1 /* 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)kern_exit.c 8.7 (Berkeley) 2/12/94 35 * $FreeBSD: src/sys/kern/kern_exit.c,v 1.92.2.11 2003/01/13 22:51:16 dillon Exp $ 36 */ 37 38 #include "opt_ktrace.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/sysproto.h> 43 #include <sys/kernel.h> 44 #include <sys/malloc.h> 45 #include <sys/proc.h> 46 #include <sys/ktrace.h> 47 #include <sys/pioctl.h> 48 #include <sys/tty.h> 49 #include <sys/wait.h> 50 #include <sys/vnode.h> 51 #include <sys/resourcevar.h> 52 #include <sys/signalvar.h> 53 #include <sys/taskqueue.h> 54 #include <sys/ptrace.h> 55 #include <sys/acct.h> /* for acct_process() function prototype */ 56 #include <sys/filedesc.h> 57 #include <sys/shm.h> 58 #include <sys/sem.h> 59 #include <sys/jail.h> 60 #include <sys/kern_syscall.h> 61 #include <sys/unistd.h> 62 #include <sys/eventhandler.h> 63 #include <sys/dsched.h> 64 65 #include <vm/vm.h> 66 #include <vm/vm_param.h> 67 #include <sys/lock.h> 68 #include <vm/pmap.h> 69 #include <vm/vm_map.h> 70 #include <vm/vm_extern.h> 71 #include <sys/user.h> 72 73 #include <sys/refcount.h> 74 #include <sys/spinlock2.h> 75 #include <sys/mplock2.h> 76 77 #include <machine/vmm.h> 78 79 static void reaplwps(void *context, int dummy); 80 static void reaplwp(struct lwp *lp); 81 static void killlwps(struct lwp *lp); 82 83 static MALLOC_DEFINE(M_ATEXIT, "atexit", "atexit callback"); 84 85 /* 86 * callout list for things to do at exit time 87 */ 88 struct exitlist { 89 exitlist_fn function; 90 TAILQ_ENTRY(exitlist) next; 91 }; 92 93 TAILQ_HEAD(exit_list_head, exitlist); 94 static struct exit_list_head exit_list = TAILQ_HEAD_INITIALIZER(exit_list); 95 96 /* 97 * LWP reaper data 98 */ 99 static struct task *deadlwp_task[MAXCPU]; 100 static struct lwplist deadlwp_list[MAXCPU]; 101 static struct lwkt_token deadlwp_token[MAXCPU]; 102 103 /* 104 * exit -- 105 * Death of process. 106 * 107 * SYS_EXIT_ARGS(int rval) 108 */ 109 int 110 sys_exit(struct exit_args *uap) 111 { 112 exit1(W_EXITCODE(uap->rval, 0)); 113 /* NOTREACHED */ 114 } 115 116 /* 117 * Extended exit -- 118 * Death of a lwp or process with optional bells and whistles. 119 */ 120 int 121 sys_extexit(struct extexit_args *uap) 122 { 123 struct proc *p = curproc; 124 int action, who; 125 int error; 126 127 action = EXTEXIT_ACTION(uap->how); 128 who = EXTEXIT_WHO(uap->how); 129 130 /* Check parameters before we might perform some action */ 131 switch (who) { 132 case EXTEXIT_PROC: 133 case EXTEXIT_LWP: 134 break; 135 default: 136 return (EINVAL); 137 } 138 139 switch (action) { 140 case EXTEXIT_SIMPLE: 141 break; 142 case EXTEXIT_SETINT: 143 error = copyout(&uap->status, uap->addr, sizeof(uap->status)); 144 if (error) 145 return (error); 146 break; 147 default: 148 return (EINVAL); 149 } 150 151 lwkt_gettoken(&p->p_token); 152 153 switch (who) { 154 case EXTEXIT_LWP: 155 /* 156 * Be sure only to perform a simple lwp exit if there is at 157 * least one more lwp in the proc, which will call exit1() 158 * later, otherwise the proc will be an UNDEAD and not even a 159 * SZOMB! 160 */ 161 if (p->p_nthreads > 1) { 162 lwp_exit(0, NULL); /* called w/ p_token held */ 163 /* NOT REACHED */ 164 } 165 /* else last lwp in proc: do the real thing */ 166 /* FALLTHROUGH */ 167 default: /* to help gcc */ 168 case EXTEXIT_PROC: 169 lwkt_reltoken(&p->p_token); 170 exit1(W_EXITCODE(uap->status, 0)); 171 /* NOTREACHED */ 172 } 173 174 /* NOTREACHED */ 175 lwkt_reltoken(&p->p_token); /* safety */ 176 } 177 178 /* 179 * Kill all lwps associated with the current process except the 180 * current lwp. Return an error if we race another thread trying to 181 * do the same thing and lose the race. 182 * 183 * If forexec is non-zero the current thread and process flags are 184 * cleaned up so they can be reused. 185 */ 186 int 187 killalllwps(int forexec) 188 { 189 struct lwp *lp = curthread->td_lwp; 190 struct proc *p = lp->lwp_proc; 191 int fakestop; 192 193 /* 194 * Interlock against P_WEXIT. Only one of the process's thread 195 * is allowed to do the master exit. 196 */ 197 lwkt_gettoken(&p->p_token); 198 if (p->p_flags & P_WEXIT) { 199 lwkt_reltoken(&p->p_token); 200 return (EALREADY); 201 } 202 p->p_flags |= P_WEXIT; 203 lwkt_gettoken(&lp->lwp_token); 204 205 /* 206 * Set temporary stopped state in case we are racing a coredump. 207 * Otherwise the coredump may hang forever. 208 */ 209 if (lp->lwp_mpflags & LWP_MP_WSTOP) { 210 fakestop = 0; 211 } else { 212 atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP); 213 ++p->p_nstopped; 214 fakestop = 1; 215 wakeup(&p->p_nstopped); 216 } 217 218 /* 219 * Interlock with LWP_MP_WEXIT and kill any remaining LWPs 220 */ 221 atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT); 222 if (p->p_nthreads > 1) 223 killlwps(lp); 224 225 /* 226 * Undo temporary stopped state 227 */ 228 if (fakestop && (lp->lwp_mpflags & LWP_MP_WSTOP)) { 229 atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WSTOP); 230 --p->p_nstopped; 231 } 232 233 /* 234 * If doing this for an exec, clean up the remaining thread 235 * (us) for continuing operation after all the other threads 236 * have been killed. 237 */ 238 if (forexec) { 239 atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WEXIT); 240 p->p_flags &= ~P_WEXIT; 241 } 242 lwkt_reltoken(&lp->lwp_token); 243 lwkt_reltoken(&p->p_token); 244 245 return(0); 246 } 247 248 /* 249 * Kill all LWPs except the current one. Do not try to signal 250 * LWPs which have exited on their own or have already been 251 * signaled. 252 */ 253 static void 254 killlwps(struct lwp *lp) 255 { 256 struct proc *p = lp->lwp_proc; 257 struct lwp *tlp; 258 259 /* 260 * Kill the remaining LWPs. We must send the signal before setting 261 * LWP_MP_WEXIT. The setting of WEXIT is optional but helps reduce 262 * races. tlp must be held across the call as it might block and 263 * allow the target lwp to rip itself out from under our loop. 264 */ 265 FOREACH_LWP_IN_PROC(tlp, p) { 266 LWPHOLD(tlp); 267 lwkt_gettoken(&tlp->lwp_token); 268 if ((tlp->lwp_mpflags & LWP_MP_WEXIT) == 0) { 269 atomic_set_int(&tlp->lwp_mpflags, LWP_MP_WEXIT); 270 lwpsignal(p, tlp, SIGKILL); 271 } 272 lwkt_reltoken(&tlp->lwp_token); 273 LWPRELE(tlp); 274 } 275 276 /* 277 * Wait for everything to clear out. Also make sure any tstop()s 278 * are signalled (we are holding p_token for the interlock). 279 */ 280 wakeup(p); 281 while (p->p_nthreads > 1) 282 tsleep(&p->p_nthreads, 0, "killlwps", 0); 283 } 284 285 /* 286 * Exit: deallocate address space and other resources, change proc state 287 * to zombie, and unlink proc from allproc and parent's lists. Save exit 288 * status and rusage for wait(). Check for child processes and orphan them. 289 */ 290 void 291 exit1(int rv) 292 { 293 struct thread *td = curthread; 294 struct proc *p = td->td_proc; 295 struct lwp *lp = td->td_lwp; 296 struct proc *q; 297 struct proc *pp; 298 struct proc *reproc; 299 struct sysreaper *reap; 300 struct vmspace *vm; 301 struct vnode *vtmp; 302 struct exitlist *ep; 303 int error; 304 305 lwkt_gettoken(&p->p_token); 306 307 if (p->p_pid == 1) { 308 kprintf("init died (signal %d, exit %d)\n", 309 WTERMSIG(rv), WEXITSTATUS(rv)); 310 panic("Going nowhere without my init!"); 311 } 312 varsymset_clean(&p->p_varsymset); 313 lockuninit(&p->p_varsymset.vx_lock); 314 315 /* 316 * Kill all lwps associated with the current process, return an 317 * error if we race another thread trying to do the same thing 318 * and lose the race. 319 */ 320 error = killalllwps(0); 321 if (error) { 322 lwp_exit(0, NULL); 323 /* NOT REACHED */ 324 } 325 326 /* are we a task leader? */ 327 if (p == p->p_leader) { 328 struct kill_args killArgs; 329 killArgs.signum = SIGKILL; 330 q = p->p_peers; 331 while(q) { 332 killArgs.pid = q->p_pid; 333 /* 334 * The interface for kill is better 335 * than the internal signal 336 */ 337 sys_kill(&killArgs); 338 q = q->p_peers; 339 } 340 while (p->p_peers) 341 tsleep((caddr_t)p, 0, "exit1", 0); 342 } 343 344 #ifdef PGINPROF 345 vmsizmon(); 346 #endif 347 STOPEVENT(p, S_EXIT, rv); 348 p->p_flags |= P_POSTEXIT; /* stop procfs stepping */ 349 350 /* 351 * Check if any loadable modules need anything done at process exit. 352 * e.g. SYSV IPC stuff 353 * XXX what if one of these generates an error? 354 */ 355 p->p_xstat = rv; 356 357 /* 358 * XXX: imho, the eventhandler stuff is much cleaner than this. 359 * Maybe we should move everything to use eventhandler. 360 */ 361 TAILQ_FOREACH(ep, &exit_list, next) 362 (*ep->function)(td); 363 364 if (p->p_flags & P_PROFIL) 365 stopprofclock(p); 366 367 SIGEMPTYSET(p->p_siglist); 368 SIGEMPTYSET(lp->lwp_siglist); 369 if (timevalisset(&p->p_realtimer.it_value)) 370 callout_terminate(&p->p_ithandle); 371 372 /* 373 * Reset any sigio structures pointing to us as a result of 374 * F_SETOWN with our pid. 375 */ 376 funsetownlst(&p->p_sigiolst); 377 378 /* 379 * Close open files and release open-file table. 380 * This may block! 381 */ 382 fdfree(p, NULL); 383 384 if (p->p_leader->p_peers) { 385 q = p->p_leader; 386 while(q->p_peers != p) 387 q = q->p_peers; 388 q->p_peers = p->p_peers; 389 wakeup((caddr_t)p->p_leader); 390 } 391 392 /* 393 * XXX Shutdown SYSV semaphores 394 */ 395 semexit(p); 396 397 /* The next two chunks should probably be moved to vmspace_exit. */ 398 vm = p->p_vmspace; 399 400 /* 401 * Clean up data related to virtual kernel operation. Clean up 402 * any vkernel context related to the current lwp now so we can 403 * destroy p_vkernel. 404 */ 405 if (p->p_vkernel) { 406 vkernel_lwp_exit(lp); 407 vkernel_exit(p); 408 } 409 410 /* 411 * Release the user portion of address space. The exitbump prevents 412 * the vmspace from being completely eradicated (using holdcnt). 413 * This releases references to vnodes, which could cause I/O if the 414 * file has been unlinked. We need to do this early enough that 415 * we can still sleep. 416 * 417 * We can't free the entire vmspace as the kernel stack may be mapped 418 * within that space also. 419 * 420 * Processes sharing the same vmspace may exit in one order, and 421 * get cleaned up by vmspace_exit() in a different order. The 422 * last exiting process to reach this point releases as much of 423 * the environment as it can, and the last process cleaned up 424 * by vmspace_exit() (which decrements exitingcnt) cleans up the 425 * remainder. 426 * 427 * NOTE: Releasing p_token around this call is helpful if the 428 * vmspace had a huge RSS. Otherwise some other process 429 * trying to do an allproc or other scan (like 'ps') may 430 * stall for a long time. 431 */ 432 lwkt_reltoken(&p->p_token); 433 vmspace_relexit(vm); 434 lwkt_gettoken(&p->p_token); 435 436 if (SESS_LEADER(p)) { 437 struct session *sp = p->p_session; 438 439 if (sp->s_ttyvp) { 440 /* 441 * We are the controlling process. Signal the 442 * foreground process group, drain the controlling 443 * terminal, and revoke access to the controlling 444 * terminal. 445 * 446 * NOTE: while waiting for the process group to exit 447 * it is possible that one of the processes in the 448 * group will revoke the tty, so the ttyclosesession() 449 * function will re-check sp->s_ttyvp. 450 */ 451 if (sp->s_ttyp && (sp->s_ttyp->t_session == sp)) { 452 if (sp->s_ttyp->t_pgrp) 453 pgsignal(sp->s_ttyp->t_pgrp, SIGHUP, 1); 454 ttywait(sp->s_ttyp); 455 ttyclosesession(sp, 1); /* also revoke */ 456 } 457 /* 458 * Release the tty. If someone has it open via 459 * /dev/tty then close it (since they no longer can 460 * once we've NULL'd it out). 461 */ 462 ttyclosesession(sp, 0); 463 464 /* 465 * s_ttyp is not zero'd; we use this to indicate 466 * that the session once had a controlling terminal. 467 * (for logging and informational purposes) 468 */ 469 } 470 sp->s_leader = NULL; 471 } 472 fixjobc(p, p->p_pgrp, 0); 473 (void)acct_process(p); 474 #ifdef KTRACE 475 /* 476 * release trace file 477 */ 478 if (p->p_tracenode) 479 ktrdestroy(&p->p_tracenode); 480 p->p_traceflag = 0; 481 #endif 482 /* 483 * Release reference to text vnode 484 */ 485 if ((vtmp = p->p_textvp) != NULL) { 486 p->p_textvp = NULL; 487 vrele(vtmp); 488 } 489 490 /* Release namecache handle to text file */ 491 if (p->p_textnch.ncp) 492 cache_drop(&p->p_textnch); 493 494 /* 495 * We have to handle PPWAIT here or proc_move_allproc_zombie() 496 * will block on the PHOLD() the parent is doing. 497 * 498 * We are using the flag as an interlock so an atomic op is 499 * necessary to synchronize with the parent's cpu. 500 */ 501 if (p->p_flags & P_PPWAIT) { 502 if (p->p_pptr && p->p_pptr->p_upmap) 503 atomic_add_int(&p->p_pptr->p_upmap->invfork, -1); 504 atomic_clear_int(&p->p_flags, P_PPWAIT); 505 wakeup(p->p_pptr); 506 } 507 508 /* 509 * Move the process to the zombie list. This will block 510 * until the process p_lock count reaches 0. The process will 511 * not be reaped until TDF_EXITING is set by cpu_thread_exit(), 512 * which is called from cpu_proc_exit(). 513 * 514 * Interlock against waiters using p_waitgen. We increment 515 * p_waitgen after completing the move of our process to the 516 * zombie list. 517 * 518 * WARNING: pp becomes stale when we block, clear it now as a 519 * reminder. 520 */ 521 proc_move_allproc_zombie(p); 522 pp = p->p_pptr; 523 atomic_add_long(&pp->p_waitgen, 1); 524 pp = NULL; 525 526 /* 527 * release controlled reaper for exit if we own it and return the 528 * remaining reaper (the one for us), which we will drop after we 529 * are done. 530 */ 531 reap = reaper_exit(p); 532 533 /* 534 * Reparent all of this process's children to the init process or 535 * to the designated reaper. We must hold the reaper's p_token in 536 * order to safely mess with p_children. 537 * 538 * We already hold p->p_token (to remove the children from our list). 539 */ 540 reproc = NULL; 541 q = LIST_FIRST(&p->p_children); 542 if (q) { 543 reproc = reaper_get(reap); 544 lwkt_gettoken(&reproc->p_token); 545 while ((q = LIST_FIRST(&p->p_children)) != NULL) { 546 PHOLD(q); 547 lwkt_gettoken(&q->p_token); 548 if (q != LIST_FIRST(&p->p_children)) { 549 lwkt_reltoken(&q->p_token); 550 PRELE(q); 551 continue; 552 } 553 LIST_REMOVE(q, p_sibling); 554 LIST_INSERT_HEAD(&reproc->p_children, q, p_sibling); 555 q->p_pptr = reproc; 556 q->p_ppid = reproc->p_pid; 557 q->p_sigparent = SIGCHLD; 558 559 /* 560 * Traced processes are killed 561 * since their existence means someone is screwing up. 562 */ 563 if (q->p_flags & P_TRACED) { 564 q->p_flags &= ~P_TRACED; 565 ksignal(q, SIGKILL); 566 } 567 lwkt_reltoken(&q->p_token); 568 PRELE(q); 569 } 570 lwkt_reltoken(&reproc->p_token); 571 wakeup(reproc); 572 } 573 574 /* 575 * Save exit status and final rusage info. We no longer add 576 * child rusage info into self times, wait4() and kern_wait() 577 * handles it in order to properly support wait6(). 578 */ 579 calcru_proc(p, &p->p_ru); 580 /*ruadd(&p->p_ru, &p->p_cru); REMOVED */ 581 582 /* 583 * notify interested parties of our demise. 584 */ 585 KNOTE(&p->p_klist, NOTE_EXIT); 586 587 /* 588 * Notify parent that we're gone. If parent has the PS_NOCLDWAIT 589 * flag set, or if the handler is set to SIG_IGN, notify the reaper 590 * instead (it will handle this situation). 591 * 592 * NOTE: The reaper can still be the parent process. 593 * 594 * (must reload pp) 595 */ 596 if (p->p_pptr->p_sigacts->ps_flag & (PS_NOCLDWAIT | PS_CLDSIGIGN)) { 597 if (reproc == NULL) 598 reproc = reaper_get(reap); 599 proc_reparent(p, reproc); 600 } 601 if (reproc) 602 PRELE(reproc); 603 if (reap) 604 reaper_drop(reap); 605 606 /* 607 * Signal (possibly new) parent. 608 */ 609 pp = p->p_pptr; 610 PHOLD(pp); 611 if (p->p_sigparent && pp != initproc) { 612 int sig = p->p_sigparent; 613 614 if (sig != SIGUSR1 && sig != SIGCHLD) 615 sig = SIGCHLD; 616 ksignal(pp, sig); 617 } else { 618 ksignal(pp, SIGCHLD); 619 } 620 p->p_flags &= ~P_TRACED; 621 PRELE(pp); 622 623 /* 624 * cpu_exit is responsible for clearing curproc, since 625 * it is heavily integrated with the thread/switching sequence. 626 * 627 * Other substructures are freed from wait(). 628 */ 629 if (p->p_limit) { 630 struct plimit *rlimit; 631 632 rlimit = p->p_limit; 633 p->p_limit = NULL; 634 plimit_free(rlimit); 635 } 636 637 /* 638 * Finally, call machine-dependent code to release as many of the 639 * lwp's resources as we can and halt execution of this thread. 640 * 641 * pp is a wild pointer now but still the correct wakeup() target. 642 * lwp_exit() only uses it to send the wakeup() signal to the likely 643 * parent. Any reparenting race that occurs will get a signal 644 * automatically and not be an issue. 645 */ 646 lwp_exit(1, pp); 647 } 648 649 /* 650 * Eventually called by every exiting LWP 651 * 652 * p->p_token must be held. mplock may be held and will be released. 653 */ 654 void 655 lwp_exit(int masterexit, void *waddr) 656 { 657 struct thread *td = curthread; 658 struct lwp *lp = td->td_lwp; 659 struct proc *p = lp->lwp_proc; 660 int dowake = 0; 661 662 /* 663 * Release the current user process designation on the process so 664 * the userland scheduler can work in someone else. 665 */ 666 p->p_usched->release_curproc(lp); 667 668 /* 669 * lwp_exit() may be called without setting LWP_MP_WEXIT, so 670 * make sure it is set here. 671 */ 672 ASSERT_LWKT_TOKEN_HELD(&p->p_token); 673 atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT); 674 675 /* 676 * Clean up any virtualization 677 */ 678 if (lp->lwp_vkernel) 679 vkernel_lwp_exit(lp); 680 681 if (td->td_vmm) 682 vmm_vmdestroy(); 683 684 /* 685 * Clean up select/poll support 686 */ 687 kqueue_terminate(&lp->lwp_kqueue); 688 689 /* 690 * Clean up any syscall-cached ucred or rlimit. 691 */ 692 if (td->td_ucred) { 693 crfree(td->td_ucred); 694 td->td_ucred = NULL; 695 } 696 if (td->td_limit) { 697 struct plimit *rlimit; 698 699 rlimit = td->td_limit; 700 td->td_limit = NULL; 701 plimit_free(rlimit); 702 } 703 704 /* 705 * Cleanup any cached descriptors for this thread 706 */ 707 if (p->p_fd) 708 fexitcache(td); 709 710 /* 711 * Nobody actually wakes us when the lock 712 * count reaches zero, so just wait one tick. 713 */ 714 while (lp->lwp_lock > 0) 715 tsleep(lp, 0, "lwpexit", 1); 716 717 /* Hand down resource usage to our proc */ 718 ruadd(&p->p_ru, &lp->lwp_ru); 719 720 /* 721 * If we don't hold the process until the LWP is reaped wait*() 722 * may try to dispose of its vmspace before all the LWPs have 723 * actually terminated. 724 */ 725 PHOLD(p); 726 727 /* 728 * Do any remaining work that might block on us. We should be 729 * coded such that further blocking is ok after decrementing 730 * p_nthreads but don't take the chance. 731 */ 732 dsched_exit_thread(td); 733 biosched_done(curthread); 734 735 /* 736 * We have to use the reaper for all the LWPs except the one doing 737 * the master exit. The LWP doing the master exit can just be 738 * left on p_lwps and the process reaper will deal with it 739 * synchronously, which is much faster. 740 * 741 * Wakeup anyone waiting on p_nthreads to drop to 1 or 0. 742 * 743 * The process is left held until the reaper calls lwp_dispose() on 744 * the lp (after calling lwp_wait()). 745 */ 746 if (masterexit == 0) { 747 int cpu = mycpuid; 748 749 lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp); 750 --p->p_nthreads; 751 if ((p->p_flags & P_MAYBETHREADED) && p->p_nthreads <= 1) 752 dowake = 1; 753 lwkt_gettoken(&deadlwp_token[cpu]); 754 LIST_INSERT_HEAD(&deadlwp_list[cpu], lp, u.lwp_reap_entry); 755 taskqueue_enqueue(taskqueue_thread[cpu], deadlwp_task[cpu]); 756 lwkt_reltoken(&deadlwp_token[cpu]); 757 } else { 758 --p->p_nthreads; 759 if ((p->p_flags & P_MAYBETHREADED) && p->p_nthreads <= 1) 760 dowake = 1; 761 } 762 763 /* 764 * We no longer need p_token. 765 * 766 * Tell the userland scheduler that we are going away 767 */ 768 lwkt_reltoken(&p->p_token); 769 p->p_usched->heuristic_exiting(lp, p); 770 771 /* 772 * Issue late wakeups after releasing our token to give us a chance 773 * to deschedule and switch away before another cpu in a wait*() 774 * reaps us. This is done as late as possible to reduce contention. 775 */ 776 if (dowake) 777 wakeup(&p->p_nthreads); 778 if (waddr) 779 wakeup(waddr); 780 781 cpu_lwp_exit(); 782 } 783 784 /* 785 * Wait until a lwp is completely dead. The final interlock in this drama 786 * is when TDF_EXITING is set in cpu_thread_exit() just before the final 787 * switchout. 788 * 789 * At the point TDF_EXITING is set a complete exit is accomplished when 790 * TDF_RUNNING and TDF_PREEMPT_LOCK are both clear. td_mpflags has two 791 * post-switch interlock flags that can be used to wait for the TDF_ 792 * flags to clear. 793 * 794 * Returns non-zero on success, and zero if the caller needs to retry 795 * the lwp_wait(). 796 */ 797 static int 798 lwp_wait(struct lwp *lp) 799 { 800 struct thread *td = lp->lwp_thread; 801 u_int mpflags; 802 803 KKASSERT(lwkt_preempted_proc() != lp); 804 805 /* 806 * This bit of code uses the thread destruction interlock 807 * managed by lwkt_switch_return() to wait for the lwp's 808 * thread to completely disengage. 809 * 810 * It is possible for us to race another cpu core so we 811 * have to do this correctly. 812 */ 813 for (;;) { 814 mpflags = td->td_mpflags; 815 cpu_ccfence(); 816 if (mpflags & TDF_MP_EXITSIG) 817 break; 818 tsleep_interlock(td, 0); 819 if (atomic_cmpset_int(&td->td_mpflags, mpflags, 820 mpflags | TDF_MP_EXITWAIT)) { 821 tsleep(td, PINTERLOCKED, "lwpxt", 0); 822 } 823 } 824 825 /* 826 * We've already waited for the core exit but there can still 827 * be other refs from e.g. process scans and such. 828 */ 829 if (lp->lwp_lock > 0) { 830 tsleep(lp, 0, "lwpwait1", 1); 831 return(0); 832 } 833 if (td->td_refs) { 834 tsleep(td, 0, "lwpwait2", 1); 835 return(0); 836 } 837 838 /* 839 * Now that we have the thread destruction interlock these flags 840 * really should already be cleaned up, keep a check for safety. 841 * 842 * We can't rip its stack out from under it until TDF_EXITING is 843 * set and both TDF_RUNNING and TDF_PREEMPT_LOCK are clear. 844 * TDF_PREEMPT_LOCK must be checked because TDF_RUNNING 845 * will be cleared temporarily if a thread gets preempted. 846 */ 847 while ((td->td_flags & (TDF_RUNNING | 848 TDF_RUNQ | 849 TDF_PREEMPT_LOCK | 850 TDF_EXITING)) != TDF_EXITING) { 851 tsleep(lp, 0, "lwpwait3", 1); 852 return (0); 853 } 854 855 KASSERT((td->td_flags & (TDF_RUNQ|TDF_TSLEEPQ)) == 0, 856 ("lwp_wait: td %p (%s) still on run or sleep queue", 857 td, td->td_comm)); 858 return (1); 859 } 860 861 /* 862 * Release the resources associated with a lwp. 863 * The lwp must be completely dead. 864 */ 865 void 866 lwp_dispose(struct lwp *lp) 867 { 868 struct thread *td = lp->lwp_thread; 869 870 KKASSERT(lwkt_preempted_proc() != lp); 871 KKASSERT(lp->lwp_lock == 0); 872 KKASSERT(td->td_refs == 0); 873 KKASSERT((td->td_flags & (TDF_RUNNING | 874 TDF_RUNQ | 875 TDF_PREEMPT_LOCK | 876 TDF_EXITING)) == TDF_EXITING); 877 878 PRELE(lp->lwp_proc); 879 lp->lwp_proc = NULL; 880 if (td != NULL) { 881 td->td_proc = NULL; 882 td->td_lwp = NULL; 883 lp->lwp_thread = NULL; 884 lwkt_free_thread(td); 885 } 886 kfree(lp, M_LWP); 887 } 888 889 int 890 sys_wait4(struct wait_args *uap) 891 { 892 struct __wrusage wrusage; 893 int error; 894 int status; 895 int options; 896 id_t id; 897 idtype_t idtype; 898 899 options = uap->options | WEXITED | WTRAPPED; 900 id = uap->pid; 901 902 if (id == WAIT_ANY) { 903 idtype = P_ALL; 904 } else if (id == WAIT_MYPGRP) { 905 idtype = P_PGID; 906 id = curproc->p_pgid; 907 } else if (id < 0) { 908 idtype = P_PGID; 909 id = -id; 910 } else { 911 idtype = P_PID; 912 } 913 914 error = kern_wait(idtype, id, &status, options, &wrusage, 915 NULL, &uap->sysmsg_result); 916 917 if (error == 0 && uap->status) 918 error = copyout(&status, uap->status, sizeof(*uap->status)); 919 if (error == 0 && uap->rusage) { 920 ruadd(&wrusage.wru_self, &wrusage.wru_children); 921 error = copyout(&wrusage.wru_self, uap->rusage, sizeof(*uap->rusage)); 922 } 923 return (error); 924 } 925 926 int 927 sys_wait6(struct wait6_args *uap) 928 { 929 struct __wrusage wrusage; 930 struct __siginfo info; 931 struct __siginfo *infop; 932 int error; 933 int status; 934 int options; 935 id_t id; 936 idtype_t idtype; 937 938 /* 939 * NOTE: wait6() requires WEXITED and WTRAPPED to be specified if 940 * desired. 941 */ 942 options = uap->options; 943 idtype = uap->idtype; 944 id = uap->id; 945 infop = uap->info ? &info : NULL; 946 947 switch(idtype) { 948 case P_PID: 949 case P_PGID: 950 if (id == WAIT_MYPGRP) { 951 idtype = P_PGID; 952 id = curproc->p_pgid; 953 } 954 break; 955 default: 956 /* let kern_wait deal with the remainder */ 957 break; 958 } 959 960 error = kern_wait(idtype, id, &status, options, 961 &wrusage, infop, &uap->sysmsg_result); 962 963 if (error == 0 && uap->status) 964 error = copyout(&status, uap->status, sizeof(*uap->status)); 965 if (error == 0 && uap->wrusage) 966 error = copyout(&wrusage, uap->wrusage, sizeof(*uap->wrusage)); 967 if (error == 0 && uap->info) 968 error = copyout(&info, uap->info, sizeof(*uap->info)); 969 return (error); 970 } 971 972 /* 973 * kernel wait*() system call support 974 */ 975 int 976 kern_wait(idtype_t idtype, id_t id, int *status, int options, 977 struct __wrusage *wrusage, struct __siginfo *info, int *res) 978 { 979 struct thread *td = curthread; 980 struct lwp *lp; 981 struct proc *q = td->td_proc; 982 struct proc *p, *t; 983 struct ucred *cr; 984 struct pargs *pa; 985 struct sigacts *ps; 986 int nfound, error; 987 long waitgen; 988 989 /* 990 * Must not have extraneous options. Must have at least one 991 * matchable option. 992 */ 993 if (options &~ (WUNTRACED|WNOHANG|WCONTINUED|WLINUXCLONE|WSTOPPED| 994 WEXITED|WTRAPPED|WNOWAIT)) { 995 return (EINVAL); 996 } 997 if ((options & (WEXITED | WUNTRACED | WCONTINUED | WTRAPPED)) == 0) { 998 return (EINVAL); 999 } 1000 1001 /* 1002 * Protect the q->p_children list 1003 */ 1004 lwkt_gettoken(&q->p_token); 1005 loop: 1006 /* 1007 * All sorts of things can change due to blocking so we have to loop 1008 * all the way back up here. 1009 * 1010 * The problem is that if a process group is stopped and the parent 1011 * is doing a wait*(..., WUNTRACED, ...), it will see the STOP 1012 * of the child and then stop itself when it tries to return from the 1013 * system call. When the process group is resumed the parent will 1014 * then get the STOP status even though the child has now resumed 1015 * (a followup wait*() will get the CONT status). 1016 * 1017 * Previously the CONT would overwrite the STOP because the tstop 1018 * was handled within tsleep(), and the parent would only see 1019 * the CONT when both are stopped and continued together. This little 1020 * two-line hack restores this effect. 1021 */ 1022 if (STOPLWP(q, td->td_lwp)) 1023 tstop(); 1024 1025 nfound = 0; 1026 1027 /* 1028 * Loop on children. 1029 * 1030 * NOTE: We don't want to break q's p_token in the loop for the 1031 * case where no children are found or we risk breaking the 1032 * interlock between child and parent. 1033 */ 1034 waitgen = atomic_fetchadd_long(&q->p_waitgen, 0x80000000); 1035 LIST_FOREACH(p, &q->p_children, p_sibling) { 1036 /* 1037 * Filter, (p) will be held on fall-through. Try to optimize 1038 * this to avoid the atomic op until we are pretty sure we 1039 * want this process. 1040 */ 1041 switch(idtype) { 1042 case P_ALL: 1043 PHOLD(p); 1044 break; 1045 case P_PID: 1046 if (p->p_pid != (pid_t)id) 1047 continue; 1048 PHOLD(p); 1049 break; 1050 case P_PGID: 1051 if (p->p_pgid != (pid_t)id) 1052 continue; 1053 PHOLD(p); 1054 break; 1055 case P_SID: 1056 PHOLD(p); 1057 if (p->p_session && p->p_session->s_sid != (pid_t)id) { 1058 PRELE(p); 1059 continue; 1060 } 1061 break; 1062 case P_UID: 1063 PHOLD(p); 1064 if (p->p_ucred->cr_uid != (uid_t)id) { 1065 PRELE(p); 1066 continue; 1067 } 1068 break; 1069 case P_GID: 1070 PHOLD(p); 1071 if (p->p_ucred->cr_gid != (gid_t)id) { 1072 PRELE(p); 1073 continue; 1074 } 1075 break; 1076 case P_JAILID: 1077 PHOLD(p); 1078 if (p->p_ucred->cr_prison && 1079 p->p_ucred->cr_prison->pr_id != (int)id) { 1080 PRELE(p); 1081 continue; 1082 } 1083 break; 1084 default: 1085 /* unsupported filter */ 1086 continue; 1087 } 1088 /* (p) is held at this point */ 1089 1090 /* 1091 * This special case handles a kthread spawned by linux_clone 1092 * (see linux_misc.c). The linux_wait4 and linux_waitpid 1093 * functions need to be able to distinguish between waiting 1094 * on a process and waiting on a thread. It is a thread if 1095 * p_sigparent is not SIGCHLD, and the WLINUXCLONE option 1096 * signifies we want to wait for threads and not processes. 1097 */ 1098 if ((p->p_sigparent != SIGCHLD) ^ 1099 ((options & WLINUXCLONE) != 0)) { 1100 PRELE(p); 1101 continue; 1102 } 1103 1104 nfound++; 1105 if (p->p_stat == SZOMB && (options & WEXITED)) { 1106 /* 1107 * We may go into SZOMB with threads still present. 1108 * We must wait for them to exit before we can reap 1109 * the master thread, otherwise we may race reaping 1110 * non-master threads. 1111 * 1112 * Only this routine can remove a process from 1113 * the zombie list and destroy it. 1114 */ 1115 if (PHOLDZOMB(p)) { 1116 PRELE(p); 1117 goto loop; 1118 } 1119 lwkt_gettoken(&p->p_token); 1120 if (p->p_pptr != q) { 1121 lwkt_reltoken(&p->p_token); 1122 PRELE(p); 1123 PRELEZOMB(p); 1124 goto loop; 1125 } 1126 while (p->p_nthreads > 0) { 1127 tsleep(&p->p_nthreads, 0, "lwpzomb", hz); 1128 } 1129 1130 /* 1131 * Reap any LWPs left in p->p_lwps. This is usually 1132 * just the last LWP. This must be done before 1133 * we loop on p_lock since the lwps hold a ref on 1134 * it as a vmspace interlock. 1135 * 1136 * Once that is accomplished p_nthreads had better 1137 * be zero. 1138 */ 1139 while ((lp = RB_ROOT(&p->p_lwp_tree)) != NULL) { 1140 /* 1141 * Make sure no one is using this lwp, before 1142 * it is removed from the tree. If we didn't 1143 * wait it here, lwp tree iteration with 1144 * blocking operation would be broken. 1145 */ 1146 while (lp->lwp_lock > 0) 1147 tsleep(lp, 0, "zomblwp", 1); 1148 lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp); 1149 reaplwp(lp); 1150 } 1151 KKASSERT(p->p_nthreads == 0); 1152 1153 /* 1154 * Don't do anything really bad until all references 1155 * to the process go away. This may include other 1156 * LWPs which are still in the process of being 1157 * reaped. We can't just pull the rug out from under 1158 * them because they may still be using the VM space. 1159 * 1160 * Certain kernel facilities such as /proc will also 1161 * put a hold on the process for short periods of 1162 * time. 1163 */ 1164 PRELE(p); /* from top of loop */ 1165 PSTALL(p, "reap3", 1); /* 1 ref (for PZOMBHOLD) */ 1166 1167 /* Take care of our return values. */ 1168 *res = p->p_pid; 1169 1170 *status = p->p_xstat; 1171 wrusage->wru_self = p->p_ru; 1172 wrusage->wru_children = p->p_cru; 1173 1174 if (info) { 1175 bzero(info, sizeof(*info)); 1176 info->si_errno = 0; 1177 info->si_signo = SIGCHLD; 1178 if (WIFEXITED(p->p_xstat)) { 1179 info->si_code = CLD_EXITED; 1180 info->si_status = 1181 WEXITSTATUS(p->p_xstat); 1182 } else { 1183 info->si_code = CLD_KILLED; 1184 info->si_status = WTERMSIG(p->p_xstat); 1185 } 1186 info->si_pid = p->p_pid; 1187 info->si_uid = p->p_ucred->cr_uid; 1188 } 1189 1190 /* 1191 * WNOWAIT shortcuts to done here, leaving the 1192 * child on the zombie list. 1193 */ 1194 if (options & WNOWAIT) { 1195 lwkt_reltoken(&p->p_token); 1196 PRELEZOMB(p); 1197 error = 0; 1198 goto done; 1199 } 1200 1201 /* 1202 * If we got the child via a ptrace 'attach', 1203 * we need to give it back to the old parent. 1204 */ 1205 if (p->p_oppid && (t = pfind(p->p_oppid)) != NULL) { 1206 p->p_oppid = 0; 1207 proc_reparent(p, t); 1208 ksignal(t, SIGCHLD); 1209 wakeup((caddr_t)t); 1210 PRELE(t); 1211 lwkt_reltoken(&p->p_token); 1212 PRELEZOMB(p); 1213 error = 0; 1214 goto done; 1215 } 1216 1217 /* 1218 * Unlink the proc from its process group so that 1219 * the following operations won't lead to an 1220 * inconsistent state for processes running down 1221 * the zombie list. 1222 */ 1223 proc_remove_zombie(p); 1224 proc_userunmap(p); 1225 lwkt_reltoken(&p->p_token); 1226 leavepgrp(p); 1227 1228 p->p_xstat = 0; 1229 ruadd(&q->p_cru, &p->p_ru); 1230 ruadd(&q->p_cru, &p->p_cru); 1231 1232 /* 1233 * Decrement the count of procs running with this uid. 1234 */ 1235 chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0); 1236 1237 /* 1238 * Free up credentials. p_spin is required to 1239 * avoid races against allproc scans. 1240 */ 1241 spin_lock(&p->p_spin); 1242 cr = p->p_ucred; 1243 p->p_ucred = NULL; 1244 spin_unlock(&p->p_spin); 1245 crfree(cr); 1246 1247 /* 1248 * Remove unused arguments 1249 */ 1250 pa = p->p_args; 1251 p->p_args = NULL; 1252 if (pa && refcount_release(&pa->ar_ref)) { 1253 kfree(pa, M_PARGS); 1254 pa = NULL; 1255 } 1256 1257 ps = p->p_sigacts; 1258 p->p_sigacts = NULL; 1259 if (ps && refcount_release(&ps->ps_refcnt)) { 1260 kfree(ps, M_SUBPROC); 1261 ps = NULL; 1262 } 1263 1264 /* 1265 * Our exitingcount was incremented when the process 1266 * became a zombie, now that the process has been 1267 * removed from (almost) all lists we should be able 1268 * to safely destroy its vmspace. Wait for any current 1269 * holders to go away (so the vmspace remains stable), 1270 * then scrap it. 1271 * 1272 * NOTE: Releasing the parent process (q) p_token 1273 * across the vmspace_exitfree() call is 1274 * important here to reduce stalls on 1275 * interactions with (q) (such as 1276 * fork/exec/wait or 'ps'). 1277 */ 1278 PSTALL(p, "reap4", 1); 1279 lwkt_reltoken(&q->p_token); 1280 vmspace_exitfree(p); 1281 lwkt_gettoken(&q->p_token); 1282 PSTALL(p, "reap5", 1); 1283 1284 /* 1285 * NOTE: We have to officially release ZOMB in order 1286 * to ensure that a racing thread in kern_wait() 1287 * which blocked on ZOMB is woken up. 1288 */ 1289 PRELEZOMB(p); 1290 kfree(p->p_uidpcpu, M_SUBPROC); 1291 kfree(p, M_PROC); 1292 atomic_add_int(&nprocs, -1); 1293 error = 0; 1294 goto done; 1295 } 1296 1297 /* 1298 * Process has not yet exited 1299 */ 1300 if ((p->p_stat == SSTOP || p->p_stat == SCORE) && 1301 (p->p_flags & P_WAITED) == 0 && 1302 (((p->p_flags & P_TRACED) && (options & WTRAPPED)) || 1303 (options & WSTOPPED))) { 1304 lwkt_gettoken(&p->p_token); 1305 if (p->p_pptr != q) { 1306 lwkt_reltoken(&p->p_token); 1307 PRELE(p); 1308 goto loop; 1309 } 1310 if ((p->p_stat != SSTOP && p->p_stat != SCORE) || 1311 (p->p_flags & P_WAITED) != 0 || 1312 ((p->p_flags & P_TRACED) == 0 && 1313 (options & WUNTRACED) == 0)) { 1314 lwkt_reltoken(&p->p_token); 1315 PRELE(p); 1316 goto loop; 1317 } 1318 1319 /* 1320 * Don't set P_WAITED if WNOWAIT specified, leaving 1321 * the process in a waitable state. 1322 */ 1323 if ((options & WNOWAIT) == 0) 1324 p->p_flags |= P_WAITED; 1325 1326 *res = p->p_pid; 1327 *status = W_STOPCODE(p->p_xstat); 1328 /* Zero rusage so we get something consistent. */ 1329 bzero(wrusage, sizeof(*wrusage)); 1330 error = 0; 1331 if (info) { 1332 bzero(info, sizeof(*info)); 1333 if (p->p_flags & P_TRACED) 1334 info->si_code = CLD_TRAPPED; 1335 else 1336 info->si_code = CLD_STOPPED; 1337 info->si_status = WSTOPSIG(p->p_xstat); 1338 } 1339 lwkt_reltoken(&p->p_token); 1340 PRELE(p); 1341 goto done; 1342 } 1343 if ((options & WCONTINUED) && (p->p_flags & P_CONTINUED)) { 1344 lwkt_gettoken(&p->p_token); 1345 if (p->p_pptr != q) { 1346 lwkt_reltoken(&p->p_token); 1347 PRELE(p); 1348 goto loop; 1349 } 1350 if ((p->p_flags & P_CONTINUED) == 0) { 1351 lwkt_reltoken(&p->p_token); 1352 PRELE(p); 1353 goto loop; 1354 } 1355 1356 *res = p->p_pid; 1357 1358 /* 1359 * Don't set P_WAITED if WNOWAIT specified, leaving 1360 * the process in a waitable state. 1361 */ 1362 if ((options & WNOWAIT) == 0) 1363 p->p_flags &= ~P_CONTINUED; 1364 1365 *status = SIGCONT; 1366 error = 0; 1367 if (info) { 1368 bzero(info, sizeof(*info)); 1369 info->si_code = CLD_CONTINUED; 1370 info->si_status = WSTOPSIG(p->p_xstat); 1371 } 1372 lwkt_reltoken(&p->p_token); 1373 PRELE(p); 1374 goto done; 1375 } 1376 PRELE(p); 1377 } 1378 if (nfound == 0) { 1379 error = ECHILD; 1380 goto done; 1381 } 1382 if (options & WNOHANG) { 1383 *res = 0; 1384 error = 0; 1385 goto done; 1386 } 1387 1388 /* 1389 * Wait for signal - interlocked using q->p_waitgen. 1390 */ 1391 error = 0; 1392 while ((waitgen & 0x7FFFFFFF) == (q->p_waitgen & 0x7FFFFFFF)) { 1393 tsleep_interlock(q, PCATCH); 1394 waitgen = atomic_fetchadd_long(&q->p_waitgen, 0x80000000); 1395 if ((waitgen & 0x7FFFFFFF) == (q->p_waitgen & 0x7FFFFFFF)) { 1396 error = tsleep(q, PCATCH | PINTERLOCKED, "wait", 0); 1397 break; 1398 } 1399 } 1400 if (error) { 1401 done: 1402 lwkt_reltoken(&q->p_token); 1403 return (error); 1404 } 1405 goto loop; 1406 } 1407 1408 /* 1409 * Change child's parent process to parent. 1410 * 1411 * p_children/p_sibling requires the parent's token, and 1412 * changing pptr requires the child's token, so we have to 1413 * get three tokens to do this operation. We also need to 1414 * hold pointers that might get ripped out from under us to 1415 * preserve structural integrity. 1416 * 1417 * It is possible to race another reparent or disconnect or other 1418 * similar operation. We must retry when this situation occurs. 1419 * Once we successfully reparent the process we no longer care 1420 * about any races. 1421 */ 1422 void 1423 proc_reparent(struct proc *child, struct proc *parent) 1424 { 1425 struct proc *opp; 1426 1427 PHOLD(parent); 1428 while ((opp = child->p_pptr) != parent) { 1429 PHOLD(opp); 1430 lwkt_gettoken(&opp->p_token); 1431 lwkt_gettoken(&child->p_token); 1432 lwkt_gettoken(&parent->p_token); 1433 if (child->p_pptr != opp) { 1434 lwkt_reltoken(&parent->p_token); 1435 lwkt_reltoken(&child->p_token); 1436 lwkt_reltoken(&opp->p_token); 1437 PRELE(opp); 1438 continue; 1439 } 1440 LIST_REMOVE(child, p_sibling); 1441 LIST_INSERT_HEAD(&parent->p_children, child, p_sibling); 1442 child->p_pptr = parent; 1443 child->p_ppid = parent->p_pid; 1444 lwkt_reltoken(&parent->p_token); 1445 lwkt_reltoken(&child->p_token); 1446 lwkt_reltoken(&opp->p_token); 1447 if (LIST_EMPTY(&opp->p_children)) 1448 wakeup(opp); 1449 PRELE(opp); 1450 break; 1451 } 1452 PRELE(parent); 1453 } 1454 1455 /* 1456 * The next two functions are to handle adding/deleting items on the 1457 * exit callout list 1458 * 1459 * at_exit(): 1460 * Take the arguments given and put them onto the exit callout list, 1461 * However first make sure that it's not already there. 1462 * returns 0 on success. 1463 */ 1464 1465 int 1466 at_exit(exitlist_fn function) 1467 { 1468 struct exitlist *ep; 1469 1470 #ifdef INVARIANTS 1471 /* Be noisy if the programmer has lost track of things */ 1472 if (rm_at_exit(function)) 1473 kprintf("WARNING: exit callout entry (%p) already present\n", 1474 function); 1475 #endif 1476 ep = kmalloc(sizeof(*ep), M_ATEXIT, M_NOWAIT); 1477 if (ep == NULL) 1478 return (ENOMEM); 1479 ep->function = function; 1480 TAILQ_INSERT_TAIL(&exit_list, ep, next); 1481 return (0); 1482 } 1483 1484 /* 1485 * Scan the exit callout list for the given item and remove it. 1486 * Returns the number of items removed (0 or 1) 1487 */ 1488 int 1489 rm_at_exit(exitlist_fn function) 1490 { 1491 struct exitlist *ep; 1492 1493 TAILQ_FOREACH(ep, &exit_list, next) { 1494 if (ep->function == function) { 1495 TAILQ_REMOVE(&exit_list, ep, next); 1496 kfree(ep, M_ATEXIT); 1497 return(1); 1498 } 1499 } 1500 return (0); 1501 } 1502 1503 /* 1504 * LWP reaper related code. 1505 */ 1506 static void 1507 reaplwps(void *context, int dummy) 1508 { 1509 struct lwplist *lwplist = context; 1510 struct lwp *lp; 1511 int cpu = mycpuid; 1512 1513 lwkt_gettoken(&deadlwp_token[cpu]); 1514 while ((lp = LIST_FIRST(lwplist))) { 1515 LIST_REMOVE(lp, u.lwp_reap_entry); 1516 reaplwp(lp); 1517 } 1518 lwkt_reltoken(&deadlwp_token[cpu]); 1519 } 1520 1521 static void 1522 reaplwp(struct lwp *lp) 1523 { 1524 while (lwp_wait(lp) == 0) 1525 ; 1526 lwp_dispose(lp); 1527 } 1528 1529 static void 1530 deadlwp_init(void) 1531 { 1532 int cpu; 1533 1534 for (cpu = 0; cpu < ncpus; cpu++) { 1535 lwkt_token_init(&deadlwp_token[cpu], "deadlwpl"); 1536 LIST_INIT(&deadlwp_list[cpu]); 1537 deadlwp_task[cpu] = kmalloc(sizeof(*deadlwp_task[cpu]), 1538 M_DEVBUF, M_WAITOK); 1539 TASK_INIT(deadlwp_task[cpu], 0, reaplwps, &deadlwp_list[cpu]); 1540 } 1541 } 1542 1543 SYSINIT(deadlwpinit, SI_SUB_CONFIGURE, SI_ORDER_ANY, deadlwp_init, NULL); 1544