xref: /dragonfly/sys/kern/kern_exit.c (revision 08e4ff68)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_exit.c	8.7 (Berkeley) 2/12/94
35  * $FreeBSD: src/sys/kern/kern_exit.c,v 1.92.2.11 2003/01/13 22:51:16 dillon Exp $
36  */
37 
38 #include "opt_ktrace.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/sysmsg.h>
43 #include <sys/kernel.h>
44 #include <sys/malloc.h>
45 #include <sys/proc.h>
46 #include <sys/ktrace.h>
47 #include <sys/pioctl.h>
48 #include <sys/tty.h>
49 #include <sys/wait.h>
50 #include <sys/vnode.h>
51 #include <sys/resourcevar.h>
52 #include <sys/signalvar.h>
53 #include <sys/taskqueue.h>
54 #include <sys/ptrace.h>
55 #include <sys/acct.h>		/* for acct_process() function prototype */
56 #include <sys/filedesc.h>
57 #include <sys/shm.h>
58 #include <sys/sem.h>
59 #include <sys/jail.h>
60 #include <sys/kern_syscall.h>
61 #include <sys/unistd.h>
62 #include <sys/eventhandler.h>
63 #include <sys/dsched.h>
64 
65 #include <vm/vm.h>
66 #include <vm/vm_param.h>
67 #include <sys/lock.h>
68 #include <vm/pmap.h>
69 #include <vm/vm_map.h>
70 #include <vm/vm_extern.h>
71 
72 #include <sys/refcount.h>
73 #include <sys/spinlock2.h>
74 
75 #include <machine/vmm.h>
76 
77 static void reaplwps(void *context, int dummy);
78 static void reaplwp(struct lwp *lp);
79 static void killlwps(struct lwp *lp);
80 
81 static MALLOC_DEFINE(M_ATEXIT, "atexit", "atexit callback");
82 
83 /*
84  * callout list for things to do at exit time
85  */
86 struct exitlist {
87 	exitlist_fn function;
88 	TAILQ_ENTRY(exitlist) next;
89 };
90 
91 TAILQ_HEAD(exit_list_head, exitlist);
92 static struct exit_list_head exit_list = TAILQ_HEAD_INITIALIZER(exit_list);
93 
94 /*
95  * LWP reaper data
96  */
97 static struct task *deadlwp_task[MAXCPU];
98 static struct lwplist deadlwp_list[MAXCPU];
99 static struct lwkt_token deadlwp_token[MAXCPU];
100 
101 void (*linux_task_drop_callback)(thread_t td);
102 void (*linux_proc_drop_callback)(struct proc *p);
103 
104 /*
105  * exit --
106  *	Death of process.
107  *
108  * SYS_EXIT_ARGS(int rval)
109  */
110 int
111 sys_exit(struct sysmsg *sysmsg, const struct exit_args *uap)
112 {
113 	exit1(W_EXITCODE(uap->rval, 0));
114 	/* NOTREACHED */
115 }
116 
117 /*
118  * Extended exit --
119  *	Death of a lwp or process with optional bells and whistles.
120  */
121 int
122 sys_extexit(struct sysmsg *sysmsg, const struct extexit_args *uap)
123 {
124 	struct proc *p = curproc;
125 	int action, who;
126 	int error;
127 
128 	action = EXTEXIT_ACTION(uap->how);
129 	who = EXTEXIT_WHO(uap->how);
130 
131 	/* Check parameters before we might perform some action */
132 	switch (who) {
133 	case EXTEXIT_PROC:
134 	case EXTEXIT_LWP:
135 		break;
136 	default:
137 		return (EINVAL);
138 	}
139 
140 	switch (action) {
141 	case EXTEXIT_SIMPLE:
142 		break;
143 	case EXTEXIT_SETINT:
144 		error = copyout(&uap->status, uap->addr, sizeof(uap->status));
145 		if (error)
146 			return (error);
147 		break;
148 	default:
149 		return (EINVAL);
150 	}
151 
152 	lwkt_gettoken(&p->p_token);
153 
154 	switch (who) {
155 	case EXTEXIT_LWP:
156 		/*
157 		 * Be sure only to perform a simple lwp exit if there is at
158 		 * least one more lwp in the proc, which will call exit1()
159 		 * later, otherwise the proc will be an UNDEAD and not even a
160 		 * SZOMB!
161 		 */
162 		if (p->p_nthreads > 1) {
163 			lwp_exit(0, NULL);	/* called w/ p_token held */
164 			/* NOT REACHED */
165 		}
166 		/* else last lwp in proc:  do the real thing */
167 		/* FALLTHROUGH */
168 	default:	/* to help gcc */
169 	case EXTEXIT_PROC:
170 		lwkt_reltoken(&p->p_token);
171 		exit1(W_EXITCODE(uap->status, 0));
172 		/* NOTREACHED */
173 	}
174 
175 	/* NOTREACHED */
176 	lwkt_reltoken(&p->p_token);	/* safety */
177 }
178 
179 /*
180  * Kill all lwps associated with the current process except the
181  * current lwp.   Return an error if we race another thread trying to
182  * do the same thing and lose the race.
183  *
184  * If forexec is non-zero the current thread and process flags are
185  * cleaned up so they can be reused.
186  */
187 int
188 killalllwps(int forexec)
189 {
190 	struct lwp *lp = curthread->td_lwp;
191 	struct proc *p = lp->lwp_proc;
192 	int fakestop;
193 
194 	/*
195 	 * Interlock against P_WEXIT.  Only one of the process's thread
196 	 * is allowed to do the master exit.
197 	 */
198 	lwkt_gettoken(&p->p_token);
199 	if (p->p_flags & P_WEXIT) {
200 		lwkt_reltoken(&p->p_token);
201 		return (EALREADY);
202 	}
203 	p->p_flags |= P_WEXIT;
204 	lwkt_gettoken(&lp->lwp_token);
205 
206 	/*
207 	 * Set temporary stopped state in case we are racing a coredump.
208 	 * Otherwise the coredump may hang forever.
209 	 */
210 	if (lp->lwp_mpflags & LWP_MP_WSTOP) {
211 		fakestop = 0;
212 	} else {
213 		atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
214 		++p->p_nstopped;
215 		fakestop = 1;
216 		wakeup(&p->p_nstopped);
217 	}
218 
219 	/*
220 	 * Interlock with LWP_MP_WEXIT and kill any remaining LWPs
221 	 */
222 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
223 	if (p->p_nthreads > 1)
224 		killlwps(lp);
225 
226 	/*
227 	 * Undo temporary stopped state
228 	 */
229 	if (fakestop && (lp->lwp_mpflags & LWP_MP_WSTOP)) {
230 		atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
231 		--p->p_nstopped;
232 	}
233 
234 	/*
235 	 * If doing this for an exec, clean up the remaining thread
236 	 * (us) for continuing operation after all the other threads
237 	 * have been killed.
238 	 */
239 	if (forexec) {
240 		atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
241 		p->p_flags &= ~P_WEXIT;
242 	}
243 	lwkt_reltoken(&lp->lwp_token);
244 	lwkt_reltoken(&p->p_token);
245 
246 	return(0);
247 }
248 
249 /*
250  * Kill all LWPs except the current one.  Do not try to signal
251  * LWPs which have exited on their own or have already been
252  * signaled.
253  */
254 static void
255 killlwps(struct lwp *lp)
256 {
257 	struct proc *p = lp->lwp_proc;
258 	struct lwp *tlp;
259 
260 	/*
261 	 * Kill the remaining LWPs.  We must send the signal before setting
262 	 * LWP_MP_WEXIT.  The setting of WEXIT is optional but helps reduce
263 	 * races.  tlp must be held across the call as it might block and
264 	 * allow the target lwp to rip itself out from under our loop.
265 	 */
266 	FOREACH_LWP_IN_PROC(tlp, p) {
267 		LWPHOLD(tlp);
268 		lwkt_gettoken(&tlp->lwp_token);
269 		if ((tlp->lwp_mpflags & LWP_MP_WEXIT) == 0) {
270 			atomic_set_int(&tlp->lwp_mpflags, LWP_MP_WEXIT);
271 			lwpsignal(p, tlp, SIGKILL);
272 		}
273 		lwkt_reltoken(&tlp->lwp_token);
274 		LWPRELE(tlp);
275 	}
276 
277 	/*
278 	 * Wait for everything to clear out.  Also make sure any tstop()s
279 	 * are signalled (we are holding p_token for the interlock).
280 	 */
281 	wakeup(p);
282 	while (p->p_nthreads > 1)
283 		tsleep(&p->p_nthreads, 0, "killlwps", 0);
284 }
285 
286 /*
287  * Exit: deallocate address space and other resources, change proc state
288  * to zombie, and unlink proc from allproc and parent's lists.  Save exit
289  * status and rusage for wait().  Check for child processes and orphan them.
290  */
291 void
292 exit1(int rv)
293 {
294 	struct thread *td = curthread;
295 	struct proc *p = td->td_proc;
296 	struct lwp *lp = td->td_lwp;
297 	struct proc *q;
298 	struct proc *pp;
299 	struct proc *reproc;
300 	struct sysreaper *reap;
301 	struct vmspace *vm;
302 	struct vnode *vtmp;
303 	struct exitlist *ep;
304 	int error;
305 
306 	lwkt_gettoken(&p->p_token);
307 
308 	if (p->p_pid == 1) {
309 		kprintf("init died (signal %d, exit %d)\n",
310 		    WTERMSIG(rv), WEXITSTATUS(rv));
311 		panic("Going nowhere without my init!");
312 	}
313 	varsymset_clean(&p->p_varsymset);
314 	lockuninit(&p->p_varsymset.vx_lock);
315 
316 	/*
317 	 * Kill all lwps associated with the current process, return an
318 	 * error if we race another thread trying to do the same thing
319 	 * and lose the race.
320 	 */
321 	error = killalllwps(0);
322 	if (error) {
323 		lwp_exit(0, NULL);
324 		/* NOT REACHED */
325 	}
326 
327 	/* are we a task leader? */
328 	if (p == p->p_leader) {
329 		struct sysmsg sysmsg;
330 
331 		sysmsg.extargs.kill.signum = SIGKILL;
332 		q = p->p_peers;
333 		while(q) {
334 			sysmsg.extargs.kill.pid = q->p_pid;
335 			/*
336 		         * The interface for kill is better
337 			 * than the internal signal
338 			 */
339 			sys_kill(&sysmsg, &sysmsg.extargs.kill);
340 			q = q->p_peers;
341 		}
342 		while (p->p_peers)
343 			tsleep((caddr_t)p, 0, "exit1", 0);
344 	}
345 
346 #ifdef PGINPROF
347 	vmsizmon();
348 #endif
349 	STOPEVENT(p, S_EXIT, rv);
350 	p->p_flags |= P_POSTEXIT;	/* stop procfs stepping */
351 
352 	/*
353 	 * Check if any loadable modules need anything done at process exit.
354 	 * e.g. SYSV IPC stuff
355 	 * XXX what if one of these generates an error?
356 	 */
357 	p->p_xstat = rv;
358 
359 	/*
360 	 * XXX: imho, the eventhandler stuff is much cleaner than this.
361 	 *	Maybe we should move everything to use eventhandler.
362 	 */
363 	TAILQ_FOREACH(ep, &exit_list, next)
364 		(*ep->function)(td);
365 
366 	if (p->p_flags & P_PROFIL)
367 		stopprofclock(p);
368 
369 	SIGEMPTYSET(p->p_siglist);
370 	SIGEMPTYSET(lp->lwp_siglist);
371 	if (timevalisset(&p->p_realtimer.it_value))
372 		callout_terminate(&p->p_ithandle);
373 
374 	/*
375 	 * Reset any sigio structures pointing to us as a result of
376 	 * F_SETOWN with our pid.
377 	 */
378 	funsetownlst(&p->p_sigiolst);
379 
380 	/*
381 	 * Close open files and release open-file table.
382 	 * This may block!
383 	 */
384 	fdfree(p, NULL);
385 
386 	if (p->p_leader->p_peers) {
387 		q = p->p_leader;
388 		while(q->p_peers != p)
389 			q = q->p_peers;
390 		q->p_peers = p->p_peers;
391 		wakeup((caddr_t)p->p_leader);
392 	}
393 
394 	/*
395 	 * XXX Shutdown SYSV semaphores
396 	 */
397 	semexit(p);
398 
399 	/* The next two chunks should probably be moved to vmspace_exit. */
400 	vm = p->p_vmspace;
401 
402 	/*
403 	 * Clean up data related to virtual kernel operation.  Clean up
404 	 * any vkernel context related to the current lwp now so we can
405 	 * destroy p_vkernel.
406 	 */
407 	if (p->p_vkernel) {
408 		vkernel_lwp_exit(lp);
409 		vkernel_exit(p);
410 	}
411 
412 	/*
413 	 * Release the user portion of address space.  The exitbump prevents
414 	 * the vmspace from being completely eradicated (using holdcnt).
415 	 * This releases references to vnodes, which could cause I/O if the
416 	 * file has been unlinked.  We need to do this early enough that
417 	 * we can still sleep.
418 	 *
419 	 * We can't free the entire vmspace as the kernel stack may be mapped
420 	 * within that space also.
421 	 *
422 	 * Processes sharing the same vmspace may exit in one order, and
423 	 * get cleaned up by vmspace_exit() in a different order.  The
424 	 * last exiting process to reach this point releases as much of
425 	 * the environment as it can, and the last process cleaned up
426 	 * by vmspace_exit() (which decrements exitingcnt) cleans up the
427 	 * remainder.
428 	 *
429 	 * NOTE: Releasing p_token around this call is helpful if the
430 	 *	 vmspace had a huge RSS.  Otherwise some other process
431 	 *	 trying to do an allproc or other scan (like 'ps') may
432 	 *	 stall for a long time.
433 	 */
434 	lwkt_reltoken(&p->p_token);
435 	vmspace_relexit(vm);
436 	lwkt_gettoken(&p->p_token);
437 
438 	if (SESS_LEADER(p)) {
439 		struct session *sp = p->p_session;
440 
441 		if (sp->s_ttyvp) {
442 			/*
443 			 * We are the controlling process.  Signal the
444 			 * foreground process group, drain the controlling
445 			 * terminal, and revoke access to the controlling
446 			 * terminal.
447 			 *
448 			 * NOTE: while waiting for the process group to exit
449 			 * it is possible that one of the processes in the
450 			 * group will revoke the tty, so the ttyclosesession()
451 			 * function will re-check sp->s_ttyvp.
452 			 */
453 			if (sp->s_ttyp && (sp->s_ttyp->t_session == sp)) {
454 				if (sp->s_ttyp->t_pgrp)
455 					pgsignal(sp->s_ttyp->t_pgrp, SIGHUP, 1);
456 				ttywait(sp->s_ttyp);
457 				ttyclosesession(sp, 1); /* also revoke */
458 			}
459 			/*
460 			 * Release the tty.  If someone has it open via
461 			 * /dev/tty then close it (since they no longer can
462 			 * once we've NULL'd it out).
463 			 */
464 			ttyclosesession(sp, 0);
465 
466 			/*
467 			 * s_ttyp is not zero'd; we use this to indicate
468 			 * that the session once had a controlling terminal.
469 			 * (for logging and informational purposes)
470 			 */
471 		}
472 		sp->s_leader = NULL;
473 	}
474 	fixjobc(p, p->p_pgrp, 0);
475 	(void)acct_process(p);
476 #ifdef KTRACE
477 	/*
478 	 * release trace file
479 	 */
480 	if (p->p_tracenode)
481 		ktrdestroy(&p->p_tracenode);
482 	p->p_traceflag = 0;
483 #endif
484 	/*
485 	 * Release reference to text vnode
486 	 */
487 	if ((vtmp = p->p_textvp) != NULL) {
488 		p->p_textvp = NULL;
489 		vrele(vtmp);
490 	}
491 
492 	/* Release namecache handle to text file */
493 	if (p->p_textnch.ncp)
494 		cache_drop(&p->p_textnch);
495 
496 	/*
497 	 * We have to handle PPWAIT here or proc_move_allproc_zombie()
498 	 * will block on the PHOLD() the parent is doing.
499 	 *
500 	 * We are using the flag as an interlock so an atomic op is
501 	 * necessary to synchronize with the parent's cpu.
502 	 */
503 	if (p->p_flags & P_PPWAIT) {
504 		if (p->p_pptr && p->p_pptr->p_upmap)
505 			atomic_add_int(&p->p_pptr->p_upmap->invfork, -1);
506 		atomic_clear_int(&p->p_flags, P_PPWAIT);
507 		wakeup(p->p_pptr);
508 	}
509 
510 	/*
511 	 * Move the process to the zombie list.  This will block
512 	 * until the process p_lock count reaches 0.  The process will
513 	 * not be reaped until TDF_EXITING is set by cpu_thread_exit(),
514 	 * which is called from cpu_proc_exit().
515 	 *
516 	 * Interlock against waiters using p_waitgen.  We increment
517 	 * p_waitgen after completing the move of our process to the
518 	 * zombie list.
519 	 *
520 	 * WARNING: pp becomes stale when we block, clear it now as a
521 	 *	    reminder.
522 	 */
523 	proc_move_allproc_zombie(p);
524 	pp = p->p_pptr;
525 	atomic_add_long(&pp->p_waitgen, 1);
526 	pp = NULL;
527 
528 	/*
529 	 * release controlled reaper for exit if we own it and return the
530 	 * remaining reaper (the one for us), which we will drop after we
531 	 * are done.
532 	 */
533 	reap = reaper_exit(p);
534 
535 	/*
536 	 * Reparent all of this process's children to the init process or
537 	 * to the designated reaper.  We must hold the reaper's p_token in
538 	 * order to safely mess with p_children.
539 	 *
540 	 * We already hold p->p_token (to remove the children from our list).
541 	 */
542 	reproc = NULL;
543 	q = LIST_FIRST(&p->p_children);
544 	if (q) {
545 		reproc = reaper_get(reap);
546 		lwkt_gettoken(&reproc->p_token);
547 		while ((q = LIST_FIRST(&p->p_children)) != NULL) {
548 			PHOLD(q);
549 			lwkt_gettoken(&q->p_token);
550 			if (q != LIST_FIRST(&p->p_children)) {
551 				lwkt_reltoken(&q->p_token);
552 				PRELE(q);
553 				continue;
554 			}
555 			LIST_REMOVE(q, p_sibling);
556 			LIST_INSERT_HEAD(&reproc->p_children, q, p_sibling);
557 			q->p_pptr = reproc;
558 			q->p_ppid = reproc->p_pid;
559 			q->p_sigparent = SIGCHLD;
560 
561 			/*
562 			 * Traced processes are killed
563 			 * since their existence means someone is screwing up.
564 			 */
565 			if (q->p_flags & P_TRACED) {
566 				q->p_flags &= ~P_TRACED;
567 				ksignal(q, SIGKILL);
568 			}
569 			lwkt_reltoken(&q->p_token);
570 			PRELE(q);
571 		}
572 		lwkt_reltoken(&reproc->p_token);
573 		wakeup(reproc);
574 	}
575 
576 	/*
577 	 * Save exit status and final rusage info.  We no longer add
578 	 * child rusage info into self times, wait4() and kern_wait()
579 	 * handles it in order to properly support wait6().
580 	 */
581 	calcru_proc(p, &p->p_ru);
582 	/*ruadd(&p->p_ru, &p->p_cru); REMOVED */
583 
584 	/*
585 	 * notify interested parties of our demise.
586 	 */
587 	KNOTE(&p->p_klist, NOTE_EXIT);
588 
589 	/*
590 	 * Notify parent that we're gone.  If parent has the PS_NOCLDWAIT
591 	 * flag set, or if the handler is set to SIG_IGN, notify the reaper
592 	 * instead (it will handle this situation).
593 	 *
594 	 * NOTE: The reaper can still be the parent process.
595 	 *
596 	 * (must reload pp)
597 	 */
598 	if (p->p_pptr->p_sigacts->ps_flag & (PS_NOCLDWAIT | PS_CLDSIGIGN)) {
599 		if (reproc == NULL)
600 			reproc = reaper_get(reap);
601 		proc_reparent(p, reproc);
602 	}
603 	if (reproc)
604 		PRELE(reproc);
605 	if (reap)
606 		reaper_drop(reap);
607 
608 	/*
609 	 * Signal (possibly new) parent.
610 	 */
611 	pp = p->p_pptr;
612 	PHOLD(pp);
613 	if (p->p_sigparent && pp != initproc) {
614 		int sig = p->p_sigparent;
615 
616 		if (sig != SIGUSR1 && sig != SIGCHLD)
617 			sig = SIGCHLD;
618 	        ksignal(pp, sig);
619 	} else {
620 	        ksignal(pp, SIGCHLD);
621 	}
622 	p->p_flags &= ~P_TRACED;
623 	PRELE(pp);
624 
625 	/*
626 	 * cpu_exit is responsible for clearing curproc, since
627 	 * it is heavily integrated with the thread/switching sequence.
628 	 *
629 	 * Other substructures are freed from wait().
630 	 */
631 	if (p->p_limit) {
632 		struct plimit *rlimit;
633 
634 		rlimit = p->p_limit;
635 		p->p_limit = NULL;
636 		plimit_free(rlimit);
637 	}
638 
639 	/*
640 	 * Finally, call machine-dependent code to release as many of the
641 	 * lwp's resources as we can and halt execution of this thread.
642 	 *
643 	 * pp is a wild pointer now but still the correct wakeup() target.
644 	 * lwp_exit() only uses it to send the wakeup() signal to the likely
645 	 * parent.  Any reparenting race that occurs will get a signal
646 	 * automatically and not be an issue.
647 	 */
648 	lwp_exit(1, pp);
649 }
650 
651 /*
652  * Eventually called by every exiting LWP
653  *
654  * p->p_token must be held.  mplock may be held and will be released.
655  */
656 void
657 lwp_exit(int masterexit, void *waddr)
658 {
659 	struct thread *td = curthread;
660 	struct lwp *lp = td->td_lwp;
661 	struct proc *p = lp->lwp_proc;
662 	int dowake = 0;
663 
664 	/*
665 	 * Release the current user process designation on the process so
666 	 * the userland scheduler can work in someone else.
667 	 */
668 	p->p_usched->release_curproc(lp);
669 
670 	/*
671 	 * Destroy the per-thread shared page and remove from any pmaps
672 	 * it resides in.
673 	 */
674 	lwp_userunmap(lp);
675 
676 	/*
677 	 * lwp_exit() may be called without setting LWP_MP_WEXIT, so
678 	 * make sure it is set here.
679 	 */
680 	ASSERT_LWKT_TOKEN_HELD(&p->p_token);
681 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
682 
683 	/*
684 	 * Clean up any virtualization
685 	 */
686 	if (lp->lwp_vkernel)
687 		vkernel_lwp_exit(lp);
688 
689 	if (td->td_vmm)
690 		vmm_vmdestroy();
691 
692 	/*
693 	 * Clean up select/poll support
694 	 */
695 	kqueue_terminate(&lp->lwp_kqueue);
696 
697 	if (td->td_linux_task)
698 		linux_task_drop_callback(td);
699 	if (masterexit && p->p_linux_mm)
700 		linux_proc_drop_callback(p);
701 
702 	/*
703 	 * Clean up any syscall-cached ucred or rlimit.
704 	 */
705 	if (td->td_ucred) {
706 		crfree(td->td_ucred);
707 		td->td_ucred = NULL;
708 	}
709 	if (td->td_limit) {
710 		struct plimit *rlimit;
711 
712 		rlimit = td->td_limit;
713 		td->td_limit = NULL;
714 		plimit_free(rlimit);
715         }
716 
717 	/*
718 	 * Cleanup any cached descriptors for this thread
719 	 */
720 	if (p->p_fd)
721 		fexitcache(td);
722 
723 	/*
724 	 * Nobody actually wakes us when the lock
725 	 * count reaches zero, so just wait one tick.
726 	 */
727 	while (lp->lwp_lock > 0)
728 		tsleep(lp, 0, "lwpexit", 1);
729 
730 	/* Hand down resource usage to our proc */
731 	ruadd(&p->p_ru, &lp->lwp_ru);
732 
733 	/*
734 	 * If we don't hold the process until the LWP is reaped wait*()
735 	 * may try to dispose of its vmspace before all the LWPs have
736 	 * actually terminated.
737 	 */
738 	PHOLD(p);
739 
740 	/*
741 	 * Do any remaining work that might block on us.  We should be
742 	 * coded such that further blocking is ok after decrementing
743 	 * p_nthreads but don't take the chance.
744 	 */
745 	dsched_exit_thread(td);
746 	biosched_done(curthread);
747 
748 	/*
749 	 * We have to use the reaper for all the LWPs except the one doing
750 	 * the master exit.  The LWP doing the master exit can just be
751 	 * left on p_lwps and the process reaper will deal with it
752 	 * synchronously, which is much faster.
753 	 *
754 	 * Wakeup anyone waiting on p_nthreads to drop to 1 or 0.
755 	 *
756 	 * The process is left held until the reaper calls lwp_dispose() on
757 	 * the lp (after calling lwp_wait()).
758 	 */
759 	if (masterexit == 0) {
760 		int cpu = mycpuid;
761 
762 		lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
763 		--p->p_nthreads;
764 		if ((p->p_flags & P_MAYBETHREADED) && p->p_nthreads <= 1)
765 			dowake = 1;
766 		lwkt_gettoken(&deadlwp_token[cpu]);
767 		LIST_INSERT_HEAD(&deadlwp_list[cpu], lp, u.lwp_reap_entry);
768 		taskqueue_enqueue(taskqueue_thread[cpu], deadlwp_task[cpu]);
769 		lwkt_reltoken(&deadlwp_token[cpu]);
770 	} else {
771 		--p->p_nthreads;
772 		if ((p->p_flags & P_MAYBETHREADED) && p->p_nthreads <= 1)
773 			dowake = 1;
774 	}
775 
776 	/*
777 	 * We no longer need p_token.
778 	 *
779 	 * Tell the userland scheduler that we are going away
780 	 */
781 	lwkt_reltoken(&p->p_token);
782 	p->p_usched->heuristic_exiting(lp, p);
783 
784 	/*
785 	 * Issue late wakeups after releasing our token to give us a chance
786 	 * to deschedule and switch away before another cpu in a wait*()
787 	 * reaps us.  This is done as late as possible to reduce contention.
788 	 */
789 	if (dowake)
790 		wakeup(&p->p_nthreads);
791 	if (waddr)
792 		wakeup(waddr);
793 
794 	cpu_lwp_exit();
795 }
796 
797 /*
798  * Wait until a lwp is completely dead.  The final interlock in this drama
799  * is when TDF_EXITING is set in cpu_thread_exit() just before the final
800  * switchout.
801  *
802  * At the point TDF_EXITING is set a complete exit is accomplished when
803  * TDF_RUNNING and TDF_PREEMPT_LOCK are both clear.  td_mpflags has two
804  * post-switch interlock flags that can be used to wait for the TDF_
805  * flags to clear.
806  *
807  * Returns non-zero on success, and zero if the caller needs to retry
808  * the lwp_wait().
809  */
810 static int
811 lwp_wait(struct lwp *lp)
812 {
813 	struct thread *td = lp->lwp_thread;
814 	u_int mpflags;
815 
816 	KKASSERT(lwkt_preempted_proc() != lp);
817 
818 	/*
819 	 * This bit of code uses the thread destruction interlock
820 	 * managed by lwkt_switch_return() to wait for the lwp's
821 	 * thread to completely disengage.
822 	 *
823 	 * It is possible for us to race another cpu core so we
824 	 * have to do this correctly.
825 	 */
826 	for (;;) {
827 		mpflags = td->td_mpflags;
828 		cpu_ccfence();
829 		if (mpflags & TDF_MP_EXITSIG)
830 			break;
831 		tsleep_interlock(td, 0);
832 		if (atomic_cmpset_int(&td->td_mpflags, mpflags,
833 				      mpflags | TDF_MP_EXITWAIT)) {
834 			tsleep(td, PINTERLOCKED, "lwpxt", 0);
835 		}
836 	}
837 
838 	/*
839 	 * We've already waited for the core exit but there can still
840 	 * be other refs from e.g. process scans and such.
841 	 */
842 	if (lp->lwp_lock > 0) {
843 		tsleep(lp, 0, "lwpwait1", 1);
844 		return(0);
845 	}
846 	if (td->td_refs) {
847 		tsleep(td, 0, "lwpwait2", 1);
848 		return(0);
849 	}
850 
851 	/*
852 	 * Now that we have the thread destruction interlock these flags
853 	 * really should already be cleaned up, keep a check for safety.
854 	 *
855 	 * We can't rip its stack out from under it until TDF_EXITING is
856 	 * set and both TDF_RUNNING and TDF_PREEMPT_LOCK are clear.
857 	 * TDF_PREEMPT_LOCK must be checked because TDF_RUNNING
858 	 * will be cleared temporarily if a thread gets preempted.
859 	 */
860 	while ((td->td_flags & (TDF_RUNNING |
861 				TDF_RUNQ |
862 			        TDF_PREEMPT_LOCK |
863 			        TDF_EXITING)) != TDF_EXITING) {
864 		tsleep(lp, 0, "lwpwait3", 1);
865 		return (0);
866 	}
867 
868 	KASSERT((td->td_flags & (TDF_RUNQ|TDF_TSLEEPQ)) == 0,
869 		("lwp_wait: td %p (%s) still on run or sleep queue",
870 		td, td->td_comm));
871 	return (1);
872 }
873 
874 /*
875  * Release the resources associated with a lwp.
876  * The lwp must be completely dead.
877  */
878 void
879 lwp_dispose(struct lwp *lp)
880 {
881 	struct thread *td = lp->lwp_thread;
882 
883 	KKASSERT(lwkt_preempted_proc() != lp);
884 	KKASSERT(lp->lwp_lock == 0);
885 	KKASSERT(td->td_refs == 0);
886 	KKASSERT((td->td_flags & (TDF_RUNNING |
887 				  TDF_RUNQ |
888 				  TDF_PREEMPT_LOCK |
889 				  TDF_EXITING)) == TDF_EXITING);
890 
891 	PRELE(lp->lwp_proc);
892 	lp->lwp_proc = NULL;
893 	if (td != NULL) {
894 		td->td_proc = NULL;
895 		td->td_lwp = NULL;
896 		lp->lwp_thread = NULL;
897 		lwkt_free_thread(td);
898 	}
899 	kfree(lp, M_LWP);
900 }
901 
902 int
903 sys_wait4(struct sysmsg *sysmsg, const struct wait_args *uap)
904 {
905 	struct __wrusage wrusage;
906 	int error;
907 	int status;
908 	int options;
909 	id_t id;
910 	idtype_t idtype;
911 
912 	options = uap->options | WEXITED | WTRAPPED;
913 	id = uap->pid;
914 
915 	if (id == WAIT_ANY) {
916 		idtype = P_ALL;
917 	} else if (id == WAIT_MYPGRP) {
918 		idtype = P_PGID;
919 		id = curproc->p_pgid;
920 	} else if (id < 0) {
921 		idtype = P_PGID;
922 		id = -id;
923 	} else {
924 		idtype = P_PID;
925 	}
926 
927 	error = kern_wait(idtype, id, &status, options, &wrusage,
928 			  NULL, &sysmsg->sysmsg_result);
929 
930 	if (error == 0 && uap->status)
931 		error = copyout(&status, uap->status, sizeof(*uap->status));
932 	if (error == 0 && uap->rusage) {
933 		ruadd(&wrusage.wru_self, &wrusage.wru_children);
934 		error = copyout(&wrusage.wru_self, uap->rusage, sizeof(*uap->rusage));
935 	}
936 	return (error);
937 }
938 
939 int
940 sys_wait6(struct sysmsg *sysmsg, const struct wait6_args *uap)
941 {
942 	struct __wrusage wrusage;
943 	siginfo_t info;
944 	siginfo_t *infop;
945 	int error;
946 	int status;
947 	int options;
948 	id_t id;
949 	idtype_t idtype;
950 
951 	/*
952 	 * NOTE: wait6() requires WEXITED and WTRAPPED to be specified if
953 	 *	 desired.
954 	 */
955 	options = uap->options;
956 	idtype = uap->idtype;
957 	id = uap->id;
958 	infop = uap->info ? &info : NULL;
959 
960 	switch(idtype) {
961 	case P_PID:
962 	case P_PGID:
963 		if (id == WAIT_MYPGRP) {
964 			idtype = P_PGID;
965 			id = curproc->p_pgid;
966 		}
967 		break;
968 	default:
969 		/* let kern_wait deal with the remainder */
970 		break;
971 	}
972 
973 	error = kern_wait(idtype, id, &status, options,
974 			  &wrusage, infop, &sysmsg->sysmsg_result);
975 
976 	if (error == 0 && uap->status)
977 		error = copyout(&status, uap->status, sizeof(*uap->status));
978 	if (error == 0 && uap->wrusage)
979 		error = copyout(&wrusage, uap->wrusage, sizeof(*uap->wrusage));
980 	if (error == 0 && uap->info)
981 		error = copyout(&info, uap->info, sizeof(*uap->info));
982 	return (error);
983 }
984 
985 /*
986  * kernel wait*() system call support
987  */
988 int
989 kern_wait(idtype_t idtype, id_t id, int *status, int options,
990 	  struct __wrusage *wrusage, siginfo_t *info, int *res)
991 {
992 	struct thread *td = curthread;
993 	struct lwp *lp;
994 	struct proc *q = td->td_proc;
995 	struct proc *p, *t;
996 	struct ucred *cr;
997 	struct pargs *pa;
998 	struct sigacts *ps;
999 	int nfound, error;
1000 	long waitgen;
1001 
1002 	/*
1003 	 * Must not have extraneous options.  Must have at least one
1004 	 * matchable option.
1005 	 */
1006 	if (options &~ (WUNTRACED|WNOHANG|WCONTINUED|WLINUXCLONE|WSTOPPED|
1007 			WEXITED|WTRAPPED|WNOWAIT)) {
1008 		return (EINVAL);
1009 	}
1010 	if ((options & (WEXITED | WUNTRACED | WCONTINUED | WTRAPPED)) == 0) {
1011 		return (EINVAL);
1012 	}
1013 
1014 	/*
1015 	 * Protect the q->p_children list
1016 	 */
1017 	lwkt_gettoken(&q->p_token);
1018 loop:
1019 	/*
1020 	 * All sorts of things can change due to blocking so we have to loop
1021 	 * all the way back up here.
1022 	 *
1023 	 * The problem is that if a process group is stopped and the parent
1024 	 * is doing a wait*(..., WUNTRACED, ...), it will see the STOP
1025 	 * of the child and then stop itself when it tries to return from the
1026 	 * system call.  When the process group is resumed the parent will
1027 	 * then get the STOP status even though the child has now resumed
1028 	 * (a followup wait*() will get the CONT status).
1029 	 *
1030 	 * Previously the CONT would overwrite the STOP because the tstop
1031 	 * was handled within tsleep(), and the parent would only see
1032 	 * the CONT when both are stopped and continued together.  This little
1033 	 * two-line hack restores this effect.
1034 	 *
1035 	 * No locks are held so we can safely block the process here.
1036 	 */
1037 	if (STOPLWP(q, td->td_lwp))
1038             tstop();
1039 
1040 	nfound = 0;
1041 
1042 	/*
1043 	 * Loop on children.
1044 	 *
1045 	 * NOTE: We don't want to break q's p_token in the loop for the
1046 	 *	 case where no children are found or we risk breaking the
1047 	 *	 interlock between child and parent.
1048 	 */
1049 	waitgen = atomic_fetchadd_long(&q->p_waitgen, 0x80000000);
1050 	LIST_FOREACH(p, &q->p_children, p_sibling) {
1051 		/*
1052 		 * Skip children that another thread is already uninterruptably
1053 		 * reaping.
1054 		 */
1055 		if (PWAITRES_PENDING(p))
1056 			continue;
1057 
1058 		/*
1059 		 * Filter, (p) will be held on fall-through.  Try to optimize
1060 		 * this to avoid the atomic op until we are pretty sure we
1061 		 * want this process.
1062 		 */
1063 		switch(idtype) {
1064 		case P_ALL:
1065 			PHOLD(p);
1066 			break;
1067 		case P_PID:
1068 			if (p->p_pid != (pid_t)id)
1069 				continue;
1070 			PHOLD(p);
1071 			break;
1072 		case P_PGID:
1073 			if (p->p_pgid != (pid_t)id)
1074 				continue;
1075 			PHOLD(p);
1076 			break;
1077 		case P_SID:
1078 			PHOLD(p);
1079 			if (p->p_session && p->p_session->s_sid != (pid_t)id) {
1080 				PRELE(p);
1081 				continue;
1082 			}
1083 			break;
1084 		case P_UID:
1085 			PHOLD(p);
1086 			if (p->p_ucred->cr_uid != (uid_t)id) {
1087 				PRELE(p);
1088 				continue;
1089 			}
1090 			break;
1091 		case P_GID:
1092 			PHOLD(p);
1093 			if (p->p_ucred->cr_gid != (gid_t)id) {
1094 				PRELE(p);
1095 				continue;
1096 			}
1097 			break;
1098 		case P_JAILID:
1099 			PHOLD(p);
1100 			if (p->p_ucred->cr_prison &&
1101 			    p->p_ucred->cr_prison->pr_id != (int)id) {
1102 				PRELE(p);
1103 				continue;
1104 			}
1105 			break;
1106 		default:
1107 			/* unsupported filter */
1108 			continue;
1109 		}
1110 		/* (p) is held at this point */
1111 
1112 		/*
1113 		 * This special case handles a kthread spawned by linux_clone
1114 		 * (see linux_misc.c).  The linux_wait4 and linux_waitpid
1115 		 * functions need to be able to distinguish between waiting
1116 		 * on a process and waiting on a thread.  It is a thread if
1117 		 * p_sigparent is not SIGCHLD, and the WLINUXCLONE option
1118 		 * signifies we want to wait for threads and not processes.
1119 		 */
1120 		if ((p->p_sigparent != SIGCHLD) ^
1121 		    ((options & WLINUXCLONE) != 0)) {
1122 			PRELE(p);
1123 			continue;
1124 		}
1125 
1126 		nfound++;
1127 		if (p->p_stat == SZOMB && (options & WEXITED)) {
1128 			/*
1129 			 * We may go into SZOMB with threads still present.
1130 			 * We must wait for them to exit before we can reap
1131 			 * the master thread, otherwise we may race reaping
1132 			 * non-master threads.
1133 			 *
1134 			 * Only this routine can remove a process from
1135 			 * the zombie list and destroy it.
1136 			 *
1137 			 * This function will fail after sleeping if another
1138 			 * thread owns the zombie lock.  This function will
1139 			 * fail immediately or after sleeping if another
1140 			 * thread owns or obtains ownership of the reap via
1141 			 * WAITRES.
1142 			 */
1143 			if (PHOLDZOMB(p)) {
1144 				PRELE(p);
1145 				goto loop;
1146 			}
1147 			lwkt_gettoken(&p->p_token);
1148 			if (p->p_pptr != q) {
1149 				lwkt_reltoken(&p->p_token);
1150 				PRELE(p);
1151 				PRELEZOMB(p);
1152 				goto loop;
1153 			}
1154 
1155 			/*
1156 			 * We are the reaper, from this point on the reap
1157 			 * cannot be aborted.
1158 			 */
1159 			PWAITRES_SET(p);
1160 			while (p->p_nthreads > 0) {
1161 				tsleep(&p->p_nthreads, 0, "lwpzomb", hz);
1162 			}
1163 
1164 			/*
1165 			 * Reap any LWPs left in p->p_lwps.  This is usually
1166 			 * just the last LWP.  This must be done before
1167 			 * we loop on p_lock since the lwps hold a ref on
1168 			 * it as a vmspace interlock.
1169 			 *
1170 			 * Once that is accomplished p_nthreads had better
1171 			 * be zero.
1172 			 */
1173 			while ((lp = RB_ROOT(&p->p_lwp_tree)) != NULL) {
1174 				/*
1175 				 * Make sure no one is using this lwp, before
1176 				 * it is removed from the tree.  If we didn't
1177 				 * wait it here, lwp tree iteration with
1178 				 * blocking operation would be broken.
1179 				 */
1180 				while (lp->lwp_lock > 0)
1181 					tsleep(lp, 0, "zomblwp", 1);
1182 				lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
1183 				reaplwp(lp);
1184 			}
1185 			KKASSERT(p->p_nthreads == 0);
1186 
1187 			/*
1188 			 * Don't do anything really bad until all references
1189 			 * to the process go away.  This may include other
1190 			 * LWPs which are still in the process of being
1191 			 * reaped.  We can't just pull the rug out from under
1192 			 * them because they may still be using the VM space.
1193 			 *
1194 			 * Certain kernel facilities such as /proc will also
1195 			 * put a hold on the process for short periods of
1196 			 * time.
1197 			 */
1198 			PRELE(p);		/* from top of loop */
1199 			PSTALL(p, "reap3", 1);	/* 1 ref (for PZOMBHOLD) */
1200 
1201 			/* Take care of our return values. */
1202 			*res = p->p_pid;
1203 
1204 			*status = p->p_xstat;
1205 			wrusage->wru_self = p->p_ru;
1206 			wrusage->wru_children = p->p_cru;
1207 
1208 			if (info) {
1209 				bzero(info, sizeof(*info));
1210 				info->si_errno = 0;
1211 				info->si_signo = SIGCHLD;
1212 				if (WIFEXITED(p->p_xstat)) {
1213 					info->si_code = CLD_EXITED;
1214 					info->si_status =
1215 						WEXITSTATUS(p->p_xstat);
1216 				} else {
1217 					info->si_code = CLD_KILLED;
1218 					info->si_status = WTERMSIG(p->p_xstat);
1219 				}
1220 				info->si_pid = p->p_pid;
1221 				info->si_uid = p->p_ucred->cr_uid;
1222 			}
1223 
1224 			/*
1225 			 * WNOWAIT shortcuts to done here, leaving the
1226 			 * child on the zombie list.
1227 			 */
1228 			if (options & WNOWAIT) {
1229 				lwkt_reltoken(&p->p_token);
1230 				PRELEZOMB(p);
1231 				error = 0;
1232 				goto done;
1233 			}
1234 
1235 			/*
1236 			 * If we got the child via a ptrace 'attach',
1237 			 * we need to give it back to the old parent.
1238 			 */
1239 			if (p->p_oppid && (t = pfind(p->p_oppid)) != NULL) {
1240 				p->p_oppid = 0;
1241 				proc_reparent(p, t);
1242 				ksignal(t, SIGCHLD);
1243 				wakeup((caddr_t)t);
1244 				PRELE(t);
1245 				lwkt_reltoken(&p->p_token);
1246 				PRELEZOMB(p);
1247 				error = 0;
1248 				goto done;
1249 			}
1250 
1251 			/*
1252 			 * Unlink the proc from its process group so that
1253 			 * the following operations won't lead to an
1254 			 * inconsistent state for processes running down
1255 			 * the zombie list.
1256 			 */
1257 			proc_remove_zombie(p);
1258 			proc_userunmap(p);
1259 			lwkt_reltoken(&p->p_token);
1260 			leavepgrp(p);
1261 
1262 			p->p_xstat = 0;
1263 			ruadd(&q->p_cru, &p->p_ru);
1264 			ruadd(&q->p_cru, &p->p_cru);
1265 
1266 			/*
1267 			 * Decrement the count of procs running with this uid.
1268 			 */
1269 			chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0);
1270 
1271 			/*
1272 			 * Free up credentials.  p_spin is required to
1273 			 * avoid races against allproc scans.
1274 			 */
1275 			spin_lock(&p->p_spin);
1276 			cr = p->p_ucred;
1277 			p->p_ucred = NULL;
1278 			spin_unlock(&p->p_spin);
1279 			crfree(cr);
1280 
1281 			/*
1282 			 * Remove unused arguments
1283 			 */
1284 			pa = p->p_args;
1285 			p->p_args = NULL;
1286 			if (pa && refcount_release(&pa->ar_ref)) {
1287 				kfree(pa, M_PARGS);
1288 				pa = NULL;
1289 			}
1290 
1291 			ps = p->p_sigacts;
1292 			p->p_sigacts = NULL;
1293 			if (ps && refcount_release(&ps->ps_refcnt)) {
1294 				kfree(ps, M_SUBPROC);
1295 				ps = NULL;
1296 			}
1297 
1298 			/*
1299 			 * Our exitingcount was incremented when the process
1300 			 * became a zombie, now that the process has been
1301 			 * removed from (almost) all lists we should be able
1302 			 * to safely destroy its vmspace.  Wait for any current
1303 			 * holders to go away (so the vmspace remains stable),
1304 			 * then scrap it.
1305 			 *
1306 			 * NOTE: Releasing the parent process (q) p_token
1307 			 *	 across the vmspace_exitfree() call is
1308 			 *	 important here to reduce stalls on
1309 			 *	 interactions with (q) (such as
1310 			 *	 fork/exec/wait or 'ps').
1311 			 */
1312 			PSTALL(p, "reap4", 1);
1313 			lwkt_reltoken(&q->p_token);
1314 			vmspace_exitfree(p);
1315 			lwkt_gettoken(&q->p_token);
1316 			PSTALL(p, "reap5", 1);
1317 
1318 			/*
1319 			 * NOTE: We have to officially release ZOMB in order
1320 			 *	 to ensure that a racing thread in kern_wait()
1321 			 *	 which blocked on ZOMB is woken up.
1322 			 */
1323 			PRELEZOMB(p);
1324 			kfree(p->p_uidpcpu, M_SUBPROC);
1325 			kfree(p, M_PROC);
1326 			atomic_add_int(&nprocs, -1);
1327 			error = 0;
1328 			goto done;
1329 		}
1330 
1331 		/*
1332 		 * Process has not yet exited
1333 		 */
1334 		if ((p->p_stat == SSTOP || p->p_stat == SCORE) &&
1335 		    (p->p_flags & P_WAITED) == 0 &&
1336 		    (((p->p_flags & P_TRACED) && (options & WTRAPPED)) ||
1337 		     (options & WSTOPPED))) {
1338 			lwkt_gettoken(&p->p_token);
1339 			if (p->p_pptr != q) {
1340 				lwkt_reltoken(&p->p_token);
1341 				PRELE(p);
1342 				goto loop;
1343 			}
1344 			if ((p->p_stat != SSTOP && p->p_stat != SCORE) ||
1345 			    (p->p_flags & P_WAITED) != 0 ||
1346 			    ((p->p_flags & P_TRACED) == 0 &&
1347 			     (options & WUNTRACED) == 0)) {
1348 				lwkt_reltoken(&p->p_token);
1349 				PRELE(p);
1350 				goto loop;
1351 			}
1352 
1353 			/*
1354 			 * Don't set P_WAITED if WNOWAIT specified, leaving
1355 			 * the process in a waitable state.
1356 			 */
1357 			if ((options & WNOWAIT) == 0)
1358 				p->p_flags |= P_WAITED;
1359 
1360 			*res = p->p_pid;
1361 			*status = W_STOPCODE(p->p_xstat);
1362 			/* Zero rusage so we get something consistent. */
1363 			bzero(wrusage, sizeof(*wrusage));
1364 			error = 0;
1365 			if (info) {
1366 				bzero(info, sizeof(*info));
1367 				if (p->p_flags & P_TRACED)
1368 					info->si_code = CLD_TRAPPED;
1369 				else
1370 					info->si_code = CLD_STOPPED;
1371 				info->si_status = WSTOPSIG(p->p_xstat);
1372 			}
1373 			lwkt_reltoken(&p->p_token);
1374 			PRELE(p);
1375 			goto done;
1376 		}
1377 		if ((options & WCONTINUED) && (p->p_flags & P_CONTINUED)) {
1378 			lwkt_gettoken(&p->p_token);
1379 			if (p->p_pptr != q) {
1380 				lwkt_reltoken(&p->p_token);
1381 				PRELE(p);
1382 				goto loop;
1383 			}
1384 			if ((p->p_flags & P_CONTINUED) == 0) {
1385 				lwkt_reltoken(&p->p_token);
1386 				PRELE(p);
1387 				goto loop;
1388 			}
1389 
1390 			*res = p->p_pid;
1391 
1392 			/*
1393 			 * Don't set P_WAITED if WNOWAIT specified, leaving
1394 			 * the process in a waitable state.
1395 			 */
1396 			if ((options & WNOWAIT) == 0)
1397 				p->p_flags &= ~P_CONTINUED;
1398 
1399 			*status = SIGCONT;
1400 			error = 0;
1401 			if (info) {
1402 				bzero(info, sizeof(*info));
1403 				info->si_code = CLD_CONTINUED;
1404 				info->si_status = WSTOPSIG(p->p_xstat);
1405 			}
1406 			lwkt_reltoken(&p->p_token);
1407 			PRELE(p);
1408 			goto done;
1409 		}
1410 		PRELE(p);
1411 	}
1412 	if (nfound == 0) {
1413 		error = ECHILD;
1414 		goto done;
1415 	}
1416 	if (options & WNOHANG) {
1417 		*res = 0;
1418 		error = 0;
1419 		goto done;
1420 	}
1421 
1422 	/*
1423 	 * Wait for signal - interlocked using q->p_waitgen.
1424 	 */
1425 	error = 0;
1426 	while ((waitgen & 0x7FFFFFFF) == (q->p_waitgen & 0x7FFFFFFF)) {
1427 		tsleep_interlock(q, PCATCH);
1428 		waitgen = atomic_fetchadd_long(&q->p_waitgen, 0x80000000);
1429 		if ((waitgen & 0x7FFFFFFF) == (q->p_waitgen & 0x7FFFFFFF)) {
1430 			error = tsleep(q, PCATCH | PINTERLOCKED, "wait", 0);
1431 			break;
1432 		}
1433 	}
1434 	if (error) {
1435 done:
1436 		lwkt_reltoken(&q->p_token);
1437 		return (error);
1438 	}
1439 	goto loop;
1440 }
1441 
1442 /*
1443  * Change child's parent process to parent.
1444  *
1445  * p_children/p_sibling requires the parent's token, and
1446  * changing pptr requires the child's token, so we have to
1447  * get three tokens to do this operation.  We also need to
1448  * hold pointers that might get ripped out from under us to
1449  * preserve structural integrity.
1450  *
1451  * It is possible to race another reparent or disconnect or other
1452  * similar operation.  We must retry when this situation occurs.
1453  * Once we successfully reparent the process we no longer care
1454  * about any races.
1455  */
1456 void
1457 proc_reparent(struct proc *child, struct proc *parent)
1458 {
1459 	struct proc *opp;
1460 
1461 	PHOLD(parent);
1462 	while ((opp = child->p_pptr) != parent) {
1463 		PHOLD(opp);
1464 		lwkt_gettoken(&opp->p_token);
1465 		lwkt_gettoken(&child->p_token);
1466 		lwkt_gettoken(&parent->p_token);
1467 		if (child->p_pptr != opp) {
1468 			lwkt_reltoken(&parent->p_token);
1469 			lwkt_reltoken(&child->p_token);
1470 			lwkt_reltoken(&opp->p_token);
1471 			PRELE(opp);
1472 			continue;
1473 		}
1474 		LIST_REMOVE(child, p_sibling);
1475 		LIST_INSERT_HEAD(&parent->p_children, child, p_sibling);
1476 		child->p_pptr = parent;
1477 		child->p_ppid = parent->p_pid;
1478 		lwkt_reltoken(&parent->p_token);
1479 		lwkt_reltoken(&child->p_token);
1480 		lwkt_reltoken(&opp->p_token);
1481 		if (LIST_EMPTY(&opp->p_children))
1482 			wakeup(opp);
1483 		PRELE(opp);
1484 		break;
1485 	}
1486 	PRELE(parent);
1487 }
1488 
1489 /*
1490  * The next two functions are to handle adding/deleting items on the
1491  * exit callout list
1492  *
1493  * at_exit():
1494  * Take the arguments given and put them onto the exit callout list,
1495  * However first make sure that it's not already there.
1496  * returns 0 on success.
1497  */
1498 
1499 int
1500 at_exit(exitlist_fn function)
1501 {
1502 	struct exitlist *ep;
1503 
1504 #ifdef INVARIANTS
1505 	/* Be noisy if the programmer has lost track of things */
1506 	if (rm_at_exit(function))
1507 		kprintf("WARNING: exit callout entry (%p) already present\n",
1508 		    function);
1509 #endif
1510 	ep = kmalloc(sizeof(*ep), M_ATEXIT, M_NOWAIT);
1511 	if (ep == NULL)
1512 		return (ENOMEM);
1513 	ep->function = function;
1514 	TAILQ_INSERT_TAIL(&exit_list, ep, next);
1515 	return (0);
1516 }
1517 
1518 /*
1519  * Scan the exit callout list for the given item and remove it.
1520  * Returns the number of items removed (0 or 1)
1521  */
1522 int
1523 rm_at_exit(exitlist_fn function)
1524 {
1525 	struct exitlist *ep;
1526 
1527 	TAILQ_FOREACH(ep, &exit_list, next) {
1528 		if (ep->function == function) {
1529 			TAILQ_REMOVE(&exit_list, ep, next);
1530 			kfree(ep, M_ATEXIT);
1531 			return(1);
1532 		}
1533 	}
1534 	return (0);
1535 }
1536 
1537 /*
1538  * LWP reaper related code.
1539  */
1540 static void
1541 reaplwps(void *context, int dummy)
1542 {
1543 	struct lwplist *lwplist = context;
1544 	struct lwp *lp;
1545 	int cpu = mycpuid;
1546 
1547 	lwkt_gettoken(&deadlwp_token[cpu]);
1548 	while ((lp = LIST_FIRST(lwplist))) {
1549 		LIST_REMOVE(lp, u.lwp_reap_entry);
1550 		reaplwp(lp);
1551 	}
1552 	lwkt_reltoken(&deadlwp_token[cpu]);
1553 }
1554 
1555 static void
1556 reaplwp(struct lwp *lp)
1557 {
1558 	while (lwp_wait(lp) == 0)
1559 		;
1560 	lwp_dispose(lp);
1561 }
1562 
1563 static void
1564 deadlwp_init(void)
1565 {
1566 	int cpu;
1567 
1568 	for (cpu = 0; cpu < ncpus; cpu++) {
1569 		lwkt_token_init(&deadlwp_token[cpu], "deadlwpl");
1570 		LIST_INIT(&deadlwp_list[cpu]);
1571 		deadlwp_task[cpu] = kmalloc(sizeof(*deadlwp_task[cpu]),
1572 					    M_DEVBUF, M_WAITOK);
1573 		TASK_INIT(deadlwp_task[cpu], 0, reaplwps, &deadlwp_list[cpu]);
1574 	}
1575 }
1576 
1577 SYSINIT(deadlwpinit, SI_SUB_CONFIGURE, SI_ORDER_ANY, deadlwp_init, NULL);
1578