xref: /dragonfly/sys/kern/kern_exec.c (revision 25a2db75)
1 /*
2  * Copyright (c) 1993, David Greenman
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/kern_exec.c,v 1.107.2.15 2002/07/30 15:40:46 nectar Exp $
27  */
28 
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/sysproto.h>
32 #include <sys/kernel.h>
33 #include <sys/mount.h>
34 #include <sys/filedesc.h>
35 #include <sys/fcntl.h>
36 #include <sys/acct.h>
37 #include <sys/exec.h>
38 #include <sys/imgact.h>
39 #include <sys/imgact_elf.h>
40 #include <sys/kern_syscall.h>
41 #include <sys/wait.h>
42 #include <sys/malloc.h>
43 #include <sys/proc.h>
44 #include <sys/priv.h>
45 #include <sys/ktrace.h>
46 #include <sys/signalvar.h>
47 #include <sys/pioctl.h>
48 #include <sys/nlookup.h>
49 #include <sys/sysent.h>
50 #include <sys/shm.h>
51 #include <sys/sysctl.h>
52 #include <sys/vnode.h>
53 #include <sys/vmmeter.h>
54 #include <sys/libkern.h>
55 
56 #include <cpu/lwbuf.h>
57 
58 #include <vm/vm.h>
59 #include <vm/vm_param.h>
60 #include <sys/lock.h>
61 #include <vm/pmap.h>
62 #include <vm/vm_page.h>
63 #include <vm/vm_map.h>
64 #include <vm/vm_kern.h>
65 #include <vm/vm_extern.h>
66 #include <vm/vm_object.h>
67 #include <vm/vnode_pager.h>
68 #include <vm/vm_pager.h>
69 
70 #include <sys/user.h>
71 #include <sys/reg.h>
72 
73 #include <sys/refcount.h>
74 #include <sys/thread2.h>
75 #include <sys/mplock2.h>
76 
77 MALLOC_DEFINE(M_PARGS, "proc-args", "Process arguments");
78 MALLOC_DEFINE(M_EXECARGS, "exec-args", "Exec arguments");
79 
80 static register_t *exec_copyout_strings (struct image_params *);
81 
82 /* XXX This should be vm_size_t. */
83 static u_long ps_strings = PS_STRINGS;
84 SYSCTL_ULONG(_kern, KERN_PS_STRINGS, ps_strings, CTLFLAG_RD, &ps_strings, 0, "");
85 
86 /* XXX This should be vm_size_t. */
87 static u_long usrstack = USRSTACK;
88 SYSCTL_ULONG(_kern, KERN_USRSTACK, usrstack, CTLFLAG_RD, &usrstack, 0, "");
89 
90 u_long ps_arg_cache_limit = PAGE_SIZE / 16;
91 SYSCTL_LONG(_kern, OID_AUTO, ps_arg_cache_limit, CTLFLAG_RW,
92     &ps_arg_cache_limit, 0, "");
93 
94 int ps_argsopen = 1;
95 SYSCTL_INT(_kern, OID_AUTO, ps_argsopen, CTLFLAG_RW, &ps_argsopen, 0, "");
96 
97 static int ktrace_suid = 0;
98 SYSCTL_INT(_kern, OID_AUTO, ktrace_suid, CTLFLAG_RW, &ktrace_suid, 0, "");
99 
100 void print_execve_args(struct image_args *args);
101 int debug_execve_args = 0;
102 SYSCTL_INT(_kern, OID_AUTO, debug_execve_args, CTLFLAG_RW, &debug_execve_args,
103     0, "");
104 
105 /*
106  * Exec arguments object cache
107  */
108 static struct objcache *exec_objcache;
109 
110 static
111 void
112 exec_objcache_init(void *arg __unused)
113 {
114 	int cluster_limit;
115 	size_t limsize;
116 
117 	/*
118 	 * Maximum number of concurrent execs.  This can be limiting on
119 	 * systems with a lot of cpu cores but it also eats a significant
120 	 * amount of memory.
121 	 */
122 	cluster_limit = (ncpus < 16) ? 16 : ncpus;
123 	limsize = kmem_lim_size();
124 	if (limsize > 7 * 1024)
125 		cluster_limit *= 2;
126 	if (limsize > 15 * 1024)
127 		cluster_limit *= 2;
128 
129 	exec_objcache = objcache_create_mbacked(
130 					M_EXECARGS, PATH_MAX + ARG_MAX,
131 					cluster_limit, 8,
132 					NULL, NULL, NULL);
133 }
134 SYSINIT(exec_objcache, SI_BOOT2_MACHDEP, SI_ORDER_ANY, exec_objcache_init, 0);
135 
136 /*
137  * stackgap_random specifies if the stackgap should have a random size added
138  * to it.  It must be a power of 2.  If non-zero, the stack gap will be
139  * calculated as: ALIGN(karc4random() & (stackgap_random - 1)).
140  */
141 static int stackgap_random = 1024;
142 static int
143 sysctl_kern_stackgap(SYSCTL_HANDLER_ARGS)
144 {
145 	int error, new_val;
146 	new_val = stackgap_random;
147 	error = sysctl_handle_int(oidp, &new_val, 0, req);
148 	if (error != 0 || req->newptr == NULL)
149 		return (error);
150 	if (new_val > 0 && ((new_val > 16 * PAGE_SIZE) || !powerof2(new_val)))
151 		return (EINVAL);
152 	stackgap_random = new_val;
153 
154 	return(0);
155 }
156 
157 SYSCTL_PROC(_kern, OID_AUTO, stackgap_random, CTLFLAG_RW|CTLTYPE_INT,
158 	0, 0, sysctl_kern_stackgap, "I",
159 	"Max random stack gap (power of 2), static gap if negative");
160 
161 void
162 print_execve_args(struct image_args *args)
163 {
164 	char *cp;
165 	int ndx;
166 
167 	cp = args->begin_argv;
168 	for (ndx = 0; ndx < args->argc; ndx++) {
169 		kprintf("\targv[%d]: %s\n", ndx, cp);
170 		while (*cp++ != '\0');
171 	}
172 	for (ndx = 0; ndx < args->envc; ndx++) {
173 		kprintf("\tenvv[%d]: %s\n", ndx, cp);
174 		while (*cp++ != '\0');
175 	}
176 }
177 
178 /*
179  * Each of the items is a pointer to a `const struct execsw', hence the
180  * double pointer here.
181  */
182 static const struct execsw **execsw;
183 
184 /*
185  * Replace current vmspace with a new binary.
186  * Returns 0 on success, > 0 on recoverable error (use as errno).
187  * Returns -1 on lethal error which demands killing of the current
188  * process!
189  */
190 int
191 kern_execve(struct nlookupdata *nd, struct image_args *args)
192 {
193 	struct thread *td = curthread;
194 	struct lwp *lp = td->td_lwp;
195 	struct proc *p = td->td_proc;
196 	struct vnode *ovp;
197 	register_t *stack_base;
198 	struct pargs *pa;
199 	struct sigacts *ops;
200 	struct sigacts *nps;
201 	int error, len, i;
202 	struct image_params image_params, *imgp;
203 	struct vattr attr;
204 	int (*img_first) (struct image_params *);
205 
206 	if (debug_execve_args) {
207 		kprintf("%s()\n", __func__);
208 		print_execve_args(args);
209 	}
210 
211 	KKASSERT(p);
212 	lwkt_gettoken(&p->p_token);
213 	imgp = &image_params;
214 
215 	/*
216 	 * NOTE: P_INEXEC is handled by exec_new_vmspace() now.  We make
217 	 * no modifications to the process at all until we get there.
218 	 *
219 	 * Note that multiple threads may be trying to exec at the same
220 	 * time.  exec_new_vmspace() handles that too.
221 	 */
222 
223 	/*
224 	 * Initialize part of the common data
225 	 */
226 	imgp->proc = p;
227 	imgp->args = args;
228 	imgp->attr = &attr;
229 	imgp->entry_addr = 0;
230 	imgp->resident = 0;
231 	imgp->vmspace_destroyed = 0;
232 	imgp->interpreted = 0;
233 	imgp->interpreter_name[0] = 0;
234 	imgp->auxargs = NULL;
235 	imgp->vp = NULL;
236 	imgp->firstpage = NULL;
237 	imgp->ps_strings = 0;
238 	imgp->execpath = imgp->freepath = NULL;
239 	imgp->execpathp = 0;
240 	imgp->image_header = NULL;
241 
242 interpret:
243 
244 	/*
245 	 * Translate the file name to a vnode.  Unlock the cache entry to
246 	 * improve parallelism for programs exec'd in parallel.
247 	 */
248 	if ((error = nlookup(nd)) != 0)
249 		goto exec_fail;
250 	error = cache_vget(&nd->nl_nch, nd->nl_cred, LK_EXCLUSIVE, &imgp->vp);
251 	KKASSERT(nd->nl_flags & NLC_NCPISLOCKED);
252 	nd->nl_flags &= ~NLC_NCPISLOCKED;
253 	cache_unlock(&nd->nl_nch);
254 	if (error)
255 		goto exec_fail;
256 
257 	/*
258 	 * Check file permissions (also 'opens' file).
259 	 * Include also the top level mount in the check.
260 	 */
261 	error = exec_check_permissions(imgp, nd->nl_nch.mount);
262 	if (error) {
263 		vn_unlock(imgp->vp);
264 		goto exec_fail_dealloc;
265 	}
266 
267 	error = exec_map_first_page(imgp);
268 	vn_unlock(imgp->vp);
269 	if (error)
270 		goto exec_fail_dealloc;
271 
272 	imgp->proc->p_osrel = 0;
273 
274 	if (debug_execve_args && imgp->interpreted) {
275 		kprintf("    target is interpreted -- recursive pass\n");
276 		kprintf("    interpreter: %s\n", imgp->interpreter_name);
277 		print_execve_args(args);
278 	}
279 
280 	/*
281 	 *	If the current process has a special image activator it
282 	 *	wants to try first, call it.   For example, emulating shell
283 	 *	scripts differently.
284 	 */
285 	error = -1;
286 	if ((img_first = imgp->proc->p_sysent->sv_imgact_try) != NULL)
287 		error = img_first(imgp);
288 
289 	/*
290 	 *	If the vnode has a registered vmspace, exec the vmspace
291 	 */
292 	if (error == -1 && imgp->vp->v_resident) {
293 		error = exec_resident_imgact(imgp);
294 	}
295 
296 	/*
297 	 *	Loop through the list of image activators, calling each one.
298 	 *	An activator returns -1 if there is no match, 0 on success,
299 	 *	and an error otherwise.
300 	 */
301 	for (i = 0; error == -1 && execsw[i]; ++i) {
302 		if (execsw[i]->ex_imgact == NULL ||
303 		    execsw[i]->ex_imgact == img_first) {
304 			continue;
305 		}
306 		error = (*execsw[i]->ex_imgact)(imgp);
307 	}
308 
309 	if (error) {
310 		if (error == -1)
311 			error = ENOEXEC;
312 		goto exec_fail_dealloc;
313 	}
314 
315 	/*
316 	 * Special interpreter operation, cleanup and loop up to try to
317 	 * activate the interpreter.
318 	 */
319 	if (imgp->interpreted) {
320 		exec_unmap_first_page(imgp);
321 		nlookup_done(nd);
322 		vrele(imgp->vp);
323 		imgp->vp = NULL;
324 		error = nlookup_init(nd, imgp->interpreter_name, UIO_SYSSPACE,
325 					NLC_FOLLOW);
326 		if (error)
327 			goto exec_fail;
328 		goto interpret;
329 	}
330 
331 	/*
332 	 * Do the best to calculate the full path to the image file
333 	 */
334 	if (imgp->auxargs != NULL &&
335 	   ((args->fname != NULL && args->fname[0] == '/') ||
336 	    vn_fullpath(imgp->proc,
337 			imgp->vp,
338 			&imgp->execpath,
339 			&imgp->freepath,
340 			0) != 0))
341 		imgp->execpath = args->fname;
342 
343 	/*
344 	 * Copy out strings (args and env) and initialize stack base
345 	 */
346 	stack_base = exec_copyout_strings(imgp);
347 	p->p_vmspace->vm_minsaddr = (char *)stack_base;
348 
349 	/*
350 	 * If custom stack fixup routine present for this process
351 	 * let it do the stack setup.  If we are running a resident
352 	 * image there is no auxinfo or other image activator context
353 	 * so don't try to add fixups to the stack.
354 	 *
355 	 * Else stuff argument count as first item on stack
356 	 */
357 	if (p->p_sysent->sv_fixup && imgp->resident == 0)
358 		(*p->p_sysent->sv_fixup)(&stack_base, imgp);
359 	else
360 		suword(--stack_base, imgp->args->argc);
361 
362 	/*
363 	 * For security and other reasons, the file descriptor table cannot
364 	 * be shared after an exec.
365 	 */
366 	if (p->p_fd->fd_refcnt > 1) {
367 		struct filedesc *tmp;
368 
369 		error = fdcopy(p, &tmp);
370 		if (error != 0)
371 			goto exec_fail;
372 		fdfree(p, tmp);
373 	}
374 
375 	/*
376 	 * For security and other reasons, signal handlers cannot
377 	 * be shared after an exec. The new proces gets a copy of the old
378 	 * handlers. In execsigs(), the new process will have its signals
379 	 * reset.
380 	 */
381 	ops = p->p_sigacts;
382 	if (ops->ps_refcnt > 1) {
383 		nps = kmalloc(sizeof(*nps), M_SUBPROC, M_WAITOK);
384 		bcopy(ops, nps, sizeof(*nps));
385 		refcount_init(&nps->ps_refcnt, 1);
386 		p->p_sigacts = nps;
387 		if (refcount_release(&ops->ps_refcnt)) {
388 			kfree(ops, M_SUBPROC);
389 			ops = NULL;
390 		}
391 	}
392 
393 	/*
394 	 * For security and other reasons virtual kernels cannot be
395 	 * inherited by an exec.  This also allows a virtual kernel
396 	 * to fork/exec unrelated applications.
397 	 */
398 	if (p->p_vkernel)
399 		vkernel_exit(p);
400 
401 	/* Stop profiling */
402 	stopprofclock(p);
403 
404 	/* close files on exec */
405 	fdcloseexec(p);
406 
407 	/* reset caught signals */
408 	execsigs(p);
409 
410 	/* name this process - nameiexec(p, ndp) */
411 	len = min(nd->nl_nch.ncp->nc_nlen, MAXCOMLEN);
412 	bcopy(nd->nl_nch.ncp->nc_name, p->p_comm, len);
413 	p->p_comm[len] = 0;
414 	bcopy(p->p_comm, lp->lwp_thread->td_comm, MAXCOMLEN+1);
415 
416 	/*
417 	 * mark as execed, wakeup the process that vforked (if any) and tell
418 	 * it that it now has its own resources back
419 	 */
420 	p->p_flags |= P_EXEC;
421 	if (p->p_pptr && (p->p_flags & P_PPWAIT)) {
422 		p->p_flags &= ~P_PPWAIT;
423 		wakeup((caddr_t)p->p_pptr);
424 	}
425 
426 	/*
427 	 * Implement image setuid/setgid.
428 	 *
429 	 * Don't honor setuid/setgid if the filesystem prohibits it or if
430 	 * the process is being traced.
431 	 */
432 	if ((((attr.va_mode & VSUID) && p->p_ucred->cr_uid != attr.va_uid) ||
433 	     ((attr.va_mode & VSGID) && p->p_ucred->cr_gid != attr.va_gid)) &&
434 	    (imgp->vp->v_mount->mnt_flag & MNT_NOSUID) == 0 &&
435 	    (p->p_flags & P_TRACED) == 0) {
436 		/*
437 		 * Turn off syscall tracing for set-id programs, except for
438 		 * root.  Record any set-id flags first to make sure that
439 		 * we do not regain any tracing during a possible block.
440 		 */
441 		setsugid();
442 		if (p->p_tracenode && ktrace_suid == 0 &&
443 		    priv_check(td, PRIV_ROOT) != 0) {
444 			ktrdestroy(&p->p_tracenode);
445 			p->p_traceflag = 0;
446 		}
447 		/* Close any file descriptors 0..2 that reference procfs */
448 		setugidsafety(p);
449 		/* Make sure file descriptors 0..2 are in use. */
450 		error = fdcheckstd(lp);
451 		if (error != 0)
452 			goto exec_fail_dealloc;
453 		/*
454 		 * Set the new credentials.
455 		 */
456 		cratom(&p->p_ucred);
457 		if (attr.va_mode & VSUID)
458 			change_euid(attr.va_uid);
459 		if (attr.va_mode & VSGID)
460 			p->p_ucred->cr_gid = attr.va_gid;
461 
462 		/*
463 		 * Clear local varsym variables
464 		 */
465 		varsymset_clean(&p->p_varsymset);
466 	} else {
467 		if (p->p_ucred->cr_uid == p->p_ucred->cr_ruid &&
468 		    p->p_ucred->cr_gid == p->p_ucred->cr_rgid)
469 			p->p_flags &= ~P_SUGID;
470 	}
471 
472 	/*
473 	 * Implement correct POSIX saved-id behavior.
474 	 */
475 	if (p->p_ucred->cr_svuid != p->p_ucred->cr_uid ||
476 	    p->p_ucred->cr_svgid != p->p_ucred->cr_gid) {
477 		cratom(&p->p_ucred);
478 		p->p_ucred->cr_svuid = p->p_ucred->cr_uid;
479 		p->p_ucred->cr_svgid = p->p_ucred->cr_gid;
480 	}
481 
482 	/*
483 	 * Store the vp for use in procfs.  Be sure to keep p_textvp
484 	 * consistent if we block during the switch-over.
485 	 */
486 	ovp = p->p_textvp;
487 	vref(imgp->vp);			/* ref new vp */
488 	p->p_textvp = imgp->vp;
489 	if (ovp)			/* release old vp */
490 		vrele(ovp);
491 
492 	/* Release old namecache handle to text file */
493 	if (p->p_textnch.ncp)
494 		cache_drop(&p->p_textnch);
495 
496 	if (nd->nl_nch.mount)
497 		cache_copy(&nd->nl_nch, &p->p_textnch);
498 
499         /*
500          * Notify others that we exec'd, and clear the P_INEXEC flag
501          * as we're now a bona fide freshly-execed process.
502          */
503 	KNOTE(&p->p_klist, NOTE_EXEC);
504 	p->p_flags &= ~P_INEXEC;
505 	if (p->p_stops)
506 		wakeup(&p->p_stype);
507 
508 	/*
509 	 * If tracing the process, trap to debugger so breakpoints
510 	 * 	can be set before the program executes.
511 	 */
512 	STOPEVENT(p, S_EXEC, 0);
513 
514 	if (p->p_flags & P_TRACED)
515 		ksignal(p, SIGTRAP);
516 
517 	/* clear "fork but no exec" flag, as we _are_ execing */
518 	p->p_acflag &= ~AFORK;
519 
520 	/* Set values passed into the program in registers. */
521 	exec_setregs(imgp->entry_addr, (u_long)(uintptr_t)stack_base,
522 		     imgp->ps_strings);
523 
524 	/* Set the access time on the vnode */
525 	vn_mark_atime(imgp->vp, td);
526 
527 	/*
528 	 * Free any previous argument cache
529 	 */
530 	pa = p->p_args;
531 	p->p_args = NULL;
532 	if (pa && refcount_release(&pa->ar_ref)) {
533 		kfree(pa, M_PARGS);
534 		pa = NULL;
535 	}
536 
537 	/*
538 	 * Cache arguments if they fit inside our allowance
539 	 */
540 	i = imgp->args->begin_envv - imgp->args->begin_argv;
541 	if (sizeof(struct pargs) + i <= ps_arg_cache_limit) {
542 		pa = kmalloc(sizeof(struct pargs) + i, M_PARGS, M_WAITOK);
543 		refcount_init(&pa->ar_ref, 1);
544 		pa->ar_length = i;
545 		bcopy(imgp->args->begin_argv, pa->ar_args, i);
546 		KKASSERT(p->p_args == NULL);
547 		p->p_args = pa;
548 	}
549 
550 exec_fail_dealloc:
551 
552 	/*
553 	 * free various allocated resources
554 	 */
555 	if (imgp->firstpage)
556 		exec_unmap_first_page(imgp);
557 
558 	if (imgp->vp) {
559 		vrele(imgp->vp);
560 		imgp->vp = NULL;
561 	}
562 
563 	if (imgp->freepath)
564 		kfree(imgp->freepath, M_TEMP);
565 
566 	if (error == 0) {
567 		++mycpu->gd_cnt.v_exec;
568 		lwkt_reltoken(&p->p_token);
569 		return (0);
570 	}
571 
572 exec_fail:
573 	/*
574 	 * we're done here, clear P_INEXEC if we were the ones that
575 	 * set it.  Otherwise if vmspace_destroyed is still set we
576 	 * raced another thread and that thread is responsible for
577 	 * clearing it.
578 	 */
579 	if (imgp->vmspace_destroyed & 2) {
580 		p->p_flags &= ~P_INEXEC;
581 		if (p->p_stops)
582 			wakeup(&p->p_stype);
583 	}
584 	lwkt_reltoken(&p->p_token);
585 	if (imgp->vmspace_destroyed) {
586 		/*
587 		 * Sorry, no more process anymore. exit gracefully.
588 		 * However we can't die right here, because our
589 		 * caller might have to clean up, so indicate a
590 		 * lethal error by returning -1.
591 		 */
592 		return(-1);
593 	} else {
594 		return(error);
595 	}
596 }
597 
598 /*
599  * execve() system call.
600  */
601 int
602 sys_execve(struct execve_args *uap)
603 {
604 	struct nlookupdata nd;
605 	struct image_args args;
606 	int error;
607 
608 	bzero(&args, sizeof(args));
609 
610 	error = nlookup_init(&nd, uap->fname, UIO_USERSPACE, NLC_FOLLOW);
611 	if (error == 0) {
612 		error = exec_copyin_args(&args, uap->fname, PATH_USERSPACE,
613 					uap->argv, uap->envv);
614 	}
615 	if (error == 0)
616 		error = kern_execve(&nd, &args);
617 	nlookup_done(&nd);
618 	exec_free_args(&args);
619 
620 	if (error < 0) {
621 		/* We hit a lethal error condition.  Let's die now. */
622 		exit1(W_EXITCODE(0, SIGABRT));
623 		/* NOTREACHED */
624 	}
625 
626 	/*
627 	 * The syscall result is returned in registers to the new program.
628 	 * Linux will register %edx as an atexit function and we must be
629 	 * sure to set it to 0.  XXX
630 	 */
631 	if (error == 0)
632 		uap->sysmsg_result64 = 0;
633 
634 	return (error);
635 }
636 
637 int
638 exec_map_page(struct image_params *imgp, vm_pindex_t pageno,
639 	      struct lwbuf **plwb, const char **pdata)
640 {
641 	int rv;
642 	vm_page_t ma;
643 	vm_page_t m;
644 	vm_object_t object;
645 
646 	/*
647 	 * The file has to be mappable.
648 	 */
649 	if ((object = imgp->vp->v_object) == NULL)
650 		return (EIO);
651 
652 	if (pageno >= object->size)
653 		return (EIO);
654 
655 	vm_object_hold(object);
656 	m = vm_page_grab(object, pageno, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
657 	while ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) {
658 		ma = m;
659 
660 		/*
661 		 * get_pages unbusies all the requested pages except the
662 		 * primary page (at index 0 in this case).  The primary
663 		 * page may have been wired during the pagein (e.g. by
664 		 * the buffer cache) so vnode_pager_freepage() must be
665 		 * used to properly release it.
666 		 */
667 		rv = vm_pager_get_page(object, &ma, 1);
668 		m = vm_page_lookup(object, pageno);
669 
670 		if (rv != VM_PAGER_OK || m == NULL || m->valid == 0) {
671 			if (m) {
672 				vm_page_protect(m, VM_PROT_NONE);
673 				vnode_pager_freepage(m);
674 			}
675 			vm_object_drop(object);
676 			return EIO;
677 		}
678 	}
679 	vm_page_hold(m);
680 	vm_page_wakeup(m);	/* unbusy the page */
681 	vm_object_drop(object);
682 
683 	*plwb = lwbuf_alloc(m, *plwb);
684 	*pdata = (void *)lwbuf_kva(*plwb);
685 
686 	return (0);
687 }
688 
689 /*
690  * Map the first page of an executable image.
691  *
692  * NOTE: If the mapping fails we have to NULL-out firstpage which may
693  *	 still be pointing to our supplied lwp structure.
694  */
695 int
696 exec_map_first_page(struct image_params *imgp)
697 {
698 	int err;
699 
700 	if (imgp->firstpage)
701 		exec_unmap_first_page(imgp);
702 
703 	imgp->firstpage = &imgp->firstpage_cache;
704 	err = exec_map_page(imgp, 0, &imgp->firstpage, &imgp->image_header);
705 
706 	if (err) {
707 		imgp->firstpage = NULL;
708 		return err;
709 	}
710 
711 	return 0;
712 }
713 
714 void
715 exec_unmap_page(struct lwbuf *lwb)
716 {
717 	vm_page_t m;
718 
719 	crit_enter();
720 	if (lwb != NULL) {
721 		m = lwbuf_page(lwb);
722 		lwbuf_free(lwb);
723 		vm_page_unhold(m);
724 	}
725 	crit_exit();
726 }
727 
728 void
729 exec_unmap_first_page(struct image_params *imgp)
730 {
731 	exec_unmap_page(imgp->firstpage);
732 	imgp->firstpage = NULL;
733 	imgp->image_header = NULL;
734 }
735 
736 /*
737  * Destroy old address space, and allocate a new stack
738  *	The new stack is only SGROWSIZ large because it is grown
739  *	automatically in trap.c.
740  *
741  * This is the point of no return.
742  */
743 int
744 exec_new_vmspace(struct image_params *imgp, struct vmspace *vmcopy)
745 {
746 	struct vmspace *vmspace = imgp->proc->p_vmspace;
747 	vm_offset_t stack_addr = USRSTACK - maxssiz;
748 	struct proc *p;
749 	vm_map_t map;
750 	int error;
751 
752 	/*
753 	 * Indicate that we cannot gracefully error out any more, kill
754 	 * any other threads present, and set P_INEXEC to indicate that
755 	 * we are now messing with the process structure proper.
756 	 *
757 	 * If killalllwps() races return an error which coupled with
758 	 * vmspace_destroyed will cause us to exit.  This is what we
759 	 * want since another thread is patiently waiting for us to exit
760 	 * in that case.
761 	 */
762 	p = curproc;
763 	imgp->vmspace_destroyed = 1;
764 
765 	if (curthread->td_proc->p_nthreads > 1) {
766 		error = killalllwps(1);
767 		if (error)
768 			return (error);
769 	}
770 	imgp->vmspace_destroyed |= 2;	/* we are responsible for P_INEXEC */
771 	p->p_flags |= P_INEXEC;
772 
773 	/*
774 	 * Tell procfs to release its hold on the process.  It
775 	 * will return EAGAIN.
776 	 */
777 	if (p->p_stops)
778 		wakeup(&p->p_stype);
779 
780 	/*
781 	 * After setting P_INEXEC wait for any remaining references to
782 	 * the process (p) to go away.
783 	 *
784 	 * In particular, a vfork/exec sequence will replace p->p_vmspace
785 	 * and we must interlock anyone trying to access the space (aka
786 	 * procfs or sys_process.c calling procfs_domem()).
787 	 *
788 	 * If P_PPWAIT is set the parent vfork()'d and has a PHOLD() on us.
789 	 */
790 	PSTALL(p, "exec1", ((p->p_flags & P_PPWAIT) ? 1 : 0));
791 
792 	/*
793 	 * Blow away entire process VM, if address space not shared,
794 	 * otherwise, create a new VM space so that other threads are
795 	 * not disrupted.  If we are execing a resident vmspace we
796 	 * create a duplicate of it and remap the stack.
797 	 */
798 	map = &vmspace->vm_map;
799 	if (vmcopy) {
800 		vmspace_exec(imgp->proc, vmcopy);
801 		vmspace = imgp->proc->p_vmspace;
802 		pmap_remove_pages(vmspace_pmap(vmspace), stack_addr, USRSTACK);
803 		map = &vmspace->vm_map;
804 	} else if (vmspace->vm_sysref.refcnt == 1) {
805 		shmexit(vmspace);
806 		pmap_remove_pages(vmspace_pmap(vmspace),
807 				  0, VM_MAX_USER_ADDRESS);
808 		vm_map_remove(map, 0, VM_MAX_USER_ADDRESS);
809 	} else {
810 		vmspace_exec(imgp->proc, NULL);
811 		vmspace = imgp->proc->p_vmspace;
812 		map = &vmspace->vm_map;
813 	}
814 
815 	/* Allocate a new stack */
816 	error = vm_map_stack(&vmspace->vm_map, stack_addr, (vm_size_t)maxssiz,
817 			     0, VM_PROT_ALL, VM_PROT_ALL, 0);
818 	if (error)
819 		return (error);
820 
821 	/* vm_ssize and vm_maxsaddr are somewhat antiquated concepts in the
822 	 * VM_STACK case, but they are still used to monitor the size of the
823 	 * process stack so we can check the stack rlimit.
824 	 */
825 	vmspace->vm_ssize = sgrowsiz >> PAGE_SHIFT;
826 	vmspace->vm_maxsaddr = (char *)USRSTACK - maxssiz;
827 
828 	return(0);
829 }
830 
831 /*
832  * Copy out argument and environment strings from the old process
833  *	address space into the temporary string buffer.
834  */
835 int
836 exec_copyin_args(struct image_args *args, char *fname,
837 		enum exec_path_segflg segflg, char **argv, char **envv)
838 {
839 	char	*argp, *envp;
840 	int	error = 0;
841 	size_t	length;
842 
843 	args->buf = objcache_get(exec_objcache, M_WAITOK);
844 	if (args->buf == NULL)
845 		return (ENOMEM);
846 	args->begin_argv = args->buf;
847 	args->endp = args->begin_argv;
848 	args->space = ARG_MAX;
849 
850 	args->fname = args->buf + ARG_MAX;
851 
852 	/*
853 	 * Copy the file name.
854 	 */
855 	if (segflg == PATH_SYSSPACE) {
856 		error = copystr(fname, args->fname, PATH_MAX, &length);
857 	} else if (segflg == PATH_USERSPACE) {
858 		error = copyinstr(fname, args->fname, PATH_MAX, &length);
859 	}
860 
861 	/*
862 	 * Extract argument strings.  argv may not be NULL.  The argv
863 	 * array is terminated by a NULL entry.  We special-case the
864 	 * situation where argv[0] is NULL by passing { filename, NULL }
865 	 * to the new program to guarentee that the interpreter knows what
866 	 * file to open in case we exec an interpreted file.   Note that
867 	 * a NULL argv[0] terminates the argv[] array.
868 	 *
869 	 * XXX the special-casing of argv[0] is historical and needs to be
870 	 * revisited.
871 	 */
872 	if (argv == NULL)
873 		error = EFAULT;
874 	if (error == 0) {
875 		while ((argp = (caddr_t)(intptr_t)fuword(argv++)) != NULL) {
876 			if (argp == (caddr_t)-1) {
877 				error = EFAULT;
878 				break;
879 			}
880 			error = copyinstr(argp, args->endp,
881 					  args->space, &length);
882 			if (error) {
883 				if (error == ENAMETOOLONG)
884 					error = E2BIG;
885 				break;
886 			}
887 			args->space -= length;
888 			args->endp += length;
889 			args->argc++;
890 		}
891 		if (args->argc == 0 && error == 0) {
892 			length = strlen(args->fname) + 1;
893 			if (length > args->space) {
894 				error = E2BIG;
895 			} else {
896 				bcopy(args->fname, args->endp, length);
897 				args->space -= length;
898 				args->endp += length;
899 				args->argc++;
900 			}
901 		}
902 	}
903 
904 	args->begin_envv = args->endp;
905 
906 	/*
907 	 * extract environment strings.  envv may be NULL.
908 	 */
909 	if (envv && error == 0) {
910 		while ((envp = (caddr_t) (intptr_t) fuword(envv++))) {
911 			if (envp == (caddr_t) -1) {
912 				error = EFAULT;
913 				break;
914 			}
915 			error = copyinstr(envp, args->endp,
916 					  args->space, &length);
917 			if (error) {
918 				if (error == ENAMETOOLONG)
919 					error = E2BIG;
920 				break;
921 			}
922 			args->space -= length;
923 			args->endp += length;
924 			args->envc++;
925 		}
926 	}
927 	return (error);
928 }
929 
930 void
931 exec_free_args(struct image_args *args)
932 {
933 	if (args->buf) {
934 		objcache_put(exec_objcache, args->buf);
935 		args->buf = NULL;
936 	}
937 }
938 
939 /*
940  * Copy strings out to the new process address space, constructing
941  * new arg and env vector tables. Return a pointer to the base
942  * so that it can be used as the initial stack pointer.
943  *
944  * The format is, roughly:
945  *
946  *	[argv[]]			<-- vectp
947  *	[envp[]]
948  *	[ELF_Auxargs]
949  *
950  *	[args & env]			<-- destp
951  *	[sgap]
952  *	[SPARE_USRSPACE]
953  *	[execpath]
954  *	[szsigcode]
955  *	[ps_strings]			top of user stack
956  *
957  */
958 register_t *
959 exec_copyout_strings(struct image_params *imgp)
960 {
961 	int argc, envc, sgap;
962 	int gap;
963 	int argsenvspace;
964 	char **vectp;
965 	char *stringp, *destp;
966 	register_t *stack_base;
967 	struct ps_strings *arginfo;
968 	size_t execpath_len;
969 	int szsigcode;
970 
971 	/*
972 	 * Calculate string base and vector table pointers.
973 	 * Also deal with signal trampoline code for this exec type.
974 	 */
975 	if (imgp->execpath != NULL && imgp->auxargs != NULL)
976 		execpath_len = strlen(imgp->execpath) + 1;
977 	else
978 		execpath_len = 0;
979 	arginfo = (struct ps_strings *)PS_STRINGS;
980 	szsigcode = *(imgp->proc->p_sysent->sv_szsigcode);
981 
982 	argsenvspace = roundup((ARG_MAX - imgp->args->space), sizeof(char *));
983 	gap = stackgap_random;
984 	cpu_ccfence();
985 	if (gap != 0) {
986 		if (gap < 0)
987 			sgap = ALIGN(-gap);
988 		else
989 			sgap = ALIGN(karc4random() & (gap - 1));
990 	} else {
991 		sgap = 0;
992 	}
993 
994 	/*
995 	 * Calculate destp, which points to [args & env] and above.
996 	 */
997 	destp = (caddr_t)arginfo -
998 		szsigcode -
999 		roundup(execpath_len, sizeof(char *)) -
1000 		SPARE_USRSPACE -
1001 		sgap -
1002 		argsenvspace;
1003 
1004 	/*
1005 	 * install sigcode
1006 	 */
1007 	if (szsigcode) {
1008 		copyout(imgp->proc->p_sysent->sv_sigcode,
1009 			((caddr_t)arginfo - szsigcode), szsigcode);
1010 	}
1011 
1012 	/*
1013 	 * Copy the image path for the rtld
1014 	 */
1015 	if (execpath_len) {
1016 		imgp->execpathp = (uintptr_t)arginfo
1017 				  - szsigcode
1018 				  - roundup(execpath_len, sizeof(char *));
1019 		copyout(imgp->execpath, (void *)imgp->execpathp, execpath_len);
1020 	}
1021 
1022 	/*
1023 	 * Calculate base for argv[], envp[], and ELF_Auxargs.
1024 	 */
1025 	vectp = (char **)destp - (AT_COUNT * 2);
1026 	vectp -= imgp->args->argc + imgp->args->envc + 2;
1027 
1028 	stack_base = (register_t *)vectp;
1029 
1030 	stringp = imgp->args->begin_argv;
1031 	argc = imgp->args->argc;
1032 	envc = imgp->args->envc;
1033 
1034 	/*
1035 	 * Copy out strings - arguments and environment (at destp)
1036 	 */
1037 	copyout(stringp, destp, ARG_MAX - imgp->args->space);
1038 
1039 	/*
1040 	 * Fill in "ps_strings" struct for ps, w, etc.
1041 	 */
1042 	suword(&arginfo->ps_argvstr, (long)(intptr_t)vectp);
1043 	suword32(&arginfo->ps_nargvstr, argc);
1044 
1045 	/*
1046 	 * Fill in argument portion of vector table.
1047 	 */
1048 	for (; argc > 0; --argc) {
1049 		suword(vectp++, (long)(intptr_t)destp);
1050 		while (*stringp++ != 0)
1051 			destp++;
1052 		destp++;
1053 	}
1054 
1055 	/* a null vector table pointer separates the argp's from the envp's */
1056 	suword(vectp++, 0);
1057 
1058 	suword(&arginfo->ps_envstr, (long)(intptr_t)vectp);
1059 	suword32(&arginfo->ps_nenvstr, envc);
1060 
1061 	/*
1062 	 * Fill in environment portion of vector table.
1063 	 */
1064 	for (; envc > 0; --envc) {
1065 		suword(vectp++, (long)(intptr_t)destp);
1066 		while (*stringp++ != 0)
1067 			destp++;
1068 		destp++;
1069 	}
1070 
1071 	/* end of vector table is a null pointer */
1072 	suword(vectp, 0);
1073 
1074 	return (stack_base);
1075 }
1076 
1077 /*
1078  * Check permissions of file to execute.
1079  *	Return 0 for success or error code on failure.
1080  */
1081 int
1082 exec_check_permissions(struct image_params *imgp, struct mount *topmnt)
1083 {
1084 	struct proc *p = imgp->proc;
1085 	struct vnode *vp = imgp->vp;
1086 	struct vattr *attr = imgp->attr;
1087 	int error;
1088 
1089 	/* Get file attributes */
1090 	error = VOP_GETATTR(vp, attr);
1091 	if (error)
1092 		return (error);
1093 
1094 	/*
1095 	 * 1) Check if file execution is disabled for the filesystem that this
1096 	 *	file resides on.
1097 	 * 2) Insure that at least one execute bit is on - otherwise root
1098 	 *	will always succeed, and we don't want to happen unless the
1099 	 *	file really is executable.
1100 	 * 3) Insure that the file is a regular file.
1101 	 */
1102 	if ((vp->v_mount->mnt_flag & MNT_NOEXEC) ||
1103 	    ((topmnt != NULL) && (topmnt->mnt_flag & MNT_NOEXEC)) ||
1104 	    ((attr->va_mode & 0111) == 0) ||
1105 	    (attr->va_type != VREG)) {
1106 		return (EACCES);
1107 	}
1108 
1109 	/*
1110 	 * Zero length files can't be exec'd
1111 	 */
1112 	if (attr->va_size == 0)
1113 		return (ENOEXEC);
1114 
1115 	/*
1116 	 *  Check for execute permission to file based on current credentials.
1117 	 */
1118 	error = VOP_EACCESS(vp, VEXEC, p->p_ucred);
1119 	if (error)
1120 		return (error);
1121 
1122 	/*
1123 	 * Check number of open-for-writes on the file and deny execution
1124 	 * if there are any.
1125 	 */
1126 	if (vp->v_writecount)
1127 		return (ETXTBSY);
1128 
1129 	/*
1130 	 * Call filesystem specific open routine, which allows us to read,
1131 	 * write, and mmap the file.  Without the VOP_OPEN we can only
1132 	 * stat the file.
1133 	 */
1134 	error = VOP_OPEN(vp, FREAD, p->p_ucred, NULL);
1135 	if (error)
1136 		return (error);
1137 
1138 	return (0);
1139 }
1140 
1141 /*
1142  * Exec handler registration
1143  */
1144 int
1145 exec_register(const struct execsw *execsw_arg)
1146 {
1147 	const struct execsw **es, **xs, **newexecsw;
1148 	int count = 2;	/* New slot and trailing NULL */
1149 
1150 	if (execsw)
1151 		for (es = execsw; *es; es++)
1152 			count++;
1153 	newexecsw = kmalloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1154 	xs = newexecsw;
1155 	if (execsw)
1156 		for (es = execsw; *es; es++)
1157 			*xs++ = *es;
1158 	*xs++ = execsw_arg;
1159 	*xs = NULL;
1160 	if (execsw)
1161 		kfree(execsw, M_TEMP);
1162 	execsw = newexecsw;
1163 	return 0;
1164 }
1165 
1166 int
1167 exec_unregister(const struct execsw *execsw_arg)
1168 {
1169 	const struct execsw **es, **xs, **newexecsw;
1170 	int count = 1;
1171 
1172 	if (execsw == NULL)
1173 		panic("unregister with no handlers left?");
1174 
1175 	for (es = execsw; *es; es++) {
1176 		if (*es == execsw_arg)
1177 			break;
1178 	}
1179 	if (*es == NULL)
1180 		return ENOENT;
1181 	for (es = execsw; *es; es++)
1182 		if (*es != execsw_arg)
1183 			count++;
1184 	newexecsw = kmalloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1185 	xs = newexecsw;
1186 	for (es = execsw; *es; es++)
1187 		if (*es != execsw_arg)
1188 			*xs++ = *es;
1189 	*xs = NULL;
1190 	if (execsw)
1191 		kfree(execsw, M_TEMP);
1192 	execsw = newexecsw;
1193 	return 0;
1194 }
1195