xref: /dragonfly/sys/kern/kern_intr.c (revision f2c43266)
1 /*
2  * Copyright (c) 2003 Matthew Dillon <dillon@backplane.com> All rights reserved.
3  * Copyright (c) 1997, Stefan Esser <se@freebsd.org> All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/kern_intr.c,v 1.24.2.1 2001/10/14 20:05:50 luigi Exp $
27  *
28  */
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/malloc.h>
33 #include <sys/kernel.h>
34 #include <sys/sysctl.h>
35 #include <sys/thread.h>
36 #include <sys/proc.h>
37 #include <sys/random.h>
38 #include <sys/serialize.h>
39 #include <sys/interrupt.h>
40 #include <sys/bus.h>
41 #include <sys/machintr.h>
42 
43 #include <machine/frame.h>
44 
45 #include <sys/thread2.h>
46 #include <sys/mplock2.h>
47 
48 struct intr_info;
49 
50 typedef struct intrec {
51     struct intrec *next;
52     struct intr_info *info;
53     inthand2_t	*handler;
54     void	*argument;
55     char	*name;
56     int		intr;
57     int		intr_flags;
58     struct lwkt_serialize *serializer;
59 } *intrec_t;
60 
61 struct intr_info {
62 	intrec_t	i_reclist;
63 	struct thread	*i_thread;	/* don't embed struct thread */
64 	struct random_softc i_random;
65 	int		i_running;
66 	long		i_count;	/* interrupts dispatched */
67 	int		i_mplock_required;
68 	int		i_fast;
69 	int		i_slow;
70 	int		i_state;
71 	int		i_errorticks;
72 	unsigned long	i_straycount;
73 	int		i_cpuid;
74 	int		i_intr;
75 };
76 
77 struct intr_info_block {
78 	struct intr_info ary[MAXCPU][MAX_INTS];
79 };
80 
81 static struct intr_info_block *intr_block;
82 static struct intr_info *swi_info_ary[MAX_SOFTINTS];
83 
84 static int max_installed_hard_intr[MAXCPU];
85 
86 MALLOC_DEFINE(M_INTRMNG, "intrmng", "interrupt management");
87 
88 
89 #define EMERGENCY_INTR_POLLING_FREQ_MAX 20000
90 
91 /*
92  * Assert that callers into interrupt handlers don't return with
93  * dangling tokens, spinlocks, or mp locks.
94  */
95 #ifdef INVARIANTS
96 
97 #define TD_INVARIANTS_DECLARE   \
98         int spincount;          \
99         lwkt_tokref_t curstop
100 
101 #define TD_INVARIANTS_GET(td)                                   \
102         do {                                                    \
103                 spincount = (td)->td_gd->gd_spinlocks;		\
104                 curstop = (td)->td_toks_stop;                   \
105         } while(0)
106 
107 #define TD_INVARIANTS_TEST(td, name)                                    \
108         do {                                                            \
109                 KASSERT(spincount == (td)->td_gd->gd_spinlocks,		\
110                         ("spincount mismatch after interrupt handler %s", \
111                         name));                                         \
112                 KASSERT(curstop == (td)->td_toks_stop,                  \
113                         ("token count mismatch after interrupt handler %s", \
114                         name));                                         \
115         } while(0)
116 
117 #else
118 
119 /* !INVARIANTS */
120 
121 #define TD_INVARIANTS_DECLARE
122 #define TD_INVARIANTS_GET(td)
123 #define TD_INVARIANTS_TEST(td, name)
124 
125 #endif /* ndef INVARIANTS */
126 
127 static int sysctl_emergency_freq(SYSCTL_HANDLER_ARGS);
128 static int sysctl_emergency_enable(SYSCTL_HANDLER_ARGS);
129 static void emergency_intr_timer_callback(systimer_t, int, struct intrframe *);
130 static void ithread_handler(void *arg);
131 static void ithread_emergency(void *arg);
132 static void report_stray_interrupt(struct intr_info *info, const char *func);
133 static void int_moveto_destcpu(int *, int);
134 static void int_moveto_origcpu(int, int);
135 static void sched_ithd_intern(struct intr_info *info);
136 
137 static struct systimer emergency_intr_timer[MAXCPU];
138 static struct thread *emergency_intr_thread[MAXCPU];
139 
140 #define ISTATE_NOTHREAD		0
141 #define ISTATE_NORMAL		1
142 #define ISTATE_LIVELOCKED	2
143 
144 static int livelock_limit = 40000;
145 static int livelock_lowater = 20000;
146 static int livelock_debug = -1;
147 SYSCTL_INT(_kern, OID_AUTO, livelock_limit,
148         CTLFLAG_RW, &livelock_limit, 0, "Livelock interrupt rate limit");
149 SYSCTL_INT(_kern, OID_AUTO, livelock_lowater,
150         CTLFLAG_RW, &livelock_lowater, 0, "Livelock low-water mark restore");
151 SYSCTL_INT(_kern, OID_AUTO, livelock_debug,
152         CTLFLAG_RW, &livelock_debug, 0, "Livelock debug intr#");
153 
154 static int emergency_intr_enable = 0;	/* emergency interrupt polling */
155 TUNABLE_INT("kern.emergency_intr_enable", &emergency_intr_enable);
156 SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_enable, CTLTYPE_INT | CTLFLAG_RW,
157         0, 0, sysctl_emergency_enable, "I", "Emergency Interrupt Poll Enable");
158 
159 static int emergency_intr_freq = 10;	/* emergency polling frequency */
160 TUNABLE_INT("kern.emergency_intr_freq", &emergency_intr_freq);
161 SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_freq, CTLTYPE_INT | CTLFLAG_RW,
162         0, 0, sysctl_emergency_freq, "I", "Emergency Interrupt Poll Frequency");
163 
164 /*
165  * Sysctl support routines
166  */
167 static int
168 sysctl_emergency_enable(SYSCTL_HANDLER_ARGS)
169 {
170 	int error, enabled, cpuid, freq;
171 
172 	enabled = emergency_intr_enable;
173 	error = sysctl_handle_int(oidp, &enabled, 0, req);
174 	if (error || req->newptr == NULL)
175 		return error;
176 	emergency_intr_enable = enabled;
177 	if (emergency_intr_enable)
178 		freq = emergency_intr_freq;
179 	else
180 		freq = 1;
181 
182 	for (cpuid = 0; cpuid < ncpus; ++cpuid)
183 		systimer_adjust_periodic(&emergency_intr_timer[cpuid], freq);
184 	return 0;
185 }
186 
187 static int
188 sysctl_emergency_freq(SYSCTL_HANDLER_ARGS)
189 {
190         int error, phz, cpuid, freq;
191 
192         phz = emergency_intr_freq;
193         error = sysctl_handle_int(oidp, &phz, 0, req);
194         if (error || req->newptr == NULL)
195                 return error;
196         if (phz <= 0)
197                 return EINVAL;
198         else if (phz > EMERGENCY_INTR_POLLING_FREQ_MAX)
199                 phz = EMERGENCY_INTR_POLLING_FREQ_MAX;
200 
201         emergency_intr_freq = phz;
202 	if (emergency_intr_enable)
203 		freq = emergency_intr_freq;
204 	else
205 		freq = 1;
206 
207 	for (cpuid = 0; cpuid < ncpus; ++cpuid)
208 		systimer_adjust_periodic(&emergency_intr_timer[cpuid], freq);
209         return 0;
210 }
211 
212 /*
213  * Register an SWI or INTerrupt handler.
214  */
215 void *
216 register_swi(int intr, inthand2_t *handler, void *arg, const char *name,
217 		struct lwkt_serialize *serializer, int cpuid)
218 {
219     if (intr < FIRST_SOFTINT || intr >= MAX_INTS)
220 	panic("register_swi: bad intr %d", intr);
221 
222     if (cpuid < 0)
223 	cpuid = intr % ncpus;
224     return(register_int(intr, handler, arg, name, serializer, 0, cpuid));
225 }
226 
227 void *
228 register_swi_mp(int intr, inthand2_t *handler, void *arg, const char *name,
229 		struct lwkt_serialize *serializer, int cpuid)
230 {
231     if (intr < FIRST_SOFTINT || intr >= MAX_INTS)
232 	panic("register_swi: bad intr %d", intr);
233 
234     if (cpuid < 0)
235 	cpuid = intr % ncpus;
236     return(register_int(intr, handler, arg, name, serializer,
237         INTR_MPSAFE, cpuid));
238 }
239 
240 void *
241 register_int(int intr, inthand2_t *handler, void *arg, const char *name,
242 		struct lwkt_serialize *serializer, int intr_flags, int cpuid)
243 {
244     struct intr_info *info;
245     struct intrec **list;
246     intrec_t rec;
247     int orig_cpuid;
248 
249     KKASSERT(cpuid >= 0 && cpuid < ncpus);
250 
251     if (intr < 0 || intr >= MAX_INTS)
252 	panic("register_int: bad intr %d", intr);
253     if (name == NULL)
254 	name = "???";
255     info = &intr_block->ary[cpuid][intr];
256 
257     /*
258      * Construct an interrupt handler record
259      */
260     rec = kmalloc(sizeof(struct intrec), M_DEVBUF, M_INTWAIT);
261     rec->name = kmalloc(strlen(name) + 1, M_DEVBUF, M_INTWAIT);
262     strcpy(rec->name, name);
263 
264     rec->info = info;
265     rec->handler = handler;
266     rec->argument = arg;
267     rec->intr = intr;
268     rec->intr_flags = intr_flags;
269     rec->next = NULL;
270     rec->serializer = serializer;
271 
272     int_moveto_destcpu(&orig_cpuid, cpuid);
273 
274     /*
275      * Create an emergency polling thread and set up a systimer to wake
276      * it up.  objcache isn't operational yet so use kmalloc.
277      *
278      * objcache may not be operational yet, use kmalloc().
279      */
280     if (emergency_intr_thread[cpuid] == NULL) {
281 	emergency_intr_thread[cpuid] = kmalloc(sizeof(struct thread), M_DEVBUF,
282 					       M_INTWAIT | M_ZERO);
283 	lwkt_create(ithread_emergency, NULL, NULL,
284 		    emergency_intr_thread[cpuid],
285 		    TDF_NOSTART | TDF_INTTHREAD, cpuid, "ithreadE %d",
286 		    cpuid);
287 	systimer_init_periodic_nq(&emergency_intr_timer[cpuid],
288 		    emergency_intr_timer_callback,
289 		    emergency_intr_thread[cpuid],
290 		    (emergency_intr_enable ? emergency_intr_freq : 1));
291     }
292 
293     /*
294      * Create an interrupt thread if necessary, leave it in an unscheduled
295      * state.
296      */
297     if (info->i_state == ISTATE_NOTHREAD) {
298 	info->i_state = ISTATE_NORMAL;
299 	info->i_thread = kmalloc(sizeof(struct thread), M_DEVBUF,
300 				 M_INTWAIT | M_ZERO);
301 	lwkt_create(ithread_handler, (void *)(intptr_t)intr, NULL,
302 		    info->i_thread, TDF_NOSTART | TDF_INTTHREAD, cpuid,
303 		    "ithread%d %d", intr, cpuid);
304 	if (intr >= FIRST_SOFTINT)
305 	    lwkt_setpri(info->i_thread, TDPRI_SOFT_NORM);
306 	else
307 	    lwkt_setpri(info->i_thread, TDPRI_INT_MED);
308 	info->i_thread->td_preemptable = lwkt_preempt;
309     }
310 
311     list = &info->i_reclist;
312 
313     /*
314      * Keep track of how many fast and slow interrupts we have.
315      * Set i_mplock_required if any handler in the chain requires
316      * the MP lock to operate.
317      */
318     if ((intr_flags & INTR_MPSAFE) == 0)
319 	info->i_mplock_required = 1;
320     if (intr_flags & INTR_CLOCK)
321 	++info->i_fast;
322     else
323 	++info->i_slow;
324 
325     /*
326      * Enable random number generation keying off of this interrupt.
327      */
328     if ((intr_flags & INTR_NOENTROPY) == 0 && info->i_random.sc_enabled == 0) {
329 	info->i_random.sc_enabled = 1;
330 	info->i_random.sc_intr = intr;
331     }
332 
333     /*
334      * Add the record to the interrupt list.
335      */
336     crit_enter();
337     while (*list != NULL)
338 	list = &(*list)->next;
339     *list = rec;
340     crit_exit();
341 
342     /*
343      * Update max_installed_hard_intr to make the emergency intr poll
344      * a bit more efficient.
345      */
346     if (intr < FIRST_SOFTINT) {
347 	if (max_installed_hard_intr[cpuid] <= intr)
348 	    max_installed_hard_intr[cpuid] = intr + 1;
349     }
350 
351     if (intr >= FIRST_SOFTINT)
352 	swi_info_ary[intr - FIRST_SOFTINT] = info;
353 
354     /*
355      * Setup the machine level interrupt vector
356      */
357     if (intr < FIRST_SOFTINT && info->i_slow + info->i_fast == 1)
358 	machintr_intr_setup(intr, intr_flags);
359 
360     int_moveto_origcpu(orig_cpuid, cpuid);
361 
362     return(rec);
363 }
364 
365 void
366 unregister_swi(void *id, int intr, int cpuid)
367 {
368     if (cpuid < 0)
369 	cpuid = intr % ncpus;
370 
371     unregister_int(id, cpuid);
372 }
373 
374 void
375 unregister_int(void *id, int cpuid)
376 {
377     struct intr_info *info;
378     struct intrec **list;
379     intrec_t rec;
380     int intr, orig_cpuid;
381 
382     KKASSERT(cpuid >= 0 && cpuid < ncpus);
383 
384     intr = ((intrec_t)id)->intr;
385 
386     if (intr < 0 || intr >= MAX_INTS)
387 	panic("register_int: bad intr %d", intr);
388 
389     info = &intr_block->ary[cpuid][intr];
390 
391     int_moveto_destcpu(&orig_cpuid, cpuid);
392 
393     /*
394      * Remove the interrupt descriptor, adjust the descriptor count,
395      * and teardown the machine level vector if this was the last interrupt.
396      */
397     crit_enter();
398     list = &info->i_reclist;
399     while ((rec = *list) != NULL) {
400 	if (rec == id)
401 	    break;
402 	list = &rec->next;
403     }
404     if (rec) {
405 	intrec_t rec0;
406 
407 	*list = rec->next;
408 	if (rec->intr_flags & INTR_CLOCK)
409 	    --info->i_fast;
410 	else
411 	    --info->i_slow;
412 	if (intr < FIRST_SOFTINT && info->i_fast + info->i_slow == 0)
413 	    machintr_intr_teardown(intr);
414 
415 	/*
416 	 * Clear i_mplock_required if no handlers in the chain require the
417 	 * MP lock.
418 	 */
419 	for (rec0 = info->i_reclist; rec0; rec0 = rec0->next) {
420 	    if ((rec0->intr_flags & INTR_MPSAFE) == 0)
421 		break;
422 	}
423 	if (rec0 == NULL)
424 	    info->i_mplock_required = 0;
425     }
426 
427     if (intr >= FIRST_SOFTINT && info->i_reclist == NULL)
428 	swi_info_ary[intr - FIRST_SOFTINT] = NULL;
429 
430     crit_exit();
431 
432     int_moveto_origcpu(orig_cpuid, cpuid);
433 
434     /*
435      * Free the record.
436      */
437     if (rec != NULL) {
438 	kfree(rec->name, M_DEVBUF);
439 	kfree(rec, M_DEVBUF);
440     } else {
441 	kprintf("warning: unregister_int: int %d handler for %s not found\n",
442 		intr, ((intrec_t)id)->name);
443     }
444 }
445 
446 long
447 get_interrupt_counter(int intr, int cpuid)
448 {
449     struct intr_info *info;
450 
451     KKASSERT(cpuid >= 0 && cpuid < ncpus);
452 
453     if (intr < 0 || intr >= MAX_INTS)
454 	panic("register_int: bad intr %d", intr);
455     info = &intr_block->ary[cpuid][intr];
456     return(info->i_count);
457 }
458 
459 void
460 register_randintr(int intr)
461 {
462     struct intr_info *info;
463     int cpuid;
464 
465     if (intr < 0 || intr >= MAX_INTS)
466 	panic("register_randintr: bad intr %d", intr);
467 
468     for (cpuid = 0; cpuid < ncpus; ++cpuid) {
469 	info = &intr_block->ary[cpuid][intr];
470 	info->i_random.sc_intr = intr;
471 	info->i_random.sc_enabled = 1;
472     }
473 }
474 
475 void
476 unregister_randintr(int intr)
477 {
478     struct intr_info *info;
479     int cpuid;
480 
481     if (intr < 0 || intr >= MAX_INTS)
482 	panic("register_swi: bad intr %d", intr);
483 
484     for (cpuid = 0; cpuid < ncpus; ++cpuid) {
485 	info = &intr_block->ary[cpuid][intr];
486 	info->i_random.sc_enabled = -1;
487     }
488 }
489 
490 int
491 next_registered_randintr(int intr)
492 {
493     struct intr_info *info;
494 
495     if (intr < 0 || intr >= MAX_INTS)
496 	panic("register_swi: bad intr %d", intr);
497 
498     while (intr < MAX_INTS) {
499 	int cpuid;
500 
501 	for (cpuid = 0; cpuid < ncpus; ++cpuid) {
502 	    info = &intr_block->ary[cpuid][intr];
503 	    if (info->i_random.sc_enabled > 0)
504 		return intr;
505 	}
506 	++intr;
507     }
508     return intr;
509 }
510 
511 /*
512  * Dispatch an interrupt.  If there's nothing to do we have a stray
513  * interrupt and can just return, leaving the interrupt masked.
514  *
515  * We need to schedule the interrupt and set its i_running bit.  If
516  * we are not on the interrupt thread's cpu we have to send a message
517  * to the correct cpu that will issue the desired action (interlocking
518  * with the interrupt thread's critical section).  We do NOT attempt to
519  * reschedule interrupts whos i_running bit is already set because
520  * this would prematurely wakeup a livelock-limited interrupt thread.
521  *
522  * i_running is only tested/set on the same cpu as the interrupt thread.
523  *
524  * We are NOT in a critical section, which will allow the scheduled
525  * interrupt to preempt us.  The MP lock might *NOT* be held here.
526  */
527 static void
528 sched_ithd_remote(void *arg)
529 {
530     sched_ithd_intern(arg);
531 }
532 
533 static void
534 sched_ithd_intern(struct intr_info *info)
535 {
536     ++info->i_count;
537     if (info->i_state != ISTATE_NOTHREAD) {
538 	if (info->i_reclist == NULL) {
539 	    report_stray_interrupt(info, "sched_ithd");
540 	} else {
541 	    if (info->i_thread->td_gd == mycpu) {
542 		if (info->i_running == 0) {
543 		    info->i_running = 1;
544 		    if (info->i_state != ISTATE_LIVELOCKED)
545 			lwkt_schedule(info->i_thread); /* MIGHT PREEMPT */
546 		}
547 	    } else {
548 		lwkt_send_ipiq(info->i_thread->td_gd, sched_ithd_remote, info);
549 	    }
550 	}
551     } else {
552 	report_stray_interrupt(info, "sched_ithd");
553     }
554 }
555 
556 void
557 sched_ithd_soft(int intr)
558 {
559 	struct intr_info *info;
560 
561 	KKASSERT(intr >= FIRST_SOFTINT && intr < MAX_INTS);
562 
563 	info = swi_info_ary[intr - FIRST_SOFTINT];
564 	if (info != NULL) {
565 		sched_ithd_intern(info);
566 	} else {
567 		kprintf("unregistered softint %d got scheduled on cpu%d\n",
568 		    intr, mycpuid);
569 	}
570 }
571 
572 void
573 sched_ithd_hard(int intr)
574 {
575 	KKASSERT(intr >= 0 && intr < MAX_HARDINTS);
576 	sched_ithd_intern(&intr_block->ary[mycpuid][intr]);
577 }
578 
579 #ifdef _KERNEL_VIRTUAL
580 
581 void
582 sched_ithd_hard_virtual(int intr)
583 {
584 	KKASSERT(intr >= 0 && intr < MAX_HARDINTS);
585 	sched_ithd_intern(&intr_block->ary[0][intr]);
586 }
587 
588 void *
589 register_int_virtual(int intr, inthand2_t *handler, void *arg, const char *name,
590     struct lwkt_serialize *serializer, int intr_flags)
591 {
592 	return register_int(intr, handler, arg, name, serializer, intr_flags, 0);
593 }
594 
595 void
596 unregister_int_virtual(void *id)
597 {
598 	unregister_int(id, 0);
599 }
600 
601 #endif	/* _KERN_VIRTUAL */
602 
603 static void
604 report_stray_interrupt(struct intr_info *info, const char *func)
605 {
606 	++info->i_straycount;
607 	if (info->i_straycount < 10) {
608 		if (info->i_errorticks == ticks)
609 			return;
610 		info->i_errorticks = ticks;
611 		kprintf("%s: stray interrupt %d on cpu%d\n",
612 		    func, info->i_intr, mycpuid);
613 	} else if (info->i_straycount == 10) {
614 		kprintf("%s: %ld stray interrupts %d on cpu%d - "
615 			"there will be no further reports\n", func,
616 			info->i_straycount, info->i_intr, mycpuid);
617 	}
618 }
619 
620 /*
621  * This is run from a periodic SYSTIMER (and thus must be MP safe, the BGL
622  * might not be held).
623  */
624 static void
625 ithread_livelock_wakeup(systimer_t st, int in_ipi __unused,
626     struct intrframe *frame __unused)
627 {
628     struct intr_info *info;
629 
630     info = &intr_block->ary[mycpuid][(int)(intptr_t)st->data];
631     if (info->i_state != ISTATE_NOTHREAD)
632 	lwkt_schedule(info->i_thread);
633 }
634 
635 /*
636  * Schedule ithread within fast intr handler
637  *
638  * XXX Protect sched_ithd_hard() call with gd_intr_nesting_level?
639  * Interrupts aren't enabled, but still...
640  */
641 static __inline void
642 ithread_fast_sched(int intr, thread_t td)
643 {
644     ++td->td_nest_count;
645 
646     /*
647      * We are already in critical section, exit it now to
648      * allow preemption.
649      */
650     crit_exit_quick(td);
651     sched_ithd_hard(intr);
652     crit_enter_quick(td);
653 
654     --td->td_nest_count;
655 }
656 
657 /*
658  * This function is called directly from the ICU or APIC vector code assembly
659  * to process an interrupt.  The critical section and interrupt deferral
660  * checks have already been done but the function is entered WITHOUT
661  * a critical section held.  The BGL may or may not be held.
662  *
663  * Must return non-zero if we do not want the vector code to re-enable
664  * the interrupt (which we don't if we have to schedule the interrupt)
665  */
666 int ithread_fast_handler(struct intrframe *frame);
667 
668 int
669 ithread_fast_handler(struct intrframe *frame)
670 {
671     int intr;
672     struct intr_info *info;
673     struct intrec **list;
674     int must_schedule;
675     int got_mplock;
676     TD_INVARIANTS_DECLARE;
677     intrec_t rec, nrec;
678     globaldata_t gd;
679     thread_t td;
680 
681     intr = frame->if_vec;
682     gd = mycpu;
683     td = curthread;
684 
685     /* We must be in critical section. */
686     KKASSERT(td->td_critcount);
687 
688     info = &intr_block->ary[mycpuid][intr];
689 
690     /*
691      * If we are not processing any FAST interrupts, just schedule the thing.
692      */
693     if (info->i_fast == 0) {
694     	++gd->gd_cnt.v_intr;
695 	ithread_fast_sched(intr, td);
696 	return(1);
697     }
698 
699     /*
700      * This should not normally occur since interrupts ought to be
701      * masked if the ithread has been scheduled or is running.
702      */
703     if (info->i_running)
704 	return(1);
705 
706     /*
707      * Bump the interrupt nesting level to process any FAST interrupts.
708      * Obtain the MP lock as necessary.  If the MP lock cannot be obtained,
709      * schedule the interrupt thread to deal with the issue instead.
710      *
711      * To reduce overhead, just leave the MP lock held once it has been
712      * obtained.
713      */
714     ++gd->gd_intr_nesting_level;
715     ++gd->gd_cnt.v_intr;
716     must_schedule = info->i_slow;
717     got_mplock = 0;
718 
719     TD_INVARIANTS_GET(td);
720     list = &info->i_reclist;
721 
722     for (rec = *list; rec; rec = nrec) {
723 	/* rec may be invalid after call */
724 	nrec = rec->next;
725 
726 	if (rec->intr_flags & INTR_CLOCK) {
727 	    if ((rec->intr_flags & INTR_MPSAFE) == 0 && got_mplock == 0) {
728 		if (try_mplock() == 0) {
729 		    /* Couldn't get the MP lock; just schedule it. */
730 		    must_schedule = 1;
731 		    break;
732 		}
733 		got_mplock = 1;
734 	    }
735 	    if (rec->serializer) {
736 		must_schedule += lwkt_serialize_handler_try(
737 					rec->serializer, rec->handler,
738 					rec->argument, frame);
739 	    } else {
740 		rec->handler(rec->argument, frame);
741 	    }
742 	    TD_INVARIANTS_TEST(td, rec->name);
743 	}
744     }
745 
746     /*
747      * Cleanup
748      */
749     --gd->gd_intr_nesting_level;
750     if (got_mplock)
751 	rel_mplock();
752 
753     /*
754      * If we had a problem, or mixed fast and slow interrupt handlers are
755      * registered, schedule the ithread to catch the missed records (it
756      * will just re-run all of them).  A return value of 0 indicates that
757      * all handlers have been run and the interrupt can be re-enabled, and
758      * a non-zero return indicates that the interrupt thread controls
759      * re-enablement.
760      */
761     if (must_schedule > 0)
762 	ithread_fast_sched(intr, td);
763     else if (must_schedule == 0)
764 	++info->i_count;
765     return(must_schedule);
766 }
767 
768 /*
769  * Interrupt threads run this as their main loop.
770  *
771  * The handler begins execution outside a critical section and no MP lock.
772  *
773  * The i_running state starts at 0.  When an interrupt occurs, the hardware
774  * interrupt is disabled and sched_ithd_hard().  The HW interrupt remains
775  * disabled until all routines have run.  We then call machintr_intr_enable()
776  * to reenable the HW interrupt and deschedule us until the next interrupt.
777  *
778  * We are responsible for atomically checking i_running.  i_running for our
779  * irq is only set in the context of our cpu, so a critical section is a
780  * sufficient interlock.
781  */
782 #define LIVELOCK_TIMEFRAME(freq)	((freq) >> 2)	/* 1/4 second */
783 
784 static void
785 ithread_handler(void *arg)
786 {
787     struct intr_info *info;
788     int use_limit;
789     uint32_t lseconds;
790     int intr, cpuid = mycpuid;
791     int mpheld;
792     struct intrec **list;
793     intrec_t rec, nrec;
794     globaldata_t gd;
795     struct systimer ill_timer;	/* enforced freq. timer */
796     u_int ill_count;		/* interrupt livelock counter */
797     TD_INVARIANTS_DECLARE;
798 
799     ill_count = 0;
800     intr = (int)(intptr_t)arg;
801     info = &intr_block->ary[cpuid][intr];
802     list = &info->i_reclist;
803 
804     /*
805      * The loop must be entered with one critical section held.  The thread
806      * does not hold the mplock on startup.
807      */
808     gd = mycpu;
809     lseconds = gd->gd_time_seconds;
810     crit_enter_gd(gd);
811     mpheld = 0;
812 
813     for (;;) {
814 	/*
815 	 * The chain is only considered MPSAFE if all its interrupt handlers
816 	 * are MPSAFE.  However, if intr_mpsafe has been turned off we
817 	 * always operate with the BGL.
818 	 */
819 	if (info->i_mplock_required != mpheld) {
820 	    if (info->i_mplock_required) {
821 		KKASSERT(mpheld == 0);
822 		get_mplock();
823 		mpheld = 1;
824 	    } else {
825 		KKASSERT(mpheld != 0);
826 		rel_mplock();
827 		mpheld = 0;
828 	    }
829 	}
830 
831 	TD_INVARIANTS_GET(gd->gd_curthread);
832 
833 	/*
834 	 * If an interrupt is pending, clear i_running and execute the
835 	 * handlers.  Note that certain types of interrupts can re-trigger
836 	 * and set i_running again.
837 	 *
838 	 * Each handler is run in a critical section.  Note that we run both
839 	 * FAST and SLOW designated service routines.
840 	 */
841 	if (info->i_running) {
842 	    ++ill_count;
843 	    info->i_running = 0;
844 
845 	    if (*list == NULL)
846 		report_stray_interrupt(info, "ithread_handler");
847 
848 	    for (rec = *list; rec; rec = nrec) {
849 		/* rec may be invalid after call */
850 		nrec = rec->next;
851 		if (rec->serializer) {
852 		    lwkt_serialize_handler_call(rec->serializer, rec->handler,
853 						rec->argument, NULL);
854 		} else {
855 		    rec->handler(rec->argument, NULL);
856 		}
857 		TD_INVARIANTS_TEST(gd->gd_curthread, rec->name);
858 	    }
859 	}
860 
861 	/*
862 	 * This is our interrupt hook to add rate randomness to the random
863 	 * number generator.
864 	 */
865 	if (info->i_random.sc_enabled > 0)
866 	    add_interrupt_randomness(intr);
867 
868 	/*
869 	 * Unmask the interrupt to allow it to trigger again.  This only
870 	 * applies to certain types of interrupts (typ level interrupts).
871 	 * This can result in the interrupt retriggering, but the retrigger
872 	 * will not be processed until we cycle our critical section.
873 	 *
874 	 * Only unmask interrupts while handlers are installed.  It is
875 	 * possible to hit a situation where no handlers are installed
876 	 * due to a device driver livelocking and then tearing down its
877 	 * interrupt on close (the parallel bus being a good example).
878 	 */
879 	if (intr < FIRST_SOFTINT && *list)
880 	    machintr_intr_enable(intr);
881 
882 	/*
883 	 * Do a quick exit/enter to catch any higher-priority interrupt
884 	 * sources, such as the statclock, so thread time accounting
885 	 * will still work.  This may also cause an interrupt to re-trigger.
886 	 */
887 	crit_exit_gd(gd);
888 	crit_enter_gd(gd);
889 
890 	/*
891 	 * LIVELOCK STATE MACHINE
892 	 */
893 	switch(info->i_state) {
894 	case ISTATE_NORMAL:
895 	    /*
896 	     * Reset the count each second.
897 	     */
898 	    if (lseconds != gd->gd_time_seconds) {
899 		lseconds = gd->gd_time_seconds;
900 		ill_count = 0;
901 	    }
902 
903 	    /*
904 	     * If we did not exceed the frequency limit, we are done.
905 	     * If the interrupt has not retriggered we deschedule ourselves.
906 	     */
907 	    if (ill_count <= livelock_limit) {
908 		if (info->i_running == 0) {
909 		    lwkt_deschedule_self(gd->gd_curthread);
910 		    lwkt_switch();
911 		}
912 		break;
913 	    }
914 
915 	    /*
916 	     * Otherwise we are livelocked.  Set up a periodic systimer
917 	     * to wake the thread up at the limit frequency.
918 	     */
919 	    kprintf("intr %d on cpu%d at %d/%d hz, livelocked limit engaged!\n",
920 		    intr, cpuid, ill_count, livelock_limit);
921 	    info->i_state = ISTATE_LIVELOCKED;
922 	    if ((use_limit = livelock_limit) < 100)
923 		use_limit = 100;
924 	    else if (use_limit > 500000)
925 		use_limit = 500000;
926 	    systimer_init_periodic_nq(&ill_timer, ithread_livelock_wakeup,
927 				      (void *)(intptr_t)intr, use_limit);
928 	    /* fall through */
929 	case ISTATE_LIVELOCKED:
930 	    /*
931 	     * Wait for our periodic timer to go off.  Since the interrupt
932 	     * has re-armed it can still set i_running, but it will not
933 	     * reschedule us while we are in a livelocked state.
934 	     */
935 	    lwkt_deschedule_self(gd->gd_curthread);
936 	    lwkt_switch();
937 
938 	    /*
939 	     * Check once a second to see if the livelock condition no
940 	     * longer applies.
941 	     */
942 	    if (lseconds != gd->gd_time_seconds) {
943 		lseconds = gd->gd_time_seconds;
944 		if (ill_count < livelock_lowater) {
945 		    info->i_state = ISTATE_NORMAL;
946 		    systimer_del(&ill_timer);
947 		    kprintf("intr %d on cpu%d at %d/%d hz, livelock removed\n",
948 			    intr, cpuid, ill_count, livelock_lowater);
949 		} else if (livelock_debug == intr ||
950 			   (bootverbose && cold)) {
951 		    kprintf("intr %d on cpu%d at %d/%d hz, in livelock\n",
952 			    intr, cpuid, ill_count, livelock_lowater);
953 		}
954 		ill_count = 0;
955 	    }
956 	    break;
957 	}
958     }
959     /* NOT REACHED */
960 }
961 
962 /*
963  * Emergency interrupt polling thread.  The thread begins execution
964  * outside a critical section with the BGL held.
965  *
966  * If emergency interrupt polling is enabled, this thread will
967  * execute all system interrupts not marked INTR_NOPOLL at the
968  * specified polling frequency.
969  *
970  * WARNING!  This thread runs *ALL* interrupt service routines that
971  * are not marked INTR_NOPOLL, which basically means everything except
972  * the 8254 clock interrupt and the ATA interrupt.  It has very high
973  * overhead and should only be used in situations where the machine
974  * cannot otherwise be made to work.  Due to the severe performance
975  * degredation, it should not be enabled on production machines.
976  */
977 static void
978 ithread_emergency(void *arg __unused)
979 {
980     globaldata_t gd = mycpu;
981     struct intr_info *info;
982     intrec_t rec, nrec;
983     int intr, cpuid = mycpuid;
984     TD_INVARIANTS_DECLARE;
985 
986     get_mplock();
987     crit_enter_gd(gd);
988     TD_INVARIANTS_GET(gd->gd_curthread);
989 
990     for (;;) {
991 	for (intr = 0; intr < max_installed_hard_intr[cpuid]; ++intr) {
992 	    info = &intr_block->ary[cpuid][intr];
993 	    for (rec = info->i_reclist; rec; rec = nrec) {
994 		/* rec may be invalid after call */
995 		nrec = rec->next;
996 		if ((rec->intr_flags & INTR_NOPOLL) == 0) {
997 		    if (rec->serializer) {
998 			lwkt_serialize_handler_try(rec->serializer,
999 						rec->handler, rec->argument, NULL);
1000 		    } else {
1001 			rec->handler(rec->argument, NULL);
1002 		    }
1003 		    TD_INVARIANTS_TEST(gd->gd_curthread, rec->name);
1004 		}
1005 	    }
1006 	}
1007 	lwkt_deschedule_self(gd->gd_curthread);
1008 	lwkt_switch();
1009     }
1010     /* NOT REACHED */
1011 }
1012 
1013 /*
1014  * Systimer callback - schedule the emergency interrupt poll thread
1015  * 		       if emergency polling is enabled.
1016  */
1017 static
1018 void
1019 emergency_intr_timer_callback(systimer_t info, int in_ipi __unused,
1020     struct intrframe *frame __unused)
1021 {
1022     if (emergency_intr_enable)
1023 	lwkt_schedule(info->data);
1024 }
1025 
1026 /*
1027  * Sysctls used by systat and others: hw.intrnames and hw.intrcnt.
1028  * The data for this machine dependent, and the declarations are in machine
1029  * dependent code.  The layout of intrnames and intrcnt however is machine
1030  * independent.
1031  *
1032  * We do not know the length of intrcnt and intrnames at compile time, so
1033  * calculate things at run time.
1034  */
1035 
1036 static int
1037 sysctl_intrnames(SYSCTL_HANDLER_ARGS)
1038 {
1039     struct intr_info *info;
1040     intrec_t rec;
1041     int error = 0;
1042     int len;
1043     int intr, cpuid;
1044     char buf[64];
1045 
1046     for (cpuid = 0; cpuid < ncpus; ++cpuid) {
1047 	for (intr = 0; error == 0 && intr < MAX_INTS; ++intr) {
1048 	    info = &intr_block->ary[cpuid][intr];
1049 
1050 	    len = 0;
1051 	    buf[0] = 0;
1052 	    for (rec = info->i_reclist; rec; rec = rec->next) {
1053 		ksnprintf(buf + len, sizeof(buf) - len, "%s%s",
1054 		    (len ? "/" : ""), rec->name);
1055 		len += strlen(buf + len);
1056 	    }
1057 	    if (len == 0) {
1058 		ksnprintf(buf, sizeof(buf), "irq%d", intr);
1059 		len = strlen(buf);
1060 	    }
1061 	    error = SYSCTL_OUT(req, buf, len + 1);
1062 	}
1063     }
1064     return (error);
1065 }
1066 
1067 SYSCTL_PROC(_hw, OID_AUTO, intrnames, CTLTYPE_OPAQUE | CTLFLAG_RD,
1068 	NULL, 0, sysctl_intrnames, "", "Interrupt Names");
1069 
1070 static int
1071 sysctl_intrcnt_all(SYSCTL_HANDLER_ARGS)
1072 {
1073     struct intr_info *info;
1074     int error = 0;
1075     int intr, cpuid;
1076 
1077     for (cpuid = 0; cpuid < ncpus; ++cpuid) {
1078 	for (intr = 0; intr < MAX_INTS; ++intr) {
1079 	    info = &intr_block->ary[cpuid][intr];
1080 
1081 	    error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count));
1082 	    if (error)
1083 		goto failed;
1084 	}
1085     }
1086 failed:
1087     return(error);
1088 }
1089 
1090 SYSCTL_PROC(_hw, OID_AUTO, intrcnt_all, CTLTYPE_OPAQUE | CTLFLAG_RD,
1091 	NULL, 0, sysctl_intrcnt_all, "", "Interrupt Counts");
1092 
1093 SYSCTL_PROC(_hw, OID_AUTO, intrcnt, CTLTYPE_OPAQUE | CTLFLAG_RD,
1094 	NULL, 0, sysctl_intrcnt_all, "", "Interrupt Counts");
1095 
1096 static void
1097 int_moveto_destcpu(int *orig_cpuid0, int cpuid)
1098 {
1099     int orig_cpuid = mycpuid;
1100 
1101     if (cpuid != orig_cpuid)
1102 	lwkt_migratecpu(cpuid);
1103 
1104     *orig_cpuid0 = orig_cpuid;
1105 }
1106 
1107 static void
1108 int_moveto_origcpu(int orig_cpuid, int cpuid)
1109 {
1110     if (cpuid != orig_cpuid)
1111 	lwkt_migratecpu(orig_cpuid);
1112 }
1113 
1114 static void
1115 intr_init(void *dummy __unused)
1116 {
1117 	int cpuid;
1118 
1119 	kprintf("Initialize MI interrupts\n");
1120 
1121 	intr_block = kmalloc(sizeof(*intr_block), M_INTRMNG,
1122 			     M_INTWAIT | M_ZERO);
1123 
1124 	for (cpuid = 0; cpuid < ncpus; ++cpuid) {
1125 		int intr;
1126 
1127 		for (intr = 0; intr < MAX_INTS; ++intr) {
1128 			struct intr_info *info = &intr_block->ary[cpuid][intr];
1129 
1130 			info->i_cpuid = cpuid;
1131 			info->i_intr = intr;
1132 		}
1133 	}
1134 }
1135 SYSINIT(intr_init, SI_BOOT2_FINISH_PIC, SI_ORDER_ANY, intr_init, NULL);
1136