xref: /dragonfly/sys/kern/kern_intr.c (revision 6fb88001)
1 /*
2  * Copyright (c) 2003 Matthew Dillon <dillon@backplane.com> All rights reserved.
3  * Copyright (c) 1997, Stefan Esser <se@freebsd.org> All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/kern_intr.c,v 1.24.2.1 2001/10/14 20:05:50 luigi Exp $
27  * $DragonFly: src/sys/kern/kern_intr.c,v 1.40 2005/12/27 21:32:11 dillon Exp $
28  *
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/malloc.h>
34 #include <sys/kernel.h>
35 #include <sys/sysctl.h>
36 #include <sys/thread.h>
37 #include <sys/proc.h>
38 #include <sys/thread2.h>
39 #include <sys/random.h>
40 #include <sys/serialize.h>
41 #include <sys/bus.h>
42 #include <sys/machintr.h>
43 
44 #include <machine/ipl.h>
45 #include <machine/frame.h>
46 
47 #include <sys/interrupt.h>
48 
49 struct info_info;
50 
51 typedef struct intrec {
52     struct intrec *next;
53     struct intr_info *info;
54     inthand2_t	*handler;
55     void	*argument;
56     char	*name;
57     int		intr;
58     int		intr_flags;
59     struct lwkt_serialize *serializer;
60 } *intrec_t;
61 
62 struct intr_info {
63 	intrec_t	i_reclist;
64 	struct thread	i_thread;
65 	struct random_softc i_random;
66 	int		i_running;
67 	long		i_count;	/* interrupts dispatched */
68 	int		i_mplock_required;
69 	int		i_fast;
70 	int		i_slow;
71 	int		i_state;
72 } intr_info_ary[MAX_INTS];
73 
74 int max_installed_hard_intr;
75 int max_installed_soft_intr;
76 
77 #define EMERGENCY_INTR_POLLING_FREQ_MAX 20000
78 
79 static int sysctl_emergency_freq(SYSCTL_HANDLER_ARGS);
80 static int sysctl_emergency_enable(SYSCTL_HANDLER_ARGS);
81 static void emergency_intr_timer_callback(systimer_t, struct intrframe *);
82 static void ithread_handler(void *arg);
83 static void ithread_emergency(void *arg);
84 
85 int intr_info_size = sizeof(intr_info_ary) / sizeof(intr_info_ary[0]);
86 
87 static struct systimer emergency_intr_timer;
88 static struct thread emergency_intr_thread;
89 
90 #define ISTATE_NOTHREAD		0
91 #define ISTATE_NORMAL		1
92 #define ISTATE_LIVELOCKED	2
93 
94 #ifdef SMP
95 static int intr_mpsafe = 0;
96 TUNABLE_INT("kern.intr_mpsafe", &intr_mpsafe);
97 SYSCTL_INT(_kern, OID_AUTO, intr_mpsafe,
98         CTLFLAG_RW, &intr_mpsafe, 0, "Run INTR_MPSAFE handlers without the BGL");
99 #endif
100 static int livelock_limit = 50000;
101 static int livelock_lowater = 20000;
102 SYSCTL_INT(_kern, OID_AUTO, livelock_limit,
103         CTLFLAG_RW, &livelock_limit, 0, "Livelock interrupt rate limit");
104 SYSCTL_INT(_kern, OID_AUTO, livelock_lowater,
105         CTLFLAG_RW, &livelock_lowater, 0, "Livelock low-water mark restore");
106 
107 static int emergency_intr_enable = 0;	/* emergency interrupt polling */
108 TUNABLE_INT("kern.emergency_intr_enable", &emergency_intr_enable);
109 SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_enable, CTLTYPE_INT | CTLFLAG_RW,
110         0, 0, sysctl_emergency_enable, "I", "Emergency Interrupt Poll Enable");
111 
112 static int emergency_intr_freq = 10;	/* emergency polling frequency */
113 TUNABLE_INT("kern.emergency_intr_freq", &emergency_intr_freq);
114 SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_freq, CTLTYPE_INT | CTLFLAG_RW,
115         0, 0, sysctl_emergency_freq, "I", "Emergency Interrupt Poll Frequency");
116 
117 /*
118  * Sysctl support routines
119  */
120 static int
121 sysctl_emergency_enable(SYSCTL_HANDLER_ARGS)
122 {
123 	int error, enabled;
124 
125 	enabled = emergency_intr_enable;
126 	error = sysctl_handle_int(oidp, &enabled, 0, req);
127 	if (error || req->newptr == NULL)
128 		return error;
129 	emergency_intr_enable = enabled;
130 	if (emergency_intr_enable) {
131 		emergency_intr_timer.periodic =
132 			sys_cputimer->fromhz(emergency_intr_freq);
133 	} else {
134 		emergency_intr_timer.periodic = sys_cputimer->fromhz(1);
135 	}
136 	return 0;
137 }
138 
139 static int
140 sysctl_emergency_freq(SYSCTL_HANDLER_ARGS)
141 {
142         int error, phz;
143 
144         phz = emergency_intr_freq;
145         error = sysctl_handle_int(oidp, &phz, 0, req);
146         if (error || req->newptr == NULL)
147                 return error;
148         if (phz <= 0)
149                 return EINVAL;
150         else if (phz > EMERGENCY_INTR_POLLING_FREQ_MAX)
151                 phz = EMERGENCY_INTR_POLLING_FREQ_MAX;
152 
153         emergency_intr_freq = phz;
154 	if (emergency_intr_enable) {
155 		emergency_intr_timer.periodic =
156 			sys_cputimer->fromhz(emergency_intr_freq);
157 	} else {
158 		emergency_intr_timer.periodic = sys_cputimer->fromhz(1);
159 	}
160         return 0;
161 }
162 
163 /*
164  * Register an SWI or INTerrupt handler.
165  */
166 void *
167 register_swi(int intr, inthand2_t *handler, void *arg, const char *name,
168 		struct lwkt_serialize *serializer)
169 {
170     if (intr < FIRST_SOFTINT || intr >= MAX_INTS)
171 	panic("register_swi: bad intr %d", intr);
172     return(register_int(intr, handler, arg, name, serializer, 0));
173 }
174 
175 void *
176 register_int(int intr, inthand2_t *handler, void *arg, const char *name,
177 		struct lwkt_serialize *serializer, int intr_flags)
178 {
179     struct intr_info *info;
180     struct intrec **list;
181     intrec_t rec;
182 
183     if (intr < 0 || intr >= MAX_INTS)
184 	panic("register_int: bad intr %d", intr);
185     if (name == NULL)
186 	name = "???";
187     info = &intr_info_ary[intr];
188 
189     /*
190      * Construct an interrupt handler record
191      */
192     rec = malloc(sizeof(struct intrec), M_DEVBUF, M_INTWAIT);
193     rec->name = malloc(strlen(name) + 1, M_DEVBUF, M_INTWAIT);
194     strcpy(rec->name, name);
195 
196     rec->info = info;
197     rec->handler = handler;
198     rec->argument = arg;
199     rec->intr = intr;
200     rec->intr_flags = intr_flags;
201     rec->next = NULL;
202     rec->serializer = serializer;
203 
204     /*
205      * Create an emergency polling thread and set up a systimer to wake
206      * it up.
207      */
208     if (emergency_intr_thread.td_kstack == NULL) {
209 	lwkt_create(ithread_emergency, NULL, NULL,
210 		    &emergency_intr_thread, TDF_STOPREQ|TDF_INTTHREAD, -1,
211 		    "ithread emerg");
212 	systimer_init_periodic_nq(&emergency_intr_timer,
213 		    emergency_intr_timer_callback, &emergency_intr_thread,
214 		    (emergency_intr_enable ? emergency_intr_freq : 1));
215     }
216 
217     /*
218      * Create an interrupt thread if necessary, leave it in an unscheduled
219      * state.
220      */
221     if (info->i_state == ISTATE_NOTHREAD) {
222 	info->i_state = ISTATE_NORMAL;
223 	lwkt_create((void *)ithread_handler, (void *)intr, NULL,
224 	    &info->i_thread, TDF_STOPREQ|TDF_INTTHREAD|TDF_MPSAFE, -1,
225 	    "ithread %d", intr);
226 	if (intr >= FIRST_SOFTINT)
227 	    lwkt_setpri(&info->i_thread, TDPRI_SOFT_NORM);
228 	else
229 	    lwkt_setpri(&info->i_thread, TDPRI_INT_MED);
230 	info->i_thread.td_preemptable = lwkt_preempt;
231     }
232 
233     list = &info->i_reclist;
234 
235     /*
236      * Keep track of how many fast and slow interrupts we have.
237      * Set i_mplock_required if any handler in the chain requires
238      * the MP lock to operate.
239      */
240     if ((intr_flags & INTR_MPSAFE) == 0)
241 	info->i_mplock_required = 1;
242     if (intr_flags & INTR_FAST)
243 	++info->i_fast;
244     else
245 	++info->i_slow;
246 
247     /*
248      * Add the record to the interrupt list.
249      */
250     crit_enter();
251     while (*list != NULL)
252 	list = &(*list)->next;
253     *list = rec;
254     crit_exit();
255 
256     /*
257      * Update max_installed_hard_intr to make the emergency intr poll
258      * a bit more efficient.
259      */
260     if (intr < FIRST_SOFTINT) {
261 	if (max_installed_hard_intr <= intr)
262 	    max_installed_hard_intr = intr + 1;
263     } else {
264 	if (max_installed_soft_intr <= intr)
265 	    max_installed_soft_intr = intr + 1;
266     }
267 
268     /*
269      * Setup the machine level interrupt vector
270      *
271      * XXX temporary workaround for some ACPI brokedness.  ACPI installs
272      * its interrupt too early, before the IOAPICs have been configured,
273      * which means the IOAPIC is not enabled by the registration of the
274      * ACPI interrupt.  Anything else sharing that IRQ will wind up not
275      * being enabled.  Temporarily work around the problem by always
276      * installing and enabling on every new interrupt handler, even
277      * if one has already been setup on that irq.
278      */
279     if (intr < FIRST_SOFTINT /* && info->i_slow + info->i_fast == 1*/) {
280 	if (machintr_vector_setup(intr, intr_flags))
281 	    printf("machintr_vector_setup: failed on irq %d\n", intr);
282     }
283 
284     return(rec);
285 }
286 
287 void
288 unregister_swi(void *id)
289 {
290     unregister_int(id);
291 }
292 
293 void
294 unregister_int(void *id)
295 {
296     struct intr_info *info;
297     struct intrec **list;
298     intrec_t rec;
299     int intr;
300 
301     intr = ((intrec_t)id)->intr;
302 
303     if (intr < 0 || intr >= MAX_INTS)
304 	panic("register_int: bad intr %d", intr);
305 
306     info = &intr_info_ary[intr];
307 
308     /*
309      * Remove the interrupt descriptor, adjust the descriptor count,
310      * and teardown the machine level vector if this was the last interrupt.
311      */
312     crit_enter();
313     list = &info->i_reclist;
314     while ((rec = *list) != NULL) {
315 	if (rec == id)
316 	    break;
317 	list = &rec->next;
318     }
319     if (rec) {
320 	intrec_t rec0;
321 
322 	*list = rec->next;
323 	if (rec->intr_flags & INTR_FAST)
324 	    --info->i_fast;
325 	else
326 	    --info->i_slow;
327 	if (intr < FIRST_SOFTINT && info->i_fast + info->i_slow == 0)
328 	    machintr_vector_teardown(intr);
329 
330 	/*
331 	 * Clear i_mplock_required if no handlers in the chain require the
332 	 * MP lock.
333 	 */
334 	for (rec0 = info->i_reclist; rec0; rec0 = rec0->next) {
335 	    if ((rec0->intr_flags & INTR_MPSAFE) == 0)
336 		break;
337 	}
338 	if (rec0 == NULL)
339 	    info->i_mplock_required = 0;
340     }
341 
342     crit_exit();
343 
344     /*
345      * Free the record.
346      */
347     if (rec != NULL) {
348 	free(rec->name, M_DEVBUF);
349 	free(rec, M_DEVBUF);
350     } else {
351 	printf("warning: unregister_int: int %d handler for %s not found\n",
352 		intr, ((intrec_t)id)->name);
353     }
354 }
355 
356 const char *
357 get_registered_name(int intr)
358 {
359     intrec_t rec;
360 
361     if (intr < 0 || intr >= MAX_INTS)
362 	panic("register_int: bad intr %d", intr);
363 
364     if ((rec = intr_info_ary[intr].i_reclist) == NULL)
365 	return(NULL);
366     else if (rec->next)
367 	return("mux");
368     else
369 	return(rec->name);
370 }
371 
372 int
373 count_registered_ints(int intr)
374 {
375     struct intr_info *info;
376 
377     if (intr < 0 || intr >= MAX_INTS)
378 	panic("register_int: bad intr %d", intr);
379     info = &intr_info_ary[intr];
380     return(info->i_fast + info->i_slow);
381 }
382 
383 long
384 get_interrupt_counter(int intr)
385 {
386     struct intr_info *info;
387 
388     if (intr < 0 || intr >= MAX_INTS)
389 	panic("register_int: bad intr %d", intr);
390     info = &intr_info_ary[intr];
391     return(info->i_count);
392 }
393 
394 
395 void
396 swi_setpriority(int intr, int pri)
397 {
398     struct intr_info *info;
399 
400     if (intr < FIRST_SOFTINT || intr >= MAX_INTS)
401 	panic("register_swi: bad intr %d", intr);
402     info = &intr_info_ary[intr];
403     if (info->i_state != ISTATE_NOTHREAD)
404 	lwkt_setpri(&info->i_thread, pri);
405 }
406 
407 void
408 register_randintr(int intr)
409 {
410     struct intr_info *info;
411 
412     if (intr < 0 || intr >= MAX_INTS)
413 	panic("register_randintr: bad intr %d", intr);
414     info = &intr_info_ary[intr];
415     info->i_random.sc_intr = intr;
416     info->i_random.sc_enabled = 1;
417 }
418 
419 void
420 unregister_randintr(int intr)
421 {
422     struct intr_info *info;
423 
424     if (intr < 0 || intr >= MAX_INTS)
425 	panic("register_swi: bad intr %d", intr);
426     info = &intr_info_ary[intr];
427     info->i_random.sc_enabled = 0;
428 }
429 
430 int
431 next_registered_randintr(int intr)
432 {
433     struct intr_info *info;
434 
435     if (intr < 0 || intr >= MAX_INTS)
436 	panic("register_swi: bad intr %d", intr);
437     while (intr < MAX_INTS) {
438 	info = &intr_info_ary[intr];
439 	if (info->i_random.sc_enabled)
440 	    break;
441 	++intr;
442     }
443     return(intr);
444 }
445 
446 /*
447  * Dispatch an interrupt.  If there's nothing to do we have a stray
448  * interrupt and can just return, leaving the interrupt masked.
449  *
450  * We need to schedule the interrupt and set its i_running bit.  If
451  * we are not on the interrupt thread's cpu we have to send a message
452  * to the correct cpu that will issue the desired action (interlocking
453  * with the interrupt thread's critical section).  We do NOT attempt to
454  * reschedule interrupts whos i_running bit is already set because
455  * this would prematurely wakeup a livelock-limited interrupt thread.
456  *
457  * i_running is only tested/set on the same cpu as the interrupt thread.
458  *
459  * We are NOT in a critical section, which will allow the scheduled
460  * interrupt to preempt us.  The MP lock might *NOT* be held here.
461  */
462 #ifdef SMP
463 
464 static void
465 sched_ithd_remote(void *arg)
466 {
467     sched_ithd((int)arg);
468 }
469 
470 #endif
471 
472 void
473 sched_ithd(int intr)
474 {
475     struct intr_info *info;
476 
477     info = &intr_info_ary[intr];
478 
479     ++info->i_count;
480     if (info->i_state != ISTATE_NOTHREAD) {
481 	if (info->i_reclist == NULL) {
482 	    printf("sched_ithd: stray interrupt %d\n", intr);
483 	} else {
484 #ifdef SMP
485 	    if (info->i_thread.td_gd == mycpu) {
486 		if (info->i_running == 0) {
487 		    info->i_running = 1;
488 		    if (info->i_state != ISTATE_LIVELOCKED)
489 			lwkt_schedule(&info->i_thread); /* MIGHT PREEMPT */
490 		}
491 	    } else {
492 		lwkt_send_ipiq(info->i_thread.td_gd,
493 				sched_ithd_remote, (void *)intr);
494 	    }
495 #else
496 	    if (info->i_running == 0) {
497 		info->i_running = 1;
498 		if (info->i_state != ISTATE_LIVELOCKED)
499 		    lwkt_schedule(&info->i_thread); /* MIGHT PREEMPT */
500 	    }
501 #endif
502 	}
503     } else {
504 	printf("sched_ithd: stray interrupt %d\n", intr);
505     }
506 }
507 
508 /*
509  * This is run from a periodic SYSTIMER (and thus must be MP safe, the BGL
510  * might not be held).
511  */
512 static void
513 ithread_livelock_wakeup(systimer_t st)
514 {
515     struct intr_info *info;
516 
517     info = &intr_info_ary[(int)st->data];
518     if (info->i_state != ISTATE_NOTHREAD)
519 	lwkt_schedule(&info->i_thread);
520 }
521 
522 /*
523  * This function is called drectly from the ICU or APIC vector code assembly
524  * to process an interrupt.  The critical section and interrupt deferral
525  * checks have already been done but the function is entered WITHOUT
526  * a critical section held.  The BGL may or may not be held.
527  *
528  * Must return non-zero if we do not want the vector code to re-enable
529  * the interrupt (which we don't if we have to schedule the interrupt)
530  */
531 int ithread_fast_handler(struct intrframe frame);
532 
533 int
534 ithread_fast_handler(struct intrframe frame)
535 {
536     int intr;
537     struct intr_info *info;
538     struct intrec **list;
539     int must_schedule;
540 #ifdef SMP
541     int got_mplock;
542 #endif
543     intrec_t rec, next_rec;
544     globaldata_t gd;
545 
546     intr = frame.if_vec;
547     gd = mycpu;
548 
549     info = &intr_info_ary[intr];
550 
551     /*
552      * If we are not processing any FAST interrupts, just schedule the thing.
553      * (since we aren't in a critical section, this can result in a
554      * preemption)
555      */
556     if (info->i_fast == 0) {
557 	sched_ithd(intr);
558 	return(1);
559     }
560 
561     /*
562      * This should not normally occur since interrupts ought to be
563      * masked if the ithread has been scheduled or is running.
564      */
565     if (info->i_running)
566 	return(1);
567 
568     /*
569      * Bump the interrupt nesting level to process any FAST interrupts.
570      * Obtain the MP lock as necessary.  If the MP lock cannot be obtained,
571      * schedule the interrupt thread to deal with the issue instead.
572      *
573      * To reduce overhead, just leave the MP lock held once it has been
574      * obtained.
575      */
576     crit_enter_gd(gd);
577     ++gd->gd_intr_nesting_level;
578     ++gd->gd_cnt.v_intr;
579     must_schedule = info->i_slow;
580 #ifdef SMP
581     got_mplock = 0;
582 #endif
583 
584     list = &info->i_reclist;
585     for (rec = *list; rec; rec = next_rec) {
586 	next_rec = rec->next;	/* rec may be invalid after call */
587 
588 	if (rec->intr_flags & INTR_FAST) {
589 #ifdef SMP
590 	    if ((rec->intr_flags & INTR_MPSAFE) == 0 && got_mplock == 0) {
591 		if (try_mplock() == 0) {
592 		    int owner;
593 
594 		    /*
595 		     * If we couldn't get the MP lock try to forward it
596 		     * to the cpu holding the MP lock, setting must_schedule
597 		     * to -1 so we do not schedule and also do not unmask
598 		     * the interrupt.  Otherwise just schedule it.
599 		     */
600 		    owner = owner_mplock();
601 		    if (owner >= 0 && owner != gd->gd_cpuid) {
602 			lwkt_send_ipiq_bycpu(owner, forward_fastint_remote,
603 						(void *)intr);
604 			must_schedule = -1;
605 			++gd->gd_cnt.v_forwarded_ints;
606 		    } else {
607 			must_schedule = 1;
608 		    }
609 		    break;
610 		}
611 		got_mplock = 1;
612 	    }
613 #endif
614 	    if (rec->serializer) {
615 		must_schedule += lwkt_serialize_handler_try(
616 					rec->serializer, rec->handler,
617 					rec->argument, &frame);
618 	    } else {
619 		rec->handler(rec->argument, &frame);
620 	    }
621 	}
622     }
623 
624     /*
625      * Cleanup
626      */
627     --gd->gd_intr_nesting_level;
628 #ifdef SMP
629     if (got_mplock)
630 	rel_mplock();
631 #endif
632     crit_exit_gd(gd);
633 
634     /*
635      * If we had a problem, schedule the thread to catch the missed
636      * records (it will just re-run all of them).  A return value of 0
637      * indicates that all handlers have been run and the interrupt can
638      * be re-enabled, and a non-zero return indicates that the interrupt
639      * thread controls re-enablement.
640      */
641     if (must_schedule > 0)
642 	sched_ithd(intr);
643     else if (must_schedule == 0)
644 	++info->i_count;
645     return(must_schedule);
646 }
647 
648 #if 0
649 
650 6: ;                                                                    \
651         /* could not get the MP lock, forward the interrupt */          \
652         movl    mp_lock, %eax ;          /* check race */               \
653         cmpl    $MP_FREE_LOCK,%eax ;                                    \
654         je      2b ;                                                    \
655         incl    PCPU(cnt)+V_FORWARDED_INTS ;                            \
656         subl    $12,%esp ;                                              \
657         movl    $irq_num,8(%esp) ;                                      \
658         movl    $forward_fastint_remote,4(%esp) ;                       \
659         movl    %eax,(%esp) ;                                           \
660         call    lwkt_send_ipiq_bycpu ;                                  \
661         addl    $12,%esp ;                                              \
662         jmp     5f ;
663 
664 #endif
665 
666 
667 /*
668  * Interrupt threads run this as their main loop.
669  *
670  * The handler begins execution outside a critical section and with the BGL
671  * held.
672  *
673  * The i_running state starts at 0.  When an interrupt occurs, the hardware
674  * interrupt is disabled and sched_ithd() The HW interrupt remains disabled
675  * until all routines have run.  We then call ithread_done() to reenable
676  * the HW interrupt and deschedule us until the next interrupt.
677  *
678  * We are responsible for atomically checking i_running and ithread_done()
679  * is responsible for atomically checking for platform-specific delayed
680  * interrupts.  i_running for our irq is only set in the context of our cpu,
681  * so a critical section is a sufficient interlock.
682  */
683 #define LIVELOCK_TIMEFRAME(freq)	((freq) >> 2)	/* 1/4 second */
684 
685 static void
686 ithread_handler(void *arg)
687 {
688     struct intr_info *info;
689     int use_limit;
690     int lticks;
691     int lcount;
692     int intr;
693     int mpheld;
694     struct intrec **list;
695     intrec_t rec, nrec;
696     globaldata_t gd;
697     struct systimer ill_timer;	/* enforced freq. timer */
698     u_int ill_count;		/* interrupt livelock counter */
699 
700     ill_count = 0;
701     lticks = ticks;
702     lcount = 0;
703     intr = (int)arg;
704     info = &intr_info_ary[intr];
705     list = &info->i_reclist;
706     gd = mycpu;
707 
708     /*
709      * The loop must be entered with one critical section held.  The thread
710      * is created with TDF_MPSAFE so the MP lock is not held on start.
711      */
712     crit_enter_gd(gd);
713     mpheld = 0;
714 
715     for (;;) {
716 	/*
717 	 * The chain is only considered MPSAFE if all its interrupt handlers
718 	 * are MPSAFE.  However, if intr_mpsafe has been turned off we
719 	 * always operate with the BGL.
720 	 */
721 #ifdef SMP
722 	if (intr_mpsafe == 0) {
723 	    if (mpheld == 0) {
724 		get_mplock();
725 		mpheld = 1;
726 	    }
727 	} else if (info->i_mplock_required != mpheld) {
728 	    if (info->i_mplock_required) {
729 		KKASSERT(mpheld == 0);
730 		get_mplock();
731 		mpheld = 1;
732 	    } else {
733 		KKASSERT(mpheld != 0);
734 		rel_mplock();
735 		mpheld = 0;
736 	    }
737 	}
738 #endif
739 
740 	/*
741 	 * If an interrupt is pending, clear i_running and execute the
742 	 * handlers.  Note that certain types of interrupts can re-trigger
743 	 * and set i_running again.
744 	 *
745 	 * Each handler is run in a critical section.  Note that we run both
746 	 * FAST and SLOW designated service routines.
747 	 */
748 	if (info->i_running) {
749 	    ++ill_count;
750 	    info->i_running = 0;
751 
752 	    for (rec = *list; rec; rec = nrec) {
753 		nrec = rec->next;
754 		if (rec->serializer) {
755 		    lwkt_serialize_handler_call(rec->serializer, rec->handler,
756 						rec->argument, NULL);
757 		} else {
758 		    rec->handler(rec->argument, NULL);
759 		}
760 	    }
761 	}
762 
763 	/*
764 	 * This is our interrupt hook to add rate randomness to the random
765 	 * number generator.
766 	 */
767 	if (info->i_random.sc_enabled)
768 	    add_interrupt_randomness(intr);
769 
770 	/*
771 	 * Unmask the interrupt to allow it to trigger again.  This only
772 	 * applies to certain types of interrupts (typ level interrupts).
773 	 * This can result in the interrupt retriggering, but the retrigger
774 	 * will not be processed until we cycle our critical section.
775 	 *
776 	 * Only unmask interrupts while handlers are installed.  It is
777 	 * possible to hit a situation where no handlers are installed
778 	 * due to a device driver livelocking and then tearing down its
779 	 * interrupt on close (the parallel bus being a good example).
780 	 */
781 	if (*list)
782 	    machintr_intren(intr);
783 
784 	/*
785 	 * Do a quick exit/enter to catch any higher-priority interrupt
786 	 * sources, such as the statclock, so thread time accounting
787 	 * will still work.  This may also cause an interrupt to re-trigger.
788 	 */
789 	crit_exit_gd(gd);
790 	crit_enter_gd(gd);
791 
792 	/*
793 	 * LIVELOCK STATE MACHINE
794 	 */
795 	switch(info->i_state) {
796 	case ISTATE_NORMAL:
797 	    /*
798 	     * Calculate a running average every tick.
799 	     */
800 	    if (lticks != ticks) {
801 		lticks = ticks;
802 		ill_count -= ill_count / hz;
803 	    }
804 
805 	    /*
806 	     * If we did not exceed the frequency limit, we are done.
807 	     * If the interrupt has not retriggered we deschedule ourselves.
808 	     */
809 	    if (ill_count <= livelock_limit) {
810 		if (info->i_running == 0) {
811 		    lwkt_deschedule_self(gd->gd_curthread);
812 		    lwkt_switch();
813 		}
814 		break;
815 	    }
816 
817 	    /*
818 	     * Otherwise we are livelocked.  Set up a periodic systimer
819 	     * to wake the thread up at the limit frequency.
820 	     */
821 	    printf("intr %d at %d > %d hz, livelocked limit engaged!\n",
822 		   intr, ill_count, livelock_limit);
823 	    info->i_state = ISTATE_LIVELOCKED;
824 	    if ((use_limit = livelock_limit) < 100)
825 		use_limit = 100;
826 	    else if (use_limit > 500000)
827 		use_limit = 500000;
828 	    systimer_init_periodic(&ill_timer, ithread_livelock_wakeup,
829 				   (void *)intr, use_limit);
830 	    lcount = 0;
831 	    /* fall through */
832 	case ISTATE_LIVELOCKED:
833 	    /*
834 	     * Wait for our periodic timer to go off.  Since the interrupt
835 	     * has re-armed it can still set i_running, but it will not
836 	     * reschedule us while we are in a livelocked state.
837 	     */
838 	    lwkt_deschedule_self(gd->gd_curthread);
839 	    lwkt_switch();
840 
841 	    /*
842 	     * Check to see if the livelock condition no longer applies.
843 	     * The interrupt must be able to operate normally for one
844 	     * full second before we restore normal operation.
845 	     */
846 	    if (lticks != ticks) {
847 		lticks = ticks;
848 		if (ill_count < livelock_lowater) {
849 		    if (++lcount >= hz) {
850 			info->i_state = ISTATE_NORMAL;
851 			systimer_del(&ill_timer);
852 			printf("intr %d at %d < %d hz, livelock removed\n",
853 			       intr, ill_count, livelock_lowater);
854 		    }
855 		} else {
856 		    lcount = 0;
857 		}
858 		ill_count -= ill_count / hz;
859 	    }
860 	    break;
861 	}
862     }
863     /* not reached */
864 }
865 
866 /*
867  * Emergency interrupt polling thread.  The thread begins execution
868  * outside a critical section with the BGL held.
869  *
870  * If emergency interrupt polling is enabled, this thread will
871  * execute all system interrupts not marked INTR_NOPOLL at the
872  * specified polling frequency.
873  *
874  * WARNING!  This thread runs *ALL* interrupt service routines that
875  * are not marked INTR_NOPOLL, which basically means everything except
876  * the 8254 clock interrupt and the ATA interrupt.  It has very high
877  * overhead and should only be used in situations where the machine
878  * cannot otherwise be made to work.  Due to the severe performance
879  * degredation, it should not be enabled on production machines.
880  */
881 static void
882 ithread_emergency(void *arg __unused)
883 {
884     struct intr_info *info;
885     intrec_t rec, nrec;
886     int intr;
887 
888     for (;;) {
889 	for (intr = 0; intr < max_installed_hard_intr; ++intr) {
890 	    info = &intr_info_ary[intr];
891 	    for (rec = info->i_reclist; rec; rec = nrec) {
892 		if ((rec->intr_flags & INTR_NOPOLL) == 0) {
893 		    if (rec->serializer) {
894 			lwkt_serialize_handler_call(rec->serializer,
895 						rec->handler, rec->argument, NULL);
896 		    } else {
897 			rec->handler(rec->argument, NULL);
898 		    }
899 		}
900 		nrec = rec->next;
901 	    }
902 	}
903 	lwkt_deschedule_self(curthread);
904 	lwkt_switch();
905     }
906 }
907 
908 /*
909  * Systimer callback - schedule the emergency interrupt poll thread
910  * 		       if emergency polling is enabled.
911  */
912 static
913 void
914 emergency_intr_timer_callback(systimer_t info, struct intrframe *frame __unused)
915 {
916     if (emergency_intr_enable)
917 	lwkt_schedule(info->data);
918 }
919 
920 /*
921  * Sysctls used by systat and others: hw.intrnames and hw.intrcnt.
922  * The data for this machine dependent, and the declarations are in machine
923  * dependent code.  The layout of intrnames and intrcnt however is machine
924  * independent.
925  *
926  * We do not know the length of intrcnt and intrnames at compile time, so
927  * calculate things at run time.
928  */
929 
930 static int
931 sysctl_intrnames(SYSCTL_HANDLER_ARGS)
932 {
933     struct intr_info *info;
934     intrec_t rec;
935     int error = 0;
936     int len;
937     int intr;
938     char buf[64];
939 
940     for (intr = 0; error == 0 && intr < MAX_INTS; ++intr) {
941 	info = &intr_info_ary[intr];
942 
943 	len = 0;
944 	buf[0] = 0;
945 	for (rec = info->i_reclist; rec; rec = rec->next) {
946 	    snprintf(buf + len, sizeof(buf) - len, "%s%s",
947 		(len ? "/" : ""), rec->name);
948 	    len += strlen(buf + len);
949 	}
950 	if (len == 0) {
951 	    snprintf(buf, sizeof(buf), "irq%d", intr);
952 	    len = strlen(buf);
953 	}
954 	error = SYSCTL_OUT(req, buf, len + 1);
955     }
956     return (error);
957 }
958 
959 
960 SYSCTL_PROC(_hw, OID_AUTO, intrnames, CTLTYPE_OPAQUE | CTLFLAG_RD,
961 	NULL, 0, sysctl_intrnames, "", "Interrupt Names");
962 
963 static int
964 sysctl_intrcnt(SYSCTL_HANDLER_ARGS)
965 {
966     struct intr_info *info;
967     int error = 0;
968     int intr;
969 
970     for (intr = 0; intr < max_installed_hard_intr; ++intr) {
971 	info = &intr_info_ary[intr];
972 
973 	error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count));
974 	if (error)
975 		goto failed;
976     }
977     for (intr = FIRST_SOFTINT; intr < max_installed_soft_intr; ++intr) {
978 	info = &intr_info_ary[intr];
979 
980 	error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count));
981 	if (error)
982 		goto failed;
983     }
984 failed:
985     return(error);
986 }
987 
988 SYSCTL_PROC(_hw, OID_AUTO, intrcnt, CTLTYPE_OPAQUE | CTLFLAG_RD,
989 	NULL, 0, sysctl_intrcnt, "", "Interrupt Counts");
990 
991