xref: /dragonfly/sys/kern/kern_fork.c (revision a68e0df0)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
39  * $FreeBSD: src/sys/kern/kern_fork.c,v 1.72.2.14 2003/06/26 04:15:10 silby Exp $
40  * $DragonFly: src/sys/kern/kern_fork.c,v 1.77 2008/05/18 20:02:02 nth Exp $
41  */
42 
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/sysproto.h>
48 #include <sys/filedesc.h>
49 #include <sys/kernel.h>
50 #include <sys/sysctl.h>
51 #include <sys/malloc.h>
52 #include <sys/proc.h>
53 #include <sys/resourcevar.h>
54 #include <sys/vnode.h>
55 #include <sys/acct.h>
56 #include <sys/ktrace.h>
57 #include <sys/unistd.h>
58 #include <sys/jail.h>
59 #include <sys/caps.h>
60 
61 #include <vm/vm.h>
62 #include <sys/lock.h>
63 #include <vm/pmap.h>
64 #include <vm/vm_map.h>
65 #include <vm/vm_extern.h>
66 
67 #include <sys/vmmeter.h>
68 #include <sys/thread2.h>
69 #include <sys/signal2.h>
70 #include <sys/spinlock2.h>
71 #include <sys/mplock2.h>
72 
73 static MALLOC_DEFINE(M_ATFORK, "atfork", "atfork callback");
74 
75 /*
76  * These are the stuctures used to create a callout list for things to do
77  * when forking a process
78  */
79 struct forklist {
80 	forklist_fn function;
81 	TAILQ_ENTRY(forklist) next;
82 };
83 
84 TAILQ_HEAD(forklist_head, forklist);
85 static struct forklist_head fork_list = TAILQ_HEAD_INITIALIZER(fork_list);
86 
87 static struct lwp *lwp_fork(struct lwp *, struct proc *, int flags);
88 
89 int forksleep; /* Place for fork1() to sleep on. */
90 
91 /*
92  * Red-Black tree support for LWPs
93  */
94 
95 static int
96 rb_lwp_compare(struct lwp *lp1, struct lwp *lp2)
97 {
98 	if (lp1->lwp_tid < lp2->lwp_tid)
99 		return(-1);
100 	if (lp1->lwp_tid > lp2->lwp_tid)
101 		return(1);
102 	return(0);
103 }
104 
105 RB_GENERATE2(lwp_rb_tree, lwp, u.lwp_rbnode, rb_lwp_compare, lwpid_t, lwp_tid);
106 
107 /*
108  * Fork system call
109  *
110  * MPALMOSTSAFE
111  */
112 int
113 sys_fork(struct fork_args *uap)
114 {
115 	struct lwp *lp = curthread->td_lwp;
116 	struct proc *p2;
117 	int error;
118 
119 	get_mplock();
120 	error = fork1(lp, RFFDG | RFPROC | RFPGLOCK, &p2);
121 	if (error == 0) {
122 		start_forked_proc(lp, p2);
123 		uap->sysmsg_fds[0] = p2->p_pid;
124 		uap->sysmsg_fds[1] = 0;
125 	}
126 	rel_mplock();
127 	return error;
128 }
129 
130 /*
131  * MPALMOSTSAFE
132  */
133 int
134 sys_vfork(struct vfork_args *uap)
135 {
136 	struct lwp *lp = curthread->td_lwp;
137 	struct proc *p2;
138 	int error;
139 
140 	get_mplock();
141 	error = fork1(lp, RFFDG | RFPROC | RFPPWAIT | RFMEM | RFPGLOCK, &p2);
142 	if (error == 0) {
143 		start_forked_proc(lp, p2);
144 		uap->sysmsg_fds[0] = p2->p_pid;
145 		uap->sysmsg_fds[1] = 0;
146 	}
147 	rel_mplock();
148 	return error;
149 }
150 
151 /*
152  * Handle rforks.  An rfork may (1) operate on the current process without
153  * creating a new, (2) create a new process that shared the current process's
154  * vmspace, signals, and/or descriptors, or (3) create a new process that does
155  * not share these things (normal fork).
156  *
157  * Note that we only call start_forked_proc() if a new process is actually
158  * created.
159  *
160  * rfork { int flags }
161  *
162  * MPALMOSTSAFE
163  */
164 int
165 sys_rfork(struct rfork_args *uap)
166 {
167 	struct lwp *lp = curthread->td_lwp;
168 	struct proc *p2;
169 	int error;
170 
171 	if ((uap->flags & RFKERNELONLY) != 0)
172 		return (EINVAL);
173 
174 	get_mplock();
175 	error = fork1(lp, uap->flags | RFPGLOCK, &p2);
176 	if (error == 0) {
177 		if (p2)
178 			start_forked_proc(lp, p2);
179 		uap->sysmsg_fds[0] = p2 ? p2->p_pid : 0;
180 		uap->sysmsg_fds[1] = 0;
181 	}
182 	rel_mplock();
183 	return error;
184 }
185 
186 /*
187  * MPALMOSTSAFE
188  */
189 int
190 sys_lwp_create(struct lwp_create_args *uap)
191 {
192 	struct proc *p = curproc;
193 	struct lwp *lp;
194 	struct lwp_params params;
195 	int error;
196 
197 	error = copyin(uap->params, &params, sizeof(params));
198 	if (error)
199 		goto fail2;
200 
201 	get_mplock();
202 	plimit_lwp_fork(p);	/* force exclusive access */
203 	lp = lwp_fork(curthread->td_lwp, p, RFPROC);
204 	error = cpu_prepare_lwp(lp, &params);
205 	if (params.tid1 != NULL &&
206 	    (error = copyout(&lp->lwp_tid, params.tid1, sizeof(lp->lwp_tid))))
207 		goto fail;
208 	if (params.tid2 != NULL &&
209 	    (error = copyout(&lp->lwp_tid, params.tid2, sizeof(lp->lwp_tid))))
210 		goto fail;
211 
212 	/*
213 	 * Now schedule the new lwp.
214 	 */
215 	p->p_usched->resetpriority(lp);
216 	crit_enter();
217 	lp->lwp_stat = LSRUN;
218 	p->p_usched->setrunqueue(lp);
219 	crit_exit();
220 	rel_mplock();
221 
222 	return (0);
223 
224 fail:
225 	lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
226 	--p->p_nthreads;
227 	/* lwp_dispose expects an exited lwp, and a held proc */
228 	lp->lwp_flag |= LWP_WEXIT;
229 	lp->lwp_thread->td_flags |= TDF_EXITING;
230 	PHOLD(p);
231 	lwp_dispose(lp);
232 	rel_mplock();
233 fail2:
234 	return (error);
235 }
236 
237 int	nprocs = 1;		/* process 0 */
238 
239 int
240 fork1(struct lwp *lp1, int flags, struct proc **procp)
241 {
242 	struct proc *p1 = lp1->lwp_proc;
243 	struct proc *p2, *pptr;
244 	struct pgrp *pgrp;
245 	uid_t uid;
246 	int ok, error;
247 	static int curfail = 0;
248 	static struct timeval lastfail;
249 	struct forklist *ep;
250 	struct filedesc_to_leader *fdtol;
251 
252 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
253 		return (EINVAL);
254 
255 	/*
256 	 * Here we don't create a new process, but we divorce
257 	 * certain parts of a process from itself.
258 	 */
259 	if ((flags & RFPROC) == 0) {
260 		/*
261 		 * This kind of stunt does not work anymore if
262 		 * there are native threads (lwps) running
263 		 */
264 		if (p1->p_nthreads != 1)
265 			return (EINVAL);
266 
267 		vm_fork(p1, 0, flags);
268 
269 		/*
270 		 * Close all file descriptors.
271 		 */
272 		if (flags & RFCFDG) {
273 			struct filedesc *fdtmp;
274 			fdtmp = fdinit(p1);
275 			fdfree(p1, fdtmp);
276 		}
277 
278 		/*
279 		 * Unshare file descriptors (from parent.)
280 		 */
281 		if (flags & RFFDG) {
282 			if (p1->p_fd->fd_refcnt > 1) {
283 				struct filedesc *newfd;
284 				newfd = fdcopy(p1);
285 				fdfree(p1, newfd);
286 			}
287 		}
288 		*procp = NULL;
289 		return (0);
290 	}
291 
292 	/*
293 	 * Interlock against process group signal delivery.  If signals
294 	 * are pending after the interlock is obtained we have to restart
295 	 * the system call to process the signals.  If we don't the child
296 	 * can miss a pgsignal (such as ^C) sent during the fork.
297 	 *
298 	 * We can't use CURSIG() here because it will process any STOPs
299 	 * and cause the process group lock to be held indefinitely.  If
300 	 * a STOP occurs, the fork will be restarted after the CONT.
301 	 */
302 	error = 0;
303 	pgrp = NULL;
304 	if ((flags & RFPGLOCK) && (pgrp = p1->p_pgrp) != NULL) {
305 		lockmgr(&pgrp->pg_lock, LK_SHARED);
306 		if (CURSIG_NOBLOCK(lp1)) {
307 			error = ERESTART;
308 			goto done;
309 		}
310 	}
311 
312 	/*
313 	 * Although process entries are dynamically created, we still keep
314 	 * a global limit on the maximum number we will create.  Don't allow
315 	 * a nonprivileged user to use the last ten processes; don't let root
316 	 * exceed the limit. The variable nprocs is the current number of
317 	 * processes, maxproc is the limit.
318 	 */
319 	uid = lp1->lwp_thread->td_ucred->cr_ruid;
320 	if ((nprocs >= maxproc - 10 && uid != 0) || nprocs >= maxproc) {
321 		if (ppsratecheck(&lastfail, &curfail, 1))
322 			kprintf("maxproc limit exceeded by uid %d, please "
323 			       "see tuning(7) and login.conf(5).\n", uid);
324 		tsleep(&forksleep, 0, "fork", hz / 2);
325 		error = EAGAIN;
326 		goto done;
327 	}
328 	/*
329 	 * Increment the nprocs resource before blocking can occur.  There
330 	 * are hard-limits as to the number of processes that can run.
331 	 */
332 	nprocs++;
333 
334 	/*
335 	 * Increment the count of procs running with this uid. Don't allow
336 	 * a nonprivileged user to exceed their current limit.
337 	 */
338 	ok = chgproccnt(lp1->lwp_thread->td_ucred->cr_ruidinfo, 1,
339 		(uid != 0) ? p1->p_rlimit[RLIMIT_NPROC].rlim_cur : 0);
340 	if (!ok) {
341 		/*
342 		 * Back out the process count
343 		 */
344 		nprocs--;
345 		if (ppsratecheck(&lastfail, &curfail, 1))
346 			kprintf("maxproc limit exceeded by uid %d, please "
347 			       "see tuning(7) and login.conf(5).\n", uid);
348 		tsleep(&forksleep, 0, "fork", hz / 2);
349 		error = EAGAIN;
350 		goto done;
351 	}
352 
353 	/* Allocate new proc. */
354 	p2 = kmalloc(sizeof(struct proc), M_PROC, M_WAITOK|M_ZERO);
355 
356 	/*
357 	 * Setup linkage for kernel based threading XXX lwp
358 	 */
359 	if (flags & RFTHREAD) {
360 		p2->p_peers = p1->p_peers;
361 		p1->p_peers = p2;
362 		p2->p_leader = p1->p_leader;
363 	} else {
364 		p2->p_leader = p2;
365 	}
366 
367 	RB_INIT(&p2->p_lwp_tree);
368 	spin_init(&p2->p_spin);
369 	p2->p_lasttid = -1;	/* first tid will be 0 */
370 
371 	/*
372 	 * Setting the state to SIDL protects the partially initialized
373 	 * process once it starts getting hooked into the rest of the system.
374 	 */
375 	p2->p_stat = SIDL;
376 	proc_add_allproc(p2);
377 
378 	/*
379 	 * Make a proc table entry for the new process.
380 	 * The whole structure was zeroed above, so copy the section that is
381 	 * copied directly from the parent.
382 	 */
383 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
384 	    (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
385 
386 	/*
387 	 * Duplicate sub-structures as needed.
388 	 * Increase reference counts on shared objects.
389 	 */
390 	if (p1->p_flag & P_PROFIL)
391 		startprofclock(p2);
392 	p2->p_ucred = crhold(lp1->lwp_thread->td_ucred);
393 	KKASSERT(p2->p_lock == 0);
394 
395 	if (jailed(p2->p_ucred))
396 		p2->p_flag |= P_JAILED;
397 
398 	if (p2->p_args)
399 		p2->p_args->ar_ref++;
400 
401 	p2->p_usched = p1->p_usched;
402 
403 	if (flags & RFSIGSHARE) {
404 		p2->p_sigacts = p1->p_sigacts;
405 		p2->p_sigacts->ps_refcnt++;
406 	} else {
407 		p2->p_sigacts = (struct sigacts *)kmalloc(sizeof(*p2->p_sigacts),
408 		    M_SUBPROC, M_WAITOK);
409 		bcopy(p1->p_sigacts, p2->p_sigacts, sizeof(*p2->p_sigacts));
410 		p2->p_sigacts->ps_refcnt = 1;
411 	}
412 	if (flags & RFLINUXTHPN)
413 	        p2->p_sigparent = SIGUSR1;
414 	else
415 	        p2->p_sigparent = SIGCHLD;
416 
417 	/* bump references to the text vnode (for procfs) */
418 	p2->p_textvp = p1->p_textvp;
419 	if (p2->p_textvp)
420 		vref(p2->p_textvp);
421 
422 	/* copy namecache handle to the text file */
423 	if (p1->p_textnch.mount)
424 		cache_copy(&p1->p_textnch, &p2->p_textnch);
425 
426 	/*
427 	 * Handle file descriptors
428 	 */
429 	if (flags & RFCFDG) {
430 		p2->p_fd = fdinit(p1);
431 		fdtol = NULL;
432 	} else if (flags & RFFDG) {
433 		p2->p_fd = fdcopy(p1);
434 		fdtol = NULL;
435 	} else {
436 		p2->p_fd = fdshare(p1);
437 		if (p1->p_fdtol == NULL)
438 			p1->p_fdtol =
439 				filedesc_to_leader_alloc(NULL,
440 							 p1->p_leader);
441 		if ((flags & RFTHREAD) != 0) {
442 			/*
443 			 * Shared file descriptor table and
444 			 * shared process leaders.
445 			 */
446 			fdtol = p1->p_fdtol;
447 			fdtol->fdl_refcount++;
448 		} else {
449 			/*
450 			 * Shared file descriptor table, and
451 			 * different process leaders
452 			 */
453 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol, p2);
454 		}
455 	}
456 	p2->p_fdtol = fdtol;
457 	p2->p_limit = plimit_fork(p1);
458 
459 	/*
460 	 * Preserve some more flags in subprocess.  P_PROFIL has already
461 	 * been preserved.
462 	 */
463 	p2->p_flag |= p1->p_flag & P_SUGID;
464 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
465 		p2->p_flag |= P_CONTROLT;
466 	if (flags & RFPPWAIT)
467 		p2->p_flag |= P_PPWAIT;
468 
469 	/*
470 	 * Inherit the virtual kernel structure (allows a virtual kernel
471 	 * to fork to simulate multiple cpus).
472 	 */
473 	if (p1->p_vkernel)
474 		vkernel_inherit(p1, p2);
475 
476 	/*
477 	 * Once we are on a pglist we may receive signals.  XXX we might
478 	 * race a ^C being sent to the process group by not receiving it
479 	 * at all prior to this line.
480 	 */
481 	LIST_INSERT_AFTER(p1, p2, p_pglist);
482 
483 	/*
484 	 * Attach the new process to its parent.
485 	 *
486 	 * If RFNOWAIT is set, the newly created process becomes a child
487 	 * of init.  This effectively disassociates the child from the
488 	 * parent.
489 	 */
490 	if (flags & RFNOWAIT)
491 		pptr = initproc;
492 	else
493 		pptr = p1;
494 	p2->p_pptr = pptr;
495 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
496 	LIST_INIT(&p2->p_children);
497 	varsymset_init(&p2->p_varsymset, &p1->p_varsymset);
498 	callout_init(&p2->p_ithandle);
499 
500 #ifdef KTRACE
501 	/*
502 	 * Copy traceflag and tracefile if enabled.  If not inherited,
503 	 * these were zeroed above but we still could have a trace race
504 	 * so make sure p2's p_tracenode is NULL.
505 	 */
506 	if ((p1->p_traceflag & KTRFAC_INHERIT) && p2->p_tracenode == NULL) {
507 		p2->p_traceflag = p1->p_traceflag;
508 		p2->p_tracenode = ktrinherit(p1->p_tracenode);
509 	}
510 #endif
511 
512 	/*
513 	 * This begins the section where we must prevent the parent
514 	 * from being swapped.
515 	 *
516 	 * Gets PRELE'd in the caller in start_forked_proc().
517 	 */
518 	PHOLD(p1);
519 
520 	vm_fork(p1, p2, flags);
521 
522 	/*
523 	 * Create the first lwp associated with the new proc.
524 	 * It will return via a different execution path later, directly
525 	 * into userland, after it was put on the runq by
526 	 * start_forked_proc().
527 	 */
528 	lwp_fork(lp1, p2, flags);
529 
530 	if (flags == (RFFDG | RFPROC | RFPGLOCK)) {
531 		mycpu->gd_cnt.v_forks++;
532 		mycpu->gd_cnt.v_forkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
533 	} else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM | RFPGLOCK)) {
534 		mycpu->gd_cnt.v_vforks++;
535 		mycpu->gd_cnt.v_vforkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
536 	} else if (p1 == &proc0) {
537 		mycpu->gd_cnt.v_kthreads++;
538 		mycpu->gd_cnt.v_kthreadpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
539 	} else {
540 		mycpu->gd_cnt.v_rforks++;
541 		mycpu->gd_cnt.v_rforkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
542 	}
543 
544 	/*
545 	 * Both processes are set up, now check if any loadable modules want
546 	 * to adjust anything.
547 	 *   What if they have an error? XXX
548 	 */
549 	TAILQ_FOREACH(ep, &fork_list, next) {
550 		(*ep->function)(p1, p2, flags);
551 	}
552 
553 	/*
554 	 * Set the start time.  Note that the process is not runnable.  The
555 	 * caller is responsible for making it runnable.
556 	 */
557 	microtime(&p2->p_start);
558 	p2->p_acflag = AFORK;
559 
560 	/*
561 	 * tell any interested parties about the new process
562 	 */
563 	KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
564 
565 	/*
566 	 * Return child proc pointer to parent.
567 	 */
568 	*procp = p2;
569 done:
570 	if (pgrp)
571 		lockmgr(&pgrp->pg_lock, LK_RELEASE);
572 	return (error);
573 }
574 
575 static struct lwp *
576 lwp_fork(struct lwp *origlp, struct proc *destproc, int flags)
577 {
578 	struct lwp *lp;
579 	struct thread *td;
580 
581 	lp = kmalloc(sizeof(struct lwp), M_LWP, M_WAITOK|M_ZERO);
582 
583 	lp->lwp_proc = destproc;
584 	lp->lwp_vmspace = destproc->p_vmspace;
585 	lp->lwp_stat = LSRUN;
586 	bcopy(&origlp->lwp_startcopy, &lp->lwp_startcopy,
587 	    (unsigned) ((caddr_t)&lp->lwp_endcopy -
588 			(caddr_t)&lp->lwp_startcopy));
589 	lp->lwp_flag |= origlp->lwp_flag & LWP_ALTSTACK;
590 	/*
591 	 * Set cpbase to the last timeout that occured (not the upcoming
592 	 * timeout).
593 	 *
594 	 * A critical section is required since a timer IPI can update
595 	 * scheduler specific data.
596 	 */
597 	crit_enter();
598 	lp->lwp_cpbase = mycpu->gd_schedclock.time -
599 			mycpu->gd_schedclock.periodic;
600 	destproc->p_usched->heuristic_forking(origlp, lp);
601 	crit_exit();
602 	lp->lwp_cpumask &= usched_mastermask;
603 
604 	/*
605 	 * Assign a TID to the lp.  Loop until the insert succeeds (returns
606 	 * NULL).
607 	 */
608 	lp->lwp_tid = destproc->p_lasttid;
609 	do {
610 		if (++lp->lwp_tid < 0)
611 			lp->lwp_tid = 1;
612 	} while (lwp_rb_tree_RB_INSERT(&destproc->p_lwp_tree, lp) != NULL);
613 	destproc->p_lasttid = lp->lwp_tid;
614 	destproc->p_nthreads++;
615 
616 	td = lwkt_alloc_thread(NULL, LWKT_THREAD_STACK, -1, 0);
617 	lp->lwp_thread = td;
618 	td->td_proc = destproc;
619 	td->td_lwp = lp;
620 	td->td_switch = cpu_heavy_switch;
621 #ifdef SMP
622 	KKASSERT(td->td_mpcount == 1);
623 #endif
624 	lwkt_setpri(td, TDPRI_KERN_USER);
625 	lwkt_set_comm(td, "%s", destproc->p_comm);
626 
627 	/*
628 	 * cpu_fork will copy and update the pcb, set up the kernel stack,
629 	 * and make the child ready to run.
630 	 */
631 	cpu_fork(origlp, lp, flags);
632 	caps_fork(origlp->lwp_thread, lp->lwp_thread);
633 	kqueue_init(&lp->lwp_kqueue, destproc->p_fd);
634 
635 	return (lp);
636 }
637 
638 /*
639  * The next two functionms are general routines to handle adding/deleting
640  * items on the fork callout list.
641  *
642  * at_fork():
643  * Take the arguments given and put them onto the fork callout list,
644  * However first make sure that it's not already there.
645  * Returns 0 on success or a standard error number.
646  */
647 int
648 at_fork(forklist_fn function)
649 {
650 	struct forklist *ep;
651 
652 #ifdef INVARIANTS
653 	/* let the programmer know if he's been stupid */
654 	if (rm_at_fork(function)) {
655 		kprintf("WARNING: fork callout entry (%p) already present\n",
656 		    function);
657 	}
658 #endif
659 	ep = kmalloc(sizeof(*ep), M_ATFORK, M_WAITOK|M_ZERO);
660 	ep->function = function;
661 	TAILQ_INSERT_TAIL(&fork_list, ep, next);
662 	return (0);
663 }
664 
665 /*
666  * Scan the exit callout list for the given item and remove it..
667  * Returns the number of items removed (0 or 1)
668  */
669 int
670 rm_at_fork(forklist_fn function)
671 {
672 	struct forklist *ep;
673 
674 	TAILQ_FOREACH(ep, &fork_list, next) {
675 		if (ep->function == function) {
676 			TAILQ_REMOVE(&fork_list, ep, next);
677 			kfree(ep, M_ATFORK);
678 			return(1);
679 		}
680 	}
681 	return (0);
682 }
683 
684 /*
685  * Add a forked process to the run queue after any remaining setup, such
686  * as setting the fork handler, has been completed.
687  */
688 void
689 start_forked_proc(struct lwp *lp1, struct proc *p2)
690 {
691 	struct lwp *lp2 = ONLY_LWP_IN_PROC(p2);
692 
693 	/*
694 	 * Move from SIDL to RUN queue, and activate the process's thread.
695 	 * Activation of the thread effectively makes the process "a"
696 	 * current process, so we do not setrunqueue().
697 	 *
698 	 * YYY setrunqueue works here but we should clean up the trampoline
699 	 * code so we just schedule the LWKT thread and let the trampoline
700 	 * deal with the userland scheduler on return to userland.
701 	 */
702 	KASSERT(p2->p_stat == SIDL,
703 	    ("cannot start forked process, bad status: %p", p2));
704 	p2->p_usched->resetpriority(lp2);
705 	crit_enter();
706 	p2->p_stat = SACTIVE;
707 	lp2->lwp_stat = LSRUN;
708 	p2->p_usched->setrunqueue(lp2);
709 	crit_exit();
710 
711 	/*
712 	 * Now can be swapped.
713 	 */
714 	PRELE(lp1->lwp_proc);
715 
716 	/*
717 	 * Preserve synchronization semantics of vfork.  If waiting for
718 	 * child to exec or exit, set P_PPWAIT on child, and sleep on our
719 	 * proc (in case of exit).
720 	 */
721 	while (p2->p_flag & P_PPWAIT)
722 		tsleep(lp1->lwp_proc, 0, "ppwait", 0);
723 }
724