xref: /dragonfly/sys/kern/kern_exit.c (revision b450dd39)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_exit.c	8.7 (Berkeley) 2/12/94
39  * $FreeBSD: src/sys/kern/kern_exit.c,v 1.92.2.11 2003/01/13 22:51:16 dillon Exp $
40  */
41 
42 #include "opt_compat.h"
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/sysproto.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/proc.h>
51 #include <sys/ktrace.h>
52 #include <sys/pioctl.h>
53 #include <sys/tty.h>
54 #include <sys/wait.h>
55 #include <sys/vnode.h>
56 #include <sys/resourcevar.h>
57 #include <sys/signalvar.h>
58 #include <sys/taskqueue.h>
59 #include <sys/ptrace.h>
60 #include <sys/acct.h>		/* for acct_process() function prototype */
61 #include <sys/filedesc.h>
62 #include <sys/shm.h>
63 #include <sys/sem.h>
64 #include <sys/jail.h>
65 #include <sys/kern_syscall.h>
66 #include <sys/upcall.h>
67 #include <sys/caps.h>
68 #include <sys/unistd.h>
69 #include <sys/eventhandler.h>
70 #include <sys/dsched.h>
71 
72 #include <vm/vm.h>
73 #include <vm/vm_param.h>
74 #include <sys/lock.h>
75 #include <vm/pmap.h>
76 #include <vm/vm_map.h>
77 #include <vm/vm_extern.h>
78 #include <sys/user.h>
79 
80 #include <sys/refcount.h>
81 #include <sys/thread2.h>
82 #include <sys/sysref2.h>
83 #include <sys/mplock2.h>
84 
85 static void reaplwps(void *context, int dummy);
86 static void reaplwp(struct lwp *lp);
87 static void killlwps(struct lwp *lp);
88 
89 static MALLOC_DEFINE(M_ATEXIT, "atexit", "atexit callback");
90 static MALLOC_DEFINE(M_ZOMBIE, "zombie", "zombie proc status");
91 
92 static struct lwkt_token deadlwp_token = LWKT_TOKEN_INITIALIZER(deadlwp_token);
93 
94 /*
95  * callout list for things to do at exit time
96  */
97 struct exitlist {
98 	exitlist_fn function;
99 	TAILQ_ENTRY(exitlist) next;
100 };
101 
102 TAILQ_HEAD(exit_list_head, exitlist);
103 static struct exit_list_head exit_list = TAILQ_HEAD_INITIALIZER(exit_list);
104 
105 /*
106  * LWP reaper data
107  */
108 struct task *deadlwp_task[MAXCPU];
109 struct lwplist deadlwp_list[MAXCPU];
110 
111 /*
112  * exit --
113  *	Death of process.
114  *
115  * SYS_EXIT_ARGS(int rval)
116  */
117 int
118 sys_exit(struct exit_args *uap)
119 {
120 	exit1(W_EXITCODE(uap->rval, 0));
121 	/* NOTREACHED */
122 }
123 
124 /*
125  * Extended exit --
126  *	Death of a lwp or process with optional bells and whistles.
127  *
128  * MPALMOSTSAFE
129  */
130 int
131 sys_extexit(struct extexit_args *uap)
132 {
133 	struct proc *p = curproc;
134 	int action, who;
135 	int error;
136 
137 	action = EXTEXIT_ACTION(uap->how);
138 	who = EXTEXIT_WHO(uap->how);
139 
140 	/* Check parameters before we might perform some action */
141 	switch (who) {
142 	case EXTEXIT_PROC:
143 	case EXTEXIT_LWP:
144 		break;
145 	default:
146 		return (EINVAL);
147 	}
148 
149 	switch (action) {
150 	case EXTEXIT_SIMPLE:
151 		break;
152 	case EXTEXIT_SETINT:
153 		error = copyout(&uap->status, uap->addr, sizeof(uap->status));
154 		if (error)
155 			return (error);
156 		break;
157 	default:
158 		return (EINVAL);
159 	}
160 
161 	lwkt_gettoken(&p->p_token);
162 
163 	switch (who) {
164 	case EXTEXIT_LWP:
165 		/*
166 		 * Be sure only to perform a simple lwp exit if there is at
167 		 * least one more lwp in the proc, which will call exit1()
168 		 * later, otherwise the proc will be an UNDEAD and not even a
169 		 * SZOMB!
170 		 */
171 		if (p->p_nthreads > 1) {
172 			lwp_exit(0);	/* called w/ p_token held */
173 			/* NOT REACHED */
174 		}
175 		/* else last lwp in proc:  do the real thing */
176 		/* FALLTHROUGH */
177 	default:	/* to help gcc */
178 	case EXTEXIT_PROC:
179 		lwkt_reltoken(&p->p_token);
180 		exit1(W_EXITCODE(uap->status, 0));
181 		/* NOTREACHED */
182 	}
183 
184 	/* NOTREACHED */
185 	lwkt_reltoken(&p->p_token);	/* safety */
186 }
187 
188 /*
189  * Kill all lwps associated with the current process except the
190  * current lwp.   Return an error if we race another thread trying to
191  * do the same thing and lose the race.
192  *
193  * If forexec is non-zero the current thread and process flags are
194  * cleaned up so they can be reused.
195  *
196  * Caller must hold curproc->p_token
197  */
198 int
199 killalllwps(int forexec)
200 {
201 	struct lwp *lp = curthread->td_lwp;
202 	struct proc *p = lp->lwp_proc;
203 
204 	/*
205 	 * Interlock against P_WEXIT.  Only one of the process's thread
206 	 * is allowed to do the master exit.
207 	 */
208 	if (p->p_flags & P_WEXIT)
209 		return (EALREADY);
210 	p->p_flags |= P_WEXIT;
211 
212 	/*
213 	 * Interlock with LWP_MP_WEXIT and kill any remaining LWPs
214 	 */
215 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
216 	if (p->p_nthreads > 1)
217 		killlwps(lp);
218 
219 	/*
220 	 * If doing this for an exec, clean up the remaining thread
221 	 * (us) for continuing operation after all the other threads
222 	 * have been killed.
223 	 */
224 	if (forexec) {
225 		atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
226 		p->p_flags &= ~P_WEXIT;
227 	}
228 	return(0);
229 }
230 
231 /*
232  * Kill all LWPs except the current one.  Do not try to signal
233  * LWPs which have exited on their own or have already been
234  * signaled.
235  */
236 static void
237 killlwps(struct lwp *lp)
238 {
239 	struct proc *p = lp->lwp_proc;
240 	struct lwp *tlp;
241 
242 	/*
243 	 * Kill the remaining LWPs.  We must send the signal before setting
244 	 * LWP_MP_WEXIT.  The setting of WEXIT is optional but helps reduce
245 	 * races.  tlp must be held across the call as it might block and
246 	 * allow the target lwp to rip itself out from under our loop.
247 	 */
248 	FOREACH_LWP_IN_PROC(tlp, p) {
249 		LWPHOLD(tlp);
250 		lwkt_gettoken(&tlp->lwp_token);
251 		if ((tlp->lwp_mpflags & LWP_MP_WEXIT) == 0) {
252 			lwpsignal(p, tlp, SIGKILL);
253 			atomic_set_int(&tlp->lwp_mpflags, LWP_MP_WEXIT);
254 		}
255 		lwkt_reltoken(&tlp->lwp_token);
256 		LWPRELE(tlp);
257 	}
258 
259 	/*
260 	 * Wait for everything to clear out.
261 	 */
262 	while (p->p_nthreads > 1) {
263 		tsleep(&p->p_nthreads, 0, "killlwps", 0);
264 	}
265 }
266 
267 /*
268  * Exit: deallocate address space and other resources, change proc state
269  * to zombie, and unlink proc from allproc and parent's lists.  Save exit
270  * status and rusage for wait().  Check for child processes and orphan them.
271  */
272 void
273 exit1(int rv)
274 {
275 	struct thread *td = curthread;
276 	struct proc *p = td->td_proc;
277 	struct lwp *lp = td->td_lwp;
278 	struct proc *q, *nq;
279 	struct vmspace *vm;
280 	struct vnode *vtmp;
281 	struct exitlist *ep;
282 	int error;
283 
284 	lwkt_gettoken(&p->p_token);
285 
286 	if (p->p_pid == 1) {
287 		kprintf("init died (signal %d, exit %d)\n",
288 		    WTERMSIG(rv), WEXITSTATUS(rv));
289 		panic("Going nowhere without my init!");
290 	}
291 	varsymset_clean(&p->p_varsymset);
292 	lockuninit(&p->p_varsymset.vx_lock);
293 
294 	/*
295 	 * Kill all lwps associated with the current process, return an
296 	 * error if we race another thread trying to do the same thing
297 	 * and lose the race.
298 	 */
299 	error = killalllwps(0);
300 	if (error) {
301 		lwp_exit(0);
302 		/* NOT REACHED */
303 	}
304 
305 	caps_exit(lp->lwp_thread);
306 
307 	/* are we a task leader? */
308 	if (p == p->p_leader) {
309         	struct kill_args killArgs;
310 		killArgs.signum = SIGKILL;
311 		q = p->p_peers;
312 		while(q) {
313 			killArgs.pid = q->p_pid;
314 			/*
315 		         * The interface for kill is better
316 			 * than the internal signal
317 			 */
318 			sys_kill(&killArgs);
319 			nq = q;
320 			q = q->p_peers;
321 		}
322 		while (p->p_peers)
323 			tsleep((caddr_t)p, 0, "exit1", 0);
324 	}
325 
326 #ifdef PGINPROF
327 	vmsizmon();
328 #endif
329 	STOPEVENT(p, S_EXIT, rv);
330 	p->p_flags |= P_POSTEXIT;	/* stop procfs stepping */
331 
332 	/*
333 	 * Check if any loadable modules need anything done at process exit.
334 	 * e.g. SYSV IPC stuff
335 	 * XXX what if one of these generates an error?
336 	 */
337 	p->p_xstat = rv;
338 	EVENTHANDLER_INVOKE(process_exit, p);
339 
340 	/*
341 	 * XXX: imho, the eventhandler stuff is much cleaner than this.
342 	 *	Maybe we should move everything to use eventhandler.
343 	 */
344 	TAILQ_FOREACH(ep, &exit_list, next)
345 		(*ep->function)(td);
346 
347 	if (p->p_flags & P_PROFIL)
348 		stopprofclock(p);
349 
350 	SIGEMPTYSET(p->p_siglist);
351 	SIGEMPTYSET(lp->lwp_siglist);
352 	if (timevalisset(&p->p_realtimer.it_value))
353 		callout_stop_sync(&p->p_ithandle);
354 
355 	/*
356 	 * Reset any sigio structures pointing to us as a result of
357 	 * F_SETOWN with our pid.
358 	 */
359 	funsetownlst(&p->p_sigiolst);
360 
361 	/*
362 	 * Close open files and release open-file table.
363 	 * This may block!
364 	 */
365 	fdfree(p, NULL);
366 
367 	if(p->p_leader->p_peers) {
368 		q = p->p_leader;
369 		while(q->p_peers != p)
370 			q = q->p_peers;
371 		q->p_peers = p->p_peers;
372 		wakeup((caddr_t)p->p_leader);
373 	}
374 
375 	/*
376 	 * XXX Shutdown SYSV semaphores
377 	 */
378 	semexit(p);
379 
380 	KKASSERT(p->p_numposixlocks == 0);
381 
382 	/* The next two chunks should probably be moved to vmspace_exit. */
383 	vm = p->p_vmspace;
384 
385 	/*
386 	 * Release upcalls associated with this process
387 	 */
388 	if (vm->vm_upcalls)
389 		upc_release(vm, lp);
390 
391 	/*
392 	 * Clean up data related to virtual kernel operation.  Clean up
393 	 * any vkernel context related to the current lwp now so we can
394 	 * destroy p_vkernel.
395 	 */
396 	if (p->p_vkernel) {
397 		vkernel_lwp_exit(lp);
398 		vkernel_exit(p);
399 	}
400 
401 	/*
402 	 * Release user portion of address space.
403 	 * This releases references to vnodes,
404 	 * which could cause I/O if the file has been unlinked.
405 	 * Need to do this early enough that we can still sleep.
406 	 * Can't free the entire vmspace as the kernel stack
407 	 * may be mapped within that space also.
408 	 *
409 	 * Processes sharing the same vmspace may exit in one order, and
410 	 * get cleaned up by vmspace_exit() in a different order.  The
411 	 * last exiting process to reach this point releases as much of
412 	 * the environment as it can, and the last process cleaned up
413 	 * by vmspace_exit() (which decrements exitingcnt) cleans up the
414 	 * remainder.
415 	 */
416 	vmspace_exitbump(vm);
417 	sysref_put(&vm->vm_sysref);
418 
419 	if (SESS_LEADER(p)) {
420 		struct session *sp = p->p_session;
421 
422 		if (sp->s_ttyvp) {
423 			/*
424 			 * We are the controlling process.  Signal the
425 			 * foreground process group, drain the controlling
426 			 * terminal, and revoke access to the controlling
427 			 * terminal.
428 			 *
429 			 * NOTE: while waiting for the process group to exit
430 			 * it is possible that one of the processes in the
431 			 * group will revoke the tty, so the ttyclosesession()
432 			 * function will re-check sp->s_ttyvp.
433 			 */
434 			if (sp->s_ttyp && (sp->s_ttyp->t_session == sp)) {
435 				if (sp->s_ttyp->t_pgrp)
436 					pgsignal(sp->s_ttyp->t_pgrp, SIGHUP, 1);
437 				ttywait(sp->s_ttyp);
438 				ttyclosesession(sp, 1); /* also revoke */
439 			}
440 			/*
441 			 * Release the tty.  If someone has it open via
442 			 * /dev/tty then close it (since they no longer can
443 			 * once we've NULL'd it out).
444 			 */
445 			ttyclosesession(sp, 0);
446 
447 			/*
448 			 * s_ttyp is not zero'd; we use this to indicate
449 			 * that the session once had a controlling terminal.
450 			 * (for logging and informational purposes)
451 			 */
452 		}
453 		sp->s_leader = NULL;
454 	}
455 	fixjobc(p, p->p_pgrp, 0);
456 	(void)acct_process(p);
457 #ifdef KTRACE
458 	/*
459 	 * release trace file
460 	 */
461 	if (p->p_tracenode)
462 		ktrdestroy(&p->p_tracenode);
463 	p->p_traceflag = 0;
464 #endif
465 	/*
466 	 * Release reference to text vnode
467 	 */
468 	if ((vtmp = p->p_textvp) != NULL) {
469 		p->p_textvp = NULL;
470 		vrele(vtmp);
471 	}
472 
473 	/* Release namecache handle to text file */
474 	if (p->p_textnch.ncp)
475 		cache_drop(&p->p_textnch);
476 
477 	/*
478 	 * We have to handle PPWAIT here or proc_move_allproc_zombie()
479 	 * will block on the PHOLD() the parent is doing.
480 	 */
481 	if (p->p_flags & P_PPWAIT) {
482 		p->p_flags &= ~P_PPWAIT;
483 		wakeup(p->p_pptr);
484 	}
485 
486 	/*
487 	 * Move the process to the zombie list.  This will block
488 	 * until the process p_lock count reaches 0.  The process will
489 	 * not be reaped until TDF_EXITING is set by cpu_thread_exit(),
490 	 * which is called from cpu_proc_exit().
491 	 */
492 	proc_move_allproc_zombie(p);
493 
494 	/*
495 	 * Reparent all of this process's children to the init process.
496 	 * We must hold initproc->p_token in order to mess with
497 	 * initproc->p_children.  We already hold p->p_token (to remove
498 	 * the children from our list).
499 	 */
500 	q = LIST_FIRST(&p->p_children);
501 	if (q) {
502 		lwkt_gettoken(&initproc->p_token);
503 		while ((q = LIST_FIRST(&p->p_children)) != NULL) {
504 			PHOLD(q);
505 			lwkt_gettoken(&q->p_token);
506 			if (q != LIST_FIRST(&p->p_children)) {
507 				lwkt_reltoken(&q->p_token);
508 				PRELE(q);
509 				continue;
510 			}
511 			LIST_REMOVE(q, p_sibling);
512 			LIST_INSERT_HEAD(&initproc->p_children, q, p_sibling);
513 			q->p_pptr = initproc;
514 			q->p_sigparent = SIGCHLD;
515 
516 			/*
517 			 * Traced processes are killed
518 			 * since their existence means someone is screwing up.
519 			 */
520 			if (q->p_flags & P_TRACED) {
521 				q->p_flags &= ~P_TRACED;
522 				ksignal(q, SIGKILL);
523 			}
524 			lwkt_reltoken(&q->p_token);
525 			PRELE(q);
526 		}
527 		lwkt_reltoken(&initproc->p_token);
528 		wakeup(initproc);
529 	}
530 
531 	/*
532 	 * Save exit status and final rusage info, adding in child rusage
533 	 * info and self times.
534 	 */
535 	calcru_proc(p, &p->p_ru);
536 	ruadd(&p->p_ru, &p->p_cru);
537 
538 	/*
539 	 * notify interested parties of our demise.
540 	 */
541 	KNOTE(&p->p_klist, NOTE_EXIT);
542 
543 	/*
544 	 * Notify parent that we're gone.  If parent has the PS_NOCLDWAIT
545 	 * flag set, or if the handler is set to SIG_IGN, notify process 1
546 	 * instead (and hope it will handle this situation).
547 	 */
548 	if (p->p_pptr->p_sigacts->ps_flag & (PS_NOCLDWAIT | PS_CLDSIGIGN)) {
549 		struct proc *pp = p->p_pptr;
550 
551 		PHOLD(pp);
552 		proc_reparent(p, initproc);
553 
554 		/*
555 		 * If this was the last child of our parent, notify
556 		 * parent, so in case he was wait(2)ing, he will
557 		 * continue.  This function interlocks with pptr->p_token.
558 		 */
559 		if (LIST_EMPTY(&pp->p_children))
560 			wakeup((caddr_t)pp);
561 		PRELE(pp);
562 	}
563 
564 	/* lwkt_gettoken(&proc_token); */
565 	q = p->p_pptr;
566 	PHOLD(q);
567 	if (p->p_sigparent && q != initproc) {
568 	        ksignal(q, p->p_sigparent);
569 	} else {
570 	        ksignal(q, SIGCHLD);
571 	}
572 
573 	p->p_flags &= ~P_TRACED;
574 	wakeup(p->p_pptr);
575 
576 	PRELE(q);
577 	/* lwkt_reltoken(&proc_token); */
578 	/* NOTE: p->p_pptr can get ripped out */
579 	/*
580 	 * cpu_exit is responsible for clearing curproc, since
581 	 * it is heavily integrated with the thread/switching sequence.
582 	 *
583 	 * Other substructures are freed from wait().
584 	 */
585 	plimit_free(p);
586 
587 	/*
588 	 * Release the current user process designation on the process so
589 	 * the userland scheduler can work in someone else.
590 	 */
591 	p->p_usched->release_curproc(lp);
592 
593 	/*
594 	 * Finally, call machine-dependent code to release as many of the
595 	 * lwp's resources as we can and halt execution of this thread.
596 	 */
597 	lwp_exit(1);
598 }
599 
600 /*
601  * Eventually called by every exiting LWP
602  *
603  * p->p_token must be held.  mplock may be held and will be released.
604  */
605 void
606 lwp_exit(int masterexit)
607 {
608 	struct thread *td = curthread;
609 	struct lwp *lp = td->td_lwp;
610 	struct proc *p = lp->lwp_proc;
611 	int dowake = 0;
612 
613 	/*
614 	 * lwp_exit() may be called without setting LWP_MP_WEXIT, so
615 	 * make sure it is set here.
616 	 */
617 	ASSERT_LWKT_TOKEN_HELD(&p->p_token);
618 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
619 
620 	/*
621 	 * Clean up any virtualization
622 	 */
623 	if (lp->lwp_vkernel)
624 		vkernel_lwp_exit(lp);
625 
626 	/*
627 	 * Clean up select/poll support
628 	 */
629 	kqueue_terminate(&lp->lwp_kqueue);
630 
631 	/*
632 	 * Clean up any syscall-cached ucred
633 	 */
634 	if (td->td_ucred) {
635 		crfree(td->td_ucred);
636 		td->td_ucred = NULL;
637 	}
638 
639 	/*
640 	 * Nobody actually wakes us when the lock
641 	 * count reaches zero, so just wait one tick.
642 	 */
643 	while (lp->lwp_lock > 0)
644 		tsleep(lp, 0, "lwpexit", 1);
645 
646 	/* Hand down resource usage to our proc */
647 	ruadd(&p->p_ru, &lp->lwp_ru);
648 
649 	/*
650 	 * If we don't hold the process until the LWP is reaped wait*()
651 	 * may try to dispose of its vmspace before all the LWPs have
652 	 * actually terminated.
653 	 */
654 	PHOLD(p);
655 
656 	/*
657 	 * Do any remaining work that might block on us.  We should be
658 	 * coded such that further blocking is ok after decrementing
659 	 * p_nthreads but don't take the chance.
660 	 */
661 	dsched_exit_thread(td);
662 	biosched_done(curthread);
663 
664 	/*
665 	 * We have to use the reaper for all the LWPs except the one doing
666 	 * the master exit.  The LWP doing the master exit can just be
667 	 * left on p_lwps and the process reaper will deal with it
668 	 * synchronously, which is much faster.
669 	 *
670 	 * Wakeup anyone waiting on p_nthreads to drop to 1 or 0.
671 	 *
672 	 * The process is left held until the reaper calls lwp_dispose() on
673 	 * the lp (after calling lwp_wait()).
674 	 */
675 	if (masterexit == 0) {
676 		lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
677 		--p->p_nthreads;
678 		if (p->p_nthreads <= 1)
679 			dowake = 1;
680 		lwkt_gettoken(&deadlwp_token);
681 		LIST_INSERT_HEAD(&deadlwp_list[mycpuid], lp, u.lwp_reap_entry);
682 		taskqueue_enqueue(taskqueue_thread[mycpuid],
683 				  deadlwp_task[mycpuid]);
684 		lwkt_reltoken(&deadlwp_token);
685 	} else {
686 		--p->p_nthreads;
687 		if (p->p_nthreads <= 1)
688 			dowake = 1;
689 	}
690 
691 	/*
692 	 * Release p_token.  Issue the wakeup() on p_nthreads if necessary,
693 	 * as late as possible to give us a chance to actually deschedule and
694 	 * switch away before another cpu core hits reaplwp().
695 	 */
696 	lwkt_reltoken(&p->p_token);
697 	if (dowake)
698 		wakeup(&p->p_nthreads);
699 
700 	/*
701 	 * Tell the userland scheduler that we are going away
702 	 */
703 	p->p_usched->heuristic_exiting(lp, p);
704 
705 	cpu_lwp_exit();
706 }
707 
708 /*
709  * Wait until a lwp is completely dead.  The final interlock in this drama
710  * is when TDF_EXITING is set in cpu_thread_exit() just before the final
711  * switchout.
712  *
713  * At the point TDF_EXITING is set a complete exit is accomplished when
714  * TDF_RUNNING and TDF_PREEMPT_LOCK are both clear.  td_mpflags has two
715  * post-switch interlock flags that can be used to wait for the TDF_
716  * flags to clear.
717  *
718  * Returns non-zero on success, and zero if the caller needs to retry
719  * the lwp_wait().
720  */
721 static int
722 lwp_wait(struct lwp *lp)
723 {
724 	struct thread *td = lp->lwp_thread;;
725 	u_int mpflags;
726 
727 	KKASSERT(lwkt_preempted_proc() != lp);
728 
729 	/*
730 	 * This bit of code uses the thread destruction interlock
731 	 * managed by lwkt_switch_return() to wait for the lwp's
732 	 * thread to completely disengage.
733 	 *
734 	 * It is possible for us to race another cpu core so we
735 	 * have to do this correctly.
736 	 */
737 	for (;;) {
738 		mpflags = td->td_mpflags;
739 		cpu_ccfence();
740 		if (mpflags & TDF_MP_EXITSIG)
741 			break;
742 		tsleep_interlock(td, 0);
743 		if (atomic_cmpset_int(&td->td_mpflags, mpflags,
744 				      mpflags | TDF_MP_EXITWAIT)) {
745 			tsleep(td, PINTERLOCKED, "lwpxt", 0);
746 		}
747 	}
748 
749 	/*
750 	 * We've already waited for the core exit but there can still
751 	 * be other refs from e.g. process scans and such.
752 	 */
753 	if (lp->lwp_lock > 0) {
754 		tsleep(lp, 0, "lwpwait1", 1);
755 		return(0);
756 	}
757 	if (td->td_refs) {
758 		tsleep(td, 0, "lwpwait2", 1);
759 		return(0);
760 	}
761 
762 	/*
763 	 * Now that we have the thread destruction interlock these flags
764 	 * really should already be cleaned up, keep a check for safety.
765 	 *
766 	 * We can't rip its stack out from under it until TDF_EXITING is
767 	 * set and both TDF_RUNNING and TDF_PREEMPT_LOCK are clear.
768 	 * TDF_PREEMPT_LOCK must be checked because TDF_RUNNING
769 	 * will be cleared temporarily if a thread gets preempted.
770 	 */
771 	while ((td->td_flags & (TDF_RUNNING |
772 			        TDF_PREEMPT_LOCK |
773 			        TDF_EXITING)) != TDF_EXITING) {
774 		tsleep(lp, 0, "lwpwait3", 1);
775 		return (0);
776 	}
777 
778 	KASSERT((td->td_flags & (TDF_RUNQ|TDF_TSLEEPQ)) == 0,
779 		("lwp_wait: td %p (%s) still on run or sleep queue",
780 		td, td->td_comm));
781 	return (1);
782 }
783 
784 /*
785  * Release the resources associated with a lwp.
786  * The lwp must be completely dead.
787  */
788 void
789 lwp_dispose(struct lwp *lp)
790 {
791 	struct thread *td = lp->lwp_thread;;
792 
793 	KKASSERT(lwkt_preempted_proc() != lp);
794 	KKASSERT(td->td_refs == 0);
795 	KKASSERT((td->td_flags & (TDF_RUNNING |
796 				  TDF_PREEMPT_LOCK |
797 				  TDF_EXITING)) == TDF_EXITING);
798 
799 	PRELE(lp->lwp_proc);
800 	lp->lwp_proc = NULL;
801 	if (td != NULL) {
802 		td->td_proc = NULL;
803 		td->td_lwp = NULL;
804 		lp->lwp_thread = NULL;
805 		lwkt_free_thread(td);
806 	}
807 	kfree(lp, M_LWP);
808 }
809 
810 /*
811  * MPSAFE
812  */
813 int
814 sys_wait4(struct wait_args *uap)
815 {
816 	struct rusage rusage;
817 	int error, status;
818 
819 	error = kern_wait(uap->pid, (uap->status ? &status : NULL),
820 			  uap->options, (uap->rusage ? &rusage : NULL),
821 			  &uap->sysmsg_result);
822 
823 	if (error == 0 && uap->status)
824 		error = copyout(&status, uap->status, sizeof(*uap->status));
825 	if (error == 0 && uap->rusage)
826 		error = copyout(&rusage, uap->rusage, sizeof(*uap->rusage));
827 	return (error);
828 }
829 
830 /*
831  * wait1()
832  *
833  * wait_args(int pid, int *status, int options, struct rusage *rusage)
834  *
835  * MPALMOSTSAFE
836  */
837 int
838 kern_wait(pid_t pid, int *status, int options, struct rusage *rusage, int *res)
839 {
840 	struct thread *td = curthread;
841 	struct lwp *lp;
842 	struct proc *q = td->td_proc;
843 	struct proc *p, *t;
844 	struct pargs *pa;
845 	struct sigacts *ps;
846 	int nfound, error;
847 
848 	if (pid == 0)
849 		pid = -q->p_pgid;
850 	if (options &~ (WUNTRACED|WNOHANG|WCONTINUED|WLINUXCLONE))
851 		return (EINVAL);
852 
853 	lwkt_gettoken(&q->p_token);
854 loop:
855 	/*
856 	 * All sorts of things can change due to blocking so we have to loop
857 	 * all the way back up here.
858 	 *
859 	 * The problem is that if a process group is stopped and the parent
860 	 * is doing a wait*(..., WUNTRACED, ...), it will see the STOP
861 	 * of the child and then stop itself when it tries to return from the
862 	 * system call.  When the process group is resumed the parent will
863 	 * then get the STOP status even though the child has now resumed
864 	 * (a followup wait*() will get the CONT status).
865 	 *
866 	 * Previously the CONT would overwrite the STOP because the tstop
867 	 * was handled within tsleep(), and the parent would only see
868 	 * the CONT when both are stopped and continued together.  This little
869 	 * two-line hack restores this effect.
870 	 */
871 	while (q->p_stat == SSTOP)
872             tstop();
873 
874 	nfound = 0;
875 
876 	/*
877 	 * Loop on children.
878 	 *
879 	 * NOTE: We don't want to break q's p_token in the loop for the
880 	 *	 case where no children are found or we risk breaking the
881 	 *	 interlock between child and parent.
882 	 */
883 	LIST_FOREACH(p, &q->p_children, p_sibling) {
884 		if (pid != WAIT_ANY &&
885 		    p->p_pid != pid && p->p_pgid != -pid) {
886 			continue;
887 		}
888 
889 		/*
890 		 * This special case handles a kthread spawned by linux_clone
891 		 * (see linux_misc.c).  The linux_wait4 and linux_waitpid
892 		 * functions need to be able to distinguish between waiting
893 		 * on a process and waiting on a thread.  It is a thread if
894 		 * p_sigparent is not SIGCHLD, and the WLINUXCLONE option
895 		 * signifies we want to wait for threads and not processes.
896 		 */
897 		if ((p->p_sigparent != SIGCHLD) ^
898 		    ((options & WLINUXCLONE) != 0)) {
899 			continue;
900 		}
901 
902 		nfound++;
903 		if (p->p_stat == SZOMB) {
904 			/*
905 			 * We may go into SZOMB with threads still present.
906 			 * We must wait for them to exit before we can reap
907 			 * the master thread, otherwise we may race reaping
908 			 * non-master threads.
909 			 *
910 			 * Only this routine can remove a process from
911 			 * the zombie list and destroy it, use PACQUIREZOMB()
912 			 * to serialize us and loop if it blocks (interlocked
913 			 * by the parent's q->p_token).
914 			 *
915 			 * WARNING!  (p) can be invalid when PHOLDZOMB(p)
916 			 *	     returns non-zero.  Be sure not to
917 			 *	     mess with it.
918 			 */
919 			if (PHOLDZOMB(p))
920 				goto loop;
921 			lwkt_gettoken(&p->p_token);
922 			if (p->p_pptr != q) {
923 				lwkt_reltoken(&p->p_token);
924 				PRELEZOMB(p);
925 				goto loop;
926 			}
927 			while (p->p_nthreads > 0) {
928 				tsleep(&p->p_nthreads, 0, "lwpzomb", hz);
929 			}
930 
931 			/*
932 			 * Reap any LWPs left in p->p_lwps.  This is usually
933 			 * just the last LWP.  This must be done before
934 			 * we loop on p_lock since the lwps hold a ref on
935 			 * it as a vmspace interlock.
936 			 *
937 			 * Once that is accomplished p_nthreads had better
938 			 * be zero.
939 			 */
940 			while ((lp = RB_ROOT(&p->p_lwp_tree)) != NULL) {
941 				lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
942 				reaplwp(lp);
943 			}
944 			KKASSERT(p->p_nthreads == 0);
945 
946 			/*
947 			 * Don't do anything really bad until all references
948 			 * to the process go away.  This may include other
949 			 * LWPs which are still in the process of being
950 			 * reaped.  We can't just pull the rug out from under
951 			 * them because they may still be using the VM space.
952 			 *
953 			 * Certain kernel facilities such as /proc will also
954 			 * put a hold on the process for short periods of
955 			 * time.
956 			 */
957 			PRELE(p);
958 			PSTALL(p, "reap3", 0);
959 
960 			/* Take care of our return values. */
961 			*res = p->p_pid;
962 
963 			if (status)
964 				*status = p->p_xstat;
965 			if (rusage)
966 				*rusage = p->p_ru;
967 			/*
968 			 * If we got the child via a ptrace 'attach',
969 			 * we need to give it back to the old parent.
970 			 */
971 			if (p->p_oppid && (t = pfind(p->p_oppid)) != NULL) {
972 				PHOLD(p);
973 				p->p_oppid = 0;
974 				proc_reparent(p, t);
975 				ksignal(t, SIGCHLD);
976 				wakeup((caddr_t)t);
977 				error = 0;
978 				PRELE(t);
979 				lwkt_reltoken(&p->p_token);
980 				PRELEZOMB(p);
981 				goto done;
982 			}
983 
984 			/*
985 			 * Unlink the proc from its process group so that
986 			 * the following operations won't lead to an
987 			 * inconsistent state for processes running down
988 			 * the zombie list.
989 			 */
990 			proc_remove_zombie(p);
991 			lwkt_reltoken(&p->p_token);
992 			leavepgrp(p);
993 
994 			p->p_xstat = 0;
995 			ruadd(&q->p_cru, &p->p_ru);
996 
997 			/*
998 			 * Decrement the count of procs running with this uid.
999 			 */
1000 			chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0);
1001 
1002 			/*
1003 			 * Free up credentials.
1004 			 */
1005 			crfree(p->p_ucred);
1006 			p->p_ucred = NULL;
1007 
1008 			/*
1009 			 * Remove unused arguments
1010 			 */
1011 			pa = p->p_args;
1012 			p->p_args = NULL;
1013 			if (pa && refcount_release(&pa->ar_ref)) {
1014 				kfree(pa, M_PARGS);
1015 				pa = NULL;
1016 			}
1017 
1018 			ps = p->p_sigacts;
1019 			p->p_sigacts = NULL;
1020 			if (ps && refcount_release(&ps->ps_refcnt)) {
1021 				kfree(ps, M_SUBPROC);
1022 				ps = NULL;
1023 			}
1024 
1025 			/*
1026 			 * Our exitingcount was incremented when the process
1027 			 * became a zombie, now that the process has been
1028 			 * removed from (almost) all lists we should be able
1029 			 * to safely destroy its vmspace.  Wait for any current
1030 			 * holders to go away (so the vmspace remains stable),
1031 			 * then scrap it.
1032 			 */
1033 			PSTALL(p, "reap4", 0);
1034 			vmspace_exitfree(p);
1035 			PSTALL(p, "reap5", 0);
1036 
1037 			/*
1038 			 * NOTE: We have to officially release ZOMB in order
1039 			 *	 to ensure that a racing thread in kern_wait()
1040 			 *	 which blocked on ZOMB is woken up.
1041 			 */
1042 			PHOLD(p);
1043 			PRELEZOMB(p);
1044 			kfree(p, M_PROC);
1045 			atomic_add_int(&nprocs, -1);
1046 			error = 0;
1047 			goto done;
1048 		}
1049 		if (p->p_stat == SSTOP && (p->p_flags & P_WAITED) == 0 &&
1050 		    ((p->p_flags & P_TRACED) || (options & WUNTRACED))) {
1051 			PHOLD(p);
1052 			lwkt_gettoken(&p->p_token);
1053 			if (p->p_pptr != q) {
1054 				lwkt_reltoken(&p->p_token);
1055 				PRELE(p);
1056 				goto loop;
1057 			}
1058 			if (p->p_stat != SSTOP ||
1059 			    (p->p_flags & P_WAITED) != 0 ||
1060 			    ((p->p_flags & P_TRACED) == 0 &&
1061 			     (options & WUNTRACED) == 0)) {
1062 				lwkt_reltoken(&p->p_token);
1063 				PRELE(p);
1064 				goto loop;
1065 			}
1066 
1067 			p->p_flags |= P_WAITED;
1068 
1069 			*res = p->p_pid;
1070 			if (status)
1071 				*status = W_STOPCODE(p->p_xstat);
1072 			/* Zero rusage so we get something consistent. */
1073 			if (rusage)
1074 				bzero(rusage, sizeof(*rusage));
1075 			error = 0;
1076 			lwkt_reltoken(&p->p_token);
1077 			PRELE(p);
1078 			goto done;
1079 		}
1080 		if ((options & WCONTINUED) && (p->p_flags & P_CONTINUED)) {
1081 			PHOLD(p);
1082 			lwkt_gettoken(&p->p_token);
1083 			if (p->p_pptr != q) {
1084 				lwkt_reltoken(&p->p_token);
1085 				PRELE(p);
1086 				goto loop;
1087 			}
1088 			if ((p->p_flags & P_CONTINUED) == 0) {
1089 				lwkt_reltoken(&p->p_token);
1090 				PRELE(p);
1091 				goto loop;
1092 			}
1093 
1094 			*res = p->p_pid;
1095 			p->p_flags &= ~P_CONTINUED;
1096 
1097 			if (status)
1098 				*status = SIGCONT;
1099 			error = 0;
1100 			lwkt_reltoken(&p->p_token);
1101 			PRELE(p);
1102 			goto done;
1103 		}
1104 	}
1105 	if (nfound == 0) {
1106 		error = ECHILD;
1107 		goto done;
1108 	}
1109 	if (options & WNOHANG) {
1110 		*res = 0;
1111 		error = 0;
1112 		goto done;
1113 	}
1114 
1115 	/*
1116 	 * Wait for signal - interlocked using q->p_token.
1117 	 */
1118 	error = tsleep(q, PCATCH, "wait", 0);
1119 	if (error) {
1120 done:
1121 		lwkt_reltoken(&q->p_token);
1122 		return (error);
1123 	}
1124 	goto loop;
1125 }
1126 
1127 /*
1128  * Make process 'parent' the new parent of process 'child'.
1129  *
1130  * p_children/p_sibling requires the parent's token, and
1131  * changing pptr requires the child's token, so we have to
1132  * get three tokens to do this operation.
1133  */
1134 void
1135 proc_reparent(struct proc *child, struct proc *parent)
1136 {
1137 	struct proc *opp = child->p_pptr;
1138 
1139 	if (opp == parent)
1140 		return;
1141 	PHOLD(opp);
1142 	PHOLD(parent);
1143 	lwkt_gettoken(&opp->p_token);
1144 	lwkt_gettoken(&child->p_token);
1145 	lwkt_gettoken(&parent->p_token);
1146 	KKASSERT(child->p_pptr == opp);
1147 	LIST_REMOVE(child, p_sibling);
1148 	LIST_INSERT_HEAD(&parent->p_children, child, p_sibling);
1149 	child->p_pptr = parent;
1150 	lwkt_reltoken(&parent->p_token);
1151 	lwkt_reltoken(&child->p_token);
1152 	lwkt_reltoken(&opp->p_token);
1153 	PRELE(parent);
1154 	PRELE(opp);
1155 }
1156 
1157 /*
1158  * The next two functions are to handle adding/deleting items on the
1159  * exit callout list
1160  *
1161  * at_exit():
1162  * Take the arguments given and put them onto the exit callout list,
1163  * However first make sure that it's not already there.
1164  * returns 0 on success.
1165  */
1166 
1167 int
1168 at_exit(exitlist_fn function)
1169 {
1170 	struct exitlist *ep;
1171 
1172 #ifdef INVARIANTS
1173 	/* Be noisy if the programmer has lost track of things */
1174 	if (rm_at_exit(function))
1175 		kprintf("WARNING: exit callout entry (%p) already present\n",
1176 		    function);
1177 #endif
1178 	ep = kmalloc(sizeof(*ep), M_ATEXIT, M_NOWAIT);
1179 	if (ep == NULL)
1180 		return (ENOMEM);
1181 	ep->function = function;
1182 	TAILQ_INSERT_TAIL(&exit_list, ep, next);
1183 	return (0);
1184 }
1185 
1186 /*
1187  * Scan the exit callout list for the given item and remove it.
1188  * Returns the number of items removed (0 or 1)
1189  */
1190 int
1191 rm_at_exit(exitlist_fn function)
1192 {
1193 	struct exitlist *ep;
1194 
1195 	TAILQ_FOREACH(ep, &exit_list, next) {
1196 		if (ep->function == function) {
1197 			TAILQ_REMOVE(&exit_list, ep, next);
1198 			kfree(ep, M_ATEXIT);
1199 			return(1);
1200 		}
1201 	}
1202 	return (0);
1203 }
1204 
1205 /*
1206  * LWP reaper related code.
1207  */
1208 static void
1209 reaplwps(void *context, int dummy)
1210 {
1211 	struct lwplist *lwplist = context;
1212 	struct lwp *lp;
1213 
1214 	lwkt_gettoken(&deadlwp_token);
1215 	while ((lp = LIST_FIRST(lwplist))) {
1216 		LIST_REMOVE(lp, u.lwp_reap_entry);
1217 		reaplwp(lp);
1218 	}
1219 	lwkt_reltoken(&deadlwp_token);
1220 }
1221 
1222 static void
1223 reaplwp(struct lwp *lp)
1224 {
1225 	while (lwp_wait(lp) == 0)
1226 		;
1227 	lwp_dispose(lp);
1228 }
1229 
1230 static void
1231 deadlwp_init(void)
1232 {
1233 	int cpu;
1234 
1235 	for (cpu = 0; cpu < ncpus; cpu++) {
1236 		LIST_INIT(&deadlwp_list[cpu]);
1237 		deadlwp_task[cpu] = kmalloc(sizeof(*deadlwp_task[cpu]),
1238 					    M_DEVBUF, M_WAITOK);
1239 		TASK_INIT(deadlwp_task[cpu], 0, reaplwps, &deadlwp_list[cpu]);
1240 	}
1241 }
1242 
1243 SYSINIT(deadlwpinit, SI_SUB_CONFIGURE, SI_ORDER_ANY, deadlwp_init, NULL);
1244