xref: /dragonfly/sys/kern/kern_fork.c (revision 1de703da)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
39  * $FreeBSD: src/sys/kern/kern_fork.c,v 1.72.2.13 2003/06/06 20:21:32 tegge Exp $
40  * $DragonFly: src/sys/kern/kern_fork.c,v 1.2 2003/06/17 04:28:41 dillon Exp $
41  */
42 
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/sysproto.h>
48 #include <sys/filedesc.h>
49 #include <sys/kernel.h>
50 #include <sys/sysctl.h>
51 #include <sys/malloc.h>
52 #include <sys/proc.h>
53 #include <sys/resourcevar.h>
54 #include <sys/vnode.h>
55 #include <sys/acct.h>
56 #include <sys/ktrace.h>
57 #include <sys/unistd.h>
58 #include <sys/jail.h>
59 
60 #include <vm/vm.h>
61 #include <sys/lock.h>
62 #include <vm/pmap.h>
63 #include <vm/vm_map.h>
64 #include <vm/vm_extern.h>
65 #include <vm/vm_zone.h>
66 
67 #include <sys/vmmeter.h>
68 #include <sys/user.h>
69 
70 static MALLOC_DEFINE(M_ATFORK, "atfork", "atfork callback");
71 
72 /*
73  * These are the stuctures used to create a callout list for things to do
74  * when forking a process
75  */
76 struct forklist {
77 	forklist_fn function;
78 	TAILQ_ENTRY(forklist) next;
79 };
80 
81 TAILQ_HEAD(forklist_head, forklist);
82 static struct forklist_head fork_list = TAILQ_HEAD_INITIALIZER(fork_list);
83 
84 #ifndef _SYS_SYSPROTO_H_
85 struct fork_args {
86 	int     dummy;
87 };
88 #endif
89 
90 int forksleep; /* Place for fork1() to sleep on. */
91 
92 /* ARGSUSED */
93 int
94 fork(p, uap)
95 	struct proc *p;
96 	struct fork_args *uap;
97 {
98 	int error;
99 	struct proc *p2;
100 
101 	error = fork1(p, RFFDG | RFPROC, &p2);
102 	if (error == 0) {
103 		p->p_retval[0] = p2->p_pid;
104 		p->p_retval[1] = 0;
105 	}
106 	return error;
107 }
108 
109 /* ARGSUSED */
110 int
111 vfork(p, uap)
112 	struct proc *p;
113 	struct vfork_args *uap;
114 {
115 	int error;
116 	struct proc *p2;
117 
118 	error = fork1(p, RFFDG | RFPROC | RFPPWAIT | RFMEM, &p2);
119 	if (error == 0) {
120 		p->p_retval[0] = p2->p_pid;
121 		p->p_retval[1] = 0;
122 	}
123 	return error;
124 }
125 
126 int
127 rfork(p, uap)
128 	struct proc *p;
129 	struct rfork_args *uap;
130 {
131 	int error;
132 	struct proc *p2;
133 
134 	error = fork1(p, uap->flags, &p2);
135 	if (error == 0) {
136 		p->p_retval[0] = p2 ? p2->p_pid : 0;
137 		p->p_retval[1] = 0;
138 	}
139 	return error;
140 }
141 
142 
143 int	nprocs = 1;		/* process 0 */
144 static int nextpid = 0;
145 
146 /*
147  * Random component to nextpid generation.  We mix in a random factor to make
148  * it a little harder to predict.  We sanity check the modulus value to avoid
149  * doing it in critical paths.  Don't let it be too small or we pointlessly
150  * waste randomness entropy, and don't let it be impossibly large.  Using a
151  * modulus that is too big causes a LOT more process table scans and slows
152  * down fork processing as the pidchecked caching is defeated.
153  */
154 static int randompid = 0;
155 
156 static int
157 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
158 {
159 		int error, pid;
160 
161 		pid = randompid;
162 		error = sysctl_handle_int(oidp, &pid, 0, req);
163 		if (error || !req->newptr)
164 			return (error);
165 		if (pid < 0 || pid > PID_MAX - 100)	/* out of range */
166 			pid = PID_MAX - 100;
167 		else if (pid < 2)			/* NOP */
168 			pid = 0;
169 		else if (pid < 100)			/* Make it reasonable */
170 			pid = 100;
171 		randompid = pid;
172 		return (error);
173 }
174 
175 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
176     0, 0, sysctl_kern_randompid, "I", "Random PID modulus");
177 
178 int
179 fork1(p1, flags, procp)
180 	struct proc *p1;
181 	int flags;
182 	struct proc **procp;
183 {
184 	struct proc *p2, *pptr;
185 	uid_t uid;
186 	struct proc *newproc;
187 	int ok;
188 	static int pidchecked = 0;
189 	struct forklist *ep;
190 	struct filedesc_to_leader *fdtol;
191 
192 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
193 		return (EINVAL);
194 
195 	/*
196 	 * Here we don't create a new process, but we divorce
197 	 * certain parts of a process from itself.
198 	 */
199 	if ((flags & RFPROC) == 0) {
200 
201 		vm_fork(p1, 0, flags);
202 
203 		/*
204 		 * Close all file descriptors.
205 		 */
206 		if (flags & RFCFDG) {
207 			struct filedesc *fdtmp;
208 			fdtmp = fdinit(p1);
209 			fdfree(p1);
210 			p1->p_fd = fdtmp;
211 		}
212 
213 		/*
214 		 * Unshare file descriptors (from parent.)
215 		 */
216 		if (flags & RFFDG) {
217 			if (p1->p_fd->fd_refcnt > 1) {
218 				struct filedesc *newfd;
219 				newfd = fdcopy(p1);
220 				fdfree(p1);
221 				p1->p_fd = newfd;
222 			}
223 		}
224 		*procp = NULL;
225 		return (0);
226 	}
227 
228 	/*
229 	 * Although process entries are dynamically created, we still keep
230 	 * a global limit on the maximum number we will create.  Don't allow
231 	 * a nonprivileged user to use the last ten processes; don't let root
232 	 * exceed the limit. The variable nprocs is the current number of
233 	 * processes, maxproc is the limit.
234 	 */
235 	uid = p1->p_cred->p_ruid;
236 	if ((nprocs >= maxproc - 10 && uid != 0) || nprocs >= maxproc) {
237 		tsleep(&forksleep, PUSER, "fork", hz / 2);
238 		return (EAGAIN);
239 	}
240 	/*
241 	 * Increment the nprocs resource before blocking can occur.  There
242 	 * are hard-limits as to the number of processes that can run.
243 	 */
244 	nprocs++;
245 
246 	/*
247 	 * Increment the count of procs running with this uid. Don't allow
248 	 * a nonprivileged user to exceed their current limit.
249 	 */
250 	ok = chgproccnt(p1->p_cred->p_uidinfo, 1,
251 		(uid != 0) ? p1->p_rlimit[RLIMIT_NPROC].rlim_cur : 0);
252 	if (!ok) {
253 		/*
254 		 * Back out the process count
255 		 */
256 		nprocs--;
257 		tsleep(&forksleep, PUSER, "fork", hz / 2);
258 		return (EAGAIN);
259 	}
260 
261 	/* Allocate new proc. */
262 	newproc = zalloc(proc_zone);
263 
264 	/*
265 	 * Setup linkage for kernel based threading
266 	 */
267 	if((flags & RFTHREAD) != 0) {
268 		newproc->p_peers = p1->p_peers;
269 		p1->p_peers = newproc;
270 		newproc->p_leader = p1->p_leader;
271 	} else {
272 		newproc->p_peers = 0;
273 		newproc->p_leader = newproc;
274 	}
275 
276 	newproc->p_wakeup = 0;
277 
278 	newproc->p_vmspace = NULL;
279 
280 	/*
281 	 * Find an unused process ID.  We remember a range of unused IDs
282 	 * ready to use (from nextpid+1 through pidchecked-1).
283 	 */
284 	nextpid++;
285 	if (randompid)
286 		nextpid += arc4random() % randompid;
287 retry:
288 	/*
289 	 * If the process ID prototype has wrapped around,
290 	 * restart somewhat above 0, as the low-numbered procs
291 	 * tend to include daemons that don't exit.
292 	 */
293 	if (nextpid >= PID_MAX) {
294 		nextpid = nextpid % PID_MAX;
295 		if (nextpid < 100)
296 			nextpid += 100;
297 		pidchecked = 0;
298 	}
299 	if (nextpid >= pidchecked) {
300 		int doingzomb = 0;
301 
302 		pidchecked = PID_MAX;
303 		/*
304 		 * Scan the active and zombie procs to check whether this pid
305 		 * is in use.  Remember the lowest pid that's greater
306 		 * than nextpid, so we can avoid checking for a while.
307 		 */
308 		p2 = LIST_FIRST(&allproc);
309 again:
310 		for (; p2 != 0; p2 = LIST_NEXT(p2, p_list)) {
311 			while (p2->p_pid == nextpid ||
312 			    p2->p_pgrp->pg_id == nextpid ||
313 			    p2->p_session->s_sid == nextpid) {
314 				nextpid++;
315 				if (nextpid >= pidchecked)
316 					goto retry;
317 			}
318 			if (p2->p_pid > nextpid && pidchecked > p2->p_pid)
319 				pidchecked = p2->p_pid;
320 			if (p2->p_pgrp->pg_id > nextpid &&
321 			    pidchecked > p2->p_pgrp->pg_id)
322 				pidchecked = p2->p_pgrp->pg_id;
323 			if (p2->p_session->s_sid > nextpid &&
324 			    pidchecked > p2->p_session->s_sid)
325 				pidchecked = p2->p_session->s_sid;
326 		}
327 		if (!doingzomb) {
328 			doingzomb = 1;
329 			p2 = LIST_FIRST(&zombproc);
330 			goto again;
331 		}
332 	}
333 
334 	p2 = newproc;
335 	p2->p_stat = SIDL;			/* protect against others */
336 	p2->p_pid = nextpid;
337 	LIST_INSERT_HEAD(&allproc, p2, p_list);
338 	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
339 
340 	/*
341 	 * Make a proc table entry for the new process.
342 	 * Start by zeroing the section of proc that is zero-initialized,
343 	 * then copy the section that is copied directly from the parent.
344 	 */
345 	bzero(&p2->p_startzero,
346 	    (unsigned) ((caddr_t)&p2->p_endzero - (caddr_t)&p2->p_startzero));
347 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
348 	    (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
349 
350 	p2->p_aioinfo = NULL;
351 
352 	/*
353 	 * Duplicate sub-structures as needed.
354 	 * Increase reference counts on shared objects.
355 	 * The p_stats and p_sigacts substructs are set in vm_fork.
356 	 */
357 	p2->p_flag = P_INMEM;
358 	if (p1->p_flag & P_PROFIL)
359 		startprofclock(p2);
360 	MALLOC(p2->p_cred, struct pcred *, sizeof(struct pcred),
361 	    M_SUBPROC, M_WAITOK);
362 	bcopy(p1->p_cred, p2->p_cred, sizeof(*p2->p_cred));
363 	p2->p_cred->p_refcnt = 1;
364 	crhold(p1->p_ucred);
365 	uihold(p1->p_cred->p_uidinfo);
366 
367 	if (p2->p_prison) {
368 		p2->p_prison->pr_ref++;
369 		p2->p_flag |= P_JAILED;
370 	}
371 
372 	if (p2->p_args)
373 		p2->p_args->ar_ref++;
374 
375 	if (flags & RFSIGSHARE) {
376 		p2->p_procsig = p1->p_procsig;
377 		p2->p_procsig->ps_refcnt++;
378 		if (p1->p_sigacts == &p1->p_addr->u_sigacts) {
379 			struct sigacts *newsigacts;
380 			int s;
381 
382 			/* Create the shared sigacts structure */
383 			MALLOC(newsigacts, struct sigacts *,
384 			    sizeof(struct sigacts), M_SUBPROC, M_WAITOK);
385 			s = splhigh();
386 			/*
387 			 * Set p_sigacts to the new shared structure.
388 			 * Note that this is updating p1->p_sigacts at the
389 			 * same time, since p_sigacts is just a pointer to
390 			 * the shared p_procsig->ps_sigacts.
391 			 */
392 			p2->p_sigacts  = newsigacts;
393 			bcopy(&p1->p_addr->u_sigacts, p2->p_sigacts,
394 			    sizeof(*p2->p_sigacts));
395 			*p2->p_sigacts = p1->p_addr->u_sigacts;
396 			splx(s);
397 		}
398 	} else {
399 		MALLOC(p2->p_procsig, struct procsig *, sizeof(struct procsig),
400 		    M_SUBPROC, M_WAITOK);
401 		bcopy(p1->p_procsig, p2->p_procsig, sizeof(*p2->p_procsig));
402 		p2->p_procsig->ps_refcnt = 1;
403 		p2->p_sigacts = NULL;	/* finished in vm_fork() */
404 	}
405 	if (flags & RFLINUXTHPN)
406 	        p2->p_sigparent = SIGUSR1;
407 	else
408 	        p2->p_sigparent = SIGCHLD;
409 
410 	/* bump references to the text vnode (for procfs) */
411 	p2->p_textvp = p1->p_textvp;
412 	if (p2->p_textvp)
413 		VREF(p2->p_textvp);
414 
415 	if (flags & RFCFDG) {
416 		p2->p_fd = fdinit(p1);
417 		fdtol = NULL;
418 	} else if (flags & RFFDG) {
419 		p2->p_fd = fdcopy(p1);
420 		fdtol = NULL;
421 	} else {
422 		p2->p_fd = fdshare(p1);
423 		if (p1->p_fdtol == NULL)
424 			p1->p_fdtol =
425 				filedesc_to_leader_alloc(NULL,
426 							 p1->p_leader);
427 		if ((flags & RFTHREAD) != 0) {
428 			/*
429 			 * Shared file descriptor table and
430 			 * shared process leaders.
431 			 */
432 			fdtol = p1->p_fdtol;
433 			fdtol->fdl_refcount++;
434 		} else {
435 			/*
436 			 * Shared file descriptor table, and
437 			 * different process leaders
438 			 */
439 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
440 							 p2);
441 		}
442 	}
443 	p2->p_fdtol = fdtol;
444 
445 	/*
446 	 * If p_limit is still copy-on-write, bump refcnt,
447 	 * otherwise get a copy that won't be modified.
448 	 * (If PL_SHAREMOD is clear, the structure is shared
449 	 * copy-on-write.)
450 	 */
451 	if (p1->p_limit->p_lflags & PL_SHAREMOD)
452 		p2->p_limit = limcopy(p1->p_limit);
453 	else {
454 		p2->p_limit = p1->p_limit;
455 		p2->p_limit->p_refcnt++;
456 	}
457 
458 	/*
459 	 * Preserve some more flags in subprocess.  P_PROFIL has already
460 	 * been preserved.
461 	 */
462 	p2->p_flag |= p1->p_flag & (P_SUGID | P_ALTSTACK);
463 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
464 		p2->p_flag |= P_CONTROLT;
465 	if (flags & RFPPWAIT)
466 		p2->p_flag |= P_PPWAIT;
467 
468 	LIST_INSERT_AFTER(p1, p2, p_pglist);
469 
470 	/*
471 	 * Attach the new process to its parent.
472 	 *
473 	 * If RFNOWAIT is set, the newly created process becomes a child
474 	 * of init.  This effectively disassociates the child from the
475 	 * parent.
476 	 */
477 	if (flags & RFNOWAIT)
478 		pptr = initproc;
479 	else
480 		pptr = p1;
481 	p2->p_pptr = pptr;
482 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
483 	LIST_INIT(&p2->p_children);
484 
485 #ifdef KTRACE
486 	/*
487 	 * Copy traceflag and tracefile if enabled.  If not inherited,
488 	 * these were zeroed above but we still could have a trace race
489 	 * so make sure p2's p_tracep is NULL.
490 	 */
491 	if ((p1->p_traceflag & KTRFAC_INHERIT) && p2->p_tracep == NULL) {
492 		p2->p_traceflag = p1->p_traceflag;
493 		if ((p2->p_tracep = p1->p_tracep) != NULL)
494 			VREF(p2->p_tracep);
495 	}
496 #endif
497 
498 	/*
499 	 * set priority of child to be that of parent
500 	 */
501 	p2->p_estcpu = p1->p_estcpu;
502 
503 	/*
504 	 * This begins the section where we must prevent the parent
505 	 * from being swapped.
506 	 */
507 	PHOLD(p1);
508 
509 	/*
510 	 * Finish creating the child process.  It will return via a different
511 	 * execution path later.  (ie: directly into user mode)
512 	 */
513 	vm_fork(p1, p2, flags);
514 
515 	if (flags == (RFFDG | RFPROC)) {
516 		cnt.v_forks++;
517 		cnt.v_forkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
518 	} else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
519 		cnt.v_vforks++;
520 		cnt.v_vforkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
521 	} else if (p1 == &proc0) {
522 		cnt.v_kthreads++;
523 		cnt.v_kthreadpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
524 	} else {
525 		cnt.v_rforks++;
526 		cnt.v_rforkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
527 	}
528 
529 	/*
530 	 * Both processes are set up, now check if any loadable modules want
531 	 * to adjust anything.
532 	 *   What if they have an error? XXX
533 	 */
534 	TAILQ_FOREACH(ep, &fork_list, next) {
535 		(*ep->function)(p1, p2, flags);
536 	}
537 
538 	/*
539 	 * Make child runnable and add to run queue.
540 	 */
541 	microtime(&(p2->p_stats->p_start));
542 	p2->p_acflag = AFORK;
543 	(void) splhigh();
544 	p2->p_stat = SRUN;
545 	setrunqueue(p2);
546 	(void) spl0();
547 
548 	/*
549 	 * Now can be swapped.
550 	 */
551 	PRELE(p1);
552 
553 	/*
554 	 * tell any interested parties about the new process
555 	 */
556 	KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
557 
558 	/*
559 	 * Preserve synchronization semantics of vfork.  If waiting for
560 	 * child to exec or exit, set P_PPWAIT on child, and sleep on our
561 	 * proc (in case of exit).
562 	 */
563 	while (p2->p_flag & P_PPWAIT)
564 		tsleep(p1, PWAIT, "ppwait", 0);
565 
566 	/*
567 	 * Return child proc pointer to parent.
568 	 */
569 	*procp = p2;
570 	return (0);
571 }
572 
573 /*
574  * The next two functionms are general routines to handle adding/deleting
575  * items on the fork callout list.
576  *
577  * at_fork():
578  * Take the arguments given and put them onto the fork callout list,
579  * However first make sure that it's not already there.
580  * Returns 0 on success or a standard error number.
581  */
582 
583 int
584 at_fork(function)
585 	forklist_fn function;
586 {
587 	struct forklist *ep;
588 
589 #ifdef INVARIANTS
590 	/* let the programmer know if he's been stupid */
591 	if (rm_at_fork(function))
592 		printf("WARNING: fork callout entry (%p) already present\n",
593 		    function);
594 #endif
595 	ep = malloc(sizeof(*ep), M_ATFORK, M_NOWAIT);
596 	if (ep == NULL)
597 		return (ENOMEM);
598 	ep->function = function;
599 	TAILQ_INSERT_TAIL(&fork_list, ep, next);
600 	return (0);
601 }
602 
603 /*
604  * Scan the exit callout list for the given item and remove it..
605  * Returns the number of items removed (0 or 1)
606  */
607 
608 int
609 rm_at_fork(function)
610 	forklist_fn function;
611 {
612 	struct forklist *ep;
613 
614 	TAILQ_FOREACH(ep, &fork_list, next) {
615 		if (ep->function == function) {
616 			TAILQ_REMOVE(&fork_list, ep, next);
617 			free(ep, M_ATFORK);
618 			return(1);
619 		}
620 	}
621 	return (0);
622 }
623