xref: /dragonfly/sys/kern/kern_ktr.c (revision c03f08f3)
1 /*
2  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 /*
35  * The following copyright applies to the DDB command code:
36  *
37  * Copyright (c) 2000 John Baldwin <jhb@FreeBSD.org>
38  * All rights reserved.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. Neither the name of the author nor the names of any co-contributors
49  *    may be used to endorse or promote products derived from this software
50  *    without specific prior written permission.
51  *
52  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
56  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62  * SUCH DAMAGE.
63  */
64 /*
65  * $DragonFly: src/sys/kern/kern_ktr.c,v 1.21 2007/04/30 07:18:53 dillon Exp $
66  */
67 /*
68  * Kernel tracepoint facility.
69  */
70 
71 #include "opt_ddb.h"
72 #include "opt_ktr.h"
73 
74 #include <sys/param.h>
75 #include <sys/cons.h>
76 #include <sys/kernel.h>
77 #include <sys/libkern.h>
78 #include <sys/proc.h>
79 #include <sys/sysctl.h>
80 #include <sys/ktr.h>
81 #include <sys/systm.h>
82 #include <sys/time.h>
83 #include <sys/malloc.h>
84 #include <sys/spinlock.h>
85 #include <sys/thread2.h>
86 #include <sys/spinlock2.h>
87 #include <sys/ctype.h>
88 
89 #include <machine/cpu.h>
90 #include <machine/cpufunc.h>
91 #include <machine/specialreg.h>
92 #include <machine/md_var.h>
93 
94 #include <ddb/ddb.h>
95 
96 #ifndef KTR_ENTRIES
97 #define	KTR_ENTRIES		2048
98 #endif
99 #define KTR_ENTRIES_MASK	(KTR_ENTRIES - 1)
100 
101 /*
102  * test logging support.  When ktr_testlogcnt is non-zero each synchronization
103  * interrupt will issue six back-to-back ktr logging messages on cpu 0
104  * so the user can determine KTR logging overheads.
105  */
106 #if !defined(KTR_TESTLOG)
107 #define KTR_TESTLOG	KTR_ALL
108 #endif
109 KTR_INFO_MASTER(testlog);
110 #if KTR_TESTLOG
111 KTR_INFO(KTR_TESTLOG, testlog, test1, 0, "test1", sizeof(void *) * 4);
112 KTR_INFO(KTR_TESTLOG, testlog, test2, 1, "test2", sizeof(void *) * 4);
113 KTR_INFO(KTR_TESTLOG, testlog, test3, 2, "test3", sizeof(void *) * 4);
114 KTR_INFO(KTR_TESTLOG, testlog, test4, 3, "test4", 0);
115 KTR_INFO(KTR_TESTLOG, testlog, test5, 4, "test5", 0);
116 KTR_INFO(KTR_TESTLOG, testlog, test6, 5, "test6", 0);
117 #ifdef SMP
118 KTR_INFO(KTR_TESTLOG, testlog, pingpong, 6, "pingpong", 0);
119 KTR_INFO(KTR_TESTLOG, testlog, pipeline, 7, "pipeline", 0);
120 #endif
121 KTR_INFO(KTR_TESTLOG, testlog, crit_beg, 8, "crit_beg", 0);
122 KTR_INFO(KTR_TESTLOG, testlog, crit_end, 9, "crit_end", 0);
123 KTR_INFO(KTR_TESTLOG, testlog, spin_beg, 10, "spin_beg", 0);
124 KTR_INFO(KTR_TESTLOG, testlog, spin_end, 11, "spin_end", 0);
125 #define logtest(name)	KTR_LOG(testlog_ ## name, 0, 0, 0, 0)
126 #define logtest_noargs(name)	KTR_LOG(testlog_ ## name)
127 #endif
128 
129 MALLOC_DEFINE(M_KTR, "ktr", "ktr buffers");
130 
131 SYSCTL_NODE(_debug, OID_AUTO, ktr, CTLFLAG_RW, 0, "ktr");
132 
133 static int32_t	ktr_cpumask = -1;
134 TUNABLE_INT("debug.ktr.cpumask", &ktr_cpumask);
135 SYSCTL_INT(_debug_ktr, OID_AUTO, cpumask, CTLFLAG_RW, &ktr_cpumask, 0, "");
136 
137 static int	ktr_entries = KTR_ENTRIES;
138 SYSCTL_INT(_debug_ktr, OID_AUTO, entries, CTLFLAG_RD, &ktr_entries, 0, "");
139 
140 static int	ktr_version = KTR_VERSION;
141 SYSCTL_INT(_debug_ktr, OID_AUTO, version, CTLFLAG_RD, &ktr_version, 0, "");
142 
143 static int	ktr_stacktrace = 1;
144 SYSCTL_INT(_debug_ktr, OID_AUTO, stacktrace, CTLFLAG_RD, &ktr_stacktrace, 0, "");
145 
146 static int	ktr_resynchronize = 0;
147 SYSCTL_INT(_debug_ktr, OID_AUTO, resynchronize, CTLFLAG_RW, &ktr_resynchronize, 0, "");
148 
149 #if KTR_TESTLOG
150 static int	ktr_testlogcnt = 0;
151 SYSCTL_INT(_debug_ktr, OID_AUTO, testlogcnt, CTLFLAG_RW, &ktr_testlogcnt, 0, "");
152 static int	ktr_testipicnt = 0;
153 static int	ktr_testipicnt_remainder;
154 SYSCTL_INT(_debug_ktr, OID_AUTO, testipicnt, CTLFLAG_RW, &ktr_testipicnt, 0, "");
155 static int	ktr_testcritcnt = 0;
156 SYSCTL_INT(_debug_ktr, OID_AUTO, testcritcnt, CTLFLAG_RW, &ktr_testcritcnt, 0, "");
157 static int	ktr_testspincnt = 0;
158 SYSCTL_INT(_debug_ktr, OID_AUTO, testspincnt, CTLFLAG_RW, &ktr_testspincnt, 0, "");
159 #endif
160 
161 /*
162  * Give cpu0 a static buffer so the tracepoint facility can be used during
163  * early boot (note however that we still use a critical section, XXX).
164  */
165 static struct	ktr_entry ktr_buf0[KTR_ENTRIES];
166 static struct	ktr_entry *ktr_buf[MAXCPU] = { &ktr_buf0[0] };
167 static int	ktr_idx[MAXCPU];
168 #ifdef SMP
169 static int	ktr_sync_state = 0;
170 static int	ktr_sync_count;
171 static int64_t	ktr_sync_tsc;
172 #endif
173 struct callout	ktr_resync_callout;
174 
175 #ifdef KTR_VERBOSE
176 int	ktr_verbose = KTR_VERBOSE;
177 TUNABLE_INT("debug.ktr.verbose", &ktr_verbose);
178 SYSCTL_INT(_debug_ktr, OID_AUTO, verbose, CTLFLAG_RW, &ktr_verbose, 0, "");
179 #endif
180 
181 static void ktr_resync_callback(void *dummy __unused);
182 
183 extern int64_t tsc_offsets[];
184 
185 static void
186 ktr_sysinit(void *dummy)
187 {
188 	int i;
189 
190 	for(i = 1; i < ncpus; ++i) {
191 		ktr_buf[i] = kmalloc(KTR_ENTRIES * sizeof(struct ktr_entry),
192 				    M_KTR, M_WAITOK | M_ZERO);
193 	}
194 	callout_init(&ktr_resync_callout);
195 	callout_reset(&ktr_resync_callout, hz / 10, ktr_resync_callback, NULL);
196 }
197 SYSINIT(ktr_sysinit, SI_BOOT2_KLD, SI_ORDER_ANY, ktr_sysinit, NULL);
198 
199 /*
200  * Try to resynchronize the TSC's for all cpus.  This is really, really nasty.
201  * We have to send an IPIQ message to all remote cpus, wait until they
202  * get into their IPIQ processing code loop, then do an even stricter hard
203  * loop to get the cpus as close to synchronized as we can to get the most
204  * accurate reading.
205  *
206  * This callback occurs on cpu0.
207  */
208 #if KTR_TESTLOG
209 static void ktr_pingpong_remote(void *dummy);
210 static void ktr_pipeline_remote(void *dummy);
211 #endif
212 
213 #if defined(SMP) && defined(_RDTSC_SUPPORTED_)
214 
215 static void ktr_resync_remote(void *dummy);
216 extern cpumask_t smp_active_mask;
217 
218 /*
219  * We use a callout callback instead of a systimer because we cannot afford
220  * to preempt anyone to do this, or we might deadlock a spin-lock or
221  * serializer between two cpus.
222  */
223 static
224 void
225 ktr_resync_callback(void *dummy __unused)
226 {
227 	int count;
228 
229 	KKASSERT(mycpu->gd_cpuid == 0);
230 
231 #if KTR_TESTLOG
232 	/*
233 	 * Test logging
234 	 */
235 	if (ktr_testlogcnt) {
236 		--ktr_testlogcnt;
237 		cpu_disable_intr();
238 		logtest(test1);
239 		logtest(test2);
240 		logtest(test3);
241 		logtest_noargs(test4);
242 		logtest_noargs(test5);
243 		logtest_noargs(test6);
244 		cpu_enable_intr();
245 	}
246 
247 	/*
248 	 * Test IPI messaging
249 	 */
250 	if (ktr_testipicnt && ktr_testipicnt_remainder == 0 && ncpus > 1) {
251 		ktr_testipicnt_remainder = ktr_testipicnt;
252 		ktr_testipicnt = 0;
253 		lwkt_send_ipiq_bycpu(1, ktr_pingpong_remote, NULL);
254 	}
255 
256 	/*
257 	 * Test critical sections
258 	 */
259 	if (ktr_testcritcnt) {
260 		crit_enter();
261 		crit_exit();
262 		logtest_noargs(crit_beg);
263 		for (count = ktr_testcritcnt; count; --count) {
264 			crit_enter();
265 			crit_exit();
266 		}
267 		logtest_noargs(crit_end);
268 		ktr_testcritcnt = 0;
269 	}
270 
271 	/*
272 	 * Test spinlock sections
273 	 */
274 	if (ktr_testspincnt) {
275 		struct spinlock spin;
276 
277 		spin_init(&spin);
278 		spin_lock_wr(&spin);
279 		spin_unlock_wr(&spin);
280 		logtest_noargs(spin_beg);
281 		for (count = ktr_testspincnt; count; --count) {
282 			spin_lock_wr(&spin);
283 			spin_unlock_wr(&spin);
284 		}
285 		logtest_noargs(spin_end);
286 		logtest_noargs(spin_beg);
287 		for (count = ktr_testspincnt; count; --count) {
288 			spin_lock_rd(&spin);
289 			spin_unlock_rd(&spin);
290 		}
291 		logtest_noargs(spin_end);
292 		ktr_testspincnt = 0;
293 	}
294 #endif
295 
296 	/*
297 	 * Resynchronize the TSC
298 	 */
299 	if (ktr_resynchronize == 0)
300 		goto done;
301 	if ((cpu_feature & CPUID_TSC) == 0)
302 		return;
303 
304 	/*
305 	 * Send the synchronizing IPI and wait for all cpus to get into
306 	 * their spin loop.  We must process incoming IPIs while waiting
307 	 * to avoid a deadlock.
308 	 */
309 	crit_enter();
310 	ktr_sync_count = 0;
311 	ktr_sync_state = 1;
312 	ktr_sync_tsc = rdtsc();
313 	count = lwkt_send_ipiq_mask(mycpu->gd_other_cpus & smp_active_mask,
314 				    (ipifunc1_t)ktr_resync_remote, NULL);
315 	while (ktr_sync_count != count)
316 		lwkt_process_ipiq();
317 
318 	/*
319 	 * Continuously update the TSC for cpu 0 while waiting for all other
320 	 * cpus to finish stage 2.
321 	 */
322 	cpu_disable_intr();
323 	ktr_sync_tsc = rdtsc();
324 	cpu_sfence();
325 	ktr_sync_state = 2;
326 	cpu_sfence();
327 	while (ktr_sync_count != 0) {
328 		ktr_sync_tsc = rdtsc();
329 		cpu_lfence();
330 		cpu_nop();
331 	}
332 	cpu_enable_intr();
333 	crit_exit();
334 	ktr_sync_state = 0;
335 done:
336 	callout_reset(&ktr_resync_callout, hz / 10, ktr_resync_callback, NULL);
337 }
338 
339 /*
340  * The remote-end of the KTR synchronization protocol runs on all cpus except
341  * cpu 0.  Since this is an IPI function, it is entered with the current
342  * thread in a critical section.
343  */
344 static void
345 ktr_resync_remote(void *dummy __unused)
346 {
347 	volatile int64_t tsc1 = ktr_sync_tsc;
348 	volatile int64_t tsc2;
349 
350 	/*
351 	 * Inform the master that we have entered our hard loop.
352 	 */
353 	KKASSERT(ktr_sync_state == 1);
354 	atomic_add_int(&ktr_sync_count, 1);
355 	while (ktr_sync_state == 1) {
356 		lwkt_process_ipiq();
357 	}
358 
359 	/*
360 	 * Now the master is in a hard loop, synchronize the TSC and
361 	 * we are done.
362 	 */
363 	cpu_disable_intr();
364 	KKASSERT(ktr_sync_state == 2);
365 	tsc2 = ktr_sync_tsc;
366 	if (tsc2 > tsc1)
367 		tsc_offsets[mycpu->gd_cpuid] = rdtsc() - tsc2;
368 	atomic_subtract_int(&ktr_sync_count, 1);
369 	cpu_enable_intr();
370 }
371 
372 #if KTR_TESTLOG
373 
374 static
375 void
376 ktr_pingpong_remote(void *dummy __unused)
377 {
378 	int other_cpu;
379 
380 	logtest_noargs(pingpong);
381 	other_cpu = 1 - mycpu->gd_cpuid;
382 	if (ktr_testipicnt_remainder) {
383 		--ktr_testipicnt_remainder;
384 		lwkt_send_ipiq_bycpu(other_cpu, ktr_pingpong_remote, NULL);
385 	} else {
386 		lwkt_send_ipiq_bycpu(other_cpu, ktr_pipeline_remote, NULL);
387 		lwkt_send_ipiq_bycpu(other_cpu, ktr_pipeline_remote, NULL);
388 		lwkt_send_ipiq_bycpu(other_cpu, ktr_pipeline_remote, NULL);
389 		lwkt_send_ipiq_bycpu(other_cpu, ktr_pipeline_remote, NULL);
390 		lwkt_send_ipiq_bycpu(other_cpu, ktr_pipeline_remote, NULL);
391 	}
392 }
393 
394 static
395 void
396 ktr_pipeline_remote(void *dummy __unused)
397 {
398 	logtest_noargs(pipeline);
399 }
400 
401 #endif
402 
403 #else	/* !SMP */
404 
405 /*
406  * The resync callback for UP doesn't do anything other then run the test
407  * log messages.  If test logging is not enabled, don't bother resetting
408  * the callout.
409  */
410 static
411 void
412 ktr_resync_callback(void *dummy __unused)
413 {
414 #if KTR_TESTLOG
415 	/*
416 	 * Test logging
417 	 */
418 	if (ktr_testlogcnt) {
419 		--ktr_testlogcnt;
420 		cpu_disable_intr();
421 		logtest(test1);
422 		logtest(test2);
423 		logtest(test3);
424 		logtest_noargs(test4);
425 		logtest_noargs(test5);
426 		logtest_noargs(test6);
427 		cpu_enable_intr();
428 	}
429 	callout_reset(&ktr_resync_callout, hz / 10, ktr_resync_callback, NULL);
430 #endif
431 }
432 
433 #endif
434 
435 /*
436  * KTR_WRITE_ENTRY - Primary entry point for kernel trace logging
437  */
438 static __inline
439 void
440 ktr_write_entry(struct ktr_info *info, const char *file, int line,
441 		const void *ptr)
442 {
443 	struct ktr_entry *entry;
444 	int cpu;
445 
446 	cpu = mycpu->gd_cpuid;
447 	if (!ktr_buf[cpu])
448 		return;
449 
450 	crit_enter();
451 	entry = ktr_buf[cpu] + (ktr_idx[cpu] & KTR_ENTRIES_MASK);
452 	++ktr_idx[cpu];
453 #ifdef _RDTSC_SUPPORTED_
454 	if (cpu_feature & CPUID_TSC) {
455 #ifdef SMP
456 		entry->ktr_timestamp = rdtsc() - tsc_offsets[cpu];
457 #else
458 		entry->ktr_timestamp = rdtsc();
459 #endif
460 	} else
461 #endif
462 	{
463 		entry->ktr_timestamp = get_approximate_time_t();
464 	}
465 	entry->ktr_info = info;
466 	entry->ktr_file = file;
467 	entry->ktr_line = line;
468 	crit_exit();
469 	if (info->kf_data_size > KTR_BUFSIZE)
470 		bcopyi(ptr, entry->ktr_data, KTR_BUFSIZE);
471 	else if (info->kf_data_size)
472 		bcopyi(ptr, entry->ktr_data, info->kf_data_size);
473 	if (ktr_stacktrace)
474 		cpu_ktr_caller(entry);
475 #ifdef KTR_VERBOSE
476 	if (ktr_verbose && info->kf_format) {
477 #ifdef SMP
478 		kprintf("cpu%d ", cpu);
479 #endif
480 		if (ktr_verbose > 1) {
481 			kprintf("%s.%d\t", entry->ktr_file, entry->ktr_line);
482 		}
483 		kvprintf(info->kf_format, ptr);
484 		kprintf("\n");
485 	}
486 #endif
487 }
488 
489 void
490 ktr_log(struct ktr_info *info, const char *file, int line, ...)
491 {
492 	__va_list va;
493 
494 	if (panicstr == NULL) {
495 		__va_start(va, line);
496 		ktr_write_entry(info, file, line, va);
497 		__va_end(va);
498 	}
499 }
500 
501 void
502 ktr_log_ptr(struct ktr_info *info, const char *file, int line, const void *ptr)
503 {
504 	if (panicstr == NULL) {
505 		ktr_write_entry(info, file, line, ptr);
506 	}
507 }
508 
509 #ifdef DDB
510 
511 #define	NUM_LINES_PER_PAGE	19
512 
513 struct tstate {
514 	int	cur;
515 	int	first;
516 };
517 
518 static	int db_ktr_verbose;
519 static	int db_mach_vtrace(int cpu, struct ktr_entry *kp, int idx);
520 
521 DB_SHOW_COMMAND(ktr, db_ktr_all)
522 {
523 	int a_flag = 0;
524 	int c;
525 	int nl = 0;
526 	int i;
527 	struct tstate tstate[MAXCPU];
528 	int printcpu = -1;
529 
530 	for(i = 0; i < ncpus; i++) {
531 		tstate[i].first = -1;
532 		tstate[i].cur = ktr_idx[i] & KTR_ENTRIES_MASK;
533 	}
534 	db_ktr_verbose = 0;
535 	while ((c = *(modif++)) != '\0') {
536 		if (c == 'v') {
537 			db_ktr_verbose = 1;
538 		}
539 		else if (c == 'a') {
540 			a_flag = 1;
541 		}
542 		else if (c == 'c') {
543 			printcpu = 0;
544 			while ((c = *(modif++)) != '\0') {
545 				if (isdigit(c)) {
546 					printcpu *= 10;
547 					printcpu += c - '0';
548 				}
549 				else {
550 					modif++;
551 					break;
552 				}
553 			}
554 			modif--;
555 		}
556 	}
557 	if (printcpu > ncpus - 1) {
558 		db_printf("Invalid cpu number\n");
559 		return;
560 	}
561 	/*
562 	 * Lopp throug all the buffers and print the content of them, sorted
563 	 * by the timestamp.
564 	 */
565 	while (1) {
566 		int counter;
567 		u_int64_t highest_ts;
568 		int highest_cpu;
569 		struct ktr_entry *kp;
570 
571 		if (a_flag == 1 && cncheckc() != -1)
572 			return;
573 		highest_ts = 0;
574 		highest_cpu = -1;
575 		/*
576 		 * Find the lowest timestamp
577 		 */
578 		for (i = 0, counter = 0; i < ncpus; i++) {
579 			if (ktr_buf[i] == NULL)
580 				continue;
581 			if (printcpu != -1 && printcpu != i)
582 				continue;
583 			if (tstate[i].cur == -1) {
584 				counter++;
585 				if (counter == ncpus) {
586 					db_printf("--- End of trace buffer ---\n");
587 					return;
588 				}
589 				continue;
590 			}
591 			if (ktr_buf[i][tstate[i].cur].ktr_timestamp > highest_ts) {
592 				highest_ts = ktr_buf[i][tstate[i].cur].ktr_timestamp;
593 				highest_cpu = i;
594 			}
595 		}
596 		i = highest_cpu;
597 		KKASSERT(i != -1);
598 		kp = &ktr_buf[i][tstate[i].cur];
599 		if (tstate[i].first == -1)
600 			tstate[i].first = tstate[i].cur;
601 		if (--tstate[i].cur < 0)
602 			tstate[i].cur = KTR_ENTRIES - 1;
603 		if (tstate[i].first == tstate[i].cur) {
604 			db_mach_vtrace(i, kp, tstate[i].cur + 1);
605 			tstate[i].cur = -1;
606 			continue;
607 		}
608 		if (ktr_buf[i][tstate[i].cur].ktr_info == NULL)
609 			tstate[i].cur = -1;
610 		if (db_more(&nl) == -1)
611 			break;
612 		if (db_mach_vtrace(i, kp, tstate[i].cur + 1) == 0)
613 			tstate[i].cur = -1;
614 	}
615 }
616 
617 static int
618 db_mach_vtrace(int cpu, struct ktr_entry *kp, int idx)
619 {
620 	if (kp->ktr_info == NULL)
621 		return(0);
622 #ifdef SMP
623 	db_printf("cpu%d ", cpu);
624 #endif
625 	db_printf("%d: ", idx);
626 	if (db_ktr_verbose) {
627 		db_printf("%10.10lld %s.%d\t", (long long)kp->ktr_timestamp,
628 		    kp->ktr_file, kp->ktr_line);
629 	}
630 	db_printf("%s\t", kp->ktr_info->kf_name);
631 	db_printf("from(%p,%p) ", kp->ktr_caller1, kp->ktr_caller2);
632 	if (kp->ktr_info->kf_format) {
633 		int32_t *args = kp->ktr_data;
634 		db_printf(kp->ktr_info->kf_format,
635 			  args[0], args[1], args[2], args[3],
636 			  args[4], args[5], args[6], args[7],
637 			  args[8], args[9], args[10], args[11]);
638 
639 	}
640 	db_printf("\n");
641 
642 	return(1);
643 }
644 
645 #endif	/* DDB */
646