xref: /dragonfly/sys/kern/kern_exit.c (revision a3127495)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_exit.c	8.7 (Berkeley) 2/12/94
35  * $FreeBSD: src/sys/kern/kern_exit.c,v 1.92.2.11 2003/01/13 22:51:16 dillon Exp $
36  */
37 
38 #include "opt_ktrace.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/sysproto.h>
43 #include <sys/kernel.h>
44 #include <sys/malloc.h>
45 #include <sys/proc.h>
46 #include <sys/ktrace.h>
47 #include <sys/pioctl.h>
48 #include <sys/tty.h>
49 #include <sys/wait.h>
50 #include <sys/vnode.h>
51 #include <sys/resourcevar.h>
52 #include <sys/signalvar.h>
53 #include <sys/taskqueue.h>
54 #include <sys/ptrace.h>
55 #include <sys/acct.h>		/* for acct_process() function prototype */
56 #include <sys/filedesc.h>
57 #include <sys/shm.h>
58 #include <sys/sem.h>
59 #include <sys/jail.h>
60 #include <sys/kern_syscall.h>
61 #include <sys/unistd.h>
62 #include <sys/eventhandler.h>
63 #include <sys/dsched.h>
64 
65 #include <vm/vm.h>
66 #include <vm/vm_param.h>
67 #include <sys/lock.h>
68 #include <vm/pmap.h>
69 #include <vm/vm_map.h>
70 #include <vm/vm_extern.h>
71 #include <sys/user.h>
72 
73 #include <sys/refcount.h>
74 #include <sys/thread2.h>
75 #include <sys/spinlock2.h>
76 #include <sys/mplock2.h>
77 
78 #include <machine/vmm.h>
79 
80 static void reaplwps(void *context, int dummy);
81 static void reaplwp(struct lwp *lp);
82 static void killlwps(struct lwp *lp);
83 
84 static MALLOC_DEFINE(M_ATEXIT, "atexit", "atexit callback");
85 
86 /*
87  * callout list for things to do at exit time
88  */
89 struct exitlist {
90 	exitlist_fn function;
91 	TAILQ_ENTRY(exitlist) next;
92 };
93 
94 TAILQ_HEAD(exit_list_head, exitlist);
95 static struct exit_list_head exit_list = TAILQ_HEAD_INITIALIZER(exit_list);
96 
97 /*
98  * LWP reaper data
99  */
100 static struct task *deadlwp_task[MAXCPU];
101 static struct lwplist deadlwp_list[MAXCPU];
102 static struct lwkt_token deadlwp_token[MAXCPU];
103 
104 /*
105  * exit --
106  *	Death of process.
107  *
108  * SYS_EXIT_ARGS(int rval)
109  */
110 int
111 sys_exit(struct exit_args *uap)
112 {
113 	exit1(W_EXITCODE(uap->rval, 0));
114 	/* NOTREACHED */
115 }
116 
117 /*
118  * Extended exit --
119  *	Death of a lwp or process with optional bells and whistles.
120  */
121 int
122 sys_extexit(struct extexit_args *uap)
123 {
124 	struct proc *p = curproc;
125 	int action, who;
126 	int error;
127 
128 	action = EXTEXIT_ACTION(uap->how);
129 	who = EXTEXIT_WHO(uap->how);
130 
131 	/* Check parameters before we might perform some action */
132 	switch (who) {
133 	case EXTEXIT_PROC:
134 	case EXTEXIT_LWP:
135 		break;
136 	default:
137 		return (EINVAL);
138 	}
139 
140 	switch (action) {
141 	case EXTEXIT_SIMPLE:
142 		break;
143 	case EXTEXIT_SETINT:
144 		error = copyout(&uap->status, uap->addr, sizeof(uap->status));
145 		if (error)
146 			return (error);
147 		break;
148 	default:
149 		return (EINVAL);
150 	}
151 
152 	lwkt_gettoken(&p->p_token);
153 
154 	switch (who) {
155 	case EXTEXIT_LWP:
156 		/*
157 		 * Be sure only to perform a simple lwp exit if there is at
158 		 * least one more lwp in the proc, which will call exit1()
159 		 * later, otherwise the proc will be an UNDEAD and not even a
160 		 * SZOMB!
161 		 */
162 		if (p->p_nthreads > 1) {
163 			lwp_exit(0, NULL);	/* called w/ p_token held */
164 			/* NOT REACHED */
165 		}
166 		/* else last lwp in proc:  do the real thing */
167 		/* FALLTHROUGH */
168 	default:	/* to help gcc */
169 	case EXTEXIT_PROC:
170 		lwkt_reltoken(&p->p_token);
171 		exit1(W_EXITCODE(uap->status, 0));
172 		/* NOTREACHED */
173 	}
174 
175 	/* NOTREACHED */
176 	lwkt_reltoken(&p->p_token);	/* safety */
177 }
178 
179 /*
180  * Kill all lwps associated with the current process except the
181  * current lwp.   Return an error if we race another thread trying to
182  * do the same thing and lose the race.
183  *
184  * If forexec is non-zero the current thread and process flags are
185  * cleaned up so they can be reused.
186  *
187  * Caller must hold curproc->p_token
188  */
189 int
190 killalllwps(int forexec)
191 {
192 	struct lwp *lp = curthread->td_lwp;
193 	struct proc *p = lp->lwp_proc;
194 	int fakestop;
195 
196 	/*
197 	 * Interlock against P_WEXIT.  Only one of the process's thread
198 	 * is allowed to do the master exit.
199 	 */
200 	if (p->p_flags & P_WEXIT)
201 		return (EALREADY);
202 	p->p_flags |= P_WEXIT;
203 
204 	/*
205 	 * Set temporary stopped state in case we are racing a coredump.
206 	 * Otherwise the coredump may hang forever.
207 	 */
208 	if (lp->lwp_mpflags & LWP_MP_WSTOP) {
209 		fakestop = 0;
210 	} else {
211 		atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
212 		++p->p_nstopped;
213 		fakestop = 1;
214 		wakeup(&p->p_nstopped);
215 	}
216 
217 	/*
218 	 * Interlock with LWP_MP_WEXIT and kill any remaining LWPs
219 	 */
220 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
221 	if (p->p_nthreads > 1)
222 		killlwps(lp);
223 
224 	/*
225 	 * Undo temporary stopped state
226 	 */
227 	if (fakestop) {
228 		atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
229 		--p->p_nstopped;
230 	}
231 
232 	/*
233 	 * If doing this for an exec, clean up the remaining thread
234 	 * (us) for continuing operation after all the other threads
235 	 * have been killed.
236 	 */
237 	if (forexec) {
238 		atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
239 		p->p_flags &= ~P_WEXIT;
240 	}
241 	return(0);
242 }
243 
244 /*
245  * Kill all LWPs except the current one.  Do not try to signal
246  * LWPs which have exited on their own or have already been
247  * signaled.
248  */
249 static void
250 killlwps(struct lwp *lp)
251 {
252 	struct proc *p = lp->lwp_proc;
253 	struct lwp *tlp;
254 
255 	/*
256 	 * Kill the remaining LWPs.  We must send the signal before setting
257 	 * LWP_MP_WEXIT.  The setting of WEXIT is optional but helps reduce
258 	 * races.  tlp must be held across the call as it might block and
259 	 * allow the target lwp to rip itself out from under our loop.
260 	 */
261 	FOREACH_LWP_IN_PROC(tlp, p) {
262 		LWPHOLD(tlp);
263 		lwkt_gettoken(&tlp->lwp_token);
264 		if ((tlp->lwp_mpflags & LWP_MP_WEXIT) == 0) {
265 			atomic_set_int(&tlp->lwp_mpflags, LWP_MP_WEXIT);
266 			lwpsignal(p, tlp, SIGKILL);
267 		}
268 		lwkt_reltoken(&tlp->lwp_token);
269 		LWPRELE(tlp);
270 	}
271 
272 	/*
273 	 * Wait for everything to clear out.  Also make sure any tstop()s
274 	 * are signalled (we are holding p_token for the interlock).
275 	 */
276 	wakeup(p);
277 	while (p->p_nthreads > 1)
278 		tsleep(&p->p_nthreads, 0, "killlwps", 0);
279 }
280 
281 /*
282  * Exit: deallocate address space and other resources, change proc state
283  * to zombie, and unlink proc from allproc and parent's lists.  Save exit
284  * status and rusage for wait().  Check for child processes and orphan them.
285  */
286 void
287 exit1(int rv)
288 {
289 	struct thread *td = curthread;
290 	struct proc *p = td->td_proc;
291 	struct lwp *lp = td->td_lwp;
292 	struct proc *q;
293 	struct proc *pp;
294 	struct proc *reproc;
295 	struct sysreaper *reap;
296 	struct vmspace *vm;
297 	struct vnode *vtmp;
298 	struct exitlist *ep;
299 	int error;
300 
301 	lwkt_gettoken(&p->p_token);
302 
303 	if (p->p_pid == 1) {
304 		kprintf("init died (signal %d, exit %d)\n",
305 		    WTERMSIG(rv), WEXITSTATUS(rv));
306 		panic("Going nowhere without my init!");
307 	}
308 	varsymset_clean(&p->p_varsymset);
309 	lockuninit(&p->p_varsymset.vx_lock);
310 
311 	/*
312 	 * Kill all lwps associated with the current process, return an
313 	 * error if we race another thread trying to do the same thing
314 	 * and lose the race.
315 	 */
316 	error = killalllwps(0);
317 	if (error) {
318 		lwp_exit(0, NULL);
319 		/* NOT REACHED */
320 	}
321 
322 	/* are we a task leader? */
323 	if (p == p->p_leader) {
324         	struct kill_args killArgs;
325 		killArgs.signum = SIGKILL;
326 		q = p->p_peers;
327 		while(q) {
328 			killArgs.pid = q->p_pid;
329 			/*
330 		         * The interface for kill is better
331 			 * than the internal signal
332 			 */
333 			sys_kill(&killArgs);
334 			q = q->p_peers;
335 		}
336 		while (p->p_peers)
337 			tsleep((caddr_t)p, 0, "exit1", 0);
338 	}
339 
340 #ifdef PGINPROF
341 	vmsizmon();
342 #endif
343 	STOPEVENT(p, S_EXIT, rv);
344 	p->p_flags |= P_POSTEXIT;	/* stop procfs stepping */
345 
346 	/*
347 	 * Check if any loadable modules need anything done at process exit.
348 	 * e.g. SYSV IPC stuff
349 	 * XXX what if one of these generates an error?
350 	 */
351 	p->p_xstat = rv;
352 
353 	/*
354 	 * XXX: imho, the eventhandler stuff is much cleaner than this.
355 	 *	Maybe we should move everything to use eventhandler.
356 	 */
357 	TAILQ_FOREACH(ep, &exit_list, next)
358 		(*ep->function)(td);
359 
360 	if (p->p_flags & P_PROFIL)
361 		stopprofclock(p);
362 
363 	SIGEMPTYSET(p->p_siglist);
364 	SIGEMPTYSET(lp->lwp_siglist);
365 	if (timevalisset(&p->p_realtimer.it_value))
366 		callout_stop_sync(&p->p_ithandle);
367 
368 	/*
369 	 * Reset any sigio structures pointing to us as a result of
370 	 * F_SETOWN with our pid.
371 	 */
372 	funsetownlst(&p->p_sigiolst);
373 
374 	/*
375 	 * Close open files and release open-file table.
376 	 * This may block!
377 	 */
378 	fdfree(p, NULL);
379 
380 	if (p->p_leader->p_peers) {
381 		q = p->p_leader;
382 		while(q->p_peers != p)
383 			q = q->p_peers;
384 		q->p_peers = p->p_peers;
385 		wakeup((caddr_t)p->p_leader);
386 	}
387 
388 	/*
389 	 * XXX Shutdown SYSV semaphores
390 	 */
391 	semexit(p);
392 
393 	KKASSERT(p->p_numposixlocks == 0);
394 
395 	/* The next two chunks should probably be moved to vmspace_exit. */
396 	vm = p->p_vmspace;
397 
398 	/*
399 	 * Clean up data related to virtual kernel operation.  Clean up
400 	 * any vkernel context related to the current lwp now so we can
401 	 * destroy p_vkernel.
402 	 */
403 	if (p->p_vkernel) {
404 		vkernel_lwp_exit(lp);
405 		vkernel_exit(p);
406 	}
407 
408 	/*
409 	 * Release the user portion of address space.  The exitbump prevents
410 	 * the vmspace from being completely eradicated (using holdcnt).
411 	 * This releases references to vnodes, which could cause I/O if the
412 	 * file has been unlinked.  We need to do this early enough that
413 	 * we can still sleep.
414 	 *
415 	 * We can't free the entire vmspace as the kernel stack may be mapped
416 	 * within that space also.
417 	 *
418 	 * Processes sharing the same vmspace may exit in one order, and
419 	 * get cleaned up by vmspace_exit() in a different order.  The
420 	 * last exiting process to reach this point releases as much of
421 	 * the environment as it can, and the last process cleaned up
422 	 * by vmspace_exit() (which decrements exitingcnt) cleans up the
423 	 * remainder.
424 	 *
425 	 * NOTE: Releasing p_token around this call is helpful if the
426 	 *	 vmspace had a huge RSS.  Otherwise some other process
427 	 *	 trying to do an allproc or other scan (like 'ps') may
428 	 *	 stall for a long time.
429 	 */
430 	lwkt_reltoken(&p->p_token);
431 	vmspace_relexit(vm);
432 	lwkt_gettoken(&p->p_token);
433 
434 	if (SESS_LEADER(p)) {
435 		struct session *sp = p->p_session;
436 
437 		if (sp->s_ttyvp) {
438 			/*
439 			 * We are the controlling process.  Signal the
440 			 * foreground process group, drain the controlling
441 			 * terminal, and revoke access to the controlling
442 			 * terminal.
443 			 *
444 			 * NOTE: while waiting for the process group to exit
445 			 * it is possible that one of the processes in the
446 			 * group will revoke the tty, so the ttyclosesession()
447 			 * function will re-check sp->s_ttyvp.
448 			 */
449 			if (sp->s_ttyp && (sp->s_ttyp->t_session == sp)) {
450 				if (sp->s_ttyp->t_pgrp)
451 					pgsignal(sp->s_ttyp->t_pgrp, SIGHUP, 1);
452 				ttywait(sp->s_ttyp);
453 				ttyclosesession(sp, 1); /* also revoke */
454 			}
455 			/*
456 			 * Release the tty.  If someone has it open via
457 			 * /dev/tty then close it (since they no longer can
458 			 * once we've NULL'd it out).
459 			 */
460 			ttyclosesession(sp, 0);
461 
462 			/*
463 			 * s_ttyp is not zero'd; we use this to indicate
464 			 * that the session once had a controlling terminal.
465 			 * (for logging and informational purposes)
466 			 */
467 		}
468 		sp->s_leader = NULL;
469 	}
470 	fixjobc(p, p->p_pgrp, 0);
471 	(void)acct_process(p);
472 #ifdef KTRACE
473 	/*
474 	 * release trace file
475 	 */
476 	if (p->p_tracenode)
477 		ktrdestroy(&p->p_tracenode);
478 	p->p_traceflag = 0;
479 #endif
480 	/*
481 	 * Release reference to text vnode
482 	 */
483 	if ((vtmp = p->p_textvp) != NULL) {
484 		p->p_textvp = NULL;
485 		vrele(vtmp);
486 	}
487 
488 	/* Release namecache handle to text file */
489 	if (p->p_textnch.ncp)
490 		cache_drop(&p->p_textnch);
491 
492 	/*
493 	 * We have to handle PPWAIT here or proc_move_allproc_zombie()
494 	 * will block on the PHOLD() the parent is doing.
495 	 *
496 	 * We are using the flag as an interlock so an atomic op is
497 	 * necessary to synchronize with the parent's cpu.
498 	 */
499 	if (p->p_flags & P_PPWAIT) {
500 		if (p->p_pptr && p->p_pptr->p_upmap)
501 			atomic_add_int(&p->p_pptr->p_upmap->invfork, -1);
502 		atomic_clear_int(&p->p_flags, P_PPWAIT);
503 		wakeup(p->p_pptr);
504 	}
505 
506 	/*
507 	 * Move the process to the zombie list.  This will block
508 	 * until the process p_lock count reaches 0.  The process will
509 	 * not be reaped until TDF_EXITING is set by cpu_thread_exit(),
510 	 * which is called from cpu_proc_exit().
511 	 *
512 	 * Interlock against waiters using p_waitgen.  We increment
513 	 * p_waitgen after completing the move of our process to the
514 	 * zombie list.
515 	 *
516 	 * WARNING: pp becomes stale when we block, clear it now as a
517 	 *	    reminder.
518 	 */
519 	proc_move_allproc_zombie(p);
520 	pp = p->p_pptr;
521 	atomic_add_long(&pp->p_waitgen, 1);
522 	pp = NULL;
523 
524 	/*
525 	 * release controlled reaper for exit if we own it and return the
526 	 * remaining reaper (the one for us), which we will drop after we
527 	 * are done.
528 	 */
529 	reap = reaper_exit(p);
530 
531 	/*
532 	 * Reparent all of this process's children to the init process or
533 	 * to the designated reaper.  We must hold the reaper's p_token in
534 	 * order to safely mess with p_children.
535 	 *
536 	 * We already hold p->p_token (to remove the children from our list).
537 	 */
538 	reproc = NULL;
539 	q = LIST_FIRST(&p->p_children);
540 	if (q) {
541 		reproc = reaper_get(reap);
542 		lwkt_gettoken(&reproc->p_token);
543 		while ((q = LIST_FIRST(&p->p_children)) != NULL) {
544 			PHOLD(q);
545 			lwkt_gettoken(&q->p_token);
546 			if (q != LIST_FIRST(&p->p_children)) {
547 				lwkt_reltoken(&q->p_token);
548 				PRELE(q);
549 				continue;
550 			}
551 			LIST_REMOVE(q, p_sibling);
552 			LIST_INSERT_HEAD(&reproc->p_children, q, p_sibling);
553 			q->p_pptr = reproc;
554 			q->p_ppid = reproc->p_pid;
555 			q->p_sigparent = SIGCHLD;
556 
557 			/*
558 			 * Traced processes are killed
559 			 * since their existence means someone is screwing up.
560 			 */
561 			if (q->p_flags & P_TRACED) {
562 				q->p_flags &= ~P_TRACED;
563 				ksignal(q, SIGKILL);
564 			}
565 			lwkt_reltoken(&q->p_token);
566 			PRELE(q);
567 		}
568 		lwkt_reltoken(&reproc->p_token);
569 		wakeup(reproc);
570 	}
571 
572 	/*
573 	 * Save exit status and final rusage info, adding in child rusage
574 	 * info and self times.
575 	 */
576 	calcru_proc(p, &p->p_ru);
577 	ruadd(&p->p_ru, &p->p_cru);
578 
579 	/*
580 	 * notify interested parties of our demise.
581 	 */
582 	KNOTE(&p->p_klist, NOTE_EXIT);
583 
584 	/*
585 	 * Notify parent that we're gone.  If parent has the PS_NOCLDWAIT
586 	 * flag set, or if the handler is set to SIG_IGN, notify the reaper
587 	 * instead (it will handle this situation).
588 	 *
589 	 * NOTE: The reaper can still be the parent process.
590 	 *
591 	 * (must reload pp)
592 	 */
593 	if (p->p_pptr->p_sigacts->ps_flag & (PS_NOCLDWAIT | PS_CLDSIGIGN)) {
594 		if (reproc == NULL)
595 			reproc = reaper_get(reap);
596 		proc_reparent(p, reproc);
597 	}
598 	if (reproc)
599 		PRELE(reproc);
600 	if (reap)
601 		reaper_drop(reap);
602 
603 	/*
604 	 * Signal (possibly new) parent.
605 	 */
606 	pp = p->p_pptr;
607 	PHOLD(pp);
608 	if (p->p_sigparent && pp != initproc) {
609 		int sig = p->p_sigparent;
610 
611 		if (sig != SIGUSR1 && sig != SIGCHLD)
612 			sig = SIGCHLD;
613 	        ksignal(pp, sig);
614 	} else {
615 	        ksignal(pp, SIGCHLD);
616 	}
617 	p->p_flags &= ~P_TRACED;
618 	PRELE(pp);
619 
620 	/*
621 	 * cpu_exit is responsible for clearing curproc, since
622 	 * it is heavily integrated with the thread/switching sequence.
623 	 *
624 	 * Other substructures are freed from wait().
625 	 */
626 	if (p->p_limit) {
627 		struct plimit *rlimit;
628 
629 		rlimit = p->p_limit;
630 		p->p_limit = NULL;
631 		plimit_free(rlimit);
632 	}
633 
634 	/*
635 	 * Finally, call machine-dependent code to release as many of the
636 	 * lwp's resources as we can and halt execution of this thread.
637 	 *
638 	 * pp is a wild pointer now but still the correct wakeup() target.
639 	 * lwp_exit() only uses it to send the wakeup() signal to the likely
640 	 * parent.  Any reparenting race that occurs will get a signal
641 	 * automatically and not be an issue.
642 	 */
643 	lwp_exit(1, pp);
644 }
645 
646 /*
647  * Eventually called by every exiting LWP
648  *
649  * p->p_token must be held.  mplock may be held and will be released.
650  */
651 void
652 lwp_exit(int masterexit, void *waddr)
653 {
654 	struct thread *td = curthread;
655 	struct lwp *lp = td->td_lwp;
656 	struct proc *p = lp->lwp_proc;
657 	int dowake = 0;
658 
659 	/*
660 	 * Release the current user process designation on the process so
661 	 * the userland scheduler can work in someone else.
662 	 */
663 	p->p_usched->release_curproc(lp);
664 
665 	/*
666 	 * lwp_exit() may be called without setting LWP_MP_WEXIT, so
667 	 * make sure it is set here.
668 	 */
669 	ASSERT_LWKT_TOKEN_HELD(&p->p_token);
670 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
671 
672 	/*
673 	 * Clean up any virtualization
674 	 */
675 	if (lp->lwp_vkernel)
676 		vkernel_lwp_exit(lp);
677 
678 	if (td->td_vmm)
679 		vmm_vmdestroy();
680 
681 	/*
682 	 * Clean up select/poll support
683 	 */
684 	kqueue_terminate(&lp->lwp_kqueue);
685 
686 	/*
687 	 * Clean up any syscall-cached ucred
688 	 */
689 	if (td->td_ucred) {
690 		crfree(td->td_ucred);
691 		td->td_ucred = NULL;
692 	}
693 
694 	/*
695 	 * Nobody actually wakes us when the lock
696 	 * count reaches zero, so just wait one tick.
697 	 */
698 	while (lp->lwp_lock > 0)
699 		tsleep(lp, 0, "lwpexit", 1);
700 
701 	/* Hand down resource usage to our proc */
702 	ruadd(&p->p_ru, &lp->lwp_ru);
703 
704 	/*
705 	 * If we don't hold the process until the LWP is reaped wait*()
706 	 * may try to dispose of its vmspace before all the LWPs have
707 	 * actually terminated.
708 	 */
709 	PHOLD(p);
710 
711 	/*
712 	 * Do any remaining work that might block on us.  We should be
713 	 * coded such that further blocking is ok after decrementing
714 	 * p_nthreads but don't take the chance.
715 	 */
716 	dsched_exit_thread(td);
717 	biosched_done(curthread);
718 
719 	/*
720 	 * We have to use the reaper for all the LWPs except the one doing
721 	 * the master exit.  The LWP doing the master exit can just be
722 	 * left on p_lwps and the process reaper will deal with it
723 	 * synchronously, which is much faster.
724 	 *
725 	 * Wakeup anyone waiting on p_nthreads to drop to 1 or 0.
726 	 *
727 	 * The process is left held until the reaper calls lwp_dispose() on
728 	 * the lp (after calling lwp_wait()).
729 	 */
730 	if (masterexit == 0) {
731 		int cpu = mycpuid;
732 
733 		lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
734 		--p->p_nthreads;
735 		if ((p->p_flags & P_MAYBETHREADED) && p->p_nthreads <= 1)
736 			dowake = 1;
737 		lwkt_gettoken(&deadlwp_token[cpu]);
738 		LIST_INSERT_HEAD(&deadlwp_list[cpu], lp, u.lwp_reap_entry);
739 		taskqueue_enqueue(taskqueue_thread[cpu], deadlwp_task[cpu]);
740 		lwkt_reltoken(&deadlwp_token[cpu]);
741 	} else {
742 		--p->p_nthreads;
743 		if ((p->p_flags & P_MAYBETHREADED) && p->p_nthreads <= 1)
744 			dowake = 1;
745 	}
746 
747 	/*
748 	 * We no longer need p_token.
749 	 *
750 	 * Tell the userland scheduler that we are going away
751 	 */
752 	lwkt_reltoken(&p->p_token);
753 	p->p_usched->heuristic_exiting(lp, p);
754 
755 	/*
756 	 * Issue late wakeups after releasing our token to give us a chance
757 	 * to deschedule and switch away before another cpu in a wait*()
758 	 * reaps us.  This is done as late as possible to reduce contention.
759 	 */
760 	if (dowake)
761 		wakeup(&p->p_nthreads);
762 	if (waddr)
763 		wakeup(waddr);
764 
765 	cpu_lwp_exit();
766 }
767 
768 /*
769  * Wait until a lwp is completely dead.  The final interlock in this drama
770  * is when TDF_EXITING is set in cpu_thread_exit() just before the final
771  * switchout.
772  *
773  * At the point TDF_EXITING is set a complete exit is accomplished when
774  * TDF_RUNNING and TDF_PREEMPT_LOCK are both clear.  td_mpflags has two
775  * post-switch interlock flags that can be used to wait for the TDF_
776  * flags to clear.
777  *
778  * Returns non-zero on success, and zero if the caller needs to retry
779  * the lwp_wait().
780  */
781 static int
782 lwp_wait(struct lwp *lp)
783 {
784 	struct thread *td = lp->lwp_thread;
785 	u_int mpflags;
786 
787 	KKASSERT(lwkt_preempted_proc() != lp);
788 
789 	/*
790 	 * This bit of code uses the thread destruction interlock
791 	 * managed by lwkt_switch_return() to wait for the lwp's
792 	 * thread to completely disengage.
793 	 *
794 	 * It is possible for us to race another cpu core so we
795 	 * have to do this correctly.
796 	 */
797 	for (;;) {
798 		mpflags = td->td_mpflags;
799 		cpu_ccfence();
800 		if (mpflags & TDF_MP_EXITSIG)
801 			break;
802 		tsleep_interlock(td, 0);
803 		if (atomic_cmpset_int(&td->td_mpflags, mpflags,
804 				      mpflags | TDF_MP_EXITWAIT)) {
805 			tsleep(td, PINTERLOCKED, "lwpxt", 0);
806 		}
807 	}
808 
809 	/*
810 	 * We've already waited for the core exit but there can still
811 	 * be other refs from e.g. process scans and such.
812 	 */
813 	if (lp->lwp_lock > 0) {
814 		tsleep(lp, 0, "lwpwait1", 1);
815 		return(0);
816 	}
817 	if (td->td_refs) {
818 		tsleep(td, 0, "lwpwait2", 1);
819 		return(0);
820 	}
821 
822 	/*
823 	 * Now that we have the thread destruction interlock these flags
824 	 * really should already be cleaned up, keep a check for safety.
825 	 *
826 	 * We can't rip its stack out from under it until TDF_EXITING is
827 	 * set and both TDF_RUNNING and TDF_PREEMPT_LOCK are clear.
828 	 * TDF_PREEMPT_LOCK must be checked because TDF_RUNNING
829 	 * will be cleared temporarily if a thread gets preempted.
830 	 */
831 	while ((td->td_flags & (TDF_RUNNING |
832 				TDF_RUNQ |
833 			        TDF_PREEMPT_LOCK |
834 			        TDF_EXITING)) != TDF_EXITING) {
835 		tsleep(lp, 0, "lwpwait3", 1);
836 		return (0);
837 	}
838 
839 	KASSERT((td->td_flags & (TDF_RUNQ|TDF_TSLEEPQ)) == 0,
840 		("lwp_wait: td %p (%s) still on run or sleep queue",
841 		td, td->td_comm));
842 	return (1);
843 }
844 
845 /*
846  * Release the resources associated with a lwp.
847  * The lwp must be completely dead.
848  */
849 void
850 lwp_dispose(struct lwp *lp)
851 {
852 	struct thread *td = lp->lwp_thread;
853 
854 	KKASSERT(lwkt_preempted_proc() != lp);
855 	KKASSERT(lp->lwp_lock == 0);
856 	KKASSERT(td->td_refs == 0);
857 	KKASSERT((td->td_flags & (TDF_RUNNING |
858 				  TDF_RUNQ |
859 				  TDF_PREEMPT_LOCK |
860 				  TDF_EXITING)) == TDF_EXITING);
861 
862 	PRELE(lp->lwp_proc);
863 	lp->lwp_proc = NULL;
864 	if (td != NULL) {
865 		td->td_proc = NULL;
866 		td->td_lwp = NULL;
867 		lp->lwp_thread = NULL;
868 		lwkt_free_thread(td);
869 	}
870 	kfree(lp, M_LWP);
871 }
872 
873 int
874 sys_wait4(struct wait_args *uap)
875 {
876 	struct rusage rusage;
877 	int error, status;
878 
879 	error = kern_wait(uap->pid, (uap->status ? &status : NULL),
880 			  uap->options, (uap->rusage ? &rusage : NULL),
881 			  &uap->sysmsg_result);
882 
883 	if (error == 0 && uap->status)
884 		error = copyout(&status, uap->status, sizeof(*uap->status));
885 	if (error == 0 && uap->rusage)
886 		error = copyout(&rusage, uap->rusage, sizeof(*uap->rusage));
887 	return (error);
888 }
889 
890 /*
891  * wait1()
892  *
893  * wait_args(int pid, int *status, int options, struct rusage *rusage)
894  */
895 int
896 kern_wait(pid_t pid, int *status, int options, struct rusage *rusage, int *res)
897 {
898 	struct thread *td = curthread;
899 	struct lwp *lp;
900 	struct proc *q = td->td_proc;
901 	struct proc *p, *t;
902 	struct ucred *cr;
903 	struct pargs *pa;
904 	struct sigacts *ps;
905 	int nfound, error;
906 	long waitgen;
907 
908 	if (pid == 0)
909 		pid = -q->p_pgid;
910 	if (options &~ (WUNTRACED|WNOHANG|WCONTINUED|WLINUXCLONE))
911 		return (EINVAL);
912 
913 	/*
914 	 * Protect the q->p_children list
915 	 */
916 	lwkt_gettoken(&q->p_token);
917 loop:
918 	/*
919 	 * All sorts of things can change due to blocking so we have to loop
920 	 * all the way back up here.
921 	 *
922 	 * The problem is that if a process group is stopped and the parent
923 	 * is doing a wait*(..., WUNTRACED, ...), it will see the STOP
924 	 * of the child and then stop itself when it tries to return from the
925 	 * system call.  When the process group is resumed the parent will
926 	 * then get the STOP status even though the child has now resumed
927 	 * (a followup wait*() will get the CONT status).
928 	 *
929 	 * Previously the CONT would overwrite the STOP because the tstop
930 	 * was handled within tsleep(), and the parent would only see
931 	 * the CONT when both are stopped and continued together.  This little
932 	 * two-line hack restores this effect.
933 	 */
934 	if (STOPLWP(q, td->td_lwp))
935             tstop();
936 
937 	nfound = 0;
938 
939 	/*
940 	 * Loop on children.
941 	 *
942 	 * NOTE: We don't want to break q's p_token in the loop for the
943 	 *	 case where no children are found or we risk breaking the
944 	 *	 interlock between child and parent.
945 	 */
946 	waitgen = atomic_fetchadd_long(&q->p_waitgen, 0x80000000);
947 	LIST_FOREACH(p, &q->p_children, p_sibling) {
948 		if (pid != WAIT_ANY &&
949 		    p->p_pid != pid && p->p_pgid != -pid) {
950 			continue;
951 		}
952 
953 		/*
954 		 * This special case handles a kthread spawned by linux_clone
955 		 * (see linux_misc.c).  The linux_wait4 and linux_waitpid
956 		 * functions need to be able to distinguish between waiting
957 		 * on a process and waiting on a thread.  It is a thread if
958 		 * p_sigparent is not SIGCHLD, and the WLINUXCLONE option
959 		 * signifies we want to wait for threads and not processes.
960 		 */
961 		if ((p->p_sigparent != SIGCHLD) ^
962 		    ((options & WLINUXCLONE) != 0)) {
963 			continue;
964 		}
965 
966 		nfound++;
967 		if (p->p_stat == SZOMB) {
968 			/*
969 			 * We may go into SZOMB with threads still present.
970 			 * We must wait for them to exit before we can reap
971 			 * the master thread, otherwise we may race reaping
972 			 * non-master threads.
973 			 *
974 			 * Only this routine can remove a process from
975 			 * the zombie list and destroy it, use PACQUIREZOMB()
976 			 * to serialize us and loop if it blocks (interlocked
977 			 * by the parent's q->p_token).
978 			 *
979 			 * WARNING!  (p) can be invalid when PHOLDZOMB(p)
980 			 *	     returns non-zero.  Be sure not to
981 			 *	     mess with it.
982 			 */
983 			if (PHOLDZOMB(p))
984 				goto loop;
985 			lwkt_gettoken(&p->p_token);
986 			if (p->p_pptr != q) {
987 				lwkt_reltoken(&p->p_token);
988 				PRELEZOMB(p);
989 				goto loop;
990 			}
991 			while (p->p_nthreads > 0) {
992 				tsleep(&p->p_nthreads, 0, "lwpzomb", hz);
993 			}
994 
995 			/*
996 			 * Reap any LWPs left in p->p_lwps.  This is usually
997 			 * just the last LWP.  This must be done before
998 			 * we loop on p_lock since the lwps hold a ref on
999 			 * it as a vmspace interlock.
1000 			 *
1001 			 * Once that is accomplished p_nthreads had better
1002 			 * be zero.
1003 			 */
1004 			while ((lp = RB_ROOT(&p->p_lwp_tree)) != NULL) {
1005 				/*
1006 				 * Make sure no one is using this lwp, before
1007 				 * it is removed from the tree.  If we didn't
1008 				 * wait it here, lwp tree iteration with
1009 				 * blocking operation would be broken.
1010 				 */
1011 				while (lp->lwp_lock > 0)
1012 					tsleep(lp, 0, "zomblwp", 1);
1013 				lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
1014 				reaplwp(lp);
1015 			}
1016 			KKASSERT(p->p_nthreads == 0);
1017 
1018 			/*
1019 			 * Don't do anything really bad until all references
1020 			 * to the process go away.  This may include other
1021 			 * LWPs which are still in the process of being
1022 			 * reaped.  We can't just pull the rug out from under
1023 			 * them because they may still be using the VM space.
1024 			 *
1025 			 * Certain kernel facilities such as /proc will also
1026 			 * put a hold on the process for short periods of
1027 			 * time.
1028 			 */
1029 			PRELE(p);
1030 			PSTALL(p, "reap3", 0);
1031 
1032 			/* Take care of our return values. */
1033 			*res = p->p_pid;
1034 
1035 			if (status)
1036 				*status = p->p_xstat;
1037 			if (rusage)
1038 				*rusage = p->p_ru;
1039 
1040 			/*
1041 			 * If we got the child via a ptrace 'attach',
1042 			 * we need to give it back to the old parent.
1043 			 */
1044 			if (p->p_oppid && (t = pfind(p->p_oppid)) != NULL) {
1045 				PHOLD(p);
1046 				p->p_oppid = 0;
1047 				proc_reparent(p, t);
1048 				ksignal(t, SIGCHLD);
1049 				wakeup((caddr_t)t);
1050 				error = 0;
1051 				PRELE(t);
1052 				lwkt_reltoken(&p->p_token);
1053 				PRELEZOMB(p);
1054 				goto done;
1055 			}
1056 
1057 			/*
1058 			 * Unlink the proc from its process group so that
1059 			 * the following operations won't lead to an
1060 			 * inconsistent state for processes running down
1061 			 * the zombie list.
1062 			 */
1063 			proc_remove_zombie(p);
1064 			proc_userunmap(p);
1065 			lwkt_reltoken(&p->p_token);
1066 			leavepgrp(p);
1067 
1068 			p->p_xstat = 0;
1069 			ruadd(&q->p_cru, &p->p_ru);
1070 
1071 			/*
1072 			 * Decrement the count of procs running with this uid.
1073 			 */
1074 			chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0);
1075 
1076 			/*
1077 			 * Free up credentials.  p_spin is required to
1078 			 * avoid races against allproc scans.
1079 			 */
1080 			spin_lock(&p->p_spin);
1081 			cr = p->p_ucred;
1082 			p->p_ucred = NULL;
1083 			spin_unlock(&p->p_spin);
1084 			crfree(cr);
1085 
1086 			/*
1087 			 * Remove unused arguments
1088 			 */
1089 			pa = p->p_args;
1090 			p->p_args = NULL;
1091 			if (pa && refcount_release(&pa->ar_ref)) {
1092 				kfree(pa, M_PARGS);
1093 				pa = NULL;
1094 			}
1095 
1096 			ps = p->p_sigacts;
1097 			p->p_sigacts = NULL;
1098 			if (ps && refcount_release(&ps->ps_refcnt)) {
1099 				kfree(ps, M_SUBPROC);
1100 				ps = NULL;
1101 			}
1102 
1103 			/*
1104 			 * Our exitingcount was incremented when the process
1105 			 * became a zombie, now that the process has been
1106 			 * removed from (almost) all lists we should be able
1107 			 * to safely destroy its vmspace.  Wait for any current
1108 			 * holders to go away (so the vmspace remains stable),
1109 			 * then scrap it.
1110 			 *
1111 			 * NOTE: Releasing the parent process (q) p_token
1112 			 *	 across the vmspace_exitfree() call is
1113 			 *	 important here to reduce stalls on
1114 			 *	 interactions with (q) (such as
1115 			 *	 fork/exec/wait or 'ps').
1116 			 */
1117 			PSTALL(p, "reap4", 0);
1118 			lwkt_reltoken(&q->p_token);
1119 			vmspace_exitfree(p);
1120 			lwkt_gettoken(&q->p_token);
1121 			PSTALL(p, "reap5", 0);
1122 
1123 			/*
1124 			 * NOTE: We have to officially release ZOMB in order
1125 			 *	 to ensure that a racing thread in kern_wait()
1126 			 *	 which blocked on ZOMB is woken up.
1127 			 */
1128 			PHOLD(p);
1129 			PRELEZOMB(p);
1130 			kfree(p, M_PROC);
1131 			atomic_add_int(&nprocs, -1);
1132 			error = 0;
1133 			goto done;
1134 		}
1135 		if ((p->p_stat == SSTOP || p->p_stat == SCORE) &&
1136 		    (p->p_flags & P_WAITED) == 0 &&
1137 		    ((p->p_flags & P_TRACED) || (options & WUNTRACED))) {
1138 			PHOLD(p);
1139 			lwkt_gettoken(&p->p_token);
1140 			if (p->p_pptr != q) {
1141 				lwkt_reltoken(&p->p_token);
1142 				PRELE(p);
1143 				goto loop;
1144 			}
1145 			if ((p->p_stat != SSTOP && p->p_stat != SCORE) ||
1146 			    (p->p_flags & P_WAITED) != 0 ||
1147 			    ((p->p_flags & P_TRACED) == 0 &&
1148 			     (options & WUNTRACED) == 0)) {
1149 				lwkt_reltoken(&p->p_token);
1150 				PRELE(p);
1151 				goto loop;
1152 			}
1153 
1154 			p->p_flags |= P_WAITED;
1155 
1156 			*res = p->p_pid;
1157 			if (status)
1158 				*status = W_STOPCODE(p->p_xstat);
1159 			/* Zero rusage so we get something consistent. */
1160 			if (rusage)
1161 				bzero(rusage, sizeof(*rusage));
1162 			error = 0;
1163 			lwkt_reltoken(&p->p_token);
1164 			PRELE(p);
1165 			goto done;
1166 		}
1167 		if ((options & WCONTINUED) && (p->p_flags & P_CONTINUED)) {
1168 			PHOLD(p);
1169 			lwkt_gettoken(&p->p_token);
1170 			if (p->p_pptr != q) {
1171 				lwkt_reltoken(&p->p_token);
1172 				PRELE(p);
1173 				goto loop;
1174 			}
1175 			if ((p->p_flags & P_CONTINUED) == 0) {
1176 				lwkt_reltoken(&p->p_token);
1177 				PRELE(p);
1178 				goto loop;
1179 			}
1180 
1181 			*res = p->p_pid;
1182 			p->p_flags &= ~P_CONTINUED;
1183 
1184 			if (status)
1185 				*status = SIGCONT;
1186 			error = 0;
1187 			lwkt_reltoken(&p->p_token);
1188 			PRELE(p);
1189 			goto done;
1190 		}
1191 	}
1192 	if (nfound == 0) {
1193 		error = ECHILD;
1194 		goto done;
1195 	}
1196 	if (options & WNOHANG) {
1197 		*res = 0;
1198 		error = 0;
1199 		goto done;
1200 	}
1201 
1202 	/*
1203 	 * Wait for signal - interlocked using q->p_waitgen.
1204 	 */
1205 	error = 0;
1206 	while ((waitgen & 0x7FFFFFFF) == (q->p_waitgen & 0x7FFFFFFF)) {
1207 		tsleep_interlock(q, PCATCH);
1208 		waitgen = atomic_fetchadd_long(&q->p_waitgen, 0x80000000);
1209 		if ((waitgen & 0x7FFFFFFF) == (q->p_waitgen & 0x7FFFFFFF)) {
1210 			error = tsleep(q, PCATCH | PINTERLOCKED, "wait", 0);
1211 			break;
1212 		}
1213 	}
1214 	if (error) {
1215 done:
1216 		lwkt_reltoken(&q->p_token);
1217 		return (error);
1218 	}
1219 	goto loop;
1220 }
1221 
1222 /*
1223  * Change child's parent process to parent.
1224  *
1225  * p_children/p_sibling requires the parent's token, and
1226  * changing pptr requires the child's token, so we have to
1227  * get three tokens to do this operation.  We also need to
1228  * hold pointers that might get ripped out from under us to
1229  * preserve structural integrity.
1230  *
1231  * It is possible to race another reparent or disconnect or other
1232  * similar operation.  We must retry when this situation occurs.
1233  * Once we successfully reparent the process we no longer care
1234  * about any races.
1235  */
1236 void
1237 proc_reparent(struct proc *child, struct proc *parent)
1238 {
1239 	struct proc *opp;
1240 
1241 	PHOLD(parent);
1242 	while ((opp = child->p_pptr) != parent) {
1243 		PHOLD(opp);
1244 		lwkt_gettoken(&opp->p_token);
1245 		lwkt_gettoken(&child->p_token);
1246 		lwkt_gettoken(&parent->p_token);
1247 		if (child->p_pptr != opp) {
1248 			lwkt_reltoken(&parent->p_token);
1249 			lwkt_reltoken(&child->p_token);
1250 			lwkt_reltoken(&opp->p_token);
1251 			PRELE(opp);
1252 			continue;
1253 		}
1254 		LIST_REMOVE(child, p_sibling);
1255 		LIST_INSERT_HEAD(&parent->p_children, child, p_sibling);
1256 		child->p_pptr = parent;
1257 		child->p_ppid = parent->p_pid;
1258 		lwkt_reltoken(&parent->p_token);
1259 		lwkt_reltoken(&child->p_token);
1260 		lwkt_reltoken(&opp->p_token);
1261 		if (LIST_EMPTY(&opp->p_children))
1262 			wakeup(opp);
1263 		PRELE(opp);
1264 		break;
1265 	}
1266 	PRELE(parent);
1267 }
1268 
1269 /*
1270  * The next two functions are to handle adding/deleting items on the
1271  * exit callout list
1272  *
1273  * at_exit():
1274  * Take the arguments given and put them onto the exit callout list,
1275  * However first make sure that it's not already there.
1276  * returns 0 on success.
1277  */
1278 
1279 int
1280 at_exit(exitlist_fn function)
1281 {
1282 	struct exitlist *ep;
1283 
1284 #ifdef INVARIANTS
1285 	/* Be noisy if the programmer has lost track of things */
1286 	if (rm_at_exit(function))
1287 		kprintf("WARNING: exit callout entry (%p) already present\n",
1288 		    function);
1289 #endif
1290 	ep = kmalloc(sizeof(*ep), M_ATEXIT, M_NOWAIT);
1291 	if (ep == NULL)
1292 		return (ENOMEM);
1293 	ep->function = function;
1294 	TAILQ_INSERT_TAIL(&exit_list, ep, next);
1295 	return (0);
1296 }
1297 
1298 /*
1299  * Scan the exit callout list for the given item and remove it.
1300  * Returns the number of items removed (0 or 1)
1301  */
1302 int
1303 rm_at_exit(exitlist_fn function)
1304 {
1305 	struct exitlist *ep;
1306 
1307 	TAILQ_FOREACH(ep, &exit_list, next) {
1308 		if (ep->function == function) {
1309 			TAILQ_REMOVE(&exit_list, ep, next);
1310 			kfree(ep, M_ATEXIT);
1311 			return(1);
1312 		}
1313 	}
1314 	return (0);
1315 }
1316 
1317 /*
1318  * LWP reaper related code.
1319  */
1320 static void
1321 reaplwps(void *context, int dummy)
1322 {
1323 	struct lwplist *lwplist = context;
1324 	struct lwp *lp;
1325 	int cpu = mycpuid;
1326 
1327 	lwkt_gettoken(&deadlwp_token[cpu]);
1328 	while ((lp = LIST_FIRST(lwplist))) {
1329 		LIST_REMOVE(lp, u.lwp_reap_entry);
1330 		reaplwp(lp);
1331 	}
1332 	lwkt_reltoken(&deadlwp_token[cpu]);
1333 }
1334 
1335 static void
1336 reaplwp(struct lwp *lp)
1337 {
1338 	while (lwp_wait(lp) == 0)
1339 		;
1340 	lwp_dispose(lp);
1341 }
1342 
1343 static void
1344 deadlwp_init(void)
1345 {
1346 	int cpu;
1347 
1348 	for (cpu = 0; cpu < ncpus; cpu++) {
1349 		lwkt_token_init(&deadlwp_token[cpu], "deadlwpl");
1350 		LIST_INIT(&deadlwp_list[cpu]);
1351 		deadlwp_task[cpu] = kmalloc(sizeof(*deadlwp_task[cpu]),
1352 					    M_DEVBUF, M_WAITOK);
1353 		TASK_INIT(deadlwp_task[cpu], 0, reaplwps, &deadlwp_list[cpu]);
1354 	}
1355 }
1356 
1357 SYSINIT(deadlwpinit, SI_SUB_CONFIGURE, SI_ORDER_ANY, deadlwp_init, NULL);
1358