xref: /dragonfly/sys/kern/kern_exit.c (revision c9c5aa9e)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_exit.c	8.7 (Berkeley) 2/12/94
35  * $FreeBSD: src/sys/kern/kern_exit.c,v 1.92.2.11 2003/01/13 22:51:16 dillon Exp $
36  */
37 
38 #include "opt_ktrace.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/sysmsg.h>
43 #include <sys/kernel.h>
44 #include <sys/malloc.h>
45 #include <sys/proc.h>
46 #include <sys/ktrace.h>
47 #include <sys/pioctl.h>
48 #include <sys/tty.h>
49 #include <sys/wait.h>
50 #include <sys/vnode.h>
51 #include <sys/resourcevar.h>
52 #include <sys/signalvar.h>
53 #include <sys/taskqueue.h>
54 #include <sys/ptrace.h>
55 #include <sys/acct.h>		/* for acct_process() function prototype */
56 #include <sys/filedesc.h>
57 #include <sys/shm.h>
58 #include <sys/sem.h>
59 #include <sys/jail.h>
60 #include <sys/kern_syscall.h>
61 #include <sys/unistd.h>
62 #include <sys/eventhandler.h>
63 #include <sys/dsched.h>
64 
65 #include <vm/vm.h>
66 #include <vm/vm_param.h>
67 #include <sys/lock.h>
68 #include <vm/pmap.h>
69 #include <vm/vm_map.h>
70 #include <vm/vm_extern.h>
71 
72 #include <sys/refcount.h>
73 #include <sys/spinlock2.h>
74 
75 #include <machine/vmm.h>
76 
77 static void reaplwps(void *context, int dummy);
78 static void reaplwp(struct lwp *lp);
79 static void killlwps(struct lwp *lp);
80 
81 static MALLOC_DEFINE(M_ATEXIT, "atexit", "atexit callback");
82 
83 /*
84  * callout list for things to do at exit time
85  */
86 struct exitlist {
87 	exitlist_fn function;
88 	TAILQ_ENTRY(exitlist) next;
89 };
90 
91 TAILQ_HEAD(exit_list_head, exitlist);
92 static struct exit_list_head exit_list = TAILQ_HEAD_INITIALIZER(exit_list);
93 
94 /*
95  * LWP reaper data
96  */
97 static struct task *deadlwp_task[MAXCPU];
98 static struct lwplist deadlwp_list[MAXCPU];
99 static struct lwkt_token deadlwp_token[MAXCPU];
100 
101 void (*linux_task_drop_callback)(thread_t td);
102 void (*linux_proc_drop_callback)(struct proc *p);
103 
104 /*
105  * exit --
106  *	Death of process.
107  *
108  * SYS_EXIT_ARGS(int rval)
109  */
110 int
111 sys_exit(struct sysmsg *sysmsg, const struct exit_args *uap)
112 {
113 	exit1(W_EXITCODE(uap->rval, 0));
114 	/* NOTREACHED */
115 }
116 
117 /*
118  * Extended exit --
119  *	Death of a lwp or process with optional bells and whistles.
120  */
121 int
122 sys_extexit(struct sysmsg *sysmsg, const struct extexit_args *uap)
123 {
124 	struct proc *p = curproc;
125 	int action, who;
126 	int error;
127 
128 	action = EXTEXIT_ACTION(uap->how);
129 	who = EXTEXIT_WHO(uap->how);
130 
131 	/* Check parameters before we might perform some action */
132 	switch (who) {
133 	case EXTEXIT_PROC:
134 	case EXTEXIT_LWP:
135 		break;
136 	default:
137 		return (EINVAL);
138 	}
139 
140 	switch (action) {
141 	case EXTEXIT_SIMPLE:
142 		break;
143 	case EXTEXIT_SETINT:
144 		error = copyout(&uap->status, uap->addr, sizeof(uap->status));
145 		if (error)
146 			return (error);
147 		break;
148 	default:
149 		return (EINVAL);
150 	}
151 
152 	lwkt_gettoken(&p->p_token);
153 
154 	switch (who) {
155 	case EXTEXIT_LWP:
156 		/*
157 		 * Be sure only to perform a simple lwp exit if there is at
158 		 * least one more lwp in the proc, which will call exit1()
159 		 * later, otherwise the proc will be an UNDEAD and not even a
160 		 * SZOMB!
161 		 */
162 		if (p->p_nthreads > 1) {
163 			lwp_exit(0, NULL);	/* called w/ p_token held */
164 			/* NOT REACHED */
165 		}
166 		/* else last lwp in proc:  do the real thing */
167 		/* FALLTHROUGH */
168 	default:	/* to help gcc */
169 	case EXTEXIT_PROC:
170 		lwkt_reltoken(&p->p_token);
171 		exit1(W_EXITCODE(uap->status, 0));
172 		/* NOTREACHED */
173 	}
174 
175 	/* NOTREACHED */
176 	lwkt_reltoken(&p->p_token);	/* safety */
177 }
178 
179 /*
180  * Kill all lwps associated with the current process except the
181  * current lwp.   Return an error if we race another thread trying to
182  * do the same thing and lose the race.
183  *
184  * If forexec is non-zero the current thread and process flags are
185  * cleaned up so they can be reused.
186  */
187 int
188 killalllwps(int forexec)
189 {
190 	struct lwp *lp = curthread->td_lwp;
191 	struct proc *p = lp->lwp_proc;
192 	int fakestop;
193 
194 	/*
195 	 * Interlock against P_WEXIT.  Only one of the process's thread
196 	 * is allowed to do the master exit.
197 	 */
198 	lwkt_gettoken(&p->p_token);
199 	if (p->p_flags & P_WEXIT) {
200 		lwkt_reltoken(&p->p_token);
201 		return (EALREADY);
202 	}
203 	p->p_flags |= P_WEXIT;
204 	lwkt_gettoken(&lp->lwp_token);
205 
206 	/*
207 	 * Set temporary stopped state in case we are racing a coredump.
208 	 * Otherwise the coredump may hang forever.
209 	 */
210 	if (lp->lwp_mpflags & LWP_MP_WSTOP) {
211 		fakestop = 0;
212 	} else {
213 		atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
214 		++p->p_nstopped;
215 		fakestop = 1;
216 		wakeup(&p->p_nstopped);
217 	}
218 
219 	/*
220 	 * Interlock with LWP_MP_WEXIT and kill any remaining LWPs
221 	 */
222 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
223 	if (p->p_nthreads > 1)
224 		killlwps(lp);
225 
226 	/*
227 	 * Undo temporary stopped state
228 	 */
229 	if (fakestop && (lp->lwp_mpflags & LWP_MP_WSTOP)) {
230 		atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
231 		--p->p_nstopped;
232 	}
233 
234 	/*
235 	 * If doing this for an exec, clean up the remaining thread
236 	 * (us) for continuing operation after all the other threads
237 	 * have been killed.
238 	 */
239 	if (forexec) {
240 		atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
241 		p->p_flags &= ~P_WEXIT;
242 	}
243 	lwkt_reltoken(&lp->lwp_token);
244 	lwkt_reltoken(&p->p_token);
245 
246 	return(0);
247 }
248 
249 /*
250  * Kill all LWPs except the current one.  Do not try to signal
251  * LWPs which have exited on their own or have already been
252  * signaled.
253  */
254 static void
255 killlwps(struct lwp *lp)
256 {
257 	struct proc *p = lp->lwp_proc;
258 	struct lwp *tlp;
259 
260 	/*
261 	 * Kill the remaining LWPs.  We must send the signal before setting
262 	 * LWP_MP_WEXIT.  The setting of WEXIT is optional but helps reduce
263 	 * races.  tlp must be held across the call as it might block and
264 	 * allow the target lwp to rip itself out from under our loop.
265 	 */
266 	FOREACH_LWP_IN_PROC(tlp, p) {
267 		LWPHOLD(tlp);
268 		lwkt_gettoken(&tlp->lwp_token);
269 		if ((tlp->lwp_mpflags & LWP_MP_WEXIT) == 0) {
270 			atomic_set_int(&tlp->lwp_mpflags, LWP_MP_WEXIT);
271 			lwpsignal(p, tlp, SIGKILL);
272 		}
273 		lwkt_reltoken(&tlp->lwp_token);
274 		LWPRELE(tlp);
275 	}
276 
277 	/*
278 	 * Wait for everything to clear out.  Also make sure any tstop()s
279 	 * are signalled (we are holding p_token for the interlock).
280 	 */
281 	wakeup(p);
282 	while (p->p_nthreads > 1)
283 		tsleep(&p->p_nthreads, 0, "killlwps", 0);
284 }
285 
286 /*
287  * Exit: deallocate address space and other resources, change proc state
288  * to zombie, and unlink proc from allproc and parent's lists.  Save exit
289  * status and rusage for wait().  Check for child processes and orphan them.
290  */
291 void
292 exit1(int rv)
293 {
294 	struct thread *td = curthread;
295 	struct proc *p = td->td_proc;
296 	struct lwp *lp = td->td_lwp;
297 	struct proc *q;
298 	struct proc *pp;
299 	struct proc *reproc;
300 	struct sysreaper *reap;
301 	struct vmspace *vm;
302 	struct vnode *vtmp;
303 	struct exitlist *ep;
304 	int error;
305 
306 	lwkt_gettoken(&p->p_token);
307 
308 	if (p->p_pid == 1) {
309 		kprintf("init died (signal %d, exit %d)\n",
310 		    WTERMSIG(rv), WEXITSTATUS(rv));
311 		panic("Going nowhere without my init!");
312 	}
313 	varsymset_clean(&p->p_varsymset);
314 	lockuninit(&p->p_varsymset.vx_lock);
315 
316 	/*
317 	 * Kill all lwps associated with the current process, return an
318 	 * error if we race another thread trying to do the same thing
319 	 * and lose the race.
320 	 */
321 	error = killalllwps(0);
322 	if (error) {
323 		lwp_exit(0, NULL);
324 		/* NOT REACHED */
325 	}
326 
327 	/* are we a task leader? */
328 	if (p == p->p_leader) {
329 		struct sysmsg sysmsg;
330 
331 		sysmsg.extargs.kill.signum = SIGKILL;
332 		q = p->p_peers;
333 		while(q) {
334 			sysmsg.extargs.kill.pid = q->p_pid;
335 			/*
336 		         * The interface for kill is better
337 			 * than the internal signal
338 			 */
339 			sys_kill(&sysmsg, &sysmsg.extargs.kill);
340 			q = q->p_peers;
341 		}
342 		while (p->p_peers)
343 			tsleep((caddr_t)p, 0, "exit1", 0);
344 	}
345 
346 #ifdef PGINPROF
347 	vmsizmon();
348 #endif
349 	STOPEVENT(p, S_EXIT, rv);
350 	p->p_flags |= P_POSTEXIT;	/* stop procfs stepping */
351 
352 	/*
353 	 * Check if any loadable modules need anything done at process exit.
354 	 * e.g. SYSV IPC stuff
355 	 * XXX what if one of these generates an error?
356 	 */
357 	p->p_xstat = rv;
358 
359 	/*
360 	 * XXX: imho, the eventhandler stuff is much cleaner than this.
361 	 *	Maybe we should move everything to use eventhandler.
362 	 */
363 	TAILQ_FOREACH(ep, &exit_list, next)
364 		(*ep->function)(td);
365 
366 	if (p->p_flags & P_PROFIL)
367 		stopprofclock(p);
368 
369 	SIGEMPTYSET(p->p_siglist);
370 	SIGEMPTYSET(lp->lwp_siglist);
371 	if (timevalisset(&p->p_realtimer.it_value))
372 		callout_terminate(&p->p_ithandle);
373 
374 	/*
375 	 * Reset any sigio structures pointing to us as a result of
376 	 * F_SETOWN with our pid.
377 	 */
378 	funsetownlst(&p->p_sigiolst);
379 
380 	/*
381 	 * Close open files and release open-file table.
382 	 * This may block!
383 	 */
384 	fdfree(p, NULL);
385 
386 	if (p->p_leader->p_peers) {
387 		q = p->p_leader;
388 		while(q->p_peers != p)
389 			q = q->p_peers;
390 		q->p_peers = p->p_peers;
391 		wakeup((caddr_t)p->p_leader);
392 	}
393 
394 	/*
395 	 * XXX Shutdown SYSV semaphores
396 	 */
397 	semexit(p);
398 
399 	/* The next two chunks should probably be moved to vmspace_exit. */
400 	vm = p->p_vmspace;
401 
402 	/*
403 	 * Clean up data related to virtual kernel operation.  Clean up
404 	 * any vkernel context related to the current lwp now so we can
405 	 * destroy p_vkernel.
406 	 */
407 	if (p->p_vkernel) {
408 		vkernel_lwp_exit(lp);
409 		vkernel_exit(p);
410 	}
411 
412 	/*
413 	 * Release the user portion of address space.  The exitbump prevents
414 	 * the vmspace from being completely eradicated (using holdcnt).
415 	 * This releases references to vnodes, which could cause I/O if the
416 	 * file has been unlinked.  We need to do this early enough that
417 	 * we can still sleep.
418 	 *
419 	 * We can't free the entire vmspace as the kernel stack may be mapped
420 	 * within that space also.
421 	 *
422 	 * Processes sharing the same vmspace may exit in one order, and
423 	 * get cleaned up by vmspace_exit() in a different order.  The
424 	 * last exiting process to reach this point releases as much of
425 	 * the environment as it can, and the last process cleaned up
426 	 * by vmspace_exit() (which decrements exitingcnt) cleans up the
427 	 * remainder.
428 	 *
429 	 * NOTE: Releasing p_token around this call is helpful if the
430 	 *	 vmspace had a huge RSS.  Otherwise some other process
431 	 *	 trying to do an allproc or other scan (like 'ps') may
432 	 *	 stall for a long time.
433 	 */
434 	lwkt_reltoken(&p->p_token);
435 	vmspace_relexit(vm);
436 	lwkt_gettoken(&p->p_token);
437 
438 	if (SESS_LEADER(p)) {
439 		struct session *sp = p->p_session;
440 
441 		if (sp->s_ttyvp) {
442 			/*
443 			 * We are the controlling process.  Signal the
444 			 * foreground process group, drain the controlling
445 			 * terminal, and revoke access to the controlling
446 			 * terminal.
447 			 *
448 			 * NOTE: while waiting for the process group to exit
449 			 * it is possible that one of the processes in the
450 			 * group will revoke the tty, so the ttyclosesession()
451 			 * function will re-check sp->s_ttyvp.
452 			 */
453 			if (sp->s_ttyp && (sp->s_ttyp->t_session == sp)) {
454 				if (sp->s_ttyp->t_pgrp)
455 					pgsignal(sp->s_ttyp->t_pgrp, SIGHUP, 1);
456 				ttywait(sp->s_ttyp);
457 				ttyclosesession(sp, 1); /* also revoke */
458 			}
459 			/*
460 			 * Release the tty.  If someone has it open via
461 			 * /dev/tty then close it (since they no longer can
462 			 * once we've NULL'd it out).
463 			 */
464 			ttyclosesession(sp, 0);
465 
466 			/*
467 			 * s_ttyp is not zero'd; we use this to indicate
468 			 * that the session once had a controlling terminal.
469 			 * (for logging and informational purposes)
470 			 */
471 		}
472 		sp->s_leader = NULL;
473 	}
474 	fixjobc(p, p->p_pgrp, 0);
475 	(void)acct_process(p);
476 #ifdef KTRACE
477 	/*
478 	 * release trace file
479 	 */
480 	if (p->p_tracenode)
481 		ktrdestroy(&p->p_tracenode);
482 	p->p_traceflag = 0;
483 #endif
484 	/*
485 	 * Release reference to text vnode
486 	 */
487 	if ((vtmp = p->p_textvp) != NULL) {
488 		p->p_textvp = NULL;
489 		vrele(vtmp);
490 	}
491 
492 	/* Release namecache handle to text file */
493 	if (p->p_textnch.ncp)
494 		cache_drop(&p->p_textnch);
495 
496 	/*
497 	 * We have to handle PPWAIT here or proc_move_allproc_zombie()
498 	 * will block on the PHOLD() the parent is doing.
499 	 *
500 	 * We are using the flag as an interlock so an atomic op is
501 	 * necessary to synchronize with the parent's cpu.
502 	 */
503 	if (p->p_flags & P_PPWAIT) {
504 		if (p->p_pptr && p->p_pptr->p_upmap)
505 			atomic_add_int(&p->p_pptr->p_upmap->invfork, -1);
506 		atomic_clear_int(&p->p_flags, P_PPWAIT);
507 		wakeup(p->p_pptr);
508 	}
509 
510 	/*
511 	 * Move the process to the zombie list.  This will block
512 	 * until the process p_lock count reaches 0.  The process will
513 	 * not be reaped until TDF_EXITING is set by cpu_thread_exit(),
514 	 * which is called from cpu_proc_exit().
515 	 *
516 	 * Interlock against waiters using p_waitgen.  We increment
517 	 * p_waitgen after completing the move of our process to the
518 	 * zombie list.
519 	 *
520 	 * WARNING: pp becomes stale when we block, clear it now as a
521 	 *	    reminder.
522 	 */
523 	proc_move_allproc_zombie(p);
524 	pp = p->p_pptr;
525 	atomic_add_long(&pp->p_waitgen, 1);
526 	pp = NULL;
527 
528 	/*
529 	 * release controlled reaper for exit if we own it and return the
530 	 * remaining reaper (the one for us), which we will drop after we
531 	 * are done.
532 	 */
533 	reap = reaper_exit(p);
534 
535 	/*
536 	 * Reparent all of this process's children to the init process or
537 	 * to the designated reaper.  We must hold the reaper's p_token in
538 	 * order to safely mess with p_children.
539 	 *
540 	 * Issue the p_deathsig signal to children that request it.
541 	 *
542 	 * We already hold p->p_token (to remove the children from our list).
543 	 */
544 	reproc = NULL;
545 	q = LIST_FIRST(&p->p_children);
546 	if (q) {
547 		reproc = reaper_get(reap);
548 		lwkt_gettoken(&reproc->p_token);
549 		while ((q = LIST_FIRST(&p->p_children)) != NULL) {
550 			PHOLD(q);
551 			lwkt_gettoken(&q->p_token);
552 			if (q != LIST_FIRST(&p->p_children)) {
553 				lwkt_reltoken(&q->p_token);
554 				PRELE(q);
555 				continue;
556 			}
557 			LIST_REMOVE(q, p_sibling);
558 			LIST_INSERT_HEAD(&reproc->p_children, q, p_sibling);
559 			q->p_pptr = reproc;
560 			q->p_ppid = reproc->p_pid;
561 			q->p_sigparent = SIGCHLD;
562 
563 			/*
564 			 * Traced processes are killed
565 			 * since their existence means someone is screwing up.
566 			 */
567 			if (q->p_flags & P_TRACED) {
568 				q->p_flags &= ~P_TRACED;
569 				ksignal(q, SIGKILL);
570 			}
571 
572 			/*
573 			 * Issue p_deathsig to children that request it
574 			 */
575 			if (q->p_deathsig)
576 				ksignal(q, q->p_deathsig);
577 			lwkt_reltoken(&q->p_token);
578 			PRELE(q);
579 		}
580 		lwkt_reltoken(&reproc->p_token);
581 		wakeup(reproc);
582 	}
583 
584 	/*
585 	 * Save exit status and final rusage info.  We no longer add
586 	 * child rusage info into self times, wait4() and kern_wait()
587 	 * handles it in order to properly support wait6().
588 	 */
589 	calcru_proc(p, &p->p_ru);
590 	/*ruadd(&p->p_ru, &p->p_cru); REMOVED */
591 
592 	/*
593 	 * notify interested parties of our demise.
594 	 */
595 	KNOTE(&p->p_klist, NOTE_EXIT);
596 
597 	/*
598 	 * Notify parent that we're gone.  If parent has the PS_NOCLDWAIT
599 	 * flag set, or if the handler is set to SIG_IGN, notify the reaper
600 	 * instead (it will handle this situation).
601 	 *
602 	 * NOTE: The reaper can still be the parent process.
603 	 *
604 	 * (must reload pp)
605 	 */
606 	if (p->p_pptr->p_sigacts->ps_flag & (PS_NOCLDWAIT | PS_CLDSIGIGN)) {
607 		if (reproc == NULL)
608 			reproc = reaper_get(reap);
609 		proc_reparent(p, reproc);
610 	}
611 	if (reproc)
612 		PRELE(reproc);
613 	if (reap)
614 		reaper_drop(reap);
615 
616 	/*
617 	 * Signal (possibly new) parent.
618 	 */
619 	pp = p->p_pptr;
620 	PHOLD(pp);
621 	if (p->p_sigparent && pp != initproc) {
622 		int sig = p->p_sigparent;
623 
624 		if (sig != SIGUSR1 && sig != SIGCHLD)
625 			sig = SIGCHLD;
626 	        ksignal(pp, sig);
627 	} else {
628 	        ksignal(pp, SIGCHLD);
629 	}
630 	p->p_flags &= ~P_TRACED;
631 	PRELE(pp);
632 
633 	/*
634 	 * cpu_exit is responsible for clearing curproc, since
635 	 * it is heavily integrated with the thread/switching sequence.
636 	 *
637 	 * Other substructures are freed from wait().
638 	 */
639 	if (p->p_limit) {
640 		struct plimit *rlimit;
641 
642 		rlimit = p->p_limit;
643 		p->p_limit = NULL;
644 		plimit_free(rlimit);
645 	}
646 
647 	/*
648 	 * Finally, call machine-dependent code to release as many of the
649 	 * lwp's resources as we can and halt execution of this thread.
650 	 *
651 	 * pp is a wild pointer now but still the correct wakeup() target.
652 	 * lwp_exit() only uses it to send the wakeup() signal to the likely
653 	 * parent.  Any reparenting race that occurs will get a signal
654 	 * automatically and not be an issue.
655 	 */
656 	lwp_exit(1, pp);
657 }
658 
659 /*
660  * Eventually called by every exiting LWP
661  *
662  * p->p_token must be held.  mplock may be held and will be released.
663  */
664 void
665 lwp_exit(int masterexit, void *waddr)
666 {
667 	struct thread *td = curthread;
668 	struct lwp *lp = td->td_lwp;
669 	struct proc *p = lp->lwp_proc;
670 	int dowake = 0;
671 
672 	/*
673 	 * Release the current user process designation on the process so
674 	 * the userland scheduler can work in someone else.
675 	 */
676 	p->p_usched->release_curproc(lp);
677 
678 	/*
679 	 * Destroy the per-thread shared page and remove from any pmaps
680 	 * it resides in.
681 	 */
682 	lwp_userunmap(lp);
683 
684 	/*
685 	 * lwp_exit() may be called without setting LWP_MP_WEXIT, so
686 	 * make sure it is set here.
687 	 */
688 	ASSERT_LWKT_TOKEN_HELD(&p->p_token);
689 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
690 
691 	/*
692 	 * Clean up any virtualization
693 	 */
694 	if (lp->lwp_vkernel)
695 		vkernel_lwp_exit(lp);
696 
697 	if (td->td_vmm)
698 		vmm_vmdestroy();
699 
700 	/*
701 	 * Clean up select/poll support
702 	 */
703 	kqueue_terminate(&lp->lwp_kqueue);
704 
705 	if (td->td_linux_task)
706 		linux_task_drop_callback(td);
707 	if (masterexit && p->p_linux_mm)
708 		linux_proc_drop_callback(p);
709 
710 	/*
711 	 * Clean up any syscall-cached ucred or rlimit.
712 	 */
713 	if (td->td_ucred) {
714 		crfree(td->td_ucred);
715 		td->td_ucred = NULL;
716 	}
717 	if (td->td_limit) {
718 		struct plimit *rlimit;
719 
720 		rlimit = td->td_limit;
721 		td->td_limit = NULL;
722 		plimit_free(rlimit);
723         }
724 
725 	/*
726 	 * Cleanup any cached descriptors for this thread
727 	 */
728 	if (p->p_fd)
729 		fexitcache(td);
730 
731 	/*
732 	 * Nobody actually wakes us when the lock
733 	 * count reaches zero, so just wait one tick.
734 	 */
735 	while (lp->lwp_lock > 0)
736 		tsleep(lp, 0, "lwpexit", 1);
737 
738 	/* Hand down resource usage to our proc */
739 	ruadd(&p->p_ru, &lp->lwp_ru);
740 
741 	/*
742 	 * If we don't hold the process until the LWP is reaped wait*()
743 	 * may try to dispose of its vmspace before all the LWPs have
744 	 * actually terminated.
745 	 */
746 	PHOLD(p);
747 
748 	/*
749 	 * Do any remaining work that might block on us.  We should be
750 	 * coded such that further blocking is ok after decrementing
751 	 * p_nthreads but don't take the chance.
752 	 */
753 	dsched_exit_thread(td);
754 	biosched_done(curthread);
755 
756 	/*
757 	 * We have to use the reaper for all the LWPs except the one doing
758 	 * the master exit.  The LWP doing the master exit can just be
759 	 * left on p_lwps and the process reaper will deal with it
760 	 * synchronously, which is much faster.
761 	 *
762 	 * Wakeup anyone waiting on p_nthreads to drop to 1 or 0.
763 	 *
764 	 * The process is left held until the reaper calls lwp_dispose() on
765 	 * the lp (after calling lwp_wait()).
766 	 */
767 	if (masterexit == 0) {
768 		int cpu = mycpuid;
769 
770 		lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
771 		--p->p_nthreads;
772 		if ((p->p_flags & P_MAYBETHREADED) && p->p_nthreads <= 1)
773 			dowake = 1;
774 		lwkt_gettoken(&deadlwp_token[cpu]);
775 		LIST_INSERT_HEAD(&deadlwp_list[cpu], lp, u.lwp_reap_entry);
776 		taskqueue_enqueue(taskqueue_thread[cpu], deadlwp_task[cpu]);
777 		lwkt_reltoken(&deadlwp_token[cpu]);
778 	} else {
779 		--p->p_nthreads;
780 		if ((p->p_flags & P_MAYBETHREADED) && p->p_nthreads <= 1)
781 			dowake = 1;
782 	}
783 
784 	/*
785 	 * We no longer need p_token.
786 	 *
787 	 * Tell the userland scheduler that we are going away
788 	 */
789 	lwkt_reltoken(&p->p_token);
790 	p->p_usched->heuristic_exiting(lp, p);
791 
792 	/*
793 	 * Issue late wakeups after releasing our token to give us a chance
794 	 * to deschedule and switch away before another cpu in a wait*()
795 	 * reaps us.  This is done as late as possible to reduce contention.
796 	 */
797 	if (dowake)
798 		wakeup(&p->p_nthreads);
799 	if (waddr)
800 		wakeup(waddr);
801 
802 	cpu_lwp_exit();
803 }
804 
805 /*
806  * Wait until a lwp is completely dead.  The final interlock in this drama
807  * is when TDF_EXITING is set in cpu_thread_exit() just before the final
808  * switchout.
809  *
810  * At the point TDF_EXITING is set a complete exit is accomplished when
811  * TDF_RUNNING and TDF_PREEMPT_LOCK are both clear.  td_mpflags has two
812  * post-switch interlock flags that can be used to wait for the TDF_
813  * flags to clear.
814  *
815  * Returns non-zero on success, and zero if the caller needs to retry
816  * the lwp_wait().
817  */
818 static int
819 lwp_wait(struct lwp *lp)
820 {
821 	struct thread *td = lp->lwp_thread;
822 	u_int mpflags;
823 
824 	KKASSERT(lwkt_preempted_proc() != lp);
825 
826 	/*
827 	 * This bit of code uses the thread destruction interlock
828 	 * managed by lwkt_switch_return() to wait for the lwp's
829 	 * thread to completely disengage.
830 	 *
831 	 * It is possible for us to race another cpu core so we
832 	 * have to do this correctly.
833 	 */
834 	for (;;) {
835 		mpflags = td->td_mpflags;
836 		cpu_ccfence();
837 		if (mpflags & TDF_MP_EXITSIG)
838 			break;
839 		tsleep_interlock(td, 0);
840 		if (atomic_cmpset_int(&td->td_mpflags, mpflags,
841 				      mpflags | TDF_MP_EXITWAIT)) {
842 			tsleep(td, PINTERLOCKED, "lwpxt", 0);
843 		}
844 	}
845 
846 	/*
847 	 * We've already waited for the core exit but there can still
848 	 * be other refs from e.g. process scans and such.
849 	 */
850 	if (lp->lwp_lock > 0) {
851 		tsleep(lp, 0, "lwpwait1", 1);
852 		return(0);
853 	}
854 	if (td->td_refs) {
855 		tsleep(td, 0, "lwpwait2", 1);
856 		return(0);
857 	}
858 
859 	/*
860 	 * Now that we have the thread destruction interlock these flags
861 	 * really should already be cleaned up, keep a check for safety.
862 	 *
863 	 * We can't rip its stack out from under it until TDF_EXITING is
864 	 * set and both TDF_RUNNING and TDF_PREEMPT_LOCK are clear.
865 	 * TDF_PREEMPT_LOCK must be checked because TDF_RUNNING
866 	 * will be cleared temporarily if a thread gets preempted.
867 	 */
868 	while ((td->td_flags & (TDF_RUNNING |
869 				TDF_RUNQ |
870 			        TDF_PREEMPT_LOCK |
871 			        TDF_EXITING)) != TDF_EXITING) {
872 		tsleep(lp, 0, "lwpwait3", 1);
873 		return (0);
874 	}
875 
876 	KASSERT((td->td_flags & (TDF_RUNQ|TDF_TSLEEPQ)) == 0,
877 		("lwp_wait: td %p (%s) still on run or sleep queue",
878 		td, td->td_comm));
879 	return (1);
880 }
881 
882 /*
883  * Release the resources associated with a lwp.
884  * The lwp must be completely dead.
885  */
886 void
887 lwp_dispose(struct lwp *lp)
888 {
889 	struct thread *td = lp->lwp_thread;
890 
891 	KKASSERT(lwkt_preempted_proc() != lp);
892 	KKASSERT(lp->lwp_lock == 0);
893 	KKASSERT(td->td_refs == 0);
894 	KKASSERT((td->td_flags & (TDF_RUNNING |
895 				  TDF_RUNQ |
896 				  TDF_PREEMPT_LOCK |
897 				  TDF_EXITING)) == TDF_EXITING);
898 
899 	PRELE(lp->lwp_proc);
900 	lp->lwp_proc = NULL;
901 	if (td != NULL) {
902 		td->td_proc = NULL;
903 		td->td_lwp = NULL;
904 		lp->lwp_thread = NULL;
905 		lwkt_free_thread(td);
906 	}
907 	kfree(lp, M_LWP);
908 }
909 
910 int
911 sys_wait4(struct sysmsg *sysmsg, const struct wait_args *uap)
912 {
913 	struct __wrusage wrusage;
914 	int error;
915 	int status;
916 	int options;
917 	id_t id;
918 	idtype_t idtype;
919 
920 	options = uap->options | WEXITED | WTRAPPED;
921 	id = uap->pid;
922 
923 	if (id == WAIT_ANY) {
924 		idtype = P_ALL;
925 	} else if (id == WAIT_MYPGRP) {
926 		idtype = P_PGID;
927 		id = curproc->p_pgid;
928 	} else if (id < 0) {
929 		idtype = P_PGID;
930 		id = -id;
931 	} else {
932 		idtype = P_PID;
933 	}
934 
935 	error = kern_wait(idtype, id, &status, options, &wrusage,
936 			  NULL, &sysmsg->sysmsg_result);
937 
938 	if (error == 0 && uap->status)
939 		error = copyout(&status, uap->status, sizeof(*uap->status));
940 	if (error == 0 && uap->rusage) {
941 		ruadd(&wrusage.wru_self, &wrusage.wru_children);
942 		error = copyout(&wrusage.wru_self, uap->rusage, sizeof(*uap->rusage));
943 	}
944 	return (error);
945 }
946 
947 int
948 sys_wait6(struct sysmsg *sysmsg, const struct wait6_args *uap)
949 {
950 	struct __wrusage wrusage;
951 	siginfo_t info;
952 	siginfo_t *infop;
953 	int error;
954 	int status;
955 	int options;
956 	id_t id;
957 	idtype_t idtype;
958 
959 	/*
960 	 * NOTE: wait6() requires WEXITED and WTRAPPED to be specified if
961 	 *	 desired.
962 	 */
963 	options = uap->options;
964 	idtype = uap->idtype;
965 	id = uap->id;
966 	infop = uap->info ? &info : NULL;
967 
968 	switch(idtype) {
969 	case P_PID:
970 	case P_PGID:
971 		if (id == WAIT_MYPGRP) {
972 			idtype = P_PGID;
973 			id = curproc->p_pgid;
974 		}
975 		break;
976 	default:
977 		/* let kern_wait deal with the remainder */
978 		break;
979 	}
980 
981 	error = kern_wait(idtype, id, &status, options,
982 			  &wrusage, infop, &sysmsg->sysmsg_result);
983 
984 	if (error == 0 && uap->status)
985 		error = copyout(&status, uap->status, sizeof(*uap->status));
986 	if (error == 0 && uap->wrusage)
987 		error = copyout(&wrusage, uap->wrusage, sizeof(*uap->wrusage));
988 	if (error == 0 && uap->info)
989 		error = copyout(&info, uap->info, sizeof(*uap->info));
990 	return (error);
991 }
992 
993 /*
994  * kernel wait*() system call support
995  */
996 int
997 kern_wait(idtype_t idtype, id_t id, int *status, int options,
998 	  struct __wrusage *wrusage, siginfo_t *info, int *res)
999 {
1000 	struct thread *td = curthread;
1001 	struct lwp *lp;
1002 	struct proc *q = td->td_proc;
1003 	struct proc *p, *t;
1004 	struct ucred *cr;
1005 	struct pargs *pa;
1006 	struct sigacts *ps;
1007 	int nfound, error;
1008 	long waitgen;
1009 
1010 	/*
1011 	 * Must not have extraneous options.  Must have at least one
1012 	 * matchable option.
1013 	 */
1014 	if (options &~ (WUNTRACED|WNOHANG|WCONTINUED|WLINUXCLONE|WSTOPPED|
1015 			WEXITED|WTRAPPED|WNOWAIT)) {
1016 		return (EINVAL);
1017 	}
1018 	if ((options & (WEXITED | WUNTRACED | WCONTINUED | WTRAPPED)) == 0) {
1019 		return (EINVAL);
1020 	}
1021 
1022 	/*
1023 	 * Protect the q->p_children list
1024 	 */
1025 	lwkt_gettoken(&q->p_token);
1026 loop:
1027 	/*
1028 	 * All sorts of things can change due to blocking so we have to loop
1029 	 * all the way back up here.
1030 	 *
1031 	 * The problem is that if a process group is stopped and the parent
1032 	 * is doing a wait*(..., WUNTRACED, ...), it will see the STOP
1033 	 * of the child and then stop itself when it tries to return from the
1034 	 * system call.  When the process group is resumed the parent will
1035 	 * then get the STOP status even though the child has now resumed
1036 	 * (a followup wait*() will get the CONT status).
1037 	 *
1038 	 * Previously the CONT would overwrite the STOP because the tstop
1039 	 * was handled within tsleep(), and the parent would only see
1040 	 * the CONT when both are stopped and continued together.  This little
1041 	 * two-line hack restores this effect.
1042 	 *
1043 	 * No locks are held so we can safely block the process here.
1044 	 */
1045 	if (STOPLWP(q, td->td_lwp))
1046             tstop();
1047 
1048 	nfound = 0;
1049 
1050 	/*
1051 	 * Loop on children.
1052 	 *
1053 	 * NOTE: We don't want to break q's p_token in the loop for the
1054 	 *	 case where no children are found or we risk breaking the
1055 	 *	 interlock between child and parent.
1056 	 */
1057 	waitgen = atomic_fetchadd_long(&q->p_waitgen, 0x80000000);
1058 	LIST_FOREACH(p, &q->p_children, p_sibling) {
1059 		/*
1060 		 * Skip children that another thread is already uninterruptably
1061 		 * reaping.
1062 		 */
1063 		if (PWAITRES_PENDING(p))
1064 			continue;
1065 
1066 		/*
1067 		 * Filter, (p) will be held on fall-through.  Try to optimize
1068 		 * this to avoid the atomic op until we are pretty sure we
1069 		 * want this process.
1070 		 */
1071 		switch(idtype) {
1072 		case P_ALL:
1073 			PHOLD(p);
1074 			break;
1075 		case P_PID:
1076 			if (p->p_pid != (pid_t)id)
1077 				continue;
1078 			PHOLD(p);
1079 			break;
1080 		case P_PGID:
1081 			if (p->p_pgid != (pid_t)id)
1082 				continue;
1083 			PHOLD(p);
1084 			break;
1085 		case P_SID:
1086 			PHOLD(p);
1087 			if (p->p_session && p->p_session->s_sid != (pid_t)id) {
1088 				PRELE(p);
1089 				continue;
1090 			}
1091 			break;
1092 		case P_UID:
1093 			PHOLD(p);
1094 			if (p->p_ucred->cr_uid != (uid_t)id) {
1095 				PRELE(p);
1096 				continue;
1097 			}
1098 			break;
1099 		case P_GID:
1100 			PHOLD(p);
1101 			if (p->p_ucred->cr_gid != (gid_t)id) {
1102 				PRELE(p);
1103 				continue;
1104 			}
1105 			break;
1106 		case P_JAILID:
1107 			PHOLD(p);
1108 			if (p->p_ucred->cr_prison &&
1109 			    p->p_ucred->cr_prison->pr_id != (int)id) {
1110 				PRELE(p);
1111 				continue;
1112 			}
1113 			break;
1114 		default:
1115 			/* unsupported filter */
1116 			continue;
1117 		}
1118 		/* (p) is held at this point */
1119 
1120 		/*
1121 		 * This special case handles a kthread spawned by linux_clone
1122 		 * (see linux_misc.c).  The linux_wait4 and linux_waitpid
1123 		 * functions need to be able to distinguish between waiting
1124 		 * on a process and waiting on a thread.  It is a thread if
1125 		 * p_sigparent is not SIGCHLD, and the WLINUXCLONE option
1126 		 * signifies we want to wait for threads and not processes.
1127 		 */
1128 		if ((p->p_sigparent != SIGCHLD) ^
1129 		    ((options & WLINUXCLONE) != 0)) {
1130 			PRELE(p);
1131 			continue;
1132 		}
1133 
1134 		nfound++;
1135 		if (p->p_stat == SZOMB && (options & WEXITED)) {
1136 			/*
1137 			 * We may go into SZOMB with threads still present.
1138 			 * We must wait for them to exit before we can reap
1139 			 * the master thread, otherwise we may race reaping
1140 			 * non-master threads.
1141 			 *
1142 			 * Only this routine can remove a process from
1143 			 * the zombie list and destroy it.
1144 			 *
1145 			 * This function will fail after sleeping if another
1146 			 * thread owns the zombie lock.  This function will
1147 			 * fail immediately or after sleeping if another
1148 			 * thread owns or obtains ownership of the reap via
1149 			 * WAITRES.
1150 			 */
1151 			if (PHOLDZOMB(p)) {
1152 				PRELE(p);
1153 				goto loop;
1154 			}
1155 			lwkt_gettoken(&p->p_token);
1156 			if (p->p_pptr != q) {
1157 				lwkt_reltoken(&p->p_token);
1158 				PRELE(p);
1159 				PRELEZOMB(p);
1160 				goto loop;
1161 			}
1162 
1163 			/*
1164 			 * We are the reaper, from this point on the reap
1165 			 * cannot be aborted.
1166 			 */
1167 			PWAITRES_SET(p);
1168 			while (p->p_nthreads > 0) {
1169 				tsleep(&p->p_nthreads, 0, "lwpzomb", hz);
1170 			}
1171 
1172 			/*
1173 			 * Reap any LWPs left in p->p_lwps.  This is usually
1174 			 * just the last LWP.  This must be done before
1175 			 * we loop on p_lock since the lwps hold a ref on
1176 			 * it as a vmspace interlock.
1177 			 *
1178 			 * Once that is accomplished p_nthreads had better
1179 			 * be zero.
1180 			 */
1181 			while ((lp = RB_ROOT(&p->p_lwp_tree)) != NULL) {
1182 				/*
1183 				 * Make sure no one is using this lwp, before
1184 				 * it is removed from the tree.  If we didn't
1185 				 * wait it here, lwp tree iteration with
1186 				 * blocking operation would be broken.
1187 				 */
1188 				while (lp->lwp_lock > 0)
1189 					tsleep(lp, 0, "zomblwp", 1);
1190 				lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
1191 				reaplwp(lp);
1192 			}
1193 			KKASSERT(p->p_nthreads == 0);
1194 
1195 			/*
1196 			 * Don't do anything really bad until all references
1197 			 * to the process go away.  This may include other
1198 			 * LWPs which are still in the process of being
1199 			 * reaped.  We can't just pull the rug out from under
1200 			 * them because they may still be using the VM space.
1201 			 *
1202 			 * Certain kernel facilities such as /proc will also
1203 			 * put a hold on the process for short periods of
1204 			 * time.
1205 			 */
1206 			PRELE(p);		/* from top of loop */
1207 			PSTALL(p, "reap3", 1);	/* 1 ref (for PZOMBHOLD) */
1208 
1209 			/* Take care of our return values. */
1210 			*res = p->p_pid;
1211 
1212 			*status = p->p_xstat;
1213 			wrusage->wru_self = p->p_ru;
1214 			wrusage->wru_children = p->p_cru;
1215 
1216 			if (info) {
1217 				bzero(info, sizeof(*info));
1218 				info->si_errno = 0;
1219 				info->si_signo = SIGCHLD;
1220 				if (WIFEXITED(p->p_xstat)) {
1221 					info->si_code = CLD_EXITED;
1222 					info->si_status =
1223 						WEXITSTATUS(p->p_xstat);
1224 				} else {
1225 					info->si_code = CLD_KILLED;
1226 					info->si_status = WTERMSIG(p->p_xstat);
1227 				}
1228 				info->si_pid = p->p_pid;
1229 				info->si_uid = p->p_ucred->cr_uid;
1230 			}
1231 
1232 			/*
1233 			 * WNOWAIT shortcuts to done here, leaving the
1234 			 * child on the zombie list.
1235 			 */
1236 			if (options & WNOWAIT) {
1237 				lwkt_reltoken(&p->p_token);
1238 				PRELEZOMB(p);
1239 				error = 0;
1240 				goto done;
1241 			}
1242 
1243 			/*
1244 			 * If we got the child via a ptrace 'attach',
1245 			 * we need to give it back to the old parent.
1246 			 */
1247 			if (p->p_oppid && (t = pfind(p->p_oppid)) != NULL) {
1248 				p->p_oppid = 0;
1249 				proc_reparent(p, t);
1250 				ksignal(t, SIGCHLD);
1251 				wakeup((caddr_t)t);
1252 				PRELE(t);
1253 				lwkt_reltoken(&p->p_token);
1254 				PRELEZOMB(p);
1255 				error = 0;
1256 				goto done;
1257 			}
1258 
1259 			/*
1260 			 * Unlink the proc from its process group so that
1261 			 * the following operations won't lead to an
1262 			 * inconsistent state for processes running down
1263 			 * the zombie list.
1264 			 */
1265 			proc_remove_zombie(p);
1266 			proc_userunmap(p);
1267 			lwkt_reltoken(&p->p_token);
1268 			leavepgrp(p);
1269 
1270 			p->p_xstat = 0;
1271 			ruadd(&q->p_cru, &p->p_ru);
1272 			ruadd(&q->p_cru, &p->p_cru);
1273 
1274 			/*
1275 			 * Decrement the count of procs running with this uid.
1276 			 */
1277 			chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0);
1278 
1279 			/*
1280 			 * Free up credentials.  p_spin is required to
1281 			 * avoid races against allproc scans.
1282 			 */
1283 			spin_lock(&p->p_spin);
1284 			cr = p->p_ucred;
1285 			p->p_ucred = NULL;
1286 			spin_unlock(&p->p_spin);
1287 			crfree(cr);
1288 
1289 			/*
1290 			 * Remove unused arguments
1291 			 */
1292 			pa = p->p_args;
1293 			p->p_args = NULL;
1294 			if (pa && refcount_release(&pa->ar_ref)) {
1295 				kfree(pa, M_PARGS);
1296 				pa = NULL;
1297 			}
1298 
1299 			ps = p->p_sigacts;
1300 			p->p_sigacts = NULL;
1301 			if (ps && refcount_release(&ps->ps_refcnt)) {
1302 				kfree(ps, M_SUBPROC);
1303 				ps = NULL;
1304 			}
1305 
1306 			/*
1307 			 * Our exitingcount was incremented when the process
1308 			 * became a zombie, now that the process has been
1309 			 * removed from (almost) all lists we should be able
1310 			 * to safely destroy its vmspace.  Wait for any current
1311 			 * holders to go away (so the vmspace remains stable),
1312 			 * then scrap it.
1313 			 *
1314 			 * NOTE: Releasing the parent process (q) p_token
1315 			 *	 across the vmspace_exitfree() call is
1316 			 *	 important here to reduce stalls on
1317 			 *	 interactions with (q) (such as
1318 			 *	 fork/exec/wait or 'ps').
1319 			 */
1320 			PSTALL(p, "reap4", 1);
1321 			lwkt_reltoken(&q->p_token);
1322 			vmspace_exitfree(p);
1323 			lwkt_gettoken(&q->p_token);
1324 			PSTALL(p, "reap5", 1);
1325 
1326 			/*
1327 			 * NOTE: We have to officially release ZOMB in order
1328 			 *	 to ensure that a racing thread in kern_wait()
1329 			 *	 which blocked on ZOMB is woken up.
1330 			 */
1331 			PRELEZOMB(p);
1332 			kfree(p->p_uidpcpu, M_SUBPROC);
1333 			kfree(p, M_PROC);
1334 			atomic_add_int(&nprocs, -1);
1335 			error = 0;
1336 			goto done;
1337 		}
1338 
1339 		/*
1340 		 * Process has not yet exited
1341 		 */
1342 		if ((p->p_stat == SSTOP || p->p_stat == SCORE) &&
1343 		    (p->p_flags & P_WAITED) == 0 &&
1344 		    (((p->p_flags & P_TRACED) && (options & WTRAPPED)) ||
1345 		     (options & WSTOPPED))) {
1346 			lwkt_gettoken(&p->p_token);
1347 			if (p->p_pptr != q) {
1348 				lwkt_reltoken(&p->p_token);
1349 				PRELE(p);
1350 				goto loop;
1351 			}
1352 			if ((p->p_stat != SSTOP && p->p_stat != SCORE) ||
1353 			    (p->p_flags & P_WAITED) != 0 ||
1354 			    ((p->p_flags & P_TRACED) == 0 &&
1355 			     (options & WUNTRACED) == 0)) {
1356 				lwkt_reltoken(&p->p_token);
1357 				PRELE(p);
1358 				goto loop;
1359 			}
1360 
1361 			/*
1362 			 * Don't set P_WAITED if WNOWAIT specified, leaving
1363 			 * the process in a waitable state.
1364 			 */
1365 			if ((options & WNOWAIT) == 0)
1366 				p->p_flags |= P_WAITED;
1367 
1368 			*res = p->p_pid;
1369 			*status = W_STOPCODE(p->p_xstat);
1370 			/* Zero rusage so we get something consistent. */
1371 			bzero(wrusage, sizeof(*wrusage));
1372 			error = 0;
1373 			if (info) {
1374 				bzero(info, sizeof(*info));
1375 				if (p->p_flags & P_TRACED)
1376 					info->si_code = CLD_TRAPPED;
1377 				else
1378 					info->si_code = CLD_STOPPED;
1379 				info->si_status = WSTOPSIG(p->p_xstat);
1380 			}
1381 			lwkt_reltoken(&p->p_token);
1382 			PRELE(p);
1383 			goto done;
1384 		}
1385 		if ((options & WCONTINUED) && (p->p_flags & P_CONTINUED)) {
1386 			lwkt_gettoken(&p->p_token);
1387 			if (p->p_pptr != q) {
1388 				lwkt_reltoken(&p->p_token);
1389 				PRELE(p);
1390 				goto loop;
1391 			}
1392 			if ((p->p_flags & P_CONTINUED) == 0) {
1393 				lwkt_reltoken(&p->p_token);
1394 				PRELE(p);
1395 				goto loop;
1396 			}
1397 
1398 			*res = p->p_pid;
1399 
1400 			/*
1401 			 * Don't set P_WAITED if WNOWAIT specified, leaving
1402 			 * the process in a waitable state.
1403 			 */
1404 			if ((options & WNOWAIT) == 0)
1405 				p->p_flags &= ~P_CONTINUED;
1406 
1407 			*status = SIGCONT;
1408 			error = 0;
1409 			if (info) {
1410 				bzero(info, sizeof(*info));
1411 				info->si_code = CLD_CONTINUED;
1412 				info->si_status = WSTOPSIG(p->p_xstat);
1413 			}
1414 			lwkt_reltoken(&p->p_token);
1415 			PRELE(p);
1416 			goto done;
1417 		}
1418 		PRELE(p);
1419 	}
1420 	if (nfound == 0) {
1421 		error = ECHILD;
1422 		goto done;
1423 	}
1424 	if (options & WNOHANG) {
1425 		*res = 0;
1426 		error = 0;
1427 		goto done;
1428 	}
1429 
1430 	/*
1431 	 * Wait for signal - interlocked using q->p_waitgen.
1432 	 */
1433 	error = 0;
1434 	while ((waitgen & 0x7FFFFFFF) == (q->p_waitgen & 0x7FFFFFFF)) {
1435 		tsleep_interlock(q, PCATCH);
1436 		waitgen = atomic_fetchadd_long(&q->p_waitgen, 0x80000000);
1437 		if ((waitgen & 0x7FFFFFFF) == (q->p_waitgen & 0x7FFFFFFF)) {
1438 			error = tsleep(q, PCATCH | PINTERLOCKED, "wait", 0);
1439 			break;
1440 		}
1441 	}
1442 	if (error) {
1443 done:
1444 		lwkt_reltoken(&q->p_token);
1445 		return (error);
1446 	}
1447 	goto loop;
1448 }
1449 
1450 /*
1451  * Change child's parent process to parent.
1452  *
1453  * p_children/p_sibling requires the parent's token, and
1454  * changing pptr requires the child's token, so we have to
1455  * get three tokens to do this operation.  We also need to
1456  * hold pointers that might get ripped out from under us to
1457  * preserve structural integrity.
1458  *
1459  * It is possible to race another reparent or disconnect or other
1460  * similar operation.  We must retry when this situation occurs.
1461  * Once we successfully reparent the process we no longer care
1462  * about any races.
1463  */
1464 void
1465 proc_reparent(struct proc *child, struct proc *parent)
1466 {
1467 	struct proc *opp;
1468 
1469 	PHOLD(parent);
1470 	while ((opp = child->p_pptr) != parent) {
1471 		PHOLD(opp);
1472 		lwkt_gettoken(&opp->p_token);
1473 		lwkt_gettoken(&child->p_token);
1474 		lwkt_gettoken(&parent->p_token);
1475 		if (child->p_pptr != opp) {
1476 			lwkt_reltoken(&parent->p_token);
1477 			lwkt_reltoken(&child->p_token);
1478 			lwkt_reltoken(&opp->p_token);
1479 			PRELE(opp);
1480 			continue;
1481 		}
1482 		LIST_REMOVE(child, p_sibling);
1483 		LIST_INSERT_HEAD(&parent->p_children, child, p_sibling);
1484 		child->p_pptr = parent;
1485 		child->p_ppid = parent->p_pid;
1486 		lwkt_reltoken(&parent->p_token);
1487 		lwkt_reltoken(&child->p_token);
1488 		lwkt_reltoken(&opp->p_token);
1489 		if (LIST_EMPTY(&opp->p_children))
1490 			wakeup(opp);
1491 		PRELE(opp);
1492 		break;
1493 	}
1494 	PRELE(parent);
1495 }
1496 
1497 /*
1498  * The next two functions are to handle adding/deleting items on the
1499  * exit callout list
1500  *
1501  * at_exit():
1502  * Take the arguments given and put them onto the exit callout list,
1503  * However first make sure that it's not already there.
1504  * returns 0 on success.
1505  */
1506 
1507 int
1508 at_exit(exitlist_fn function)
1509 {
1510 	struct exitlist *ep;
1511 
1512 #ifdef INVARIANTS
1513 	/* Be noisy if the programmer has lost track of things */
1514 	if (rm_at_exit(function))
1515 		kprintf("WARNING: exit callout entry (%p) already present\n",
1516 		    function);
1517 #endif
1518 	ep = kmalloc(sizeof(*ep), M_ATEXIT, M_NOWAIT);
1519 	if (ep == NULL)
1520 		return (ENOMEM);
1521 	ep->function = function;
1522 	TAILQ_INSERT_TAIL(&exit_list, ep, next);
1523 	return (0);
1524 }
1525 
1526 /*
1527  * Scan the exit callout list for the given item and remove it.
1528  * Returns the number of items removed (0 or 1)
1529  */
1530 int
1531 rm_at_exit(exitlist_fn function)
1532 {
1533 	struct exitlist *ep;
1534 
1535 	TAILQ_FOREACH(ep, &exit_list, next) {
1536 		if (ep->function == function) {
1537 			TAILQ_REMOVE(&exit_list, ep, next);
1538 			kfree(ep, M_ATEXIT);
1539 			return(1);
1540 		}
1541 	}
1542 	return (0);
1543 }
1544 
1545 /*
1546  * LWP reaper related code.
1547  */
1548 static void
1549 reaplwps(void *context, int dummy)
1550 {
1551 	struct lwplist *lwplist = context;
1552 	struct lwp *lp;
1553 	int cpu = mycpuid;
1554 
1555 	lwkt_gettoken(&deadlwp_token[cpu]);
1556 	while ((lp = LIST_FIRST(lwplist))) {
1557 		LIST_REMOVE(lp, u.lwp_reap_entry);
1558 		reaplwp(lp);
1559 	}
1560 	lwkt_reltoken(&deadlwp_token[cpu]);
1561 }
1562 
1563 static void
1564 reaplwp(struct lwp *lp)
1565 {
1566 	while (lwp_wait(lp) == 0)
1567 		;
1568 	lwp_dispose(lp);
1569 }
1570 
1571 static void
1572 deadlwp_init(void)
1573 {
1574 	int cpu;
1575 
1576 	for (cpu = 0; cpu < ncpus; cpu++) {
1577 		lwkt_token_init(&deadlwp_token[cpu], "deadlwpl");
1578 		LIST_INIT(&deadlwp_list[cpu]);
1579 		deadlwp_task[cpu] = kmalloc(sizeof(*deadlwp_task[cpu]),
1580 					    M_DEVBUF, M_WAITOK);
1581 		TASK_INIT(deadlwp_task[cpu], 0, reaplwps, &deadlwp_list[cpu]);
1582 	}
1583 }
1584 
1585 SYSINIT(deadlwpinit, SI_SUB_CONFIGURE, SI_ORDER_ANY, deadlwp_init, NULL);
1586