xref: /dragonfly/sys/kern/kern_exit.c (revision dcb5d66b)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_exit.c	8.7 (Berkeley) 2/12/94
35  * $FreeBSD: src/sys/kern/kern_exit.c,v 1.92.2.11 2003/01/13 22:51:16 dillon Exp $
36  */
37 
38 #include "opt_ktrace.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/sysproto.h>
43 #include <sys/kernel.h>
44 #include <sys/malloc.h>
45 #include <sys/proc.h>
46 #include <sys/ktrace.h>
47 #include <sys/pioctl.h>
48 #include <sys/tty.h>
49 #include <sys/wait.h>
50 #include <sys/vnode.h>
51 #include <sys/resourcevar.h>
52 #include <sys/signalvar.h>
53 #include <sys/taskqueue.h>
54 #include <sys/ptrace.h>
55 #include <sys/acct.h>		/* for acct_process() function prototype */
56 #include <sys/filedesc.h>
57 #include <sys/shm.h>
58 #include <sys/sem.h>
59 #include <sys/jail.h>
60 #include <sys/kern_syscall.h>
61 #include <sys/unistd.h>
62 #include <sys/eventhandler.h>
63 #include <sys/dsched.h>
64 
65 #include <vm/vm.h>
66 #include <vm/vm_param.h>
67 #include <sys/lock.h>
68 #include <vm/pmap.h>
69 #include <vm/vm_map.h>
70 #include <vm/vm_extern.h>
71 #include <sys/user.h>
72 
73 #include <sys/refcount.h>
74 #include <sys/thread2.h>
75 #include <sys/spinlock2.h>
76 #include <sys/mplock2.h>
77 
78 #include <machine/vmm.h>
79 
80 static void reaplwps(void *context, int dummy);
81 static void reaplwp(struct lwp *lp);
82 static void killlwps(struct lwp *lp);
83 
84 static MALLOC_DEFINE(M_ATEXIT, "atexit", "atexit callback");
85 
86 /*
87  * callout list for things to do at exit time
88  */
89 struct exitlist {
90 	exitlist_fn function;
91 	TAILQ_ENTRY(exitlist) next;
92 };
93 
94 TAILQ_HEAD(exit_list_head, exitlist);
95 static struct exit_list_head exit_list = TAILQ_HEAD_INITIALIZER(exit_list);
96 
97 /*
98  * LWP reaper data
99  */
100 static struct task *deadlwp_task[MAXCPU];
101 static struct lwplist deadlwp_list[MAXCPU];
102 static struct lwkt_token deadlwp_token[MAXCPU];
103 
104 /*
105  * exit --
106  *	Death of process.
107  *
108  * SYS_EXIT_ARGS(int rval)
109  */
110 int
111 sys_exit(struct exit_args *uap)
112 {
113 	exit1(W_EXITCODE(uap->rval, 0));
114 	/* NOTREACHED */
115 }
116 
117 /*
118  * Extended exit --
119  *	Death of a lwp or process with optional bells and whistles.
120  */
121 int
122 sys_extexit(struct extexit_args *uap)
123 {
124 	struct proc *p = curproc;
125 	int action, who;
126 	int error;
127 
128 	action = EXTEXIT_ACTION(uap->how);
129 	who = EXTEXIT_WHO(uap->how);
130 
131 	/* Check parameters before we might perform some action */
132 	switch (who) {
133 	case EXTEXIT_PROC:
134 	case EXTEXIT_LWP:
135 		break;
136 	default:
137 		return (EINVAL);
138 	}
139 
140 	switch (action) {
141 	case EXTEXIT_SIMPLE:
142 		break;
143 	case EXTEXIT_SETINT:
144 		error = copyout(&uap->status, uap->addr, sizeof(uap->status));
145 		if (error)
146 			return (error);
147 		break;
148 	default:
149 		return (EINVAL);
150 	}
151 
152 	lwkt_gettoken(&p->p_token);
153 
154 	switch (who) {
155 	case EXTEXIT_LWP:
156 		/*
157 		 * Be sure only to perform a simple lwp exit if there is at
158 		 * least one more lwp in the proc, which will call exit1()
159 		 * later, otherwise the proc will be an UNDEAD and not even a
160 		 * SZOMB!
161 		 */
162 		if (p->p_nthreads > 1) {
163 			lwp_exit(0, NULL);	/* called w/ p_token held */
164 			/* NOT REACHED */
165 		}
166 		/* else last lwp in proc:  do the real thing */
167 		/* FALLTHROUGH */
168 	default:	/* to help gcc */
169 	case EXTEXIT_PROC:
170 		lwkt_reltoken(&p->p_token);
171 		exit1(W_EXITCODE(uap->status, 0));
172 		/* NOTREACHED */
173 	}
174 
175 	/* NOTREACHED */
176 	lwkt_reltoken(&p->p_token);	/* safety */
177 }
178 
179 /*
180  * Kill all lwps associated with the current process except the
181  * current lwp.   Return an error if we race another thread trying to
182  * do the same thing and lose the race.
183  *
184  * If forexec is non-zero the current thread and process flags are
185  * cleaned up so they can be reused.
186  *
187  * Caller must hold curproc->p_token
188  */
189 int
190 killalllwps(int forexec)
191 {
192 	struct lwp *lp = curthread->td_lwp;
193 	struct proc *p = lp->lwp_proc;
194 	int fakestop;
195 
196 	/*
197 	 * Interlock against P_WEXIT.  Only one of the process's thread
198 	 * is allowed to do the master exit.
199 	 */
200 	if (p->p_flags & P_WEXIT)
201 		return (EALREADY);
202 	p->p_flags |= P_WEXIT;
203 
204 	/*
205 	 * Set temporary stopped state in case we are racing a coredump.
206 	 * Otherwise the coredump may hang forever.
207 	 */
208 	if (lp->lwp_mpflags & LWP_MP_WSTOP) {
209 		fakestop = 0;
210 	} else {
211 		atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
212 		++p->p_nstopped;
213 		fakestop = 1;
214 		wakeup(&p->p_nstopped);
215 	}
216 
217 	/*
218 	 * Interlock with LWP_MP_WEXIT and kill any remaining LWPs
219 	 */
220 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
221 	if (p->p_nthreads > 1)
222 		killlwps(lp);
223 
224 	/*
225 	 * Undo temporary stopped state
226 	 */
227 	if (fakestop) {
228 		atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
229 		--p->p_nstopped;
230 	}
231 
232 	/*
233 	 * If doing this for an exec, clean up the remaining thread
234 	 * (us) for continuing operation after all the other threads
235 	 * have been killed.
236 	 */
237 	if (forexec) {
238 		atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
239 		p->p_flags &= ~P_WEXIT;
240 	}
241 	return(0);
242 }
243 
244 /*
245  * Kill all LWPs except the current one.  Do not try to signal
246  * LWPs which have exited on their own or have already been
247  * signaled.
248  */
249 static void
250 killlwps(struct lwp *lp)
251 {
252 	struct proc *p = lp->lwp_proc;
253 	struct lwp *tlp;
254 
255 	/*
256 	 * Kill the remaining LWPs.  We must send the signal before setting
257 	 * LWP_MP_WEXIT.  The setting of WEXIT is optional but helps reduce
258 	 * races.  tlp must be held across the call as it might block and
259 	 * allow the target lwp to rip itself out from under our loop.
260 	 */
261 	FOREACH_LWP_IN_PROC(tlp, p) {
262 		LWPHOLD(tlp);
263 		lwkt_gettoken(&tlp->lwp_token);
264 		if ((tlp->lwp_mpflags & LWP_MP_WEXIT) == 0) {
265 			atomic_set_int(&tlp->lwp_mpflags, LWP_MP_WEXIT);
266 			lwpsignal(p, tlp, SIGKILL);
267 		}
268 		lwkt_reltoken(&tlp->lwp_token);
269 		LWPRELE(tlp);
270 	}
271 
272 	/*
273 	 * Wait for everything to clear out.  Also make sure any tstop()s
274 	 * are signalled (we are holding p_token for the interlock).
275 	 */
276 	wakeup(p);
277 	while (p->p_nthreads > 1)
278 		tsleep(&p->p_nthreads, 0, "killlwps", 0);
279 }
280 
281 /*
282  * Exit: deallocate address space and other resources, change proc state
283  * to zombie, and unlink proc from allproc and parent's lists.  Save exit
284  * status and rusage for wait().  Check for child processes and orphan them.
285  */
286 void
287 exit1(int rv)
288 {
289 	struct thread *td = curthread;
290 	struct proc *p = td->td_proc;
291 	struct lwp *lp = td->td_lwp;
292 	struct proc *q;
293 	struct proc *pp;
294 	struct proc *reproc;
295 	struct sysreaper *reap;
296 	struct vmspace *vm;
297 	struct vnode *vtmp;
298 	struct exitlist *ep;
299 	int error;
300 
301 	lwkt_gettoken(&p->p_token);
302 
303 	if (p->p_pid == 1) {
304 		kprintf("init died (signal %d, exit %d)\n",
305 		    WTERMSIG(rv), WEXITSTATUS(rv));
306 		panic("Going nowhere without my init!");
307 	}
308 	varsymset_clean(&p->p_varsymset);
309 	lockuninit(&p->p_varsymset.vx_lock);
310 
311 	/*
312 	 * Kill all lwps associated with the current process, return an
313 	 * error if we race another thread trying to do the same thing
314 	 * and lose the race.
315 	 */
316 	error = killalllwps(0);
317 	if (error) {
318 		lwp_exit(0, NULL);
319 		/* NOT REACHED */
320 	}
321 
322 	/* are we a task leader? */
323 	if (p == p->p_leader) {
324         	struct kill_args killArgs;
325 		killArgs.signum = SIGKILL;
326 		q = p->p_peers;
327 		while(q) {
328 			killArgs.pid = q->p_pid;
329 			/*
330 		         * The interface for kill is better
331 			 * than the internal signal
332 			 */
333 			sys_kill(&killArgs);
334 			q = q->p_peers;
335 		}
336 		while (p->p_peers)
337 			tsleep((caddr_t)p, 0, "exit1", 0);
338 	}
339 
340 #ifdef PGINPROF
341 	vmsizmon();
342 #endif
343 	STOPEVENT(p, S_EXIT, rv);
344 	p->p_flags |= P_POSTEXIT;	/* stop procfs stepping */
345 
346 	/*
347 	 * Check if any loadable modules need anything done at process exit.
348 	 * e.g. SYSV IPC stuff
349 	 * XXX what if one of these generates an error?
350 	 */
351 	p->p_xstat = rv;
352 
353 	/*
354 	 * XXX: imho, the eventhandler stuff is much cleaner than this.
355 	 *	Maybe we should move everything to use eventhandler.
356 	 */
357 	TAILQ_FOREACH(ep, &exit_list, next)
358 		(*ep->function)(td);
359 
360 	if (p->p_flags & P_PROFIL)
361 		stopprofclock(p);
362 
363 	SIGEMPTYSET(p->p_siglist);
364 	SIGEMPTYSET(lp->lwp_siglist);
365 	if (timevalisset(&p->p_realtimer.it_value))
366 		callout_stop_sync(&p->p_ithandle);
367 
368 	/*
369 	 * Reset any sigio structures pointing to us as a result of
370 	 * F_SETOWN with our pid.
371 	 */
372 	funsetownlst(&p->p_sigiolst);
373 
374 	/*
375 	 * Close open files and release open-file table.
376 	 * This may block!
377 	 */
378 	fdfree(p, NULL);
379 
380 	if (p->p_leader->p_peers) {
381 		q = p->p_leader;
382 		while(q->p_peers != p)
383 			q = q->p_peers;
384 		q->p_peers = p->p_peers;
385 		wakeup((caddr_t)p->p_leader);
386 	}
387 
388 	/*
389 	 * XXX Shutdown SYSV semaphores
390 	 */
391 	semexit(p);
392 
393 	/* The next two chunks should probably be moved to vmspace_exit. */
394 	vm = p->p_vmspace;
395 
396 	/*
397 	 * Clean up data related to virtual kernel operation.  Clean up
398 	 * any vkernel context related to the current lwp now so we can
399 	 * destroy p_vkernel.
400 	 */
401 	if (p->p_vkernel) {
402 		vkernel_lwp_exit(lp);
403 		vkernel_exit(p);
404 	}
405 
406 	/*
407 	 * Release the user portion of address space.  The exitbump prevents
408 	 * the vmspace from being completely eradicated (using holdcnt).
409 	 * This releases references to vnodes, which could cause I/O if the
410 	 * file has been unlinked.  We need to do this early enough that
411 	 * we can still sleep.
412 	 *
413 	 * We can't free the entire vmspace as the kernel stack may be mapped
414 	 * within that space also.
415 	 *
416 	 * Processes sharing the same vmspace may exit in one order, and
417 	 * get cleaned up by vmspace_exit() in a different order.  The
418 	 * last exiting process to reach this point releases as much of
419 	 * the environment as it can, and the last process cleaned up
420 	 * by vmspace_exit() (which decrements exitingcnt) cleans up the
421 	 * remainder.
422 	 *
423 	 * NOTE: Releasing p_token around this call is helpful if the
424 	 *	 vmspace had a huge RSS.  Otherwise some other process
425 	 *	 trying to do an allproc or other scan (like 'ps') may
426 	 *	 stall for a long time.
427 	 */
428 	lwkt_reltoken(&p->p_token);
429 	vmspace_relexit(vm);
430 	lwkt_gettoken(&p->p_token);
431 
432 	if (SESS_LEADER(p)) {
433 		struct session *sp = p->p_session;
434 
435 		if (sp->s_ttyvp) {
436 			/*
437 			 * We are the controlling process.  Signal the
438 			 * foreground process group, drain the controlling
439 			 * terminal, and revoke access to the controlling
440 			 * terminal.
441 			 *
442 			 * NOTE: while waiting for the process group to exit
443 			 * it is possible that one of the processes in the
444 			 * group will revoke the tty, so the ttyclosesession()
445 			 * function will re-check sp->s_ttyvp.
446 			 */
447 			if (sp->s_ttyp && (sp->s_ttyp->t_session == sp)) {
448 				if (sp->s_ttyp->t_pgrp)
449 					pgsignal(sp->s_ttyp->t_pgrp, SIGHUP, 1);
450 				ttywait(sp->s_ttyp);
451 				ttyclosesession(sp, 1); /* also revoke */
452 			}
453 			/*
454 			 * Release the tty.  If someone has it open via
455 			 * /dev/tty then close it (since they no longer can
456 			 * once we've NULL'd it out).
457 			 */
458 			ttyclosesession(sp, 0);
459 
460 			/*
461 			 * s_ttyp is not zero'd; we use this to indicate
462 			 * that the session once had a controlling terminal.
463 			 * (for logging and informational purposes)
464 			 */
465 		}
466 		sp->s_leader = NULL;
467 	}
468 	fixjobc(p, p->p_pgrp, 0);
469 	(void)acct_process(p);
470 #ifdef KTRACE
471 	/*
472 	 * release trace file
473 	 */
474 	if (p->p_tracenode)
475 		ktrdestroy(&p->p_tracenode);
476 	p->p_traceflag = 0;
477 #endif
478 	/*
479 	 * Release reference to text vnode
480 	 */
481 	if ((vtmp = p->p_textvp) != NULL) {
482 		p->p_textvp = NULL;
483 		vrele(vtmp);
484 	}
485 
486 	/* Release namecache handle to text file */
487 	if (p->p_textnch.ncp)
488 		cache_drop(&p->p_textnch);
489 
490 	/*
491 	 * We have to handle PPWAIT here or proc_move_allproc_zombie()
492 	 * will block on the PHOLD() the parent is doing.
493 	 *
494 	 * We are using the flag as an interlock so an atomic op is
495 	 * necessary to synchronize with the parent's cpu.
496 	 */
497 	if (p->p_flags & P_PPWAIT) {
498 		if (p->p_pptr && p->p_pptr->p_upmap)
499 			atomic_add_int(&p->p_pptr->p_upmap->invfork, -1);
500 		atomic_clear_int(&p->p_flags, P_PPWAIT);
501 		wakeup(p->p_pptr);
502 	}
503 
504 	/*
505 	 * Move the process to the zombie list.  This will block
506 	 * until the process p_lock count reaches 0.  The process will
507 	 * not be reaped until TDF_EXITING is set by cpu_thread_exit(),
508 	 * which is called from cpu_proc_exit().
509 	 *
510 	 * Interlock against waiters using p_waitgen.  We increment
511 	 * p_waitgen after completing the move of our process to the
512 	 * zombie list.
513 	 *
514 	 * WARNING: pp becomes stale when we block, clear it now as a
515 	 *	    reminder.
516 	 */
517 	proc_move_allproc_zombie(p);
518 	pp = p->p_pptr;
519 	atomic_add_long(&pp->p_waitgen, 1);
520 	pp = NULL;
521 
522 	/*
523 	 * release controlled reaper for exit if we own it and return the
524 	 * remaining reaper (the one for us), which we will drop after we
525 	 * are done.
526 	 */
527 	reap = reaper_exit(p);
528 
529 	/*
530 	 * Reparent all of this process's children to the init process or
531 	 * to the designated reaper.  We must hold the reaper's p_token in
532 	 * order to safely mess with p_children.
533 	 *
534 	 * We already hold p->p_token (to remove the children from our list).
535 	 */
536 	reproc = NULL;
537 	q = LIST_FIRST(&p->p_children);
538 	if (q) {
539 		reproc = reaper_get(reap);
540 		lwkt_gettoken(&reproc->p_token);
541 		while ((q = LIST_FIRST(&p->p_children)) != NULL) {
542 			PHOLD(q);
543 			lwkt_gettoken(&q->p_token);
544 			if (q != LIST_FIRST(&p->p_children)) {
545 				lwkt_reltoken(&q->p_token);
546 				PRELE(q);
547 				continue;
548 			}
549 			LIST_REMOVE(q, p_sibling);
550 			LIST_INSERT_HEAD(&reproc->p_children, q, p_sibling);
551 			q->p_pptr = reproc;
552 			q->p_ppid = reproc->p_pid;
553 			q->p_sigparent = SIGCHLD;
554 
555 			/*
556 			 * Traced processes are killed
557 			 * since their existence means someone is screwing up.
558 			 */
559 			if (q->p_flags & P_TRACED) {
560 				q->p_flags &= ~P_TRACED;
561 				ksignal(q, SIGKILL);
562 			}
563 			lwkt_reltoken(&q->p_token);
564 			PRELE(q);
565 		}
566 		lwkt_reltoken(&reproc->p_token);
567 		wakeup(reproc);
568 	}
569 
570 	/*
571 	 * Save exit status and final rusage info, adding in child rusage
572 	 * info and self times.
573 	 */
574 	calcru_proc(p, &p->p_ru);
575 	ruadd(&p->p_ru, &p->p_cru);
576 
577 	/*
578 	 * notify interested parties of our demise.
579 	 */
580 	KNOTE(&p->p_klist, NOTE_EXIT);
581 
582 	/*
583 	 * Notify parent that we're gone.  If parent has the PS_NOCLDWAIT
584 	 * flag set, or if the handler is set to SIG_IGN, notify the reaper
585 	 * instead (it will handle this situation).
586 	 *
587 	 * NOTE: The reaper can still be the parent process.
588 	 *
589 	 * (must reload pp)
590 	 */
591 	if (p->p_pptr->p_sigacts->ps_flag & (PS_NOCLDWAIT | PS_CLDSIGIGN)) {
592 		if (reproc == NULL)
593 			reproc = reaper_get(reap);
594 		proc_reparent(p, reproc);
595 	}
596 	if (reproc)
597 		PRELE(reproc);
598 	if (reap)
599 		reaper_drop(reap);
600 
601 	/*
602 	 * Signal (possibly new) parent.
603 	 */
604 	pp = p->p_pptr;
605 	PHOLD(pp);
606 	if (p->p_sigparent && pp != initproc) {
607 		int sig = p->p_sigparent;
608 
609 		if (sig != SIGUSR1 && sig != SIGCHLD)
610 			sig = SIGCHLD;
611 	        ksignal(pp, sig);
612 	} else {
613 	        ksignal(pp, SIGCHLD);
614 	}
615 	p->p_flags &= ~P_TRACED;
616 	PRELE(pp);
617 
618 	/*
619 	 * cpu_exit is responsible for clearing curproc, since
620 	 * it is heavily integrated with the thread/switching sequence.
621 	 *
622 	 * Other substructures are freed from wait().
623 	 */
624 	if (p->p_limit) {
625 		struct plimit *rlimit;
626 
627 		rlimit = p->p_limit;
628 		p->p_limit = NULL;
629 		plimit_free(rlimit);
630 	}
631 
632 	/*
633 	 * Finally, call machine-dependent code to release as many of the
634 	 * lwp's resources as we can and halt execution of this thread.
635 	 *
636 	 * pp is a wild pointer now but still the correct wakeup() target.
637 	 * lwp_exit() only uses it to send the wakeup() signal to the likely
638 	 * parent.  Any reparenting race that occurs will get a signal
639 	 * automatically and not be an issue.
640 	 */
641 	lwp_exit(1, pp);
642 }
643 
644 /*
645  * Eventually called by every exiting LWP
646  *
647  * p->p_token must be held.  mplock may be held and will be released.
648  */
649 void
650 lwp_exit(int masterexit, void *waddr)
651 {
652 	struct thread *td = curthread;
653 	struct lwp *lp = td->td_lwp;
654 	struct proc *p = lp->lwp_proc;
655 	int dowake = 0;
656 
657 	/*
658 	 * Release the current user process designation on the process so
659 	 * the userland scheduler can work in someone else.
660 	 */
661 	p->p_usched->release_curproc(lp);
662 
663 	/*
664 	 * lwp_exit() may be called without setting LWP_MP_WEXIT, so
665 	 * make sure it is set here.
666 	 */
667 	ASSERT_LWKT_TOKEN_HELD(&p->p_token);
668 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
669 
670 	/*
671 	 * Clean up any virtualization
672 	 */
673 	if (lp->lwp_vkernel)
674 		vkernel_lwp_exit(lp);
675 
676 	if (td->td_vmm)
677 		vmm_vmdestroy();
678 
679 	/*
680 	 * Clean up select/poll support
681 	 */
682 	kqueue_terminate(&lp->lwp_kqueue);
683 
684 	/*
685 	 * Clean up any syscall-cached ucred or rlimit.
686 	 */
687 	if (td->td_ucred) {
688 		crfree(td->td_ucred);
689 		td->td_ucred = NULL;
690 	}
691 	if (td->td_limit) {
692 		struct plimit *rlimit;
693 
694 		rlimit = td->td_limit;
695 		td->td_limit = NULL;
696 		plimit_free(rlimit);
697         }
698 
699 	/*
700 	 * Cleanup any cached descriptors for this thread
701 	 */
702 	if (p->p_fd)
703 		fexitcache(td);
704 
705 	/*
706 	 * Nobody actually wakes us when the lock
707 	 * count reaches zero, so just wait one tick.
708 	 */
709 	while (lp->lwp_lock > 0)
710 		tsleep(lp, 0, "lwpexit", 1);
711 
712 	/* Hand down resource usage to our proc */
713 	ruadd(&p->p_ru, &lp->lwp_ru);
714 
715 	/*
716 	 * If we don't hold the process until the LWP is reaped wait*()
717 	 * may try to dispose of its vmspace before all the LWPs have
718 	 * actually terminated.
719 	 */
720 	PHOLD(p);
721 
722 	/*
723 	 * Do any remaining work that might block on us.  We should be
724 	 * coded such that further blocking is ok after decrementing
725 	 * p_nthreads but don't take the chance.
726 	 */
727 	dsched_exit_thread(td);
728 	biosched_done(curthread);
729 
730 	/*
731 	 * We have to use the reaper for all the LWPs except the one doing
732 	 * the master exit.  The LWP doing the master exit can just be
733 	 * left on p_lwps and the process reaper will deal with it
734 	 * synchronously, which is much faster.
735 	 *
736 	 * Wakeup anyone waiting on p_nthreads to drop to 1 or 0.
737 	 *
738 	 * The process is left held until the reaper calls lwp_dispose() on
739 	 * the lp (after calling lwp_wait()).
740 	 */
741 	if (masterexit == 0) {
742 		int cpu = mycpuid;
743 
744 		lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
745 		--p->p_nthreads;
746 		if ((p->p_flags & P_MAYBETHREADED) && p->p_nthreads <= 1)
747 			dowake = 1;
748 		lwkt_gettoken(&deadlwp_token[cpu]);
749 		LIST_INSERT_HEAD(&deadlwp_list[cpu], lp, u.lwp_reap_entry);
750 		taskqueue_enqueue(taskqueue_thread[cpu], deadlwp_task[cpu]);
751 		lwkt_reltoken(&deadlwp_token[cpu]);
752 	} else {
753 		--p->p_nthreads;
754 		if ((p->p_flags & P_MAYBETHREADED) && p->p_nthreads <= 1)
755 			dowake = 1;
756 	}
757 
758 	/*
759 	 * We no longer need p_token.
760 	 *
761 	 * Tell the userland scheduler that we are going away
762 	 */
763 	lwkt_reltoken(&p->p_token);
764 	p->p_usched->heuristic_exiting(lp, p);
765 
766 	/*
767 	 * Issue late wakeups after releasing our token to give us a chance
768 	 * to deschedule and switch away before another cpu in a wait*()
769 	 * reaps us.  This is done as late as possible to reduce contention.
770 	 */
771 	if (dowake)
772 		wakeup(&p->p_nthreads);
773 	if (waddr)
774 		wakeup(waddr);
775 
776 	cpu_lwp_exit();
777 }
778 
779 /*
780  * Wait until a lwp is completely dead.  The final interlock in this drama
781  * is when TDF_EXITING is set in cpu_thread_exit() just before the final
782  * switchout.
783  *
784  * At the point TDF_EXITING is set a complete exit is accomplished when
785  * TDF_RUNNING and TDF_PREEMPT_LOCK are both clear.  td_mpflags has two
786  * post-switch interlock flags that can be used to wait for the TDF_
787  * flags to clear.
788  *
789  * Returns non-zero on success, and zero if the caller needs to retry
790  * the lwp_wait().
791  */
792 static int
793 lwp_wait(struct lwp *lp)
794 {
795 	struct thread *td = lp->lwp_thread;
796 	u_int mpflags;
797 
798 	KKASSERT(lwkt_preempted_proc() != lp);
799 
800 	/*
801 	 * This bit of code uses the thread destruction interlock
802 	 * managed by lwkt_switch_return() to wait for the lwp's
803 	 * thread to completely disengage.
804 	 *
805 	 * It is possible for us to race another cpu core so we
806 	 * have to do this correctly.
807 	 */
808 	for (;;) {
809 		mpflags = td->td_mpflags;
810 		cpu_ccfence();
811 		if (mpflags & TDF_MP_EXITSIG)
812 			break;
813 		tsleep_interlock(td, 0);
814 		if (atomic_cmpset_int(&td->td_mpflags, mpflags,
815 				      mpflags | TDF_MP_EXITWAIT)) {
816 			tsleep(td, PINTERLOCKED, "lwpxt", 0);
817 		}
818 	}
819 
820 	/*
821 	 * We've already waited for the core exit but there can still
822 	 * be other refs from e.g. process scans and such.
823 	 */
824 	if (lp->lwp_lock > 0) {
825 		tsleep(lp, 0, "lwpwait1", 1);
826 		return(0);
827 	}
828 	if (td->td_refs) {
829 		tsleep(td, 0, "lwpwait2", 1);
830 		return(0);
831 	}
832 
833 	/*
834 	 * Now that we have the thread destruction interlock these flags
835 	 * really should already be cleaned up, keep a check for safety.
836 	 *
837 	 * We can't rip its stack out from under it until TDF_EXITING is
838 	 * set and both TDF_RUNNING and TDF_PREEMPT_LOCK are clear.
839 	 * TDF_PREEMPT_LOCK must be checked because TDF_RUNNING
840 	 * will be cleared temporarily if a thread gets preempted.
841 	 */
842 	while ((td->td_flags & (TDF_RUNNING |
843 				TDF_RUNQ |
844 			        TDF_PREEMPT_LOCK |
845 			        TDF_EXITING)) != TDF_EXITING) {
846 		tsleep(lp, 0, "lwpwait3", 1);
847 		return (0);
848 	}
849 
850 	KASSERT((td->td_flags & (TDF_RUNQ|TDF_TSLEEPQ)) == 0,
851 		("lwp_wait: td %p (%s) still on run or sleep queue",
852 		td, td->td_comm));
853 	return (1);
854 }
855 
856 /*
857  * Release the resources associated with a lwp.
858  * The lwp must be completely dead.
859  */
860 void
861 lwp_dispose(struct lwp *lp)
862 {
863 	struct thread *td = lp->lwp_thread;
864 
865 	KKASSERT(lwkt_preempted_proc() != lp);
866 	KKASSERT(lp->lwp_lock == 0);
867 	KKASSERT(td->td_refs == 0);
868 	KKASSERT((td->td_flags & (TDF_RUNNING |
869 				  TDF_RUNQ |
870 				  TDF_PREEMPT_LOCK |
871 				  TDF_EXITING)) == TDF_EXITING);
872 
873 	PRELE(lp->lwp_proc);
874 	lp->lwp_proc = NULL;
875 	if (td != NULL) {
876 		td->td_proc = NULL;
877 		td->td_lwp = NULL;
878 		lp->lwp_thread = NULL;
879 		lwkt_free_thread(td);
880 	}
881 	kfree(lp, M_LWP);
882 }
883 
884 int
885 sys_wait4(struct wait_args *uap)
886 {
887 	struct rusage rusage;
888 	int error, status;
889 
890 	error = kern_wait(uap->pid, (uap->status ? &status : NULL),
891 			  uap->options, (uap->rusage ? &rusage : NULL),
892 			  &uap->sysmsg_result);
893 
894 	if (error == 0 && uap->status)
895 		error = copyout(&status, uap->status, sizeof(*uap->status));
896 	if (error == 0 && uap->rusage)
897 		error = copyout(&rusage, uap->rusage, sizeof(*uap->rusage));
898 	return (error);
899 }
900 
901 /*
902  * wait1()
903  *
904  * wait_args(int pid, int *status, int options, struct rusage *rusage)
905  */
906 int
907 kern_wait(pid_t pid, int *status, int options, struct rusage *rusage, int *res)
908 {
909 	struct thread *td = curthread;
910 	struct lwp *lp;
911 	struct proc *q = td->td_proc;
912 	struct proc *p, *t;
913 	struct ucred *cr;
914 	struct pargs *pa;
915 	struct sigacts *ps;
916 	int nfound, error;
917 	long waitgen;
918 
919 	if (pid == 0)
920 		pid = -q->p_pgid;
921 	if (options &~ (WUNTRACED|WNOHANG|WCONTINUED|WLINUXCLONE))
922 		return (EINVAL);
923 
924 	/*
925 	 * Protect the q->p_children list
926 	 */
927 	lwkt_gettoken(&q->p_token);
928 loop:
929 	/*
930 	 * All sorts of things can change due to blocking so we have to loop
931 	 * all the way back up here.
932 	 *
933 	 * The problem is that if a process group is stopped and the parent
934 	 * is doing a wait*(..., WUNTRACED, ...), it will see the STOP
935 	 * of the child and then stop itself when it tries to return from the
936 	 * system call.  When the process group is resumed the parent will
937 	 * then get the STOP status even though the child has now resumed
938 	 * (a followup wait*() will get the CONT status).
939 	 *
940 	 * Previously the CONT would overwrite the STOP because the tstop
941 	 * was handled within tsleep(), and the parent would only see
942 	 * the CONT when both are stopped and continued together.  This little
943 	 * two-line hack restores this effect.
944 	 */
945 	if (STOPLWP(q, td->td_lwp))
946             tstop();
947 
948 	nfound = 0;
949 
950 	/*
951 	 * Loop on children.
952 	 *
953 	 * NOTE: We don't want to break q's p_token in the loop for the
954 	 *	 case where no children are found or we risk breaking the
955 	 *	 interlock between child and parent.
956 	 */
957 	waitgen = atomic_fetchadd_long(&q->p_waitgen, 0x80000000);
958 	LIST_FOREACH(p, &q->p_children, p_sibling) {
959 		if (pid != WAIT_ANY &&
960 		    p->p_pid != pid && p->p_pgid != -pid) {
961 			continue;
962 		}
963 
964 		/*
965 		 * This special case handles a kthread spawned by linux_clone
966 		 * (see linux_misc.c).  The linux_wait4 and linux_waitpid
967 		 * functions need to be able to distinguish between waiting
968 		 * on a process and waiting on a thread.  It is a thread if
969 		 * p_sigparent is not SIGCHLD, and the WLINUXCLONE option
970 		 * signifies we want to wait for threads and not processes.
971 		 */
972 		if ((p->p_sigparent != SIGCHLD) ^
973 		    ((options & WLINUXCLONE) != 0)) {
974 			continue;
975 		}
976 
977 		nfound++;
978 		if (p->p_stat == SZOMB) {
979 			/*
980 			 * We may go into SZOMB with threads still present.
981 			 * We must wait for them to exit before we can reap
982 			 * the master thread, otherwise we may race reaping
983 			 * non-master threads.
984 			 *
985 			 * Only this routine can remove a process from
986 			 * the zombie list and destroy it, use PACQUIREZOMB()
987 			 * to serialize us and loop if it blocks (interlocked
988 			 * by the parent's q->p_token).
989 			 *
990 			 * WARNING!  (p) can be invalid when PHOLDZOMB(p)
991 			 *	     returns non-zero.  Be sure not to
992 			 *	     mess with it.
993 			 */
994 			if (PHOLDZOMB(p))
995 				goto loop;
996 			lwkt_gettoken(&p->p_token);
997 			if (p->p_pptr != q) {
998 				lwkt_reltoken(&p->p_token);
999 				PRELEZOMB(p);
1000 				goto loop;
1001 			}
1002 			while (p->p_nthreads > 0) {
1003 				tsleep(&p->p_nthreads, 0, "lwpzomb", hz);
1004 			}
1005 
1006 			/*
1007 			 * Reap any LWPs left in p->p_lwps.  This is usually
1008 			 * just the last LWP.  This must be done before
1009 			 * we loop on p_lock since the lwps hold a ref on
1010 			 * it as a vmspace interlock.
1011 			 *
1012 			 * Once that is accomplished p_nthreads had better
1013 			 * be zero.
1014 			 */
1015 			while ((lp = RB_ROOT(&p->p_lwp_tree)) != NULL) {
1016 				/*
1017 				 * Make sure no one is using this lwp, before
1018 				 * it is removed from the tree.  If we didn't
1019 				 * wait it here, lwp tree iteration with
1020 				 * blocking operation would be broken.
1021 				 */
1022 				while (lp->lwp_lock > 0)
1023 					tsleep(lp, 0, "zomblwp", 1);
1024 				lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
1025 				reaplwp(lp);
1026 			}
1027 			KKASSERT(p->p_nthreads == 0);
1028 
1029 			/*
1030 			 * Don't do anything really bad until all references
1031 			 * to the process go away.  This may include other
1032 			 * LWPs which are still in the process of being
1033 			 * reaped.  We can't just pull the rug out from under
1034 			 * them because they may still be using the VM space.
1035 			 *
1036 			 * Certain kernel facilities such as /proc will also
1037 			 * put a hold on the process for short periods of
1038 			 * time.
1039 			 */
1040 			PRELE(p);
1041 			PSTALL(p, "reap3", 0);
1042 
1043 			/* Take care of our return values. */
1044 			*res = p->p_pid;
1045 
1046 			if (status)
1047 				*status = p->p_xstat;
1048 			if (rusage)
1049 				*rusage = p->p_ru;
1050 
1051 			/*
1052 			 * If we got the child via a ptrace 'attach',
1053 			 * we need to give it back to the old parent.
1054 			 */
1055 			if (p->p_oppid && (t = pfind(p->p_oppid)) != NULL) {
1056 				PHOLD(p);
1057 				p->p_oppid = 0;
1058 				proc_reparent(p, t);
1059 				ksignal(t, SIGCHLD);
1060 				wakeup((caddr_t)t);
1061 				error = 0;
1062 				PRELE(t);
1063 				lwkt_reltoken(&p->p_token);
1064 				PRELEZOMB(p);
1065 				goto done;
1066 			}
1067 
1068 			/*
1069 			 * Unlink the proc from its process group so that
1070 			 * the following operations won't lead to an
1071 			 * inconsistent state for processes running down
1072 			 * the zombie list.
1073 			 */
1074 			proc_remove_zombie(p);
1075 			proc_userunmap(p);
1076 			lwkt_reltoken(&p->p_token);
1077 			leavepgrp(p);
1078 
1079 			p->p_xstat = 0;
1080 			ruadd(&q->p_cru, &p->p_ru);
1081 
1082 			/*
1083 			 * Decrement the count of procs running with this uid.
1084 			 */
1085 			chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0);
1086 
1087 			/*
1088 			 * Free up credentials.  p_spin is required to
1089 			 * avoid races against allproc scans.
1090 			 */
1091 			spin_lock(&p->p_spin);
1092 			cr = p->p_ucred;
1093 			p->p_ucred = NULL;
1094 			spin_unlock(&p->p_spin);
1095 			crfree(cr);
1096 
1097 			/*
1098 			 * Remove unused arguments
1099 			 */
1100 			pa = p->p_args;
1101 			p->p_args = NULL;
1102 			if (pa && refcount_release(&pa->ar_ref)) {
1103 				kfree(pa, M_PARGS);
1104 				pa = NULL;
1105 			}
1106 
1107 			ps = p->p_sigacts;
1108 			p->p_sigacts = NULL;
1109 			if (ps && refcount_release(&ps->ps_refcnt)) {
1110 				kfree(ps, M_SUBPROC);
1111 				ps = NULL;
1112 			}
1113 
1114 			/*
1115 			 * Our exitingcount was incremented when the process
1116 			 * became a zombie, now that the process has been
1117 			 * removed from (almost) all lists we should be able
1118 			 * to safely destroy its vmspace.  Wait for any current
1119 			 * holders to go away (so the vmspace remains stable),
1120 			 * then scrap it.
1121 			 *
1122 			 * NOTE: Releasing the parent process (q) p_token
1123 			 *	 across the vmspace_exitfree() call is
1124 			 *	 important here to reduce stalls on
1125 			 *	 interactions with (q) (such as
1126 			 *	 fork/exec/wait or 'ps').
1127 			 */
1128 			PSTALL(p, "reap4", 0);
1129 			lwkt_reltoken(&q->p_token);
1130 			vmspace_exitfree(p);
1131 			lwkt_gettoken(&q->p_token);
1132 			PSTALL(p, "reap5", 0);
1133 
1134 			/*
1135 			 * NOTE: We have to officially release ZOMB in order
1136 			 *	 to ensure that a racing thread in kern_wait()
1137 			 *	 which blocked on ZOMB is woken up.
1138 			 */
1139 			PHOLD(p);
1140 			PRELEZOMB(p);
1141 			kfree(p->p_uidpcpu, M_SUBPROC);
1142 			kfree(p, M_PROC);
1143 			atomic_add_int(&nprocs, -1);
1144 			error = 0;
1145 			goto done;
1146 		}
1147 		if ((p->p_stat == SSTOP || p->p_stat == SCORE) &&
1148 		    (p->p_flags & P_WAITED) == 0 &&
1149 		    ((p->p_flags & P_TRACED) || (options & WUNTRACED))) {
1150 			PHOLD(p);
1151 			lwkt_gettoken(&p->p_token);
1152 			if (p->p_pptr != q) {
1153 				lwkt_reltoken(&p->p_token);
1154 				PRELE(p);
1155 				goto loop;
1156 			}
1157 			if ((p->p_stat != SSTOP && p->p_stat != SCORE) ||
1158 			    (p->p_flags & P_WAITED) != 0 ||
1159 			    ((p->p_flags & P_TRACED) == 0 &&
1160 			     (options & WUNTRACED) == 0)) {
1161 				lwkt_reltoken(&p->p_token);
1162 				PRELE(p);
1163 				goto loop;
1164 			}
1165 
1166 			p->p_flags |= P_WAITED;
1167 
1168 			*res = p->p_pid;
1169 			if (status)
1170 				*status = W_STOPCODE(p->p_xstat);
1171 			/* Zero rusage so we get something consistent. */
1172 			if (rusage)
1173 				bzero(rusage, sizeof(*rusage));
1174 			error = 0;
1175 			lwkt_reltoken(&p->p_token);
1176 			PRELE(p);
1177 			goto done;
1178 		}
1179 		if ((options & WCONTINUED) && (p->p_flags & P_CONTINUED)) {
1180 			PHOLD(p);
1181 			lwkt_gettoken(&p->p_token);
1182 			if (p->p_pptr != q) {
1183 				lwkt_reltoken(&p->p_token);
1184 				PRELE(p);
1185 				goto loop;
1186 			}
1187 			if ((p->p_flags & P_CONTINUED) == 0) {
1188 				lwkt_reltoken(&p->p_token);
1189 				PRELE(p);
1190 				goto loop;
1191 			}
1192 
1193 			*res = p->p_pid;
1194 			p->p_flags &= ~P_CONTINUED;
1195 
1196 			if (status)
1197 				*status = SIGCONT;
1198 			error = 0;
1199 			lwkt_reltoken(&p->p_token);
1200 			PRELE(p);
1201 			goto done;
1202 		}
1203 	}
1204 	if (nfound == 0) {
1205 		error = ECHILD;
1206 		goto done;
1207 	}
1208 	if (options & WNOHANG) {
1209 		*res = 0;
1210 		error = 0;
1211 		goto done;
1212 	}
1213 
1214 	/*
1215 	 * Wait for signal - interlocked using q->p_waitgen.
1216 	 */
1217 	error = 0;
1218 	while ((waitgen & 0x7FFFFFFF) == (q->p_waitgen & 0x7FFFFFFF)) {
1219 		tsleep_interlock(q, PCATCH);
1220 		waitgen = atomic_fetchadd_long(&q->p_waitgen, 0x80000000);
1221 		if ((waitgen & 0x7FFFFFFF) == (q->p_waitgen & 0x7FFFFFFF)) {
1222 			error = tsleep(q, PCATCH | PINTERLOCKED, "wait", 0);
1223 			break;
1224 		}
1225 	}
1226 	if (error) {
1227 done:
1228 		lwkt_reltoken(&q->p_token);
1229 		return (error);
1230 	}
1231 	goto loop;
1232 }
1233 
1234 /*
1235  * Change child's parent process to parent.
1236  *
1237  * p_children/p_sibling requires the parent's token, and
1238  * changing pptr requires the child's token, so we have to
1239  * get three tokens to do this operation.  We also need to
1240  * hold pointers that might get ripped out from under us to
1241  * preserve structural integrity.
1242  *
1243  * It is possible to race another reparent or disconnect or other
1244  * similar operation.  We must retry when this situation occurs.
1245  * Once we successfully reparent the process we no longer care
1246  * about any races.
1247  */
1248 void
1249 proc_reparent(struct proc *child, struct proc *parent)
1250 {
1251 	struct proc *opp;
1252 
1253 	PHOLD(parent);
1254 	while ((opp = child->p_pptr) != parent) {
1255 		PHOLD(opp);
1256 		lwkt_gettoken(&opp->p_token);
1257 		lwkt_gettoken(&child->p_token);
1258 		lwkt_gettoken(&parent->p_token);
1259 		if (child->p_pptr != opp) {
1260 			lwkt_reltoken(&parent->p_token);
1261 			lwkt_reltoken(&child->p_token);
1262 			lwkt_reltoken(&opp->p_token);
1263 			PRELE(opp);
1264 			continue;
1265 		}
1266 		LIST_REMOVE(child, p_sibling);
1267 		LIST_INSERT_HEAD(&parent->p_children, child, p_sibling);
1268 		child->p_pptr = parent;
1269 		child->p_ppid = parent->p_pid;
1270 		lwkt_reltoken(&parent->p_token);
1271 		lwkt_reltoken(&child->p_token);
1272 		lwkt_reltoken(&opp->p_token);
1273 		if (LIST_EMPTY(&opp->p_children))
1274 			wakeup(opp);
1275 		PRELE(opp);
1276 		break;
1277 	}
1278 	PRELE(parent);
1279 }
1280 
1281 /*
1282  * The next two functions are to handle adding/deleting items on the
1283  * exit callout list
1284  *
1285  * at_exit():
1286  * Take the arguments given and put them onto the exit callout list,
1287  * However first make sure that it's not already there.
1288  * returns 0 on success.
1289  */
1290 
1291 int
1292 at_exit(exitlist_fn function)
1293 {
1294 	struct exitlist *ep;
1295 
1296 #ifdef INVARIANTS
1297 	/* Be noisy if the programmer has lost track of things */
1298 	if (rm_at_exit(function))
1299 		kprintf("WARNING: exit callout entry (%p) already present\n",
1300 		    function);
1301 #endif
1302 	ep = kmalloc(sizeof(*ep), M_ATEXIT, M_NOWAIT);
1303 	if (ep == NULL)
1304 		return (ENOMEM);
1305 	ep->function = function;
1306 	TAILQ_INSERT_TAIL(&exit_list, ep, next);
1307 	return (0);
1308 }
1309 
1310 /*
1311  * Scan the exit callout list for the given item and remove it.
1312  * Returns the number of items removed (0 or 1)
1313  */
1314 int
1315 rm_at_exit(exitlist_fn function)
1316 {
1317 	struct exitlist *ep;
1318 
1319 	TAILQ_FOREACH(ep, &exit_list, next) {
1320 		if (ep->function == function) {
1321 			TAILQ_REMOVE(&exit_list, ep, next);
1322 			kfree(ep, M_ATEXIT);
1323 			return(1);
1324 		}
1325 	}
1326 	return (0);
1327 }
1328 
1329 /*
1330  * LWP reaper related code.
1331  */
1332 static void
1333 reaplwps(void *context, int dummy)
1334 {
1335 	struct lwplist *lwplist = context;
1336 	struct lwp *lp;
1337 	int cpu = mycpuid;
1338 
1339 	lwkt_gettoken(&deadlwp_token[cpu]);
1340 	while ((lp = LIST_FIRST(lwplist))) {
1341 		LIST_REMOVE(lp, u.lwp_reap_entry);
1342 		reaplwp(lp);
1343 	}
1344 	lwkt_reltoken(&deadlwp_token[cpu]);
1345 }
1346 
1347 static void
1348 reaplwp(struct lwp *lp)
1349 {
1350 	while (lwp_wait(lp) == 0)
1351 		;
1352 	lwp_dispose(lp);
1353 }
1354 
1355 static void
1356 deadlwp_init(void)
1357 {
1358 	int cpu;
1359 
1360 	for (cpu = 0; cpu < ncpus; cpu++) {
1361 		lwkt_token_init(&deadlwp_token[cpu], "deadlwpl");
1362 		LIST_INIT(&deadlwp_list[cpu]);
1363 		deadlwp_task[cpu] = kmalloc(sizeof(*deadlwp_task[cpu]),
1364 					    M_DEVBUF, M_WAITOK);
1365 		TASK_INIT(deadlwp_task[cpu], 0, reaplwps, &deadlwp_list[cpu]);
1366 	}
1367 }
1368 
1369 SYSINIT(deadlwpinit, SI_SUB_CONFIGURE, SI_ORDER_ANY, deadlwp_init, NULL);
1370