xref: /dragonfly/sys/kern/kern_fork.c (revision 8a7bdfea)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
39  * $FreeBSD: src/sys/kern/kern_fork.c,v 1.72.2.14 2003/06/26 04:15:10 silby Exp $
40  * $DragonFly: src/sys/kern/kern_fork.c,v 1.74 2008/04/28 07:07:01 dillon Exp $
41  */
42 
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/sysproto.h>
48 #include <sys/filedesc.h>
49 #include <sys/kernel.h>
50 #include <sys/sysctl.h>
51 #include <sys/malloc.h>
52 #include <sys/proc.h>
53 #include <sys/resourcevar.h>
54 #include <sys/vnode.h>
55 #include <sys/acct.h>
56 #include <sys/ktrace.h>
57 #include <sys/unistd.h>
58 #include <sys/jail.h>
59 #include <sys/caps.h>
60 
61 #include <vm/vm.h>
62 #include <sys/lock.h>
63 #include <vm/pmap.h>
64 #include <vm/vm_map.h>
65 #include <vm/vm_extern.h>
66 #include <vm/vm_zone.h>
67 
68 #include <sys/vmmeter.h>
69 #include <sys/thread2.h>
70 #include <sys/signal2.h>
71 
72 static MALLOC_DEFINE(M_ATFORK, "atfork", "atfork callback");
73 
74 /*
75  * These are the stuctures used to create a callout list for things to do
76  * when forking a process
77  */
78 struct forklist {
79 	forklist_fn function;
80 	TAILQ_ENTRY(forklist) next;
81 };
82 
83 TAILQ_HEAD(forklist_head, forklist);
84 static struct forklist_head fork_list = TAILQ_HEAD_INITIALIZER(fork_list);
85 
86 static struct lwp *lwp_fork(struct lwp *, struct proc *, int flags);
87 
88 int forksleep; /* Place for fork1() to sleep on. */
89 
90 /*
91  * Red-Black tree support for LWPs
92  */
93 
94 static int
95 rb_lwp_compare(struct lwp *lp1, struct lwp *lp2)
96 {
97 	if (lp1->lwp_tid < lp2->lwp_tid)
98 		return(-1);
99 	if (lp1->lwp_tid > lp2->lwp_tid)
100 		return(1);
101 	return(0);
102 }
103 
104 RB_GENERATE2(lwp_rb_tree, lwp, u.lwp_rbnode, rb_lwp_compare, lwpid_t, lwp_tid);
105 
106 
107 /* ARGSUSED */
108 int
109 sys_fork(struct fork_args *uap)
110 {
111 	struct lwp *lp = curthread->td_lwp;
112 	struct proc *p2;
113 	int error;
114 
115 	error = fork1(lp, RFFDG | RFPROC | RFPGLOCK, &p2);
116 	if (error == 0) {
117 		start_forked_proc(lp, p2);
118 		uap->sysmsg_fds[0] = p2->p_pid;
119 		uap->sysmsg_fds[1] = 0;
120 	}
121 	return error;
122 }
123 
124 /* ARGSUSED */
125 int
126 sys_vfork(struct vfork_args *uap)
127 {
128 	struct lwp *lp = curthread->td_lwp;
129 	struct proc *p2;
130 	int error;
131 
132 	error = fork1(lp, RFFDG | RFPROC | RFPPWAIT | RFMEM | RFPGLOCK, &p2);
133 	if (error == 0) {
134 		start_forked_proc(lp, p2);
135 		uap->sysmsg_fds[0] = p2->p_pid;
136 		uap->sysmsg_fds[1] = 0;
137 	}
138 	return error;
139 }
140 
141 /*
142  * Handle rforks.  An rfork may (1) operate on the current process without
143  * creating a new, (2) create a new process that shared the current process's
144  * vmspace, signals, and/or descriptors, or (3) create a new process that does
145  * not share these things (normal fork).
146  *
147  * Note that we only call start_forked_proc() if a new process is actually
148  * created.
149  *
150  * rfork { int flags }
151  */
152 int
153 sys_rfork(struct rfork_args *uap)
154 {
155 	struct lwp *lp = curthread->td_lwp;
156 	struct proc *p2;
157 	int error;
158 
159 	if ((uap->flags & RFKERNELONLY) != 0)
160 		return (EINVAL);
161 
162 	error = fork1(lp, uap->flags | RFPGLOCK, &p2);
163 	if (error == 0) {
164 		if (p2)
165 			start_forked_proc(lp, p2);
166 		uap->sysmsg_fds[0] = p2 ? p2->p_pid : 0;
167 		uap->sysmsg_fds[1] = 0;
168 	}
169 	return error;
170 }
171 
172 int
173 sys_lwp_create(struct lwp_create_args *uap)
174 {
175 	struct proc *p = curproc;
176 	struct lwp *lp;
177 	struct lwp_params params;
178 	int error;
179 
180 	error = copyin(uap->params, &params, sizeof(params));
181 	if (error)
182 		goto fail2;
183 
184 	lp = lwp_fork(curthread->td_lwp, p, RFPROC);
185 	error = cpu_prepare_lwp(lp, &params);
186 	if (params.tid1 != NULL &&
187 	    (error = copyout(&lp->lwp_tid, params.tid1, sizeof(lp->lwp_tid))))
188 		goto fail;
189 	if (params.tid2 != NULL &&
190 	    (error = copyout(&lp->lwp_tid, params.tid2, sizeof(lp->lwp_tid))))
191 		goto fail;
192 
193 	/*
194 	 * Now schedule the new lwp.
195 	 */
196 	p->p_usched->resetpriority(lp);
197 	crit_enter();
198 	lp->lwp_stat = LSRUN;
199 	p->p_usched->setrunqueue(lp);
200 	crit_exit();
201 
202 	return (0);
203 
204 fail:
205 	lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
206 	--p->p_nthreads;
207 	/* lwp_dispose expects an exited lwp, and a held proc */
208 	lp->lwp_flag |= LWP_WEXIT;
209 	lp->lwp_thread->td_flags |= TDF_EXITING;
210 	PHOLD(p);
211 	lwp_dispose(lp);
212 fail2:
213 	return (error);
214 }
215 
216 int	nprocs = 1;		/* process 0 */
217 
218 int
219 fork1(struct lwp *lp1, int flags, struct proc **procp)
220 {
221 	struct proc *p1 = lp1->lwp_proc;
222 	struct proc *p2, *pptr;
223 	struct pgrp *pgrp;
224 	uid_t uid;
225 	int ok, error;
226 	static int curfail = 0;
227 	static struct timeval lastfail;
228 	struct forklist *ep;
229 	struct filedesc_to_leader *fdtol;
230 
231 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
232 		return (EINVAL);
233 
234 	/*
235 	 * Here we don't create a new process, but we divorce
236 	 * certain parts of a process from itself.
237 	 */
238 	if ((flags & RFPROC) == 0) {
239 		/*
240 		 * This kind of stunt does not work anymore if
241 		 * there are native threads (lwps) running
242 		 */
243 		if (p1->p_nthreads != 1)
244 			return (EINVAL);
245 
246 		vm_fork(p1, 0, flags);
247 
248 		/*
249 		 * Close all file descriptors.
250 		 */
251 		if (flags & RFCFDG) {
252 			struct filedesc *fdtmp;
253 			fdtmp = fdinit(p1);
254 			fdfree(p1);
255 			p1->p_fd = fdtmp;
256 		}
257 
258 		/*
259 		 * Unshare file descriptors (from parent.)
260 		 */
261 		if (flags & RFFDG) {
262 			if (p1->p_fd->fd_refcnt > 1) {
263 				struct filedesc *newfd;
264 				newfd = fdcopy(p1);
265 				fdfree(p1);
266 				p1->p_fd = newfd;
267 			}
268 		}
269 		*procp = NULL;
270 		return (0);
271 	}
272 
273 	/*
274 	 * Interlock against process group signal delivery.  If signals
275 	 * are pending after the interlock is obtained we have to restart
276 	 * the system call to process the signals.  If we don't the child
277 	 * can miss a pgsignal (such as ^C) sent during the fork.
278 	 *
279 	 * We can't use CURSIG() here because it will process any STOPs
280 	 * and cause the process group lock to be held indefinitely.  If
281 	 * a STOP occurs, the fork will be restarted after the CONT.
282 	 */
283 	error = 0;
284 	pgrp = NULL;
285 	if ((flags & RFPGLOCK) && (pgrp = p1->p_pgrp) != NULL) {
286 		lockmgr(&pgrp->pg_lock, LK_SHARED);
287 		if (CURSIGNB(lp1)) {
288 			error = ERESTART;
289 			goto done;
290 		}
291 	}
292 
293 	/*
294 	 * Although process entries are dynamically created, we still keep
295 	 * a global limit on the maximum number we will create.  Don't allow
296 	 * a nonprivileged user to use the last ten processes; don't let root
297 	 * exceed the limit. The variable nprocs is the current number of
298 	 * processes, maxproc is the limit.
299 	 */
300 	uid = p1->p_ucred->cr_ruid;
301 	if ((nprocs >= maxproc - 10 && uid != 0) || nprocs >= maxproc) {
302 		if (ppsratecheck(&lastfail, &curfail, 1))
303 			kprintf("maxproc limit exceeded by uid %d, please "
304 			       "see tuning(7) and login.conf(5).\n", uid);
305 		tsleep(&forksleep, 0, "fork", hz / 2);
306 		error = EAGAIN;
307 		goto done;
308 	}
309 	/*
310 	 * Increment the nprocs resource before blocking can occur.  There
311 	 * are hard-limits as to the number of processes that can run.
312 	 */
313 	nprocs++;
314 
315 	/*
316 	 * Increment the count of procs running with this uid. Don't allow
317 	 * a nonprivileged user to exceed their current limit.
318 	 */
319 	ok = chgproccnt(p1->p_ucred->cr_ruidinfo, 1,
320 		(uid != 0) ? p1->p_rlimit[RLIMIT_NPROC].rlim_cur : 0);
321 	if (!ok) {
322 		/*
323 		 * Back out the process count
324 		 */
325 		nprocs--;
326 		if (ppsratecheck(&lastfail, &curfail, 1))
327 			kprintf("maxproc limit exceeded by uid %d, please "
328 			       "see tuning(7) and login.conf(5).\n", uid);
329 		tsleep(&forksleep, 0, "fork", hz / 2);
330 		error = EAGAIN;
331 		goto done;
332 	}
333 
334 	/* Allocate new proc. */
335 	p2 = kmalloc(sizeof(struct proc), M_PROC, M_WAITOK|M_ZERO);
336 
337 	/*
338 	 * Setup linkage for kernel based threading XXX lwp
339 	 */
340 	if (flags & RFTHREAD) {
341 		p2->p_peers = p1->p_peers;
342 		p1->p_peers = p2;
343 		p2->p_leader = p1->p_leader;
344 	} else {
345 		p2->p_leader = p2;
346 	}
347 
348 	RB_INIT(&p2->p_lwp_tree);
349 	p2->p_lasttid = -1;	/* first tid will be 0 */
350 
351 	/*
352 	 * Setting the state to SIDL protects the partially initialized
353 	 * process once it starts getting hooked into the rest of the system.
354 	 */
355 	p2->p_stat = SIDL;
356 	proc_add_allproc(p2);
357 
358 	/*
359 	 * Make a proc table entry for the new process.
360 	 * The whole structure was zeroed above, so copy the section that is
361 	 * copied directly from the parent.
362 	 */
363 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
364 	    (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
365 
366 	/*
367 	 * Duplicate sub-structures as needed.
368 	 * Increase reference counts on shared objects.
369 	 */
370 	if (p1->p_flag & P_PROFIL)
371 		startprofclock(p2);
372 	p2->p_ucred = crhold(p1->p_ucred);
373 
374 	if (jailed(p2->p_ucred))
375 		p2->p_flag |= P_JAILED;
376 
377 	if (p2->p_args)
378 		p2->p_args->ar_ref++;
379 
380 	p2->p_usched = p1->p_usched;
381 
382 	if (flags & RFSIGSHARE) {
383 		p2->p_sigacts = p1->p_sigacts;
384 		p2->p_sigacts->ps_refcnt++;
385 	} else {
386 		p2->p_sigacts = (struct sigacts *)kmalloc(sizeof(*p2->p_sigacts),
387 		    M_SUBPROC, M_WAITOK);
388 		bcopy(p1->p_sigacts, p2->p_sigacts, sizeof(*p2->p_sigacts));
389 		p2->p_sigacts->ps_refcnt = 1;
390 	}
391 	if (flags & RFLINUXTHPN)
392 	        p2->p_sigparent = SIGUSR1;
393 	else
394 	        p2->p_sigparent = SIGCHLD;
395 
396 	/* bump references to the text vnode (for procfs) */
397 	p2->p_textvp = p1->p_textvp;
398 	if (p2->p_textvp)
399 		vref(p2->p_textvp);
400 
401 	/*
402 	 * Handle file descriptors
403 	 */
404 	if (flags & RFCFDG) {
405 		p2->p_fd = fdinit(p1);
406 		fdtol = NULL;
407 	} else if (flags & RFFDG) {
408 		p2->p_fd = fdcopy(p1);
409 		fdtol = NULL;
410 	} else {
411 		p2->p_fd = fdshare(p1);
412 		if (p1->p_fdtol == NULL)
413 			p1->p_fdtol =
414 				filedesc_to_leader_alloc(NULL,
415 							 p1->p_leader);
416 		if ((flags & RFTHREAD) != 0) {
417 			/*
418 			 * Shared file descriptor table and
419 			 * shared process leaders.
420 			 */
421 			fdtol = p1->p_fdtol;
422 			fdtol->fdl_refcount++;
423 		} else {
424 			/*
425 			 * Shared file descriptor table, and
426 			 * different process leaders
427 			 */
428 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol, p2);
429 		}
430 	}
431 	p2->p_fdtol = fdtol;
432 	p2->p_limit = plimit_fork(p1->p_limit);
433 
434 	/*
435 	 * Preserve some more flags in subprocess.  P_PROFIL has already
436 	 * been preserved.
437 	 */
438 	p2->p_flag |= p1->p_flag & P_SUGID;
439 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
440 		p2->p_flag |= P_CONTROLT;
441 	if (flags & RFPPWAIT)
442 		p2->p_flag |= P_PPWAIT;
443 
444 	/*
445 	 * Inherit the virtual kernel structure (allows a virtual kernel
446 	 * to fork to simulate multiple cpus).
447 	 */
448 	if (p1->p_vkernel)
449 		vkernel_inherit(p1, p2);
450 
451 	/*
452 	 * Once we are on a pglist we may receive signals.  XXX we might
453 	 * race a ^C being sent to the process group by not receiving it
454 	 * at all prior to this line.
455 	 */
456 	LIST_INSERT_AFTER(p1, p2, p_pglist);
457 
458 	/*
459 	 * Attach the new process to its parent.
460 	 *
461 	 * If RFNOWAIT is set, the newly created process becomes a child
462 	 * of init.  This effectively disassociates the child from the
463 	 * parent.
464 	 */
465 	if (flags & RFNOWAIT)
466 		pptr = initproc;
467 	else
468 		pptr = p1;
469 	p2->p_pptr = pptr;
470 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
471 	LIST_INIT(&p2->p_children);
472 	varsymset_init(&p2->p_varsymset, &p1->p_varsymset);
473 	callout_init(&p2->p_ithandle);
474 
475 #ifdef KTRACE
476 	/*
477 	 * Copy traceflag and tracefile if enabled.  If not inherited,
478 	 * these were zeroed above but we still could have a trace race
479 	 * so make sure p2's p_tracenode is NULL.
480 	 */
481 	if ((p1->p_traceflag & KTRFAC_INHERIT) && p2->p_tracenode == NULL) {
482 		p2->p_traceflag = p1->p_traceflag;
483 		p2->p_tracenode = ktrinherit(p1->p_tracenode);
484 	}
485 #endif
486 
487 	/*
488 	 * This begins the section where we must prevent the parent
489 	 * from being swapped.
490 	 *
491 	 * Gets PRELE'd in the caller in start_forked_proc().
492 	 */
493 	PHOLD(p1);
494 
495 	vm_fork(p1, p2, flags);
496 
497 	/*
498 	 * Create the first lwp associated with the new proc.
499 	 * It will return via a different execution path later, directly
500 	 * into userland, after it was put on the runq by
501 	 * start_forked_proc().
502 	 */
503 	lwp_fork(lp1, p2, flags);
504 
505 	if (flags == (RFFDG | RFPROC)) {
506 		mycpu->gd_cnt.v_forks++;
507 		mycpu->gd_cnt.v_forkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
508 	} else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
509 		mycpu->gd_cnt.v_vforks++;
510 		mycpu->gd_cnt.v_vforkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
511 	} else if (p1 == &proc0) {
512 		mycpu->gd_cnt.v_kthreads++;
513 		mycpu->gd_cnt.v_kthreadpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
514 	} else {
515 		mycpu->gd_cnt.v_rforks++;
516 		mycpu->gd_cnt.v_rforkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
517 	}
518 
519 	/*
520 	 * Both processes are set up, now check if any loadable modules want
521 	 * to adjust anything.
522 	 *   What if they have an error? XXX
523 	 */
524 	TAILQ_FOREACH(ep, &fork_list, next) {
525 		(*ep->function)(p1, p2, flags);
526 	}
527 
528 	/*
529 	 * Set the start time.  Note that the process is not runnable.  The
530 	 * caller is responsible for making it runnable.
531 	 */
532 	microtime(&p2->p_start);
533 	p2->p_acflag = AFORK;
534 
535 	/*
536 	 * tell any interested parties about the new process
537 	 */
538 	KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
539 
540 	/*
541 	 * Return child proc pointer to parent.
542 	 */
543 	*procp = p2;
544 done:
545 	if (pgrp)
546 		lockmgr(&pgrp->pg_lock, LK_RELEASE);
547 	return (error);
548 }
549 
550 static struct lwp *
551 lwp_fork(struct lwp *origlp, struct proc *destproc, int flags)
552 {
553 	struct lwp *lp;
554 	struct thread *td;
555 
556 	lp = zalloc(lwp_zone);
557 	bzero(lp, sizeof(*lp));
558 
559 	lp->lwp_proc = destproc;
560 	lp->lwp_vmspace = destproc->p_vmspace;
561 	lp->lwp_stat = LSRUN;
562 	bcopy(&origlp->lwp_startcopy, &lp->lwp_startcopy,
563 	    (unsigned) ((caddr_t)&lp->lwp_endcopy -
564 			(caddr_t)&lp->lwp_startcopy));
565 	lp->lwp_flag |= origlp->lwp_flag & LWP_ALTSTACK;
566 	/*
567 	 * Set cpbase to the last timeout that occured (not the upcoming
568 	 * timeout).
569 	 *
570 	 * A critical section is required since a timer IPI can update
571 	 * scheduler specific data.
572 	 */
573 	crit_enter();
574 	lp->lwp_cpbase = mycpu->gd_schedclock.time -
575 			mycpu->gd_schedclock.periodic;
576 	destproc->p_usched->heuristic_forking(origlp, lp);
577 	crit_exit();
578 	lp->lwp_cpumask &= usched_mastermask;
579 
580 	/*
581 	 * Assign a TID to the lp.  Loop until the insert succeeds (returns
582 	 * NULL).
583 	 */
584 	lp->lwp_tid = destproc->p_lasttid;
585 	do {
586 		if (++lp->lwp_tid < 0)
587 			lp->lwp_tid = 1;
588 	} while (lwp_rb_tree_RB_INSERT(&destproc->p_lwp_tree, lp) != NULL);
589 	destproc->p_lasttid = lp->lwp_tid;
590 	destproc->p_nthreads++;
591 
592 	td = lwkt_alloc_thread(NULL, LWKT_THREAD_STACK, -1, 0);
593 	lp->lwp_thread = td;
594 	td->td_proc = destproc;
595 	td->td_lwp = lp;
596 	td->td_switch = cpu_heavy_switch;
597 #ifdef SMP
598 	KKASSERT(td->td_mpcount == 1);
599 #endif
600 	lwkt_setpri(td, TDPRI_KERN_USER);
601 	lwkt_set_comm(td, "%s", destproc->p_comm);
602 
603 	/*
604 	 * cpu_fork will copy and update the pcb, set up the kernel stack,
605 	 * and make the child ready to run.
606 	 */
607 	cpu_fork(origlp, lp, flags);
608 	caps_fork(origlp->lwp_thread, lp->lwp_thread);
609 
610 	return (lp);
611 }
612 
613 /*
614  * The next two functionms are general routines to handle adding/deleting
615  * items on the fork callout list.
616  *
617  * at_fork():
618  * Take the arguments given and put them onto the fork callout list,
619  * However first make sure that it's not already there.
620  * Returns 0 on success or a standard error number.
621  */
622 int
623 at_fork(forklist_fn function)
624 {
625 	struct forklist *ep;
626 
627 #ifdef INVARIANTS
628 	/* let the programmer know if he's been stupid */
629 	if (rm_at_fork(function)) {
630 		kprintf("WARNING: fork callout entry (%p) already present\n",
631 		    function);
632 	}
633 #endif
634 	ep = kmalloc(sizeof(*ep), M_ATFORK, M_WAITOK|M_ZERO);
635 	ep->function = function;
636 	TAILQ_INSERT_TAIL(&fork_list, ep, next);
637 	return (0);
638 }
639 
640 /*
641  * Scan the exit callout list for the given item and remove it..
642  * Returns the number of items removed (0 or 1)
643  */
644 int
645 rm_at_fork(forklist_fn function)
646 {
647 	struct forklist *ep;
648 
649 	TAILQ_FOREACH(ep, &fork_list, next) {
650 		if (ep->function == function) {
651 			TAILQ_REMOVE(&fork_list, ep, next);
652 			kfree(ep, M_ATFORK);
653 			return(1);
654 		}
655 	}
656 	return (0);
657 }
658 
659 /*
660  * Add a forked process to the run queue after any remaining setup, such
661  * as setting the fork handler, has been completed.
662  */
663 void
664 start_forked_proc(struct lwp *lp1, struct proc *p2)
665 {
666 	struct lwp *lp2 = ONLY_LWP_IN_PROC(p2);
667 
668 	/*
669 	 * Move from SIDL to RUN queue, and activate the process's thread.
670 	 * Activation of the thread effectively makes the process "a"
671 	 * current process, so we do not setrunqueue().
672 	 *
673 	 * YYY setrunqueue works here but we should clean up the trampoline
674 	 * code so we just schedule the LWKT thread and let the trampoline
675 	 * deal with the userland scheduler on return to userland.
676 	 */
677 	KASSERT(p2->p_stat == SIDL,
678 	    ("cannot start forked process, bad status: %p", p2));
679 	p2->p_usched->resetpriority(lp2);
680 	crit_enter();
681 	p2->p_stat = SACTIVE;
682 	lp2->lwp_stat = LSRUN;
683 	p2->p_usched->setrunqueue(lp2);
684 	crit_exit();
685 
686 	/*
687 	 * Now can be swapped.
688 	 */
689 	PRELE(lp1->lwp_proc);
690 
691 	/*
692 	 * Preserve synchronization semantics of vfork.  If waiting for
693 	 * child to exec or exit, set P_PPWAIT on child, and sleep on our
694 	 * proc (in case of exit).
695 	 */
696 	while (p2->p_flag & P_PPWAIT)
697 		tsleep(lp1->lwp_proc, 0, "ppwait", 0);
698 }
699