1 /* 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)kern_exit.c 8.7 (Berkeley) 2/12/94 35 * $FreeBSD: src/sys/kern/kern_exit.c,v 1.92.2.11 2003/01/13 22:51:16 dillon Exp $ 36 */ 37 38 #include "opt_ktrace.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/sysmsg.h> 43 #include <sys/kernel.h> 44 #include <sys/malloc.h> 45 #include <sys/proc.h> 46 #include <sys/ktrace.h> 47 #include <sys/pioctl.h> 48 #include <sys/tty.h> 49 #include <sys/wait.h> 50 #include <sys/vnode.h> 51 #include <sys/resourcevar.h> 52 #include <sys/signalvar.h> 53 #include <sys/taskqueue.h> 54 #include <sys/ptrace.h> 55 #include <sys/acct.h> /* for acct_process() function prototype */ 56 #include <sys/filedesc.h> 57 #include <sys/shm.h> 58 #include <sys/sem.h> 59 #include <sys/jail.h> 60 #include <sys/kern_syscall.h> 61 #include <sys/unistd.h> 62 #include <sys/eventhandler.h> 63 #include <sys/dsched.h> 64 65 #include <vm/vm.h> 66 #include <vm/vm_param.h> 67 #include <sys/lock.h> 68 #include <vm/pmap.h> 69 #include <vm/vm_map.h> 70 #include <vm/vm_extern.h> 71 72 #include <sys/refcount.h> 73 #include <sys/spinlock2.h> 74 75 #include <machine/vmm.h> 76 77 static void reaplwps(void *context, int dummy); 78 static void reaplwp(struct lwp *lp); 79 static void killlwps(struct lwp *lp); 80 81 static MALLOC_DEFINE(M_ATEXIT, "atexit", "atexit callback"); 82 83 /* 84 * callout list for things to do at exit time 85 */ 86 struct exitlist { 87 exitlist_fn function; 88 TAILQ_ENTRY(exitlist) next; 89 }; 90 91 TAILQ_HEAD(exit_list_head, exitlist); 92 static struct exit_list_head exit_list = TAILQ_HEAD_INITIALIZER(exit_list); 93 94 /* 95 * LWP reaper data 96 */ 97 static struct task *deadlwp_task[MAXCPU]; 98 static struct lwplist deadlwp_list[MAXCPU]; 99 static struct lwkt_token deadlwp_token[MAXCPU]; 100 101 void (*linux_task_drop_callback)(thread_t td); 102 void (*linux_proc_drop_callback)(struct proc *p); 103 104 /* 105 * exit -- 106 * Death of process. 107 * 108 * SYS_EXIT_ARGS(int rval) 109 */ 110 int 111 sys_exit(struct sysmsg *sysmsg, const struct exit_args *uap) 112 { 113 exit1(W_EXITCODE(uap->rval, 0)); 114 /* NOTREACHED */ 115 } 116 117 /* 118 * Extended exit -- 119 * Death of a lwp or process with optional bells and whistles. 120 */ 121 int 122 sys_extexit(struct sysmsg *sysmsg, const struct extexit_args *uap) 123 { 124 struct proc *p = curproc; 125 int action, who; 126 int error; 127 128 action = EXTEXIT_ACTION(uap->how); 129 who = EXTEXIT_WHO(uap->how); 130 131 /* Check parameters before we might perform some action */ 132 switch (who) { 133 case EXTEXIT_PROC: 134 case EXTEXIT_LWP: 135 break; 136 default: 137 return (EINVAL); 138 } 139 140 switch (action) { 141 case EXTEXIT_SIMPLE: 142 break; 143 case EXTEXIT_SETINT: 144 error = copyout(&uap->status, uap->addr, sizeof(uap->status)); 145 if (error) 146 return (error); 147 break; 148 default: 149 return (EINVAL); 150 } 151 152 lwkt_gettoken(&p->p_token); 153 154 switch (who) { 155 case EXTEXIT_LWP: 156 /* 157 * Be sure only to perform a simple lwp exit if there is at 158 * least one more lwp in the proc, which will call exit1() 159 * later, otherwise the proc will be an UNDEAD and not even a 160 * SZOMB! 161 */ 162 if (p->p_nthreads > 1) { 163 lwp_exit(0, NULL); /* called w/ p_token held */ 164 /* NOT REACHED */ 165 } 166 /* else last lwp in proc: do the real thing */ 167 /* FALLTHROUGH */ 168 default: /* to help gcc */ 169 case EXTEXIT_PROC: 170 lwkt_reltoken(&p->p_token); 171 exit1(W_EXITCODE(uap->status, 0)); 172 /* NOTREACHED */ 173 } 174 175 /* NOTREACHED */ 176 lwkt_reltoken(&p->p_token); /* safety */ 177 } 178 179 /* 180 * Kill all lwps associated with the current process except the 181 * current lwp. Return an error if we race another thread trying to 182 * do the same thing and lose the race. 183 * 184 * If forexec is non-zero the current thread and process flags are 185 * cleaned up so they can be reused. 186 */ 187 int 188 killalllwps(int forexec) 189 { 190 struct lwp *lp = curthread->td_lwp; 191 struct proc *p = lp->lwp_proc; 192 int fakestop; 193 194 /* 195 * Interlock against P_WEXIT. Only one of the process's thread 196 * is allowed to do the master exit. 197 */ 198 lwkt_gettoken(&p->p_token); 199 if (p->p_flags & P_WEXIT) { 200 lwkt_reltoken(&p->p_token); 201 return (EALREADY); 202 } 203 p->p_flags |= P_WEXIT; 204 lwkt_gettoken(&lp->lwp_token); 205 206 /* 207 * Set temporary stopped state in case we are racing a coredump. 208 * Otherwise the coredump may hang forever. 209 */ 210 if (lp->lwp_mpflags & LWP_MP_WSTOP) { 211 fakestop = 0; 212 } else { 213 atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP); 214 ++p->p_nstopped; 215 fakestop = 1; 216 wakeup(&p->p_nstopped); 217 } 218 219 /* 220 * Interlock with LWP_MP_WEXIT and kill any remaining LWPs 221 */ 222 atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT); 223 if (p->p_nthreads > 1) 224 killlwps(lp); 225 226 /* 227 * Undo temporary stopped state 228 */ 229 if (fakestop && (lp->lwp_mpflags & LWP_MP_WSTOP)) { 230 atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WSTOP); 231 --p->p_nstopped; 232 } 233 234 /* 235 * If doing this for an exec, clean up the remaining thread 236 * (us) for continuing operation after all the other threads 237 * have been killed. 238 */ 239 if (forexec) { 240 atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WEXIT); 241 p->p_flags &= ~P_WEXIT; 242 } 243 lwkt_reltoken(&lp->lwp_token); 244 lwkt_reltoken(&p->p_token); 245 246 return(0); 247 } 248 249 /* 250 * Kill all LWPs except the current one. Do not try to signal 251 * LWPs which have exited on their own or have already been 252 * signaled. 253 */ 254 static void 255 killlwps(struct lwp *lp) 256 { 257 struct proc *p = lp->lwp_proc; 258 struct lwp *tlp; 259 260 /* 261 * Kill the remaining LWPs. We must send the signal before setting 262 * LWP_MP_WEXIT. The setting of WEXIT is optional but helps reduce 263 * races. tlp must be held across the call as it might block and 264 * allow the target lwp to rip itself out from under our loop. 265 */ 266 FOREACH_LWP_IN_PROC(tlp, p) { 267 LWPHOLD(tlp); 268 lwkt_gettoken(&tlp->lwp_token); 269 if ((tlp->lwp_mpflags & LWP_MP_WEXIT) == 0) { 270 atomic_set_int(&tlp->lwp_mpflags, LWP_MP_WEXIT); 271 lwpsignal(p, tlp, SIGKILL); 272 } 273 lwkt_reltoken(&tlp->lwp_token); 274 LWPRELE(tlp); 275 } 276 277 /* 278 * Wait for everything to clear out. Also make sure any tstop()s 279 * are signalled (we are holding p_token for the interlock). 280 */ 281 wakeup(p); 282 while (p->p_nthreads > 1) 283 tsleep(&p->p_nthreads, 0, "killlwps", 0); 284 } 285 286 /* 287 * Exit: deallocate address space and other resources, change proc state 288 * to zombie, and unlink proc from allproc and parent's lists. Save exit 289 * status and rusage for wait(). Check for child processes and orphan them. 290 */ 291 void 292 exit1(int rv) 293 { 294 struct thread *td = curthread; 295 struct proc *p = td->td_proc; 296 struct lwp *lp = td->td_lwp; 297 struct proc *q; 298 struct proc *pp; 299 struct proc *reproc; 300 struct sysreaper *reap; 301 struct vmspace *vm; 302 struct vnode *vtmp; 303 struct exitlist *ep; 304 int error; 305 306 lwkt_gettoken(&p->p_token); 307 308 if (p->p_pid == 1) { 309 kprintf("init died (signal %d, exit %d)\n", 310 WTERMSIG(rv), WEXITSTATUS(rv)); 311 panic("Going nowhere without my init!"); 312 } 313 varsymset_clean(&p->p_varsymset); 314 lockuninit(&p->p_varsymset.vx_lock); 315 316 /* 317 * Kill all lwps associated with the current process, return an 318 * error if we race another thread trying to do the same thing 319 * and lose the race. 320 */ 321 error = killalllwps(0); 322 if (error) { 323 lwp_exit(0, NULL); 324 /* NOT REACHED */ 325 } 326 327 /* are we a task leader? */ 328 if (p == p->p_leader) { 329 struct sysmsg sysmsg; 330 331 sysmsg.extargs.kill.signum = SIGKILL; 332 q = p->p_peers; 333 while(q) { 334 sysmsg.extargs.kill.pid = q->p_pid; 335 /* 336 * The interface for kill is better 337 * than the internal signal 338 */ 339 sys_kill(&sysmsg, &sysmsg.extargs.kill); 340 q = q->p_peers; 341 } 342 while (p->p_peers) 343 tsleep((caddr_t)p, 0, "exit1", 0); 344 } 345 346 #ifdef PGINPROF 347 vmsizmon(); 348 #endif 349 STOPEVENT(p, S_EXIT, rv); 350 p->p_flags |= P_POSTEXIT; /* stop procfs stepping */ 351 352 /* 353 * Check if any loadable modules need anything done at process exit. 354 * e.g. SYSV IPC stuff 355 * XXX what if one of these generates an error? 356 */ 357 p->p_xstat = rv; 358 359 /* 360 * XXX: imho, the eventhandler stuff is much cleaner than this. 361 * Maybe we should move everything to use eventhandler. 362 */ 363 TAILQ_FOREACH(ep, &exit_list, next) 364 (*ep->function)(td); 365 366 if (p->p_flags & P_PROFIL) 367 stopprofclock(p); 368 369 SIGEMPTYSET(p->p_siglist); 370 SIGEMPTYSET(lp->lwp_siglist); 371 if (timevalisset(&p->p_realtimer.it_value)) 372 callout_terminate(&p->p_ithandle); 373 374 /* 375 * Reset any sigio structures pointing to us as a result of 376 * F_SETOWN with our pid. 377 */ 378 funsetownlst(&p->p_sigiolst); 379 380 /* 381 * Close open files and release open-file table. 382 * This may block! 383 */ 384 fdfree(p, NULL); 385 386 if (p->p_leader->p_peers) { 387 q = p->p_leader; 388 while(q->p_peers != p) 389 q = q->p_peers; 390 q->p_peers = p->p_peers; 391 wakeup((caddr_t)p->p_leader); 392 } 393 394 /* 395 * XXX Shutdown SYSV semaphores 396 */ 397 semexit(p); 398 399 /* The next two chunks should probably be moved to vmspace_exit. */ 400 vm = p->p_vmspace; 401 402 /* 403 * Clean up data related to virtual kernel operation. Clean up 404 * any vkernel context related to the current lwp now so we can 405 * destroy p_vkernel. 406 */ 407 if (p->p_vkernel) { 408 vkernel_lwp_exit(lp); 409 vkernel_exit(p); 410 } 411 412 /* 413 * Release the user portion of address space. The exitbump prevents 414 * the vmspace from being completely eradicated (using holdcnt). 415 * This releases references to vnodes, which could cause I/O if the 416 * file has been unlinked. We need to do this early enough that 417 * we can still sleep. 418 * 419 * We can't free the entire vmspace as the kernel stack may be mapped 420 * within that space also. 421 * 422 * Processes sharing the same vmspace may exit in one order, and 423 * get cleaned up by vmspace_exit() in a different order. The 424 * last exiting process to reach this point releases as much of 425 * the environment as it can, and the last process cleaned up 426 * by vmspace_exit() (which decrements exitingcnt) cleans up the 427 * remainder. 428 * 429 * NOTE: Releasing p_token around this call is helpful if the 430 * vmspace had a huge RSS. Otherwise some other process 431 * trying to do an allproc or other scan (like 'ps') may 432 * stall for a long time. 433 */ 434 lwkt_reltoken(&p->p_token); 435 vmspace_relexit(vm); 436 lwkt_gettoken(&p->p_token); 437 438 if (SESS_LEADER(p)) { 439 struct session *sp = p->p_session; 440 441 if (sp->s_ttyvp) { 442 /* 443 * We are the controlling process. Signal the 444 * foreground process group, drain the controlling 445 * terminal, and revoke access to the controlling 446 * terminal. 447 * 448 * NOTE: while waiting for the process group to exit 449 * it is possible that one of the processes in the 450 * group will revoke the tty, so the ttyclosesession() 451 * function will re-check sp->s_ttyvp. 452 */ 453 if (sp->s_ttyp && (sp->s_ttyp->t_session == sp)) { 454 if (sp->s_ttyp->t_pgrp) 455 pgsignal(sp->s_ttyp->t_pgrp, SIGHUP, 1); 456 ttywait(sp->s_ttyp); 457 ttyclosesession(sp, 1); /* also revoke */ 458 } 459 /* 460 * Release the tty. If someone has it open via 461 * /dev/tty then close it (since they no longer can 462 * once we've NULL'd it out). 463 */ 464 ttyclosesession(sp, 0); 465 466 /* 467 * s_ttyp is not zero'd; we use this to indicate 468 * that the session once had a controlling terminal. 469 * (for logging and informational purposes) 470 */ 471 } 472 sp->s_leader = NULL; 473 } 474 fixjobc(p, p->p_pgrp, 0); 475 (void)acct_process(p); 476 #ifdef KTRACE 477 /* 478 * release trace file 479 */ 480 if (p->p_tracenode) 481 ktrdestroy(&p->p_tracenode); 482 p->p_traceflag = 0; 483 #endif 484 /* 485 * Release reference to text vnode 486 */ 487 if ((vtmp = p->p_textvp) != NULL) { 488 p->p_textvp = NULL; 489 vrele(vtmp); 490 } 491 492 /* Release namecache handle to text file */ 493 if (p->p_textnch.ncp) 494 cache_drop(&p->p_textnch); 495 496 /* 497 * We have to handle PPWAIT here or proc_move_allproc_zombie() 498 * will block on the PHOLD() the parent is doing. 499 * 500 * We are using the flag as an interlock so an atomic op is 501 * necessary to synchronize with the parent's cpu. 502 */ 503 if (p->p_flags & P_PPWAIT) { 504 if (p->p_pptr && p->p_pptr->p_upmap) 505 atomic_add_int(&p->p_pptr->p_upmap->invfork, -1); 506 atomic_clear_int(&p->p_flags, P_PPWAIT); 507 wakeup(p->p_pptr); 508 } 509 510 /* 511 * Move the process to the zombie list. This will block 512 * until the process p_lock count reaches 0. The process will 513 * not be reaped until TDF_EXITING is set by cpu_thread_exit(), 514 * which is called from cpu_proc_exit(). 515 * 516 * Interlock against waiters using p_waitgen. We increment 517 * p_waitgen after completing the move of our process to the 518 * zombie list. 519 * 520 * WARNING: pp becomes stale when we block, clear it now as a 521 * reminder. 522 */ 523 proc_move_allproc_zombie(p); 524 pp = p->p_pptr; 525 atomic_add_long(&pp->p_waitgen, 1); 526 pp = NULL; 527 528 /* 529 * release controlled reaper for exit if we own it and return the 530 * remaining reaper (the one for us), which we will drop after we 531 * are done. 532 */ 533 reap = reaper_exit(p); 534 535 /* 536 * Reparent all of this process's children to the init process or 537 * to the designated reaper. We must hold the reaper's p_token in 538 * order to safely mess with p_children. 539 * 540 * Issue the p_deathsig signal to children that request it. 541 * 542 * We already hold p->p_token (to remove the children from our list). 543 */ 544 reproc = NULL; 545 q = LIST_FIRST(&p->p_children); 546 if (q) { 547 reproc = reaper_get(reap); 548 lwkt_gettoken(&reproc->p_token); 549 while ((q = LIST_FIRST(&p->p_children)) != NULL) { 550 PHOLD(q); 551 lwkt_gettoken(&q->p_token); 552 if (q != LIST_FIRST(&p->p_children)) { 553 lwkt_reltoken(&q->p_token); 554 PRELE(q); 555 continue; 556 } 557 LIST_REMOVE(q, p_sibling); 558 LIST_INSERT_HEAD(&reproc->p_children, q, p_sibling); 559 q->p_pptr = reproc; 560 q->p_ppid = reproc->p_pid; 561 q->p_sigparent = SIGCHLD; 562 563 /* 564 * Traced processes are killed 565 * since their existence means someone is screwing up. 566 */ 567 if (q->p_flags & P_TRACED) { 568 q->p_flags &= ~P_TRACED; 569 ksignal(q, SIGKILL); 570 } 571 572 /* 573 * Issue p_deathsig to children that request it 574 */ 575 if (q->p_deathsig) 576 ksignal(q, q->p_deathsig); 577 lwkt_reltoken(&q->p_token); 578 PRELE(q); 579 } 580 lwkt_reltoken(&reproc->p_token); 581 wakeup(reproc); 582 } 583 584 /* 585 * Save exit status and final rusage info. We no longer add 586 * child rusage info into self times, wait4() and kern_wait() 587 * handles it in order to properly support wait6(). 588 */ 589 calcru_proc(p, &p->p_ru); 590 /*ruadd(&p->p_ru, &p->p_cru); REMOVED */ 591 592 /* 593 * notify interested parties of our demise. 594 */ 595 KNOTE(&p->p_klist, NOTE_EXIT); 596 597 /* 598 * Notify parent that we're gone. If parent has the PS_NOCLDWAIT 599 * flag set, or if the handler is set to SIG_IGN, notify the reaper 600 * instead (it will handle this situation). 601 * 602 * NOTE: The reaper can still be the parent process. 603 * 604 * (must reload pp) 605 */ 606 if (p->p_pptr->p_sigacts->ps_flag & (PS_NOCLDWAIT | PS_CLDSIGIGN)) { 607 if (reproc == NULL) 608 reproc = reaper_get(reap); 609 proc_reparent(p, reproc); 610 } 611 if (reproc) 612 PRELE(reproc); 613 if (reap) 614 reaper_drop(reap); 615 616 /* 617 * Signal (possibly new) parent. 618 */ 619 pp = p->p_pptr; 620 PHOLD(pp); 621 if (p->p_sigparent && pp != initproc) { 622 int sig = p->p_sigparent; 623 624 if (sig != SIGUSR1 && sig != SIGCHLD) 625 sig = SIGCHLD; 626 ksignal(pp, sig); 627 } else { 628 ksignal(pp, SIGCHLD); 629 } 630 p->p_flags &= ~P_TRACED; 631 PRELE(pp); 632 633 /* 634 * cpu_exit is responsible for clearing curproc, since 635 * it is heavily integrated with the thread/switching sequence. 636 * 637 * Other substructures are freed from wait(). 638 */ 639 if (p->p_limit) { 640 struct plimit *rlimit; 641 642 rlimit = p->p_limit; 643 p->p_limit = NULL; 644 plimit_free(rlimit); 645 } 646 647 /* 648 * Finally, call machine-dependent code to release as many of the 649 * lwp's resources as we can and halt execution of this thread. 650 * 651 * pp is a wild pointer now but still the correct wakeup() target. 652 * lwp_exit() only uses it to send the wakeup() signal to the likely 653 * parent. Any reparenting race that occurs will get a signal 654 * automatically and not be an issue. 655 */ 656 lwp_exit(1, pp); 657 } 658 659 /* 660 * Eventually called by every exiting LWP 661 * 662 * p->p_token must be held. mplock may be held and will be released. 663 */ 664 void 665 lwp_exit(int masterexit, void *waddr) 666 { 667 struct thread *td = curthread; 668 struct lwp *lp = td->td_lwp; 669 struct proc *p = lp->lwp_proc; 670 int dowake = 0; 671 672 /* 673 * Release the current user process designation on the process so 674 * the userland scheduler can work in someone else. 675 */ 676 p->p_usched->release_curproc(lp); 677 678 /* 679 * Destroy the per-thread shared page and remove from any pmaps 680 * it resides in. 681 */ 682 lwp_userunmap(lp); 683 684 /* 685 * lwp_exit() may be called without setting LWP_MP_WEXIT, so 686 * make sure it is set here. 687 */ 688 ASSERT_LWKT_TOKEN_HELD(&p->p_token); 689 atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT); 690 691 /* 692 * Clean up any virtualization 693 */ 694 if (lp->lwp_vkernel) 695 vkernel_lwp_exit(lp); 696 697 if (td->td_vmm) 698 vmm_vmdestroy(); 699 700 /* 701 * Clean up select/poll support 702 */ 703 kqueue_terminate(&lp->lwp_kqueue); 704 705 if (td->td_linux_task) 706 linux_task_drop_callback(td); 707 if (masterexit && p->p_linux_mm) 708 linux_proc_drop_callback(p); 709 710 /* 711 * Clean up any syscall-cached ucred or rlimit. 712 */ 713 if (td->td_ucred) { 714 crfree(td->td_ucred); 715 td->td_ucred = NULL; 716 } 717 if (td->td_limit) { 718 struct plimit *rlimit; 719 720 rlimit = td->td_limit; 721 td->td_limit = NULL; 722 plimit_free(rlimit); 723 } 724 725 /* 726 * Cleanup any cached descriptors for this thread 727 */ 728 if (p->p_fd) 729 fexitcache(td); 730 731 /* 732 * Nobody actually wakes us when the lock 733 * count reaches zero, so just wait one tick. 734 */ 735 while (lp->lwp_lock > 0) 736 tsleep(lp, 0, "lwpexit", 1); 737 738 /* Hand down resource usage to our proc */ 739 ruadd(&p->p_ru, &lp->lwp_ru); 740 741 /* 742 * If we don't hold the process until the LWP is reaped wait*() 743 * may try to dispose of its vmspace before all the LWPs have 744 * actually terminated. 745 */ 746 PHOLD(p); 747 748 /* 749 * Do any remaining work that might block on us. We should be 750 * coded such that further blocking is ok after decrementing 751 * p_nthreads but don't take the chance. 752 */ 753 dsched_exit_thread(td); 754 biosched_done(curthread); 755 756 /* 757 * We have to use the reaper for all the LWPs except the one doing 758 * the master exit. The LWP doing the master exit can just be 759 * left on p_lwps and the process reaper will deal with it 760 * synchronously, which is much faster. 761 * 762 * Wakeup anyone waiting on p_nthreads to drop to 1 or 0. 763 * 764 * The process is left held until the reaper calls lwp_dispose() on 765 * the lp (after calling lwp_wait()). 766 */ 767 if (masterexit == 0) { 768 int cpu = mycpuid; 769 770 lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp); 771 --p->p_nthreads; 772 if ((p->p_flags & P_MAYBETHREADED) && p->p_nthreads <= 1) 773 dowake = 1; 774 lwkt_gettoken(&deadlwp_token[cpu]); 775 LIST_INSERT_HEAD(&deadlwp_list[cpu], lp, u.lwp_reap_entry); 776 taskqueue_enqueue(taskqueue_thread[cpu], deadlwp_task[cpu]); 777 lwkt_reltoken(&deadlwp_token[cpu]); 778 } else { 779 --p->p_nthreads; 780 if ((p->p_flags & P_MAYBETHREADED) && p->p_nthreads <= 1) 781 dowake = 1; 782 } 783 784 /* 785 * We no longer need p_token. 786 * 787 * Tell the userland scheduler that we are going away 788 */ 789 lwkt_reltoken(&p->p_token); 790 p->p_usched->heuristic_exiting(lp, p); 791 792 /* 793 * Issue late wakeups after releasing our token to give us a chance 794 * to deschedule and switch away before another cpu in a wait*() 795 * reaps us. This is done as late as possible to reduce contention. 796 */ 797 if (dowake) 798 wakeup(&p->p_nthreads); 799 if (waddr) 800 wakeup(waddr); 801 802 cpu_lwp_exit(); 803 } 804 805 /* 806 * Wait until a lwp is completely dead. The final interlock in this drama 807 * is when TDF_EXITING is set in cpu_thread_exit() just before the final 808 * switchout. 809 * 810 * At the point TDF_EXITING is set a complete exit is accomplished when 811 * TDF_RUNNING and TDF_PREEMPT_LOCK are both clear. td_mpflags has two 812 * post-switch interlock flags that can be used to wait for the TDF_ 813 * flags to clear. 814 * 815 * Returns non-zero on success, and zero if the caller needs to retry 816 * the lwp_wait(). 817 */ 818 static int 819 lwp_wait(struct lwp *lp) 820 { 821 struct thread *td = lp->lwp_thread; 822 u_int mpflags; 823 824 KKASSERT(lwkt_preempted_proc() != lp); 825 826 /* 827 * This bit of code uses the thread destruction interlock 828 * managed by lwkt_switch_return() to wait for the lwp's 829 * thread to completely disengage. 830 * 831 * It is possible for us to race another cpu core so we 832 * have to do this correctly. 833 */ 834 for (;;) { 835 mpflags = td->td_mpflags; 836 cpu_ccfence(); 837 if (mpflags & TDF_MP_EXITSIG) 838 break; 839 tsleep_interlock(td, 0); 840 if (atomic_cmpset_int(&td->td_mpflags, mpflags, 841 mpflags | TDF_MP_EXITWAIT)) { 842 tsleep(td, PINTERLOCKED, "lwpxt", 0); 843 } 844 } 845 846 /* 847 * We've already waited for the core exit but there can still 848 * be other refs from e.g. process scans and such. 849 */ 850 if (lp->lwp_lock > 0) { 851 tsleep(lp, 0, "lwpwait1", 1); 852 return(0); 853 } 854 if (td->td_refs) { 855 tsleep(td, 0, "lwpwait2", 1); 856 return(0); 857 } 858 859 /* 860 * Now that we have the thread destruction interlock these flags 861 * really should already be cleaned up, keep a check for safety. 862 * 863 * We can't rip its stack out from under it until TDF_EXITING is 864 * set and both TDF_RUNNING and TDF_PREEMPT_LOCK are clear. 865 * TDF_PREEMPT_LOCK must be checked because TDF_RUNNING 866 * will be cleared temporarily if a thread gets preempted. 867 */ 868 while ((td->td_flags & (TDF_RUNNING | 869 TDF_RUNQ | 870 TDF_PREEMPT_LOCK | 871 TDF_EXITING)) != TDF_EXITING) { 872 tsleep(lp, 0, "lwpwait3", 1); 873 return (0); 874 } 875 876 KASSERT((td->td_flags & (TDF_RUNQ|TDF_TSLEEPQ)) == 0, 877 ("lwp_wait: td %p (%s) still on run or sleep queue", 878 td, td->td_comm)); 879 return (1); 880 } 881 882 /* 883 * Release the resources associated with a lwp. 884 * The lwp must be completely dead. 885 */ 886 void 887 lwp_dispose(struct lwp *lp) 888 { 889 struct thread *td = lp->lwp_thread; 890 891 KKASSERT(lwkt_preempted_proc() != lp); 892 KKASSERT(lp->lwp_lock == 0); 893 KKASSERT(td->td_refs == 0); 894 KKASSERT((td->td_flags & (TDF_RUNNING | 895 TDF_RUNQ | 896 TDF_PREEMPT_LOCK | 897 TDF_EXITING)) == TDF_EXITING); 898 899 PRELE(lp->lwp_proc); 900 lp->lwp_proc = NULL; 901 if (td != NULL) { 902 td->td_proc = NULL; 903 td->td_lwp = NULL; 904 lp->lwp_thread = NULL; 905 lwkt_free_thread(td); 906 } 907 kfree(lp, M_LWP); 908 } 909 910 int 911 sys_wait4(struct sysmsg *sysmsg, const struct wait_args *uap) 912 { 913 struct __wrusage wrusage; 914 int error; 915 int status; 916 int options; 917 id_t id; 918 idtype_t idtype; 919 920 options = uap->options | WEXITED | WTRAPPED; 921 id = uap->pid; 922 923 if (id == WAIT_ANY) { 924 idtype = P_ALL; 925 } else if (id == WAIT_MYPGRP) { 926 idtype = P_PGID; 927 id = curproc->p_pgid; 928 } else if (id < 0) { 929 idtype = P_PGID; 930 id = -id; 931 } else { 932 idtype = P_PID; 933 } 934 935 error = kern_wait(idtype, id, &status, options, &wrusage, 936 NULL, &sysmsg->sysmsg_result); 937 938 if (error == 0 && uap->status) 939 error = copyout(&status, uap->status, sizeof(*uap->status)); 940 if (error == 0 && uap->rusage) { 941 ruadd(&wrusage.wru_self, &wrusage.wru_children); 942 error = copyout(&wrusage.wru_self, uap->rusage, sizeof(*uap->rusage)); 943 } 944 return (error); 945 } 946 947 int 948 sys_wait6(struct sysmsg *sysmsg, const struct wait6_args *uap) 949 { 950 struct __wrusage wrusage; 951 siginfo_t info; 952 siginfo_t *infop; 953 int error; 954 int status; 955 int options; 956 id_t id; 957 idtype_t idtype; 958 959 /* 960 * NOTE: wait6() requires WEXITED and WTRAPPED to be specified if 961 * desired. 962 */ 963 options = uap->options; 964 idtype = uap->idtype; 965 id = uap->id; 966 infop = uap->info ? &info : NULL; 967 968 switch(idtype) { 969 case P_PID: 970 case P_PGID: 971 if (id == WAIT_MYPGRP) { 972 idtype = P_PGID; 973 id = curproc->p_pgid; 974 } 975 break; 976 default: 977 /* let kern_wait deal with the remainder */ 978 break; 979 } 980 981 error = kern_wait(idtype, id, &status, options, 982 &wrusage, infop, &sysmsg->sysmsg_result); 983 984 if (error == 0 && uap->status) 985 error = copyout(&status, uap->status, sizeof(*uap->status)); 986 if (error == 0 && uap->wrusage) 987 error = copyout(&wrusage, uap->wrusage, sizeof(*uap->wrusage)); 988 if (error == 0 && uap->info) 989 error = copyout(&info, uap->info, sizeof(*uap->info)); 990 return (error); 991 } 992 993 /* 994 * kernel wait*() system call support 995 */ 996 int 997 kern_wait(idtype_t idtype, id_t id, int *status, int options, 998 struct __wrusage *wrusage, siginfo_t *info, int *res) 999 { 1000 struct thread *td = curthread; 1001 struct lwp *lp; 1002 struct proc *q = td->td_proc; 1003 struct proc *p, *t; 1004 struct ucred *cr; 1005 struct pargs *pa; 1006 struct sigacts *ps; 1007 int nfound, error; 1008 long waitgen; 1009 1010 /* 1011 * Must not have extraneous options. Must have at least one 1012 * matchable option. 1013 */ 1014 if (options &~ (WUNTRACED|WNOHANG|WCONTINUED|WLINUXCLONE|WSTOPPED| 1015 WEXITED|WTRAPPED|WNOWAIT)) { 1016 return (EINVAL); 1017 } 1018 if ((options & (WEXITED | WUNTRACED | WCONTINUED | WTRAPPED)) == 0) { 1019 return (EINVAL); 1020 } 1021 1022 /* 1023 * Protect the q->p_children list 1024 */ 1025 lwkt_gettoken(&q->p_token); 1026 loop: 1027 /* 1028 * All sorts of things can change due to blocking so we have to loop 1029 * all the way back up here. 1030 * 1031 * The problem is that if a process group is stopped and the parent 1032 * is doing a wait*(..., WUNTRACED, ...), it will see the STOP 1033 * of the child and then stop itself when it tries to return from the 1034 * system call. When the process group is resumed the parent will 1035 * then get the STOP status even though the child has now resumed 1036 * (a followup wait*() will get the CONT status). 1037 * 1038 * Previously the CONT would overwrite the STOP because the tstop 1039 * was handled within tsleep(), and the parent would only see 1040 * the CONT when both are stopped and continued together. This little 1041 * two-line hack restores this effect. 1042 * 1043 * No locks are held so we can safely block the process here. 1044 */ 1045 if (STOPLWP(q, td->td_lwp)) 1046 tstop(); 1047 1048 nfound = 0; 1049 1050 /* 1051 * Loop on children. 1052 * 1053 * NOTE: We don't want to break q's p_token in the loop for the 1054 * case where no children are found or we risk breaking the 1055 * interlock between child and parent. 1056 */ 1057 waitgen = atomic_fetchadd_long(&q->p_waitgen, 0x80000000); 1058 LIST_FOREACH(p, &q->p_children, p_sibling) { 1059 /* 1060 * Skip children that another thread is already uninterruptably 1061 * reaping. 1062 */ 1063 if (PWAITRES_PENDING(p)) 1064 continue; 1065 1066 /* 1067 * Filter, (p) will be held on fall-through. Try to optimize 1068 * this to avoid the atomic op until we are pretty sure we 1069 * want this process. 1070 */ 1071 switch(idtype) { 1072 case P_ALL: 1073 PHOLD(p); 1074 break; 1075 case P_PID: 1076 if (p->p_pid != (pid_t)id) 1077 continue; 1078 PHOLD(p); 1079 break; 1080 case P_PGID: 1081 if (p->p_pgid != (pid_t)id) 1082 continue; 1083 PHOLD(p); 1084 break; 1085 case P_SID: 1086 PHOLD(p); 1087 if (p->p_session && p->p_session->s_sid != (pid_t)id) { 1088 PRELE(p); 1089 continue; 1090 } 1091 break; 1092 case P_UID: 1093 PHOLD(p); 1094 if (p->p_ucred->cr_uid != (uid_t)id) { 1095 PRELE(p); 1096 continue; 1097 } 1098 break; 1099 case P_GID: 1100 PHOLD(p); 1101 if (p->p_ucred->cr_gid != (gid_t)id) { 1102 PRELE(p); 1103 continue; 1104 } 1105 break; 1106 case P_JAILID: 1107 PHOLD(p); 1108 if (p->p_ucred->cr_prison && 1109 p->p_ucred->cr_prison->pr_id != (int)id) { 1110 PRELE(p); 1111 continue; 1112 } 1113 break; 1114 default: 1115 /* unsupported filter */ 1116 continue; 1117 } 1118 /* (p) is held at this point */ 1119 1120 /* 1121 * This special case handles a kthread spawned by linux_clone 1122 * (see linux_misc.c). The linux_wait4 and linux_waitpid 1123 * functions need to be able to distinguish between waiting 1124 * on a process and waiting on a thread. It is a thread if 1125 * p_sigparent is not SIGCHLD, and the WLINUXCLONE option 1126 * signifies we want to wait for threads and not processes. 1127 */ 1128 if ((p->p_sigparent != SIGCHLD) ^ 1129 ((options & WLINUXCLONE) != 0)) { 1130 PRELE(p); 1131 continue; 1132 } 1133 1134 nfound++; 1135 if (p->p_stat == SZOMB && (options & WEXITED)) { 1136 /* 1137 * We may go into SZOMB with threads still present. 1138 * We must wait for them to exit before we can reap 1139 * the master thread, otherwise we may race reaping 1140 * non-master threads. 1141 * 1142 * Only this routine can remove a process from 1143 * the zombie list and destroy it. 1144 * 1145 * This function will fail after sleeping if another 1146 * thread owns the zombie lock. This function will 1147 * fail immediately or after sleeping if another 1148 * thread owns or obtains ownership of the reap via 1149 * WAITRES. 1150 */ 1151 if (PHOLDZOMB(p)) { 1152 PRELE(p); 1153 goto loop; 1154 } 1155 lwkt_gettoken(&p->p_token); 1156 if (p->p_pptr != q) { 1157 lwkt_reltoken(&p->p_token); 1158 PRELE(p); 1159 PRELEZOMB(p); 1160 goto loop; 1161 } 1162 1163 /* 1164 * We are the reaper, from this point on the reap 1165 * cannot be aborted. 1166 */ 1167 PWAITRES_SET(p); 1168 while (p->p_nthreads > 0) { 1169 tsleep(&p->p_nthreads, 0, "lwpzomb", hz); 1170 } 1171 1172 /* 1173 * Reap any LWPs left in p->p_lwps. This is usually 1174 * just the last LWP. This must be done before 1175 * we loop on p_lock since the lwps hold a ref on 1176 * it as a vmspace interlock. 1177 * 1178 * Once that is accomplished p_nthreads had better 1179 * be zero. 1180 */ 1181 while ((lp = RB_ROOT(&p->p_lwp_tree)) != NULL) { 1182 /* 1183 * Make sure no one is using this lwp, before 1184 * it is removed from the tree. If we didn't 1185 * wait it here, lwp tree iteration with 1186 * blocking operation would be broken. 1187 */ 1188 while (lp->lwp_lock > 0) 1189 tsleep(lp, 0, "zomblwp", 1); 1190 lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp); 1191 reaplwp(lp); 1192 } 1193 KKASSERT(p->p_nthreads == 0); 1194 1195 /* 1196 * Don't do anything really bad until all references 1197 * to the process go away. This may include other 1198 * LWPs which are still in the process of being 1199 * reaped. We can't just pull the rug out from under 1200 * them because they may still be using the VM space. 1201 * 1202 * Certain kernel facilities such as /proc will also 1203 * put a hold on the process for short periods of 1204 * time. 1205 */ 1206 PRELE(p); /* from top of loop */ 1207 PSTALL(p, "reap3", 1); /* 1 ref (for PZOMBHOLD) */ 1208 1209 /* Take care of our return values. */ 1210 *res = p->p_pid; 1211 1212 *status = p->p_xstat; 1213 wrusage->wru_self = p->p_ru; 1214 wrusage->wru_children = p->p_cru; 1215 1216 if (info) { 1217 bzero(info, sizeof(*info)); 1218 info->si_errno = 0; 1219 info->si_signo = SIGCHLD; 1220 if (WIFEXITED(p->p_xstat)) { 1221 info->si_code = CLD_EXITED; 1222 info->si_status = 1223 WEXITSTATUS(p->p_xstat); 1224 } else { 1225 info->si_code = CLD_KILLED; 1226 info->si_status = WTERMSIG(p->p_xstat); 1227 } 1228 info->si_pid = p->p_pid; 1229 info->si_uid = p->p_ucred->cr_uid; 1230 } 1231 1232 /* 1233 * WNOWAIT shortcuts to done here, leaving the 1234 * child on the zombie list. 1235 */ 1236 if (options & WNOWAIT) { 1237 lwkt_reltoken(&p->p_token); 1238 PRELEZOMB(p); 1239 error = 0; 1240 goto done; 1241 } 1242 1243 /* 1244 * If we got the child via a ptrace 'attach', 1245 * we need to give it back to the old parent. 1246 */ 1247 if (p->p_oppid && (t = pfind(p->p_oppid)) != NULL) { 1248 p->p_oppid = 0; 1249 proc_reparent(p, t); 1250 ksignal(t, SIGCHLD); 1251 wakeup((caddr_t)t); 1252 PRELE(t); 1253 lwkt_reltoken(&p->p_token); 1254 PRELEZOMB(p); 1255 error = 0; 1256 goto done; 1257 } 1258 1259 /* 1260 * Unlink the proc from its process group so that 1261 * the following operations won't lead to an 1262 * inconsistent state for processes running down 1263 * the zombie list. 1264 */ 1265 proc_remove_zombie(p); 1266 proc_userunmap(p); 1267 lwkt_reltoken(&p->p_token); 1268 leavepgrp(p); 1269 1270 p->p_xstat = 0; 1271 ruadd(&q->p_cru, &p->p_ru); 1272 ruadd(&q->p_cru, &p->p_cru); 1273 1274 /* 1275 * Decrement the count of procs running with this uid. 1276 */ 1277 chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0); 1278 1279 /* 1280 * Free up credentials. p_spin is required to 1281 * avoid races against allproc scans. 1282 */ 1283 spin_lock(&p->p_spin); 1284 cr = p->p_ucred; 1285 p->p_ucred = NULL; 1286 spin_unlock(&p->p_spin); 1287 crfree(cr); 1288 1289 /* 1290 * Remove unused arguments 1291 */ 1292 pa = p->p_args; 1293 p->p_args = NULL; 1294 if (pa && refcount_release(&pa->ar_ref)) { 1295 kfree(pa, M_PARGS); 1296 pa = NULL; 1297 } 1298 1299 ps = p->p_sigacts; 1300 p->p_sigacts = NULL; 1301 if (ps && refcount_release(&ps->ps_refcnt)) { 1302 kfree(ps, M_SUBPROC); 1303 ps = NULL; 1304 } 1305 1306 /* 1307 * Our exitingcount was incremented when the process 1308 * became a zombie, now that the process has been 1309 * removed from (almost) all lists we should be able 1310 * to safely destroy its vmspace. Wait for any current 1311 * holders to go away (so the vmspace remains stable), 1312 * then scrap it. 1313 * 1314 * NOTE: Releasing the parent process (q) p_token 1315 * across the vmspace_exitfree() call is 1316 * important here to reduce stalls on 1317 * interactions with (q) (such as 1318 * fork/exec/wait or 'ps'). 1319 */ 1320 PSTALL(p, "reap4", 1); 1321 lwkt_reltoken(&q->p_token); 1322 vmspace_exitfree(p); 1323 lwkt_gettoken(&q->p_token); 1324 PSTALL(p, "reap5", 1); 1325 1326 /* 1327 * NOTE: We have to officially release ZOMB in order 1328 * to ensure that a racing thread in kern_wait() 1329 * which blocked on ZOMB is woken up. 1330 */ 1331 PRELEZOMB(p); 1332 kfree(p->p_uidpcpu, M_SUBPROC); 1333 kfree(p, M_PROC); 1334 atomic_add_int(&nprocs, -1); 1335 error = 0; 1336 goto done; 1337 } 1338 1339 /* 1340 * Process has not yet exited 1341 */ 1342 if ((p->p_stat == SSTOP || p->p_stat == SCORE) && 1343 (p->p_flags & P_WAITED) == 0 && 1344 (((p->p_flags & P_TRACED) && (options & WTRAPPED)) || 1345 (options & WSTOPPED))) { 1346 lwkt_gettoken(&p->p_token); 1347 if (p->p_pptr != q) { 1348 lwkt_reltoken(&p->p_token); 1349 PRELE(p); 1350 goto loop; 1351 } 1352 if ((p->p_stat != SSTOP && p->p_stat != SCORE) || 1353 (p->p_flags & P_WAITED) != 0 || 1354 ((p->p_flags & P_TRACED) == 0 && 1355 (options & WUNTRACED) == 0)) { 1356 lwkt_reltoken(&p->p_token); 1357 PRELE(p); 1358 goto loop; 1359 } 1360 1361 /* 1362 * Don't set P_WAITED if WNOWAIT specified, leaving 1363 * the process in a waitable state. 1364 */ 1365 if ((options & WNOWAIT) == 0) 1366 p->p_flags |= P_WAITED; 1367 1368 *res = p->p_pid; 1369 *status = W_STOPCODE(p->p_xstat); 1370 /* Zero rusage so we get something consistent. */ 1371 bzero(wrusage, sizeof(*wrusage)); 1372 error = 0; 1373 if (info) { 1374 bzero(info, sizeof(*info)); 1375 if (p->p_flags & P_TRACED) 1376 info->si_code = CLD_TRAPPED; 1377 else 1378 info->si_code = CLD_STOPPED; 1379 info->si_status = WSTOPSIG(p->p_xstat); 1380 } 1381 lwkt_reltoken(&p->p_token); 1382 PRELE(p); 1383 goto done; 1384 } 1385 if ((options & WCONTINUED) && (p->p_flags & P_CONTINUED)) { 1386 lwkt_gettoken(&p->p_token); 1387 if (p->p_pptr != q) { 1388 lwkt_reltoken(&p->p_token); 1389 PRELE(p); 1390 goto loop; 1391 } 1392 if ((p->p_flags & P_CONTINUED) == 0) { 1393 lwkt_reltoken(&p->p_token); 1394 PRELE(p); 1395 goto loop; 1396 } 1397 1398 *res = p->p_pid; 1399 1400 /* 1401 * Don't set P_WAITED if WNOWAIT specified, leaving 1402 * the process in a waitable state. 1403 */ 1404 if ((options & WNOWAIT) == 0) 1405 p->p_flags &= ~P_CONTINUED; 1406 1407 *status = SIGCONT; 1408 error = 0; 1409 if (info) { 1410 bzero(info, sizeof(*info)); 1411 info->si_code = CLD_CONTINUED; 1412 info->si_status = WSTOPSIG(p->p_xstat); 1413 } 1414 lwkt_reltoken(&p->p_token); 1415 PRELE(p); 1416 goto done; 1417 } 1418 PRELE(p); 1419 } 1420 if (nfound == 0) { 1421 error = ECHILD; 1422 goto done; 1423 } 1424 if (options & WNOHANG) { 1425 *res = 0; 1426 error = 0; 1427 goto done; 1428 } 1429 1430 /* 1431 * Wait for signal - interlocked using q->p_waitgen. 1432 */ 1433 error = 0; 1434 while ((waitgen & 0x7FFFFFFF) == (q->p_waitgen & 0x7FFFFFFF)) { 1435 tsleep_interlock(q, PCATCH); 1436 waitgen = atomic_fetchadd_long(&q->p_waitgen, 0x80000000); 1437 if ((waitgen & 0x7FFFFFFF) == (q->p_waitgen & 0x7FFFFFFF)) { 1438 error = tsleep(q, PCATCH | PINTERLOCKED, "wait", 0); 1439 break; 1440 } 1441 } 1442 if (error) { 1443 done: 1444 lwkt_reltoken(&q->p_token); 1445 return (error); 1446 } 1447 goto loop; 1448 } 1449 1450 /* 1451 * Change child's parent process to parent. 1452 * 1453 * p_children/p_sibling requires the parent's token, and 1454 * changing pptr requires the child's token, so we have to 1455 * get three tokens to do this operation. We also need to 1456 * hold pointers that might get ripped out from under us to 1457 * preserve structural integrity. 1458 * 1459 * It is possible to race another reparent or disconnect or other 1460 * similar operation. We must retry when this situation occurs. 1461 * Once we successfully reparent the process we no longer care 1462 * about any races. 1463 */ 1464 void 1465 proc_reparent(struct proc *child, struct proc *parent) 1466 { 1467 struct proc *opp; 1468 1469 PHOLD(parent); 1470 while ((opp = child->p_pptr) != parent) { 1471 PHOLD(opp); 1472 lwkt_gettoken(&opp->p_token); 1473 lwkt_gettoken(&child->p_token); 1474 lwkt_gettoken(&parent->p_token); 1475 if (child->p_pptr != opp) { 1476 lwkt_reltoken(&parent->p_token); 1477 lwkt_reltoken(&child->p_token); 1478 lwkt_reltoken(&opp->p_token); 1479 PRELE(opp); 1480 continue; 1481 } 1482 LIST_REMOVE(child, p_sibling); 1483 LIST_INSERT_HEAD(&parent->p_children, child, p_sibling); 1484 child->p_pptr = parent; 1485 child->p_ppid = parent->p_pid; 1486 lwkt_reltoken(&parent->p_token); 1487 lwkt_reltoken(&child->p_token); 1488 lwkt_reltoken(&opp->p_token); 1489 if (LIST_EMPTY(&opp->p_children)) 1490 wakeup(opp); 1491 PRELE(opp); 1492 break; 1493 } 1494 PRELE(parent); 1495 } 1496 1497 /* 1498 * The next two functions are to handle adding/deleting items on the 1499 * exit callout list 1500 * 1501 * at_exit(): 1502 * Take the arguments given and put them onto the exit callout list, 1503 * However first make sure that it's not already there. 1504 * returns 0 on success. 1505 */ 1506 1507 int 1508 at_exit(exitlist_fn function) 1509 { 1510 struct exitlist *ep; 1511 1512 #ifdef INVARIANTS 1513 /* Be noisy if the programmer has lost track of things */ 1514 if (rm_at_exit(function)) 1515 kprintf("WARNING: exit callout entry (%p) already present\n", 1516 function); 1517 #endif 1518 ep = kmalloc(sizeof(*ep), M_ATEXIT, M_NOWAIT); 1519 if (ep == NULL) 1520 return (ENOMEM); 1521 ep->function = function; 1522 TAILQ_INSERT_TAIL(&exit_list, ep, next); 1523 return (0); 1524 } 1525 1526 /* 1527 * Scan the exit callout list for the given item and remove it. 1528 * Returns the number of items removed (0 or 1) 1529 */ 1530 int 1531 rm_at_exit(exitlist_fn function) 1532 { 1533 struct exitlist *ep; 1534 1535 TAILQ_FOREACH(ep, &exit_list, next) { 1536 if (ep->function == function) { 1537 TAILQ_REMOVE(&exit_list, ep, next); 1538 kfree(ep, M_ATEXIT); 1539 return(1); 1540 } 1541 } 1542 return (0); 1543 } 1544 1545 /* 1546 * LWP reaper related code. 1547 */ 1548 static void 1549 reaplwps(void *context, int dummy) 1550 { 1551 struct lwplist *lwplist = context; 1552 struct lwp *lp; 1553 int cpu = mycpuid; 1554 1555 lwkt_gettoken(&deadlwp_token[cpu]); 1556 while ((lp = LIST_FIRST(lwplist))) { 1557 LIST_REMOVE(lp, u.lwp_reap_entry); 1558 reaplwp(lp); 1559 } 1560 lwkt_reltoken(&deadlwp_token[cpu]); 1561 } 1562 1563 static void 1564 reaplwp(struct lwp *lp) 1565 { 1566 while (lwp_wait(lp) == 0) 1567 ; 1568 lwp_dispose(lp); 1569 } 1570 1571 static void 1572 deadlwp_init(void) 1573 { 1574 int cpu; 1575 1576 for (cpu = 0; cpu < ncpus; cpu++) { 1577 lwkt_token_init(&deadlwp_token[cpu], "deadlwpl"); 1578 LIST_INIT(&deadlwp_list[cpu]); 1579 deadlwp_task[cpu] = kmalloc(sizeof(*deadlwp_task[cpu]), 1580 M_DEVBUF, M_WAITOK); 1581 TASK_INIT(deadlwp_task[cpu], 0, reaplwps, &deadlwp_list[cpu]); 1582 } 1583 } 1584 1585 SYSINIT(deadlwpinit, SI_SUB_CONFIGURE, SI_ORDER_ANY, deadlwp_init, NULL); 1586