xref: /dragonfly/sys/kern/kern_fork.c (revision 38b930d0)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
35  * $FreeBSD: src/sys/kern/kern_fork.c,v 1.72.2.14 2003/06/26 04:15:10 silby Exp $
36  */
37 
38 #include "opt_ktrace.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/sysproto.h>
43 #include <sys/filedesc.h>
44 #include <sys/kernel.h>
45 #include <sys/sysctl.h>
46 #include <sys/malloc.h>
47 #include <sys/proc.h>
48 #include <sys/resourcevar.h>
49 #include <sys/vnode.h>
50 #include <sys/acct.h>
51 #include <sys/ktrace.h>
52 #include <sys/unistd.h>
53 #include <sys/jail.h>
54 
55 #include <vm/vm.h>
56 #include <sys/lock.h>
57 #include <vm/pmap.h>
58 #include <vm/vm_map.h>
59 #include <vm/vm_extern.h>
60 
61 #include <sys/vmmeter.h>
62 #include <sys/refcount.h>
63 #include <sys/thread2.h>
64 #include <sys/signal2.h>
65 #include <sys/spinlock2.h>
66 
67 #include <sys/dsched.h>
68 
69 static MALLOC_DEFINE(M_ATFORK, "atfork", "atfork callback");
70 
71 /*
72  * These are the stuctures used to create a callout list for things to do
73  * when forking a process
74  */
75 struct forklist {
76 	forklist_fn function;
77 	TAILQ_ENTRY(forklist) next;
78 };
79 
80 TAILQ_HEAD(forklist_head, forklist);
81 static struct forklist_head fork_list = TAILQ_HEAD_INITIALIZER(fork_list);
82 
83 static struct lwp *lwp_fork(struct lwp *, struct proc *, int flags);
84 
85 int forksleep; /* Place for fork1() to sleep on. */
86 
87 /*
88  * Red-Black tree support for LWPs
89  */
90 
91 static int
92 rb_lwp_compare(struct lwp *lp1, struct lwp *lp2)
93 {
94 	if (lp1->lwp_tid < lp2->lwp_tid)
95 		return(-1);
96 	if (lp1->lwp_tid > lp2->lwp_tid)
97 		return(1);
98 	return(0);
99 }
100 
101 RB_GENERATE2(lwp_rb_tree, lwp, u.lwp_rbnode, rb_lwp_compare, lwpid_t, lwp_tid);
102 
103 /*
104  * fork() system call
105  */
106 int
107 sys_fork(struct fork_args *uap)
108 {
109 	struct lwp *lp = curthread->td_lwp;
110 	struct proc *p2;
111 	int error;
112 
113 	error = fork1(lp, RFFDG | RFPROC | RFPGLOCK, &p2);
114 	if (error == 0) {
115 		PHOLD(p2);
116 		start_forked_proc(lp, p2);
117 		uap->sysmsg_fds[0] = p2->p_pid;
118 		uap->sysmsg_fds[1] = 0;
119 		PRELE(p2);
120 	}
121 	return error;
122 }
123 
124 /*
125  * vfork() system call
126  */
127 int
128 sys_vfork(struct vfork_args *uap)
129 {
130 	struct lwp *lp = curthread->td_lwp;
131 	struct proc *p2;
132 	int error;
133 
134 	error = fork1(lp, RFFDG | RFPROC | RFPPWAIT | RFMEM | RFPGLOCK, &p2);
135 	if (error == 0) {
136 		PHOLD(p2);
137 		start_forked_proc(lp, p2);
138 		uap->sysmsg_fds[0] = p2->p_pid;
139 		uap->sysmsg_fds[1] = 0;
140 		PRELE(p2);
141 	}
142 	return error;
143 }
144 
145 /*
146  * Handle rforks.  An rfork may (1) operate on the current process without
147  * creating a new, (2) create a new process that shared the current process's
148  * vmspace, signals, and/or descriptors, or (3) create a new process that does
149  * not share these things (normal fork).
150  *
151  * Note that we only call start_forked_proc() if a new process is actually
152  * created.
153  *
154  * rfork { int flags }
155  */
156 int
157 sys_rfork(struct rfork_args *uap)
158 {
159 	struct lwp *lp = curthread->td_lwp;
160 	struct proc *p2;
161 	int error;
162 
163 	if ((uap->flags & RFKERNELONLY) != 0)
164 		return (EINVAL);
165 
166 	error = fork1(lp, uap->flags | RFPGLOCK, &p2);
167 	if (error == 0) {
168 		if (p2) {
169 			PHOLD(p2);
170 			start_forked_proc(lp, p2);
171 			uap->sysmsg_fds[0] = p2->p_pid;
172 			uap->sysmsg_fds[1] = 0;
173 			PRELE(p2);
174 		} else {
175 			uap->sysmsg_fds[0] = 0;
176 			uap->sysmsg_fds[1] = 0;
177 		}
178 	}
179 	return error;
180 }
181 
182 /*
183  * Low level thread create used by pthreads.
184  */
185 int
186 sys_lwp_create(struct lwp_create_args *uap)
187 {
188 	struct proc *p = curproc;
189 	struct lwp *lp;
190 	struct lwp_params params;
191 	int error;
192 
193 	error = copyin(uap->params, &params, sizeof(params));
194 	if (error)
195 		goto fail2;
196 
197 	lwkt_gettoken(&p->p_token);
198 	plimit_lwp_fork(p);	/* force exclusive access */
199 	lp = lwp_fork(curthread->td_lwp, p, RFPROC);
200 	error = cpu_prepare_lwp(lp, &params);
201 	if (error)
202 		goto fail;
203 	if (params.tid1 != NULL &&
204 	    (error = copyout(&lp->lwp_tid, params.tid1, sizeof(lp->lwp_tid))))
205 		goto fail;
206 	if (params.tid2 != NULL &&
207 	    (error = copyout(&lp->lwp_tid, params.tid2, sizeof(lp->lwp_tid))))
208 		goto fail;
209 
210 	/*
211 	 * Now schedule the new lwp.
212 	 */
213 	p->p_usched->resetpriority(lp);
214 	crit_enter();
215 	lp->lwp_stat = LSRUN;
216 	p->p_usched->setrunqueue(lp);
217 	crit_exit();
218 	lwkt_reltoken(&p->p_token);
219 
220 	return (0);
221 
222 fail:
223 	lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
224 	--p->p_nthreads;
225 	/* lwp_dispose expects an exited lwp, and a held proc */
226 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
227 	lp->lwp_thread->td_flags |= TDF_EXITING;
228 	lwkt_remove_tdallq(lp->lwp_thread);
229 	PHOLD(p);
230 	biosched_done(lp->lwp_thread);
231 	dsched_exit_thread(lp->lwp_thread);
232 	lwp_dispose(lp);
233 	lwkt_reltoken(&p->p_token);
234 fail2:
235 	return (error);
236 }
237 
238 int	nprocs = 1;		/* process 0 */
239 
240 int
241 fork1(struct lwp *lp1, int flags, struct proc **procp)
242 {
243 	struct proc *p1 = lp1->lwp_proc;
244 	struct proc *p2;
245 	struct proc *pptr;
246 	struct pgrp *p1grp;
247 	struct pgrp *plkgrp;
248 	uid_t uid;
249 	int ok, error;
250 	static int curfail = 0;
251 	static struct timeval lastfail;
252 	struct forklist *ep;
253 	struct filedesc_to_leader *fdtol;
254 
255 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
256 		return (EINVAL);
257 
258 	lwkt_gettoken(&p1->p_token);
259 	plkgrp = NULL;
260 	p2 = NULL;
261 
262 	/*
263 	 * Here we don't create a new process, but we divorce
264 	 * certain parts of a process from itself.
265 	 */
266 	if ((flags & RFPROC) == 0) {
267 		/*
268 		 * This kind of stunt does not work anymore if
269 		 * there are native threads (lwps) running
270 		 */
271 		if (p1->p_nthreads != 1) {
272 			error = EINVAL;
273 			goto done;
274 		}
275 
276 		vm_fork(p1, 0, flags);
277 
278 		/*
279 		 * Close all file descriptors.
280 		 */
281 		if (flags & RFCFDG) {
282 			struct filedesc *fdtmp;
283 			fdtmp = fdinit(p1);
284 			fdfree(p1, fdtmp);
285 		}
286 
287 		/*
288 		 * Unshare file descriptors (from parent.)
289 		 */
290 		if (flags & RFFDG) {
291 			if (p1->p_fd->fd_refcnt > 1) {
292 				struct filedesc *newfd;
293 				error = fdcopy(p1, &newfd);
294 				if (error != 0) {
295 					error = ENOMEM;
296 					goto done;
297 				}
298 				fdfree(p1, newfd);
299 			}
300 		}
301 		*procp = NULL;
302 		error = 0;
303 		goto done;
304 	}
305 
306 	/*
307 	 * Interlock against process group signal delivery.  If signals
308 	 * are pending after the interlock is obtained we have to restart
309 	 * the system call to process the signals.  If we don't the child
310 	 * can miss a pgsignal (such as ^C) sent during the fork.
311 	 *
312 	 * We can't use CURSIG() here because it will process any STOPs
313 	 * and cause the process group lock to be held indefinitely.  If
314 	 * a STOP occurs, the fork will be restarted after the CONT.
315 	 */
316 	p1grp = p1->p_pgrp;
317 	if ((flags & RFPGLOCK) && (plkgrp = p1->p_pgrp) != NULL) {
318 		pgref(plkgrp);
319 		lockmgr(&plkgrp->pg_lock, LK_SHARED);
320 		if (CURSIG_NOBLOCK(lp1)) {
321 			error = ERESTART;
322 			goto done;
323 		}
324 	}
325 
326 	/*
327 	 * Although process entries are dynamically created, we still keep
328 	 * a global limit on the maximum number we will create.  Don't allow
329 	 * a nonprivileged user to use the last ten processes; don't let root
330 	 * exceed the limit. The variable nprocs is the current number of
331 	 * processes, maxproc is the limit.
332 	 */
333 	uid = lp1->lwp_thread->td_ucred->cr_ruid;
334 	if ((nprocs >= maxproc - 10 && uid != 0) || nprocs >= maxproc) {
335 		if (ppsratecheck(&lastfail, &curfail, 1))
336 			kprintf("maxproc limit exceeded by uid %d, please "
337 			       "see tuning(7) and login.conf(5).\n", uid);
338 		tsleep(&forksleep, 0, "fork", hz / 2);
339 		error = EAGAIN;
340 		goto done;
341 	}
342 
343 	/*
344 	 * Increment the nprocs resource before blocking can occur.  There
345 	 * are hard-limits as to the number of processes that can run.
346 	 */
347 	atomic_add_int(&nprocs, 1);
348 
349 	/*
350 	 * Increment the count of procs running with this uid. Don't allow
351 	 * a nonprivileged user to exceed their current limit.
352 	 */
353 	ok = chgproccnt(lp1->lwp_thread->td_ucred->cr_ruidinfo, 1,
354 		(uid != 0) ? p1->p_rlimit[RLIMIT_NPROC].rlim_cur : 0);
355 	if (!ok) {
356 		/*
357 		 * Back out the process count
358 		 */
359 		atomic_add_int(&nprocs, -1);
360 		if (ppsratecheck(&lastfail, &curfail, 1))
361 			kprintf("maxproc limit exceeded by uid %d, please "
362 			       "see tuning(7) and login.conf(5).\n", uid);
363 		tsleep(&forksleep, 0, "fork", hz / 2);
364 		error = EAGAIN;
365 		goto done;
366 	}
367 
368 	/*
369 	 * Allocate a new process, don't get fancy: zero the structure.
370 	 */
371 	p2 = kmalloc(sizeof(struct proc), M_PROC, M_WAITOK|M_ZERO);
372 
373 	/*
374 	 * Core initialization.  SIDL is a safety state that protects the
375 	 * partially initialized process once it starts getting hooked
376 	 * into system structures and becomes addressable.
377 	 *
378 	 * We must be sure to acquire p2->p_token as well, we must hold it
379 	 * once the process is on the allproc list to avoid things such
380 	 * as competing modifications to p_flags.
381 	 */
382 	p2->p_lasttid = -1;	/* first tid will be 0 */
383 	p2->p_stat = SIDL;
384 
385 	RB_INIT(&p2->p_lwp_tree);
386 	spin_init(&p2->p_spin);
387 	lwkt_token_init(&p2->p_token, "proc");
388 	lwkt_gettoken(&p2->p_token);
389 
390 	/*
391 	 * Setup linkage for kernel based threading XXX lwp.  Also add the
392 	 * process to the allproclist.
393 	 *
394 	 * The process structure is addressable after this point.
395 	 */
396 	if (flags & RFTHREAD) {
397 		p2->p_peers = p1->p_peers;
398 		p1->p_peers = p2;
399 		p2->p_leader = p1->p_leader;
400 	} else {
401 		p2->p_leader = p2;
402 	}
403 	proc_add_allproc(p2);
404 
405 	/*
406 	 * Initialize the section which is copied verbatim from the parent.
407 	 */
408 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
409 	      ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
410 
411 	/*
412 	 * Duplicate sub-structures as needed.  Increase reference counts
413 	 * on shared objects.
414 	 *
415 	 * NOTE: because we are now on the allproc list it is possible for
416 	 *	 other consumers to gain temporary references to p2
417 	 *	 (p2->p_lock can change).
418 	 */
419 	if (p1->p_flags & P_PROFIL)
420 		startprofclock(p2);
421 	p2->p_ucred = crhold(lp1->lwp_thread->td_ucred);
422 
423 	if (jailed(p2->p_ucred))
424 		p2->p_flags |= P_JAILED;
425 
426 	if (p2->p_args)
427 		refcount_acquire(&p2->p_args->ar_ref);
428 
429 	p2->p_usched = p1->p_usched;
430 	/* XXX: verify copy of the secondary iosched stuff */
431 	dsched_new_proc(p2);
432 
433 	if (flags & RFSIGSHARE) {
434 		p2->p_sigacts = p1->p_sigacts;
435 		refcount_acquire(&p2->p_sigacts->ps_refcnt);
436 	} else {
437 		p2->p_sigacts = kmalloc(sizeof(*p2->p_sigacts),
438 					M_SUBPROC, M_WAITOK);
439 		bcopy(p1->p_sigacts, p2->p_sigacts, sizeof(*p2->p_sigacts));
440 		refcount_init(&p2->p_sigacts->ps_refcnt, 1);
441 	}
442 	if (flags & RFLINUXTHPN)
443 	        p2->p_sigparent = SIGUSR1;
444 	else
445 	        p2->p_sigparent = SIGCHLD;
446 
447 	/* bump references to the text vnode (for procfs) */
448 	p2->p_textvp = p1->p_textvp;
449 	if (p2->p_textvp)
450 		vref(p2->p_textvp);
451 
452 	/* copy namecache handle to the text file */
453 	if (p1->p_textnch.mount)
454 		cache_copy(&p1->p_textnch, &p2->p_textnch);
455 
456 	/*
457 	 * Handle file descriptors
458 	 */
459 	if (flags & RFCFDG) {
460 		p2->p_fd = fdinit(p1);
461 		fdtol = NULL;
462 	} else if (flags & RFFDG) {
463 		error = fdcopy(p1, &p2->p_fd);
464 		if (error != 0) {
465 			error = ENOMEM;
466 			goto done;
467 		}
468 		fdtol = NULL;
469 	} else {
470 		p2->p_fd = fdshare(p1);
471 		if (p1->p_fdtol == NULL) {
472 			p1->p_fdtol = filedesc_to_leader_alloc(NULL,
473 							       p1->p_leader);
474 		}
475 		if ((flags & RFTHREAD) != 0) {
476 			/*
477 			 * Shared file descriptor table and
478 			 * shared process leaders.
479 			 */
480 			fdtol = p1->p_fdtol;
481 			fdtol->fdl_refcount++;
482 		} else {
483 			/*
484 			 * Shared file descriptor table, and
485 			 * different process leaders
486 			 */
487 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol, p2);
488 		}
489 	}
490 	p2->p_fdtol = fdtol;
491 	p2->p_limit = plimit_fork(p1);
492 
493 	/*
494 	 * Preserve some more flags in subprocess.  P_PROFIL has already
495 	 * been preserved.
496 	 */
497 	p2->p_flags |= p1->p_flags & P_SUGID;
498 	if (p1->p_session->s_ttyvp != NULL && (p1->p_flags & P_CONTROLT))
499 		p2->p_flags |= P_CONTROLT;
500 	if (flags & RFPPWAIT)
501 		p2->p_flags |= P_PPWAIT;
502 
503 	/*
504 	 * Inherit the virtual kernel structure (allows a virtual kernel
505 	 * to fork to simulate multiple cpus).
506 	 */
507 	if (p1->p_vkernel)
508 		vkernel_inherit(p1, p2);
509 
510 	/*
511 	 * Once we are on a pglist we may receive signals.  XXX we might
512 	 * race a ^C being sent to the process group by not receiving it
513 	 * at all prior to this line.
514 	 */
515 	pgref(p1grp);
516 	lwkt_gettoken(&p1grp->pg_token);
517 	LIST_INSERT_AFTER(p1, p2, p_pglist);
518 	lwkt_reltoken(&p1grp->pg_token);
519 
520 	/*
521 	 * Attach the new process to its parent.
522 	 *
523 	 * If RFNOWAIT is set, the newly created process becomes a child
524 	 * of init.  This effectively disassociates the child from the
525 	 * parent.
526 	 */
527 	if (flags & RFNOWAIT)
528 		pptr = initproc;
529 	else
530 		pptr = p1;
531 	p2->p_pptr = pptr;
532 	LIST_INIT(&p2->p_children);
533 
534 	lwkt_gettoken(&pptr->p_token);
535 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
536 	lwkt_reltoken(&pptr->p_token);
537 
538 	varsymset_init(&p2->p_varsymset, &p1->p_varsymset);
539 	callout_init_mp(&p2->p_ithandle);
540 
541 #ifdef KTRACE
542 	/*
543 	 * Copy traceflag and tracefile if enabled.  If not inherited,
544 	 * these were zeroed above but we still could have a trace race
545 	 * so make sure p2's p_tracenode is NULL.
546 	 */
547 	if ((p1->p_traceflag & KTRFAC_INHERIT) && p2->p_tracenode == NULL) {
548 		p2->p_traceflag = p1->p_traceflag;
549 		p2->p_tracenode = ktrinherit(p1->p_tracenode);
550 	}
551 #endif
552 
553 	/*
554 	 * This begins the section where we must prevent the parent
555 	 * from being swapped.
556 	 *
557 	 * Gets PRELE'd in the caller in start_forked_proc().
558 	 */
559 	PHOLD(p1);
560 
561 	vm_fork(p1, p2, flags);
562 
563 	/*
564 	 * Create the first lwp associated with the new proc.
565 	 * It will return via a different execution path later, directly
566 	 * into userland, after it was put on the runq by
567 	 * start_forked_proc().
568 	 */
569 	lwp_fork(lp1, p2, flags);
570 
571 	if (flags == (RFFDG | RFPROC | RFPGLOCK)) {
572 		mycpu->gd_cnt.v_forks++;
573 		mycpu->gd_cnt.v_forkpages += p2->p_vmspace->vm_dsize +
574 					     p2->p_vmspace->vm_ssize;
575 	} else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM | RFPGLOCK)) {
576 		mycpu->gd_cnt.v_vforks++;
577 		mycpu->gd_cnt.v_vforkpages += p2->p_vmspace->vm_dsize +
578 					      p2->p_vmspace->vm_ssize;
579 	} else if (p1 == &proc0) {
580 		mycpu->gd_cnt.v_kthreads++;
581 		mycpu->gd_cnt.v_kthreadpages += p2->p_vmspace->vm_dsize +
582 						p2->p_vmspace->vm_ssize;
583 	} else {
584 		mycpu->gd_cnt.v_rforks++;
585 		mycpu->gd_cnt.v_rforkpages += p2->p_vmspace->vm_dsize +
586 					      p2->p_vmspace->vm_ssize;
587 	}
588 
589 	/*
590 	 * Both processes are set up, now check if any loadable modules want
591 	 * to adjust anything.
592 	 *   What if they have an error? XXX
593 	 */
594 	TAILQ_FOREACH(ep, &fork_list, next) {
595 		(*ep->function)(p1, p2, flags);
596 	}
597 
598 	/*
599 	 * Set the start time.  Note that the process is not runnable.  The
600 	 * caller is responsible for making it runnable.
601 	 */
602 	microtime(&p2->p_start);
603 	p2->p_acflag = AFORK;
604 
605 	/*
606 	 * tell any interested parties about the new process
607 	 */
608 	KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
609 
610 	/*
611 	 * Return child proc pointer to parent.
612 	 */
613 	*procp = p2;
614 	error = 0;
615 done:
616 	if (p2)
617 		lwkt_reltoken(&p2->p_token);
618 	lwkt_reltoken(&p1->p_token);
619 	if (plkgrp) {
620 		lockmgr(&plkgrp->pg_lock, LK_RELEASE);
621 		pgrel(plkgrp);
622 	}
623 	return (error);
624 }
625 
626 static struct lwp *
627 lwp_fork(struct lwp *origlp, struct proc *destproc, int flags)
628 {
629 	globaldata_t gd = mycpu;
630 	struct lwp *lp;
631 	struct thread *td;
632 
633 	lp = kmalloc(sizeof(struct lwp), M_LWP, M_WAITOK|M_ZERO);
634 
635 	lp->lwp_proc = destproc;
636 	lp->lwp_vmspace = destproc->p_vmspace;
637 	lp->lwp_stat = LSRUN;
638 	bcopy(&origlp->lwp_startcopy, &lp->lwp_startcopy,
639 	    (unsigned) ((caddr_t)&lp->lwp_endcopy -
640 			(caddr_t)&lp->lwp_startcopy));
641 	lp->lwp_flags |= origlp->lwp_flags & LWP_ALTSTACK;
642 	/*
643 	 * Set cpbase to the last timeout that occured (not the upcoming
644 	 * timeout).
645 	 *
646 	 * A critical section is required since a timer IPI can update
647 	 * scheduler specific data.
648 	 */
649 	crit_enter();
650 	lp->lwp_cpbase = gd->gd_schedclock.time - gd->gd_schedclock.periodic;
651 	destproc->p_usched->heuristic_forking(origlp, lp);
652 	crit_exit();
653 	lp->lwp_cpumask &= usched_mastermask;
654 	lwkt_token_init(&lp->lwp_token, "lwp_token");
655 	spin_init(&lp->lwp_spin);
656 
657 	/*
658 	 * Assign the thread to the current cpu to begin with so we
659 	 * can manipulate it.
660 	 */
661 	td = lwkt_alloc_thread(NULL, LWKT_THREAD_STACK, gd->gd_cpuid, 0);
662 	lp->lwp_thread = td;
663 	td->td_ucred = crhold(destproc->p_ucred);
664 	td->td_proc = destproc;
665 	td->td_lwp = lp;
666 	td->td_switch = cpu_heavy_switch;
667 #ifdef NO_LWKT_SPLIT_USERPRI
668 	lwkt_setpri(td, TDPRI_USER_NORM);
669 #else
670 	lwkt_setpri(td, TDPRI_KERN_USER);
671 #endif
672 	lwkt_set_comm(td, "%s", destproc->p_comm);
673 
674 	/*
675 	 * cpu_fork will copy and update the pcb, set up the kernel stack,
676 	 * and make the child ready to run.
677 	 */
678 	cpu_fork(origlp, lp, flags);
679 	kqueue_init(&lp->lwp_kqueue, destproc->p_fd);
680 
681 	/*
682 	 * Assign a TID to the lp.  Loop until the insert succeeds (returns
683 	 * NULL).
684 	 */
685 	lp->lwp_tid = destproc->p_lasttid;
686 	do {
687 		if (++lp->lwp_tid < 0)
688 			lp->lwp_tid = 1;
689 	} while (lwp_rb_tree_RB_INSERT(&destproc->p_lwp_tree, lp) != NULL);
690 	destproc->p_lasttid = lp->lwp_tid;
691 	destproc->p_nthreads++;
692 
693 	/*
694 	 * This flag is set and never cleared.  It means that the process
695 	 * was threaded at some point.  Used to improve exit performance.
696 	 */
697 	destproc->p_flags |= P_MAYBETHREADED;
698 
699 	return (lp);
700 }
701 
702 /*
703  * The next two functionms are general routines to handle adding/deleting
704  * items on the fork callout list.
705  *
706  * at_fork():
707  * Take the arguments given and put them onto the fork callout list,
708  * However first make sure that it's not already there.
709  * Returns 0 on success or a standard error number.
710  */
711 int
712 at_fork(forklist_fn function)
713 {
714 	struct forklist *ep;
715 
716 #ifdef INVARIANTS
717 	/* let the programmer know if he's been stupid */
718 	if (rm_at_fork(function)) {
719 		kprintf("WARNING: fork callout entry (%p) already present\n",
720 		    function);
721 	}
722 #endif
723 	ep = kmalloc(sizeof(*ep), M_ATFORK, M_WAITOK|M_ZERO);
724 	ep->function = function;
725 	TAILQ_INSERT_TAIL(&fork_list, ep, next);
726 	return (0);
727 }
728 
729 /*
730  * Scan the exit callout list for the given item and remove it..
731  * Returns the number of items removed (0 or 1)
732  */
733 int
734 rm_at_fork(forklist_fn function)
735 {
736 	struct forklist *ep;
737 
738 	TAILQ_FOREACH(ep, &fork_list, next) {
739 		if (ep->function == function) {
740 			TAILQ_REMOVE(&fork_list, ep, next);
741 			kfree(ep, M_ATFORK);
742 			return(1);
743 		}
744 	}
745 	return (0);
746 }
747 
748 /*
749  * Add a forked process to the run queue after any remaining setup, such
750  * as setting the fork handler, has been completed.
751  *
752  * p2 is held by the caller.
753  */
754 void
755 start_forked_proc(struct lwp *lp1, struct proc *p2)
756 {
757 	struct lwp *lp2 = ONLY_LWP_IN_PROC(p2);
758 	int pflags;
759 
760 	/*
761 	 * Move from SIDL to RUN queue, and activate the process's thread.
762 	 * Activation of the thread effectively makes the process "a"
763 	 * current process, so we do not setrunqueue().
764 	 *
765 	 * YYY setrunqueue works here but we should clean up the trampoline
766 	 * code so we just schedule the LWKT thread and let the trampoline
767 	 * deal with the userland scheduler on return to userland.
768 	 */
769 	KASSERT(p2->p_stat == SIDL,
770 	    ("cannot start forked process, bad status: %p", p2));
771 	p2->p_usched->resetpriority(lp2);
772 	crit_enter();
773 	p2->p_stat = SACTIVE;
774 	lp2->lwp_stat = LSRUN;
775 	p2->p_usched->setrunqueue(lp2);
776 	crit_exit();
777 
778 	/*
779 	 * Now can be swapped.
780 	 */
781 	PRELE(lp1->lwp_proc);
782 
783 	/*
784 	 * Preserve synchronization semantics of vfork.  P_PPWAIT is set in
785 	 * the child until it has retired the parent's resources.  The parent
786 	 * must wait for the flag to be cleared by the child.
787 	 *
788 	 * Interlock the flag/tsleep with atomic ops to avoid unnecessary
789 	 * p_token conflicts.
790 	 *
791 	 * XXX Is this use of an atomic op on a field that is not normally
792 	 *     manipulated with atomic ops ok?
793 	 */
794 	while ((pflags = p2->p_flags) & P_PPWAIT) {
795 		cpu_ccfence();
796 		tsleep_interlock(lp1->lwp_proc, 0);
797 		if (atomic_cmpset_int(&p2->p_flags, pflags, pflags))
798 			tsleep(lp1->lwp_proc, PINTERLOCKED, "ppwait", 0);
799 	}
800 }
801