xref: /dragonfly/sys/kern/kern_exit.c (revision b4f25088)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_exit.c	8.7 (Berkeley) 2/12/94
35  * $FreeBSD: src/sys/kern/kern_exit.c,v 1.92.2.11 2003/01/13 22:51:16 dillon Exp $
36  */
37 
38 #include "opt_compat.h"
39 #include "opt_ktrace.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/sysproto.h>
44 #include <sys/kernel.h>
45 #include <sys/malloc.h>
46 #include <sys/proc.h>
47 #include <sys/ktrace.h>
48 #include <sys/pioctl.h>
49 #include <sys/tty.h>
50 #include <sys/wait.h>
51 #include <sys/vnode.h>
52 #include <sys/resourcevar.h>
53 #include <sys/signalvar.h>
54 #include <sys/taskqueue.h>
55 #include <sys/ptrace.h>
56 #include <sys/acct.h>		/* for acct_process() function prototype */
57 #include <sys/filedesc.h>
58 #include <sys/shm.h>
59 #include <sys/sem.h>
60 #include <sys/jail.h>
61 #include <sys/kern_syscall.h>
62 #include <sys/unistd.h>
63 #include <sys/eventhandler.h>
64 #include <sys/dsched.h>
65 
66 #include <vm/vm.h>
67 #include <vm/vm_param.h>
68 #include <sys/lock.h>
69 #include <vm/pmap.h>
70 #include <vm/vm_map.h>
71 #include <vm/vm_extern.h>
72 #include <sys/user.h>
73 
74 #include <sys/refcount.h>
75 #include <sys/thread2.h>
76 #include <sys/sysref2.h>
77 #include <sys/mplock2.h>
78 
79 static void reaplwps(void *context, int dummy);
80 static void reaplwp(struct lwp *lp);
81 static void killlwps(struct lwp *lp);
82 
83 static MALLOC_DEFINE(M_ATEXIT, "atexit", "atexit callback");
84 
85 static struct lwkt_token deadlwp_token = LWKT_TOKEN_INITIALIZER(deadlwp_token);
86 
87 /*
88  * callout list for things to do at exit time
89  */
90 struct exitlist {
91 	exitlist_fn function;
92 	TAILQ_ENTRY(exitlist) next;
93 };
94 
95 TAILQ_HEAD(exit_list_head, exitlist);
96 static struct exit_list_head exit_list = TAILQ_HEAD_INITIALIZER(exit_list);
97 
98 /*
99  * LWP reaper data
100  */
101 struct task *deadlwp_task[MAXCPU];
102 struct lwplist deadlwp_list[MAXCPU];
103 
104 /*
105  * exit --
106  *	Death of process.
107  *
108  * SYS_EXIT_ARGS(int rval)
109  */
110 int
111 sys_exit(struct exit_args *uap)
112 {
113 	exit1(W_EXITCODE(uap->rval, 0));
114 	/* NOTREACHED */
115 }
116 
117 /*
118  * Extended exit --
119  *	Death of a lwp or process with optional bells and whistles.
120  *
121  * MPALMOSTSAFE
122  */
123 int
124 sys_extexit(struct extexit_args *uap)
125 {
126 	struct proc *p = curproc;
127 	int action, who;
128 	int error;
129 
130 	action = EXTEXIT_ACTION(uap->how);
131 	who = EXTEXIT_WHO(uap->how);
132 
133 	/* Check parameters before we might perform some action */
134 	switch (who) {
135 	case EXTEXIT_PROC:
136 	case EXTEXIT_LWP:
137 		break;
138 	default:
139 		return (EINVAL);
140 	}
141 
142 	switch (action) {
143 	case EXTEXIT_SIMPLE:
144 		break;
145 	case EXTEXIT_SETINT:
146 		error = copyout(&uap->status, uap->addr, sizeof(uap->status));
147 		if (error)
148 			return (error);
149 		break;
150 	default:
151 		return (EINVAL);
152 	}
153 
154 	lwkt_gettoken(&p->p_token);
155 
156 	switch (who) {
157 	case EXTEXIT_LWP:
158 		/*
159 		 * Be sure only to perform a simple lwp exit if there is at
160 		 * least one more lwp in the proc, which will call exit1()
161 		 * later, otherwise the proc will be an UNDEAD and not even a
162 		 * SZOMB!
163 		 */
164 		if (p->p_nthreads > 1) {
165 			lwp_exit(0);	/* called w/ p_token held */
166 			/* NOT REACHED */
167 		}
168 		/* else last lwp in proc:  do the real thing */
169 		/* FALLTHROUGH */
170 	default:	/* to help gcc */
171 	case EXTEXIT_PROC:
172 		lwkt_reltoken(&p->p_token);
173 		exit1(W_EXITCODE(uap->status, 0));
174 		/* NOTREACHED */
175 	}
176 
177 	/* NOTREACHED */
178 	lwkt_reltoken(&p->p_token);	/* safety */
179 }
180 
181 /*
182  * Kill all lwps associated with the current process except the
183  * current lwp.   Return an error if we race another thread trying to
184  * do the same thing and lose the race.
185  *
186  * If forexec is non-zero the current thread and process flags are
187  * cleaned up so they can be reused.
188  *
189  * Caller must hold curproc->p_token
190  */
191 int
192 killalllwps(int forexec)
193 {
194 	struct lwp *lp = curthread->td_lwp;
195 	struct proc *p = lp->lwp_proc;
196 
197 	/*
198 	 * Interlock against P_WEXIT.  Only one of the process's thread
199 	 * is allowed to do the master exit.
200 	 */
201 	if (p->p_flags & P_WEXIT)
202 		return (EALREADY);
203 	p->p_flags |= P_WEXIT;
204 
205 	/*
206 	 * Interlock with LWP_MP_WEXIT and kill any remaining LWPs
207 	 */
208 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
209 	if (p->p_nthreads > 1)
210 		killlwps(lp);
211 
212 	/*
213 	 * If doing this for an exec, clean up the remaining thread
214 	 * (us) for continuing operation after all the other threads
215 	 * have been killed.
216 	 */
217 	if (forexec) {
218 		atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
219 		p->p_flags &= ~P_WEXIT;
220 	}
221 	return(0);
222 }
223 
224 /*
225  * Kill all LWPs except the current one.  Do not try to signal
226  * LWPs which have exited on their own or have already been
227  * signaled.
228  */
229 static void
230 killlwps(struct lwp *lp)
231 {
232 	struct proc *p = lp->lwp_proc;
233 	struct lwp *tlp;
234 
235 	/*
236 	 * Kill the remaining LWPs.  We must send the signal before setting
237 	 * LWP_MP_WEXIT.  The setting of WEXIT is optional but helps reduce
238 	 * races.  tlp must be held across the call as it might block and
239 	 * allow the target lwp to rip itself out from under our loop.
240 	 */
241 	FOREACH_LWP_IN_PROC(tlp, p) {
242 		LWPHOLD(tlp);
243 		lwkt_gettoken(&tlp->lwp_token);
244 		if ((tlp->lwp_mpflags & LWP_MP_WEXIT) == 0) {
245 			lwpsignal(p, tlp, SIGKILL);
246 			atomic_set_int(&tlp->lwp_mpflags, LWP_MP_WEXIT);
247 		}
248 		lwkt_reltoken(&tlp->lwp_token);
249 		LWPRELE(tlp);
250 	}
251 
252 	/*
253 	 * Wait for everything to clear out.
254 	 */
255 	while (p->p_nthreads > 1) {
256 		tsleep(&p->p_nthreads, 0, "killlwps", 0);
257 	}
258 }
259 
260 /*
261  * Exit: deallocate address space and other resources, change proc state
262  * to zombie, and unlink proc from allproc and parent's lists.  Save exit
263  * status and rusage for wait().  Check for child processes and orphan them.
264  */
265 void
266 exit1(int rv)
267 {
268 	struct thread *td = curthread;
269 	struct proc *p = td->td_proc;
270 	struct lwp *lp = td->td_lwp;
271 	struct proc *q;
272 	struct vmspace *vm;
273 	struct vnode *vtmp;
274 	struct exitlist *ep;
275 	int error;
276 
277 	lwkt_gettoken(&p->p_token);
278 
279 	if (p->p_pid == 1) {
280 		kprintf("init died (signal %d, exit %d)\n",
281 		    WTERMSIG(rv), WEXITSTATUS(rv));
282 		panic("Going nowhere without my init!");
283 	}
284 	varsymset_clean(&p->p_varsymset);
285 	lockuninit(&p->p_varsymset.vx_lock);
286 
287 	/*
288 	 * Kill all lwps associated with the current process, return an
289 	 * error if we race another thread trying to do the same thing
290 	 * and lose the race.
291 	 */
292 	error = killalllwps(0);
293 	if (error) {
294 		lwp_exit(0);
295 		/* NOT REACHED */
296 	}
297 
298 	/* are we a task leader? */
299 	if (p == p->p_leader) {
300         	struct kill_args killArgs;
301 		killArgs.signum = SIGKILL;
302 		q = p->p_peers;
303 		while(q) {
304 			killArgs.pid = q->p_pid;
305 			/*
306 		         * The interface for kill is better
307 			 * than the internal signal
308 			 */
309 			sys_kill(&killArgs);
310 			q = q->p_peers;
311 		}
312 		while (p->p_peers)
313 			tsleep((caddr_t)p, 0, "exit1", 0);
314 	}
315 
316 #ifdef PGINPROF
317 	vmsizmon();
318 #endif
319 	STOPEVENT(p, S_EXIT, rv);
320 	p->p_flags |= P_POSTEXIT;	/* stop procfs stepping */
321 
322 	/*
323 	 * Check if any loadable modules need anything done at process exit.
324 	 * e.g. SYSV IPC stuff
325 	 * XXX what if one of these generates an error?
326 	 */
327 	p->p_xstat = rv;
328 	EVENTHANDLER_INVOKE(process_exit, p);
329 
330 	/*
331 	 * XXX: imho, the eventhandler stuff is much cleaner than this.
332 	 *	Maybe we should move everything to use eventhandler.
333 	 */
334 	TAILQ_FOREACH(ep, &exit_list, next)
335 		(*ep->function)(td);
336 
337 	if (p->p_flags & P_PROFIL)
338 		stopprofclock(p);
339 
340 	SIGEMPTYSET(p->p_siglist);
341 	SIGEMPTYSET(lp->lwp_siglist);
342 	if (timevalisset(&p->p_realtimer.it_value))
343 		callout_stop_sync(&p->p_ithandle);
344 
345 	/*
346 	 * Reset any sigio structures pointing to us as a result of
347 	 * F_SETOWN with our pid.
348 	 */
349 	funsetownlst(&p->p_sigiolst);
350 
351 	/*
352 	 * Close open files and release open-file table.
353 	 * This may block!
354 	 */
355 	fdfree(p, NULL);
356 
357 	if(p->p_leader->p_peers) {
358 		q = p->p_leader;
359 		while(q->p_peers != p)
360 			q = q->p_peers;
361 		q->p_peers = p->p_peers;
362 		wakeup((caddr_t)p->p_leader);
363 	}
364 
365 	/*
366 	 * XXX Shutdown SYSV semaphores
367 	 */
368 	semexit(p);
369 
370 	KKASSERT(p->p_numposixlocks == 0);
371 
372 	/* The next two chunks should probably be moved to vmspace_exit. */
373 	vm = p->p_vmspace;
374 
375 	/*
376 	 * Clean up data related to virtual kernel operation.  Clean up
377 	 * any vkernel context related to the current lwp now so we can
378 	 * destroy p_vkernel.
379 	 */
380 	if (p->p_vkernel) {
381 		vkernel_lwp_exit(lp);
382 		vkernel_exit(p);
383 	}
384 
385 	/*
386 	 * Release user portion of address space.
387 	 * This releases references to vnodes,
388 	 * which could cause I/O if the file has been unlinked.
389 	 * Need to do this early enough that we can still sleep.
390 	 * Can't free the entire vmspace as the kernel stack
391 	 * may be mapped within that space also.
392 	 *
393 	 * Processes sharing the same vmspace may exit in one order, and
394 	 * get cleaned up by vmspace_exit() in a different order.  The
395 	 * last exiting process to reach this point releases as much of
396 	 * the environment as it can, and the last process cleaned up
397 	 * by vmspace_exit() (which decrements exitingcnt) cleans up the
398 	 * remainder.
399 	 */
400 	vmspace_exitbump(vm);
401 	sysref_put(&vm->vm_sysref);
402 
403 	if (SESS_LEADER(p)) {
404 		struct session *sp = p->p_session;
405 
406 		if (sp->s_ttyvp) {
407 			/*
408 			 * We are the controlling process.  Signal the
409 			 * foreground process group, drain the controlling
410 			 * terminal, and revoke access to the controlling
411 			 * terminal.
412 			 *
413 			 * NOTE: while waiting for the process group to exit
414 			 * it is possible that one of the processes in the
415 			 * group will revoke the tty, so the ttyclosesession()
416 			 * function will re-check sp->s_ttyvp.
417 			 */
418 			if (sp->s_ttyp && (sp->s_ttyp->t_session == sp)) {
419 				if (sp->s_ttyp->t_pgrp)
420 					pgsignal(sp->s_ttyp->t_pgrp, SIGHUP, 1);
421 				ttywait(sp->s_ttyp);
422 				ttyclosesession(sp, 1); /* also revoke */
423 			}
424 			/*
425 			 * Release the tty.  If someone has it open via
426 			 * /dev/tty then close it (since they no longer can
427 			 * once we've NULL'd it out).
428 			 */
429 			ttyclosesession(sp, 0);
430 
431 			/*
432 			 * s_ttyp is not zero'd; we use this to indicate
433 			 * that the session once had a controlling terminal.
434 			 * (for logging and informational purposes)
435 			 */
436 		}
437 		sp->s_leader = NULL;
438 	}
439 	fixjobc(p, p->p_pgrp, 0);
440 	(void)acct_process(p);
441 #ifdef KTRACE
442 	/*
443 	 * release trace file
444 	 */
445 	if (p->p_tracenode)
446 		ktrdestroy(&p->p_tracenode);
447 	p->p_traceflag = 0;
448 #endif
449 	/*
450 	 * Release reference to text vnode
451 	 */
452 	if ((vtmp = p->p_textvp) != NULL) {
453 		p->p_textvp = NULL;
454 		vrele(vtmp);
455 	}
456 
457 	/* Release namecache handle to text file */
458 	if (p->p_textnch.ncp)
459 		cache_drop(&p->p_textnch);
460 
461 	/*
462 	 * We have to handle PPWAIT here or proc_move_allproc_zombie()
463 	 * will block on the PHOLD() the parent is doing.
464 	 */
465 	if (p->p_flags & P_PPWAIT) {
466 		p->p_flags &= ~P_PPWAIT;
467 		wakeup(p->p_pptr);
468 	}
469 
470 	/*
471 	 * Move the process to the zombie list.  This will block
472 	 * until the process p_lock count reaches 0.  The process will
473 	 * not be reaped until TDF_EXITING is set by cpu_thread_exit(),
474 	 * which is called from cpu_proc_exit().
475 	 */
476 	proc_move_allproc_zombie(p);
477 
478 	/*
479 	 * Reparent all of this process's children to the init process.
480 	 * We must hold initproc->p_token in order to mess with
481 	 * initproc->p_children.  We already hold p->p_token (to remove
482 	 * the children from our list).
483 	 */
484 	q = LIST_FIRST(&p->p_children);
485 	if (q) {
486 		lwkt_gettoken(&initproc->p_token);
487 		while ((q = LIST_FIRST(&p->p_children)) != NULL) {
488 			PHOLD(q);
489 			lwkt_gettoken(&q->p_token);
490 			if (q != LIST_FIRST(&p->p_children)) {
491 				lwkt_reltoken(&q->p_token);
492 				PRELE(q);
493 				continue;
494 			}
495 			LIST_REMOVE(q, p_sibling);
496 			LIST_INSERT_HEAD(&initproc->p_children, q, p_sibling);
497 			q->p_pptr = initproc;
498 			q->p_sigparent = SIGCHLD;
499 
500 			/*
501 			 * Traced processes are killed
502 			 * since their existence means someone is screwing up.
503 			 */
504 			if (q->p_flags & P_TRACED) {
505 				q->p_flags &= ~P_TRACED;
506 				ksignal(q, SIGKILL);
507 			}
508 			lwkt_reltoken(&q->p_token);
509 			PRELE(q);
510 		}
511 		lwkt_reltoken(&initproc->p_token);
512 		wakeup(initproc);
513 	}
514 
515 	/*
516 	 * Save exit status and final rusage info, adding in child rusage
517 	 * info and self times.
518 	 */
519 	calcru_proc(p, &p->p_ru);
520 	ruadd(&p->p_ru, &p->p_cru);
521 
522 	/*
523 	 * notify interested parties of our demise.
524 	 */
525 	KNOTE(&p->p_klist, NOTE_EXIT);
526 
527 	/*
528 	 * Notify parent that we're gone.  If parent has the PS_NOCLDWAIT
529 	 * flag set, or if the handler is set to SIG_IGN, notify process 1
530 	 * instead (and hope it will handle this situation).
531 	 */
532 	if (p->p_pptr->p_sigacts->ps_flag & (PS_NOCLDWAIT | PS_CLDSIGIGN)) {
533 		proc_reparent(p, initproc);
534 	}
535 
536 	/* lwkt_gettoken(&proc_token); */
537 	q = p->p_pptr;
538 	PHOLD(q);
539 	if (p->p_sigparent && q != initproc) {
540 	        ksignal(q, p->p_sigparent);
541 	} else {
542 	        ksignal(q, SIGCHLD);
543 	}
544 
545 	p->p_flags &= ~P_TRACED;
546 	wakeup(p->p_pptr);
547 
548 	PRELE(q);
549 	/* lwkt_reltoken(&proc_token); */
550 	/* NOTE: p->p_pptr can get ripped out */
551 	/*
552 	 * cpu_exit is responsible for clearing curproc, since
553 	 * it is heavily integrated with the thread/switching sequence.
554 	 *
555 	 * Other substructures are freed from wait().
556 	 */
557 	plimit_free(p);
558 
559 	/*
560 	 * Release the current user process designation on the process so
561 	 * the userland scheduler can work in someone else.
562 	 */
563 	p->p_usched->release_curproc(lp);
564 
565 	/*
566 	 * Finally, call machine-dependent code to release as many of the
567 	 * lwp's resources as we can and halt execution of this thread.
568 	 */
569 	lwp_exit(1);
570 }
571 
572 /*
573  * Eventually called by every exiting LWP
574  *
575  * p->p_token must be held.  mplock may be held and will be released.
576  */
577 void
578 lwp_exit(int masterexit)
579 {
580 	struct thread *td = curthread;
581 	struct lwp *lp = td->td_lwp;
582 	struct proc *p = lp->lwp_proc;
583 	int dowake = 0;
584 
585 	/*
586 	 * lwp_exit() may be called without setting LWP_MP_WEXIT, so
587 	 * make sure it is set here.
588 	 */
589 	ASSERT_LWKT_TOKEN_HELD(&p->p_token);
590 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
591 
592 	/*
593 	 * Clean up any virtualization
594 	 */
595 	if (lp->lwp_vkernel)
596 		vkernel_lwp_exit(lp);
597 
598 	/*
599 	 * Clean up select/poll support
600 	 */
601 	kqueue_terminate(&lp->lwp_kqueue);
602 
603 	/*
604 	 * Clean up any syscall-cached ucred
605 	 */
606 	if (td->td_ucred) {
607 		crfree(td->td_ucred);
608 		td->td_ucred = NULL;
609 	}
610 
611 	/*
612 	 * Nobody actually wakes us when the lock
613 	 * count reaches zero, so just wait one tick.
614 	 */
615 	while (lp->lwp_lock > 0)
616 		tsleep(lp, 0, "lwpexit", 1);
617 
618 	/* Hand down resource usage to our proc */
619 	ruadd(&p->p_ru, &lp->lwp_ru);
620 
621 	/*
622 	 * If we don't hold the process until the LWP is reaped wait*()
623 	 * may try to dispose of its vmspace before all the LWPs have
624 	 * actually terminated.
625 	 */
626 	PHOLD(p);
627 
628 	/*
629 	 * Do any remaining work that might block on us.  We should be
630 	 * coded such that further blocking is ok after decrementing
631 	 * p_nthreads but don't take the chance.
632 	 */
633 	dsched_exit_thread(td);
634 	biosched_done(curthread);
635 
636 	/*
637 	 * We have to use the reaper for all the LWPs except the one doing
638 	 * the master exit.  The LWP doing the master exit can just be
639 	 * left on p_lwps and the process reaper will deal with it
640 	 * synchronously, which is much faster.
641 	 *
642 	 * Wakeup anyone waiting on p_nthreads to drop to 1 or 0.
643 	 *
644 	 * The process is left held until the reaper calls lwp_dispose() on
645 	 * the lp (after calling lwp_wait()).
646 	 */
647 	if (masterexit == 0) {
648 		lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
649 		--p->p_nthreads;
650 		if (p->p_nthreads <= 1)
651 			dowake = 1;
652 		lwkt_gettoken(&deadlwp_token);
653 		LIST_INSERT_HEAD(&deadlwp_list[mycpuid], lp, u.lwp_reap_entry);
654 		taskqueue_enqueue(taskqueue_thread[mycpuid],
655 				  deadlwp_task[mycpuid]);
656 		lwkt_reltoken(&deadlwp_token);
657 	} else {
658 		--p->p_nthreads;
659 		if (p->p_nthreads <= 1)
660 			dowake = 1;
661 	}
662 
663 	/*
664 	 * Release p_token.  Issue the wakeup() on p_nthreads if necessary,
665 	 * as late as possible to give us a chance to actually deschedule and
666 	 * switch away before another cpu core hits reaplwp().
667 	 */
668 	lwkt_reltoken(&p->p_token);
669 	if (dowake)
670 		wakeup(&p->p_nthreads);
671 
672 	/*
673 	 * Tell the userland scheduler that we are going away
674 	 */
675 	p->p_usched->heuristic_exiting(lp, p);
676 
677 	cpu_lwp_exit();
678 }
679 
680 /*
681  * Wait until a lwp is completely dead.  The final interlock in this drama
682  * is when TDF_EXITING is set in cpu_thread_exit() just before the final
683  * switchout.
684  *
685  * At the point TDF_EXITING is set a complete exit is accomplished when
686  * TDF_RUNNING and TDF_PREEMPT_LOCK are both clear.  td_mpflags has two
687  * post-switch interlock flags that can be used to wait for the TDF_
688  * flags to clear.
689  *
690  * Returns non-zero on success, and zero if the caller needs to retry
691  * the lwp_wait().
692  */
693 static int
694 lwp_wait(struct lwp *lp)
695 {
696 	struct thread *td = lp->lwp_thread;
697 	u_int mpflags;
698 
699 	KKASSERT(lwkt_preempted_proc() != lp);
700 
701 	/*
702 	 * This bit of code uses the thread destruction interlock
703 	 * managed by lwkt_switch_return() to wait for the lwp's
704 	 * thread to completely disengage.
705 	 *
706 	 * It is possible for us to race another cpu core so we
707 	 * have to do this correctly.
708 	 */
709 	for (;;) {
710 		mpflags = td->td_mpflags;
711 		cpu_ccfence();
712 		if (mpflags & TDF_MP_EXITSIG)
713 			break;
714 		tsleep_interlock(td, 0);
715 		if (atomic_cmpset_int(&td->td_mpflags, mpflags,
716 				      mpflags | TDF_MP_EXITWAIT)) {
717 			tsleep(td, PINTERLOCKED, "lwpxt", 0);
718 		}
719 	}
720 
721 	/*
722 	 * We've already waited for the core exit but there can still
723 	 * be other refs from e.g. process scans and such.
724 	 */
725 	if (lp->lwp_lock > 0) {
726 		tsleep(lp, 0, "lwpwait1", 1);
727 		return(0);
728 	}
729 	if (td->td_refs) {
730 		tsleep(td, 0, "lwpwait2", 1);
731 		return(0);
732 	}
733 
734 	/*
735 	 * Now that we have the thread destruction interlock these flags
736 	 * really should already be cleaned up, keep a check for safety.
737 	 *
738 	 * We can't rip its stack out from under it until TDF_EXITING is
739 	 * set and both TDF_RUNNING and TDF_PREEMPT_LOCK are clear.
740 	 * TDF_PREEMPT_LOCK must be checked because TDF_RUNNING
741 	 * will be cleared temporarily if a thread gets preempted.
742 	 */
743 	while ((td->td_flags & (TDF_RUNNING |
744 			        TDF_PREEMPT_LOCK |
745 			        TDF_EXITING)) != TDF_EXITING) {
746 		tsleep(lp, 0, "lwpwait3", 1);
747 		return (0);
748 	}
749 
750 	KASSERT((td->td_flags & (TDF_RUNQ|TDF_TSLEEPQ)) == 0,
751 		("lwp_wait: td %p (%s) still on run or sleep queue",
752 		td, td->td_comm));
753 	return (1);
754 }
755 
756 /*
757  * Release the resources associated with a lwp.
758  * The lwp must be completely dead.
759  */
760 void
761 lwp_dispose(struct lwp *lp)
762 {
763 	struct thread *td = lp->lwp_thread;
764 
765 	KKASSERT(lwkt_preempted_proc() != lp);
766 	KKASSERT(td->td_refs == 0);
767 	KKASSERT((td->td_flags & (TDF_RUNNING |
768 				  TDF_PREEMPT_LOCK |
769 				  TDF_EXITING)) == TDF_EXITING);
770 
771 	PRELE(lp->lwp_proc);
772 	lp->lwp_proc = NULL;
773 	if (td != NULL) {
774 		td->td_proc = NULL;
775 		td->td_lwp = NULL;
776 		lp->lwp_thread = NULL;
777 		lwkt_free_thread(td);
778 	}
779 	kfree(lp, M_LWP);
780 }
781 
782 /*
783  * MPSAFE
784  */
785 int
786 sys_wait4(struct wait_args *uap)
787 {
788 	struct rusage rusage;
789 	int error, status;
790 
791 	error = kern_wait(uap->pid, (uap->status ? &status : NULL),
792 			  uap->options, (uap->rusage ? &rusage : NULL),
793 			  &uap->sysmsg_result);
794 
795 	if (error == 0 && uap->status)
796 		error = copyout(&status, uap->status, sizeof(*uap->status));
797 	if (error == 0 && uap->rusage)
798 		error = copyout(&rusage, uap->rusage, sizeof(*uap->rusage));
799 	return (error);
800 }
801 
802 /*
803  * wait1()
804  *
805  * wait_args(int pid, int *status, int options, struct rusage *rusage)
806  *
807  * MPALMOSTSAFE
808  */
809 int
810 kern_wait(pid_t pid, int *status, int options, struct rusage *rusage, int *res)
811 {
812 	struct thread *td = curthread;
813 	struct lwp *lp;
814 	struct proc *q = td->td_proc;
815 	struct proc *p, *t;
816 	struct pargs *pa;
817 	struct sigacts *ps;
818 	int nfound, error;
819 
820 	if (pid == 0)
821 		pid = -q->p_pgid;
822 	if (options &~ (WUNTRACED|WNOHANG|WCONTINUED|WLINUXCLONE))
823 		return (EINVAL);
824 
825 	lwkt_gettoken(&q->p_token);
826 loop:
827 	/*
828 	 * All sorts of things can change due to blocking so we have to loop
829 	 * all the way back up here.
830 	 *
831 	 * The problem is that if a process group is stopped and the parent
832 	 * is doing a wait*(..., WUNTRACED, ...), it will see the STOP
833 	 * of the child and then stop itself when it tries to return from the
834 	 * system call.  When the process group is resumed the parent will
835 	 * then get the STOP status even though the child has now resumed
836 	 * (a followup wait*() will get the CONT status).
837 	 *
838 	 * Previously the CONT would overwrite the STOP because the tstop
839 	 * was handled within tsleep(), and the parent would only see
840 	 * the CONT when both are stopped and continued together.  This little
841 	 * two-line hack restores this effect.
842 	 */
843 	while (q->p_stat == SSTOP)
844             tstop();
845 
846 	nfound = 0;
847 
848 	/*
849 	 * Loop on children.
850 	 *
851 	 * NOTE: We don't want to break q's p_token in the loop for the
852 	 *	 case where no children are found or we risk breaking the
853 	 *	 interlock between child and parent.
854 	 */
855 	LIST_FOREACH(p, &q->p_children, p_sibling) {
856 		if (pid != WAIT_ANY &&
857 		    p->p_pid != pid && p->p_pgid != -pid) {
858 			continue;
859 		}
860 
861 		/*
862 		 * This special case handles a kthread spawned by linux_clone
863 		 * (see linux_misc.c).  The linux_wait4 and linux_waitpid
864 		 * functions need to be able to distinguish between waiting
865 		 * on a process and waiting on a thread.  It is a thread if
866 		 * p_sigparent is not SIGCHLD, and the WLINUXCLONE option
867 		 * signifies we want to wait for threads and not processes.
868 		 */
869 		if ((p->p_sigparent != SIGCHLD) ^
870 		    ((options & WLINUXCLONE) != 0)) {
871 			continue;
872 		}
873 
874 		nfound++;
875 		if (p->p_stat == SZOMB) {
876 			/*
877 			 * We may go into SZOMB with threads still present.
878 			 * We must wait for them to exit before we can reap
879 			 * the master thread, otherwise we may race reaping
880 			 * non-master threads.
881 			 *
882 			 * Only this routine can remove a process from
883 			 * the zombie list and destroy it, use PACQUIREZOMB()
884 			 * to serialize us and loop if it blocks (interlocked
885 			 * by the parent's q->p_token).
886 			 *
887 			 * WARNING!  (p) can be invalid when PHOLDZOMB(p)
888 			 *	     returns non-zero.  Be sure not to
889 			 *	     mess with it.
890 			 */
891 			if (PHOLDZOMB(p))
892 				goto loop;
893 			lwkt_gettoken(&p->p_token);
894 			if (p->p_pptr != q) {
895 				lwkt_reltoken(&p->p_token);
896 				PRELEZOMB(p);
897 				goto loop;
898 			}
899 			while (p->p_nthreads > 0) {
900 				tsleep(&p->p_nthreads, 0, "lwpzomb", hz);
901 			}
902 
903 			/*
904 			 * Reap any LWPs left in p->p_lwps.  This is usually
905 			 * just the last LWP.  This must be done before
906 			 * we loop on p_lock since the lwps hold a ref on
907 			 * it as a vmspace interlock.
908 			 *
909 			 * Once that is accomplished p_nthreads had better
910 			 * be zero.
911 			 */
912 			while ((lp = RB_ROOT(&p->p_lwp_tree)) != NULL) {
913 				lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
914 				reaplwp(lp);
915 			}
916 			KKASSERT(p->p_nthreads == 0);
917 
918 			/*
919 			 * Don't do anything really bad until all references
920 			 * to the process go away.  This may include other
921 			 * LWPs which are still in the process of being
922 			 * reaped.  We can't just pull the rug out from under
923 			 * them because they may still be using the VM space.
924 			 *
925 			 * Certain kernel facilities such as /proc will also
926 			 * put a hold on the process for short periods of
927 			 * time.
928 			 */
929 			PRELE(p);
930 			PSTALL(p, "reap3", 0);
931 
932 			/* Take care of our return values. */
933 			*res = p->p_pid;
934 
935 			if (status)
936 				*status = p->p_xstat;
937 			if (rusage)
938 				*rusage = p->p_ru;
939 			/*
940 			 * If we got the child via a ptrace 'attach',
941 			 * we need to give it back to the old parent.
942 			 */
943 			if (p->p_oppid && (t = pfind(p->p_oppid)) != NULL) {
944 				PHOLD(p);
945 				p->p_oppid = 0;
946 				proc_reparent(p, t);
947 				ksignal(t, SIGCHLD);
948 				wakeup((caddr_t)t);
949 				error = 0;
950 				PRELE(t);
951 				lwkt_reltoken(&p->p_token);
952 				PRELEZOMB(p);
953 				goto done;
954 			}
955 
956 			/*
957 			 * Unlink the proc from its process group so that
958 			 * the following operations won't lead to an
959 			 * inconsistent state for processes running down
960 			 * the zombie list.
961 			 */
962 			proc_remove_zombie(p);
963 			lwkt_reltoken(&p->p_token);
964 			leavepgrp(p);
965 
966 			p->p_xstat = 0;
967 			ruadd(&q->p_cru, &p->p_ru);
968 
969 			/*
970 			 * Decrement the count of procs running with this uid.
971 			 */
972 			chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0);
973 
974 			/*
975 			 * Free up credentials.
976 			 */
977 			crfree(p->p_ucred);
978 			p->p_ucred = NULL;
979 
980 			/*
981 			 * Remove unused arguments
982 			 */
983 			pa = p->p_args;
984 			p->p_args = NULL;
985 			if (pa && refcount_release(&pa->ar_ref)) {
986 				kfree(pa, M_PARGS);
987 				pa = NULL;
988 			}
989 
990 			ps = p->p_sigacts;
991 			p->p_sigacts = NULL;
992 			if (ps && refcount_release(&ps->ps_refcnt)) {
993 				kfree(ps, M_SUBPROC);
994 				ps = NULL;
995 			}
996 
997 			/*
998 			 * Our exitingcount was incremented when the process
999 			 * became a zombie, now that the process has been
1000 			 * removed from (almost) all lists we should be able
1001 			 * to safely destroy its vmspace.  Wait for any current
1002 			 * holders to go away (so the vmspace remains stable),
1003 			 * then scrap it.
1004 			 */
1005 			PSTALL(p, "reap4", 0);
1006 			vmspace_exitfree(p);
1007 			PSTALL(p, "reap5", 0);
1008 
1009 			/*
1010 			 * NOTE: We have to officially release ZOMB in order
1011 			 *	 to ensure that a racing thread in kern_wait()
1012 			 *	 which blocked on ZOMB is woken up.
1013 			 */
1014 			PHOLD(p);
1015 			PRELEZOMB(p);
1016 			kfree(p, M_PROC);
1017 			atomic_add_int(&nprocs, -1);
1018 			error = 0;
1019 			goto done;
1020 		}
1021 		if (p->p_stat == SSTOP && (p->p_flags & P_WAITED) == 0 &&
1022 		    ((p->p_flags & P_TRACED) || (options & WUNTRACED))) {
1023 			PHOLD(p);
1024 			lwkt_gettoken(&p->p_token);
1025 			if (p->p_pptr != q) {
1026 				lwkt_reltoken(&p->p_token);
1027 				PRELE(p);
1028 				goto loop;
1029 			}
1030 			if (p->p_stat != SSTOP ||
1031 			    (p->p_flags & P_WAITED) != 0 ||
1032 			    ((p->p_flags & P_TRACED) == 0 &&
1033 			     (options & WUNTRACED) == 0)) {
1034 				lwkt_reltoken(&p->p_token);
1035 				PRELE(p);
1036 				goto loop;
1037 			}
1038 
1039 			p->p_flags |= P_WAITED;
1040 
1041 			*res = p->p_pid;
1042 			if (status)
1043 				*status = W_STOPCODE(p->p_xstat);
1044 			/* Zero rusage so we get something consistent. */
1045 			if (rusage)
1046 				bzero(rusage, sizeof(*rusage));
1047 			error = 0;
1048 			lwkt_reltoken(&p->p_token);
1049 			PRELE(p);
1050 			goto done;
1051 		}
1052 		if ((options & WCONTINUED) && (p->p_flags & P_CONTINUED)) {
1053 			PHOLD(p);
1054 			lwkt_gettoken(&p->p_token);
1055 			if (p->p_pptr != q) {
1056 				lwkt_reltoken(&p->p_token);
1057 				PRELE(p);
1058 				goto loop;
1059 			}
1060 			if ((p->p_flags & P_CONTINUED) == 0) {
1061 				lwkt_reltoken(&p->p_token);
1062 				PRELE(p);
1063 				goto loop;
1064 			}
1065 
1066 			*res = p->p_pid;
1067 			p->p_flags &= ~P_CONTINUED;
1068 
1069 			if (status)
1070 				*status = SIGCONT;
1071 			error = 0;
1072 			lwkt_reltoken(&p->p_token);
1073 			PRELE(p);
1074 			goto done;
1075 		}
1076 	}
1077 	if (nfound == 0) {
1078 		error = ECHILD;
1079 		goto done;
1080 	}
1081 	if (options & WNOHANG) {
1082 		*res = 0;
1083 		error = 0;
1084 		goto done;
1085 	}
1086 
1087 	/*
1088 	 * Wait for signal - interlocked using q->p_token.
1089 	 */
1090 	error = tsleep(q, PCATCH, "wait", 0);
1091 	if (error) {
1092 done:
1093 		lwkt_reltoken(&q->p_token);
1094 		return (error);
1095 	}
1096 	goto loop;
1097 }
1098 
1099 /*
1100  * Change child's parent process to parent.
1101  *
1102  * p_children/p_sibling requires the parent's token, and
1103  * changing pptr requires the child's token, so we have to
1104  * get three tokens to do this operation.  We also need to
1105  * hold pointers that might get ripped out from under us to
1106  * preserve structural integrity.
1107  *
1108  * It is possible to race another reparent or disconnect or other
1109  * similar operation.  We must retry when this situation occurs.
1110  * Once we successfully reparent the process we no longer care
1111  * about any races.
1112  */
1113 void
1114 proc_reparent(struct proc *child, struct proc *parent)
1115 {
1116 	struct proc *opp;
1117 
1118 	PHOLD(parent);
1119 	while ((opp = child->p_pptr) != parent) {
1120 		PHOLD(opp);
1121 		lwkt_gettoken(&opp->p_token);
1122 		lwkt_gettoken(&child->p_token);
1123 		lwkt_gettoken(&parent->p_token);
1124 		if (child->p_pptr != opp) {
1125 			lwkt_reltoken(&parent->p_token);
1126 			lwkt_reltoken(&child->p_token);
1127 			lwkt_reltoken(&opp->p_token);
1128 			PRELE(opp);
1129 			continue;
1130 		}
1131 		LIST_REMOVE(child, p_sibling);
1132 		LIST_INSERT_HEAD(&parent->p_children, child, p_sibling);
1133 		child->p_pptr = parent;
1134 		lwkt_reltoken(&parent->p_token);
1135 		lwkt_reltoken(&child->p_token);
1136 		lwkt_reltoken(&opp->p_token);
1137 		if (LIST_EMPTY(&opp->p_children))
1138 			wakeup(opp);
1139 		PRELE(opp);
1140 		break;
1141 	}
1142 	PRELE(parent);
1143 }
1144 
1145 /*
1146  * The next two functions are to handle adding/deleting items on the
1147  * exit callout list
1148  *
1149  * at_exit():
1150  * Take the arguments given and put them onto the exit callout list,
1151  * However first make sure that it's not already there.
1152  * returns 0 on success.
1153  */
1154 
1155 int
1156 at_exit(exitlist_fn function)
1157 {
1158 	struct exitlist *ep;
1159 
1160 #ifdef INVARIANTS
1161 	/* Be noisy if the programmer has lost track of things */
1162 	if (rm_at_exit(function))
1163 		kprintf("WARNING: exit callout entry (%p) already present\n",
1164 		    function);
1165 #endif
1166 	ep = kmalloc(sizeof(*ep), M_ATEXIT, M_NOWAIT);
1167 	if (ep == NULL)
1168 		return (ENOMEM);
1169 	ep->function = function;
1170 	TAILQ_INSERT_TAIL(&exit_list, ep, next);
1171 	return (0);
1172 }
1173 
1174 /*
1175  * Scan the exit callout list for the given item and remove it.
1176  * Returns the number of items removed (0 or 1)
1177  */
1178 int
1179 rm_at_exit(exitlist_fn function)
1180 {
1181 	struct exitlist *ep;
1182 
1183 	TAILQ_FOREACH(ep, &exit_list, next) {
1184 		if (ep->function == function) {
1185 			TAILQ_REMOVE(&exit_list, ep, next);
1186 			kfree(ep, M_ATEXIT);
1187 			return(1);
1188 		}
1189 	}
1190 	return (0);
1191 }
1192 
1193 /*
1194  * LWP reaper related code.
1195  */
1196 static void
1197 reaplwps(void *context, int dummy)
1198 {
1199 	struct lwplist *lwplist = context;
1200 	struct lwp *lp;
1201 
1202 	lwkt_gettoken(&deadlwp_token);
1203 	while ((lp = LIST_FIRST(lwplist))) {
1204 		LIST_REMOVE(lp, u.lwp_reap_entry);
1205 		reaplwp(lp);
1206 	}
1207 	lwkt_reltoken(&deadlwp_token);
1208 }
1209 
1210 static void
1211 reaplwp(struct lwp *lp)
1212 {
1213 	while (lwp_wait(lp) == 0)
1214 		;
1215 	lwp_dispose(lp);
1216 }
1217 
1218 static void
1219 deadlwp_init(void)
1220 {
1221 	int cpu;
1222 
1223 	for (cpu = 0; cpu < ncpus; cpu++) {
1224 		LIST_INIT(&deadlwp_list[cpu]);
1225 		deadlwp_task[cpu] = kmalloc(sizeof(*deadlwp_task[cpu]),
1226 					    M_DEVBUF, M_WAITOK);
1227 		TASK_INIT(deadlwp_task[cpu], 0, reaplwps, &deadlwp_list[cpu]);
1228 	}
1229 }
1230 
1231 SYSINIT(deadlwpinit, SI_SUB_CONFIGURE, SI_ORDER_ANY, deadlwp_init, NULL);
1232