fp, u_long com, caddr_t data, struct ucred *cred)
2641 {
2642 	return (EBADF);
2643 }
2644 
2645 /*
2646  * MPSAFE
2647  */
2648 static int
2649 badfo_poll(struct file *fp, int events, struct ucred *cred)
2650 {
2651 	return (0);
2652 }
2653 
2654 /*
2655  * MPSAFE
2656  */
2657 static int
2658 badfo_kqfilter(struct file *fp, struct knote *kn)
2659 {
2660 	return (0);
2661 }
2662 
2663 static int
2664 badfo_stat(struct file *fp, struct stat *sb, struct ucred *cred)
2665 {
2666 	return (EBADF);
2667 }
2668 
2669 /*
2670  * MPSAFE
2671  */
2672 static int
2673 badfo_close(struct file *fp)
2674 {
2675 	return (EBADF);
2676 }
2677 
2678 /*
2679  * MPSAFE
2680  */
2681 static int
2682 badfo_shutdown(struct file *fp, int how)
2683 {
2684 	return (EBADF);
2685 }
2686 
2687 /*
2688  * MPSAFE
2689  */
2690 int
2691 nofo_shutdown(struct file *fp, int how)
2692 {
2693 	return (EOPNOTSUPP);
2694 }
2695 
2696 SYSINIT(fildescdev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE+CDEV_MAJOR,
2697 					fildesc_drvinit,NULL)
2698