xref: /dragonfly/sys/kern/kern_memio.c (revision 1de703da)
1 /*-
2  * Copyright (c) 1988 University of Utah.
3  * Copyright (c) 1982, 1986, 1990 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * the Systems Programming Group of the University of Utah Computer
8  * Science Department, and code derived from software contributed to
9  * Berkeley by William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  *	from: Utah $Hdr: mem.c 1.13 89/10/08$
40  *	from: @(#)mem.c	7.2 (Berkeley) 5/9/91
41  * $FreeBSD: src/sys/i386/i386/mem.c,v 1.79.2.9 2003/01/04 22:58:01 njl Exp $
42  * $DragonFly: src/sys/kern/kern_memio.c,v 1.2 2003/06/17 04:28:35 dillon Exp $
43  */
44 
45 /*
46  * Memory special file
47  */
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/buf.h>
52 #include <sys/conf.h>
53 #include <sys/fcntl.h>
54 #include <sys/filio.h>
55 #include <sys/ioccom.h>
56 #include <sys/kernel.h>
57 #include <sys/malloc.h>
58 #include <sys/memrange.h>
59 #include <sys/proc.h>
60 #include <sys/random.h>
61 #include <sys/signalvar.h>
62 #include <sys/uio.h>
63 #include <sys/vnode.h>
64 
65 #include <machine/frame.h>
66 #include <machine/psl.h>
67 #include <machine/specialreg.h>
68 #include <i386/isa/intr_machdep.h>
69 
70 #include <vm/vm.h>
71 #include <vm/pmap.h>
72 #include <vm/vm_extern.h>
73 
74 
75 static	d_open_t	mmopen;
76 static	d_close_t	mmclose;
77 static	d_read_t	mmrw;
78 static	d_ioctl_t	mmioctl;
79 static	d_mmap_t	memmmap;
80 static	d_poll_t	mmpoll;
81 
82 #define CDEV_MAJOR 2
83 static struct cdevsw mem_cdevsw = {
84 	/* open */	mmopen,
85 	/* close */	mmclose,
86 	/* read */	mmrw,
87 	/* write */	mmrw,
88 	/* ioctl */	mmioctl,
89 	/* poll */	mmpoll,
90 	/* mmap */	memmmap,
91 	/* strategy */	nostrategy,
92 	/* name */	"mem",
93 	/* maj */	CDEV_MAJOR,
94 	/* dump */	nodump,
95 	/* psize */	nopsize,
96 	/* flags */	D_MEM,
97 	/* bmaj */	-1
98 };
99 
100 static struct random_softc random_softc[16];
101 static caddr_t	zbuf;
102 
103 MALLOC_DEFINE(M_MEMDESC, "memdesc", "memory range descriptors");
104 static int mem_ioctl __P((dev_t, u_long, caddr_t, int, struct proc *));
105 static int random_ioctl __P((dev_t, u_long, caddr_t, int, struct proc *));
106 
107 struct mem_range_softc mem_range_softc;
108 
109 
110 static int
111 mmclose(dev, flags, fmt, p)
112 	dev_t dev;
113 	int flags;
114 	int fmt;
115 	struct proc *p;
116 {
117 	switch (minor(dev)) {
118 	case 14:
119 		p->p_md.md_regs->tf_eflags &= ~PSL_IOPL;
120 		break;
121 	default:
122 		break;
123 	}
124 	return (0);
125 }
126 
127 static int
128 mmopen(dev, flags, fmt, p)
129 	dev_t dev;
130 	int flags;
131 	int fmt;
132 	struct proc *p;
133 {
134 	int error;
135 
136 	switch (minor(dev)) {
137 	case 0:
138 	case 1:
139 		if ((flags & FWRITE) && securelevel > 0)
140 			return (EPERM);
141 		break;
142 	case 14:
143 		error = suser(p);
144 		if (error != 0)
145 			return (error);
146 		if (securelevel > 0)
147 			return (EPERM);
148 		p->p_md.md_regs->tf_eflags |= PSL_IOPL;
149 		break;
150 	default:
151 		break;
152 	}
153 	return (0);
154 }
155 
156 static int
157 mmrw(dev, uio, flags)
158 	dev_t dev;
159 	struct uio *uio;
160 	int flags;
161 {
162 	register int o;
163 	register u_int c, v;
164 	u_int poolsize;
165 	register struct iovec *iov;
166 	int error = 0;
167 	caddr_t buf = NULL;
168 
169 	while (uio->uio_resid > 0 && error == 0) {
170 		iov = uio->uio_iov;
171 		if (iov->iov_len == 0) {
172 			uio->uio_iov++;
173 			uio->uio_iovcnt--;
174 			if (uio->uio_iovcnt < 0)
175 				panic("mmrw");
176 			continue;
177 		}
178 		switch (minor(dev)) {
179 
180 /* minor device 0 is physical memory */
181 		case 0:
182 			v = uio->uio_offset;
183 			v &= ~PAGE_MASK;
184 			pmap_kenter((vm_offset_t)ptvmmap, v);
185 			o = (int)uio->uio_offset & PAGE_MASK;
186 			c = (u_int)(PAGE_SIZE - ((int)iov->iov_base & PAGE_MASK));
187 			c = min(c, (u_int)(PAGE_SIZE - o));
188 			c = min(c, (u_int)iov->iov_len);
189 			error = uiomove((caddr_t)&ptvmmap[o], (int)c, uio);
190 			pmap_kremove((vm_offset_t)ptvmmap);
191 			continue;
192 
193 /* minor device 1 is kernel memory */
194 		case 1: {
195 			vm_offset_t addr, eaddr;
196 			c = iov->iov_len;
197 
198 			/*
199 			 * Make sure that all of the pages are currently resident so
200 			 * that we don't create any zero-fill pages.
201 			 */
202 			addr = trunc_page(uio->uio_offset);
203 			eaddr = round_page(uio->uio_offset + c);
204 
205 			if (addr < (vm_offset_t)VADDR(PTDPTDI, 0))
206 				return EFAULT;
207 			if (eaddr >= (vm_offset_t)VADDR(APTDPTDI, 0))
208 				return EFAULT;
209 			for (; addr < eaddr; addr += PAGE_SIZE)
210 				if (pmap_extract(kernel_pmap, addr) == 0)
211 					return EFAULT;
212 
213 			if (!kernacc((caddr_t)(int)uio->uio_offset, c,
214 			    uio->uio_rw == UIO_READ ?
215 			    VM_PROT_READ : VM_PROT_WRITE))
216 				return (EFAULT);
217 			error = uiomove((caddr_t)(int)uio->uio_offset, (int)c, uio);
218 			continue;
219 		}
220 
221 /* minor device 2 is EOF/RATHOLE */
222 		case 2:
223 			if (uio->uio_rw == UIO_READ)
224 				return (0);
225 			c = iov->iov_len;
226 			break;
227 
228 /* minor device 3 (/dev/random) is source of filth on read, rathole on write */
229 		case 3:
230 			if (uio->uio_rw == UIO_WRITE) {
231 				c = iov->iov_len;
232 				break;
233 			}
234 			if (buf == NULL)
235 				buf = (caddr_t)
236 				    malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
237 			c = min(iov->iov_len, PAGE_SIZE);
238 			poolsize = read_random(buf, c);
239 			if (poolsize == 0) {
240 				if (buf)
241 					free(buf, M_TEMP);
242 				if ((flags & IO_NDELAY) != 0)
243 					return (EWOULDBLOCK);
244 				return (0);
245 			}
246 			c = min(c, poolsize);
247 			error = uiomove(buf, (int)c, uio);
248 			continue;
249 
250 /* minor device 4 (/dev/urandom) is source of muck on read, rathole on write */
251 		case 4:
252 			if (uio->uio_rw == UIO_WRITE) {
253 				c = iov->iov_len;
254 				break;
255 			}
256 			if (CURSIG(curproc) != 0) {
257 				/*
258 				 * Use tsleep() to get the error code right.
259 				 * It should return immediately.
260 				 */
261 				error = tsleep(&random_softc[0],
262 				    PZERO | PCATCH, "urand", 1);
263 				if (error != 0 && error != EWOULDBLOCK)
264 					continue;
265 			}
266 			if (buf == NULL)
267 				buf = (caddr_t)
268 				    malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
269 			c = min(iov->iov_len, PAGE_SIZE);
270 			poolsize = read_random_unlimited(buf, c);
271 			c = min(c, poolsize);
272 			error = uiomove(buf, (int)c, uio);
273 			continue;
274 
275 /* minor device 12 (/dev/zero) is source of nulls on read, rathole on write */
276 		case 12:
277 			if (uio->uio_rw == UIO_WRITE) {
278 				c = iov->iov_len;
279 				break;
280 			}
281 			if (zbuf == NULL) {
282 				zbuf = (caddr_t)
283 				    malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
284 				bzero(zbuf, PAGE_SIZE);
285 			}
286 			c = min(iov->iov_len, PAGE_SIZE);
287 			error = uiomove(zbuf, (int)c, uio);
288 			continue;
289 
290 		default:
291 			return (ENODEV);
292 		}
293 		if (error)
294 			break;
295 		iov->iov_base += c;
296 		iov->iov_len -= c;
297 		uio->uio_offset += c;
298 		uio->uio_resid -= c;
299 	}
300 	if (buf)
301 		free(buf, M_TEMP);
302 	return (error);
303 }
304 
305 
306 
307 
308 /*******************************************************\
309 * allow user processes to MMAP some memory sections	*
310 * instead of going through read/write			*
311 \*******************************************************/
312 static int
313 memmmap(dev_t dev, vm_offset_t offset, int nprot)
314 {
315 	switch (minor(dev))
316 	{
317 
318 /* minor device 0 is physical memory */
319 	case 0:
320         	return i386_btop(offset);
321 
322 /* minor device 1 is kernel memory */
323 	case 1:
324         	return i386_btop(vtophys(offset));
325 
326 	default:
327 		return -1;
328 	}
329 }
330 
331 static int
332 mmioctl(dev, cmd, data, flags, p)
333 	dev_t dev;
334 	u_long cmd;
335 	caddr_t data;
336 	int flags;
337 	struct proc *p;
338 {
339 
340 	switch (minor(dev)) {
341 	case 0:
342 		return mem_ioctl(dev, cmd, data, flags, p);
343 	case 3:
344 	case 4:
345 		return random_ioctl(dev, cmd, data, flags, p);
346 	}
347 	return (ENODEV);
348 }
349 
350 /*
351  * Operations for changing memory attributes.
352  *
353  * This is basically just an ioctl shim for mem_range_attr_get
354  * and mem_range_attr_set.
355  */
356 static int
357 mem_ioctl(dev, cmd, data, flags, p)
358 	dev_t dev;
359 	u_long cmd;
360 	caddr_t data;
361 	int flags;
362 	struct proc *p;
363 {
364 	int nd, error = 0;
365 	struct mem_range_op *mo = (struct mem_range_op *)data;
366 	struct mem_range_desc *md;
367 
368 	/* is this for us? */
369 	if ((cmd != MEMRANGE_GET) &&
370 	    (cmd != MEMRANGE_SET))
371 		return (ENOTTY);
372 
373 	/* any chance we can handle this? */
374 	if (mem_range_softc.mr_op == NULL)
375 		return (EOPNOTSUPP);
376 
377 	/* do we have any descriptors? */
378 	if (mem_range_softc.mr_ndesc == 0)
379 		return (ENXIO);
380 
381 	switch (cmd) {
382 	case MEMRANGE_GET:
383 		nd = imin(mo->mo_arg[0], mem_range_softc.mr_ndesc);
384 		if (nd > 0) {
385 			md = (struct mem_range_desc *)
386 				malloc(nd * sizeof(struct mem_range_desc),
387 				       M_MEMDESC, M_WAITOK);
388 			error = mem_range_attr_get(md, &nd);
389 			if (!error)
390 				error = copyout(md, mo->mo_desc,
391 					nd * sizeof(struct mem_range_desc));
392 			free(md, M_MEMDESC);
393 		} else {
394 			nd = mem_range_softc.mr_ndesc;
395 		}
396 		mo->mo_arg[0] = nd;
397 		break;
398 
399 	case MEMRANGE_SET:
400 		md = (struct mem_range_desc *)malloc(sizeof(struct mem_range_desc),
401 						    M_MEMDESC, M_WAITOK);
402 		error = copyin(mo->mo_desc, md, sizeof(struct mem_range_desc));
403 		/* clamp description string */
404 		md->mr_owner[sizeof(md->mr_owner) - 1] = 0;
405 		if (error == 0)
406 			error = mem_range_attr_set(md, &mo->mo_arg[0]);
407 		free(md, M_MEMDESC);
408 		break;
409 	}
410 	return (error);
411 }
412 
413 /*
414  * Implementation-neutral, kernel-callable functions for manipulating
415  * memory range attributes.
416  */
417 int
418 mem_range_attr_get(mrd, arg)
419 	struct mem_range_desc *mrd;
420 	int *arg;
421 {
422 	/* can we handle this? */
423 	if (mem_range_softc.mr_op == NULL)
424 		return (EOPNOTSUPP);
425 
426 	if (*arg == 0) {
427 		*arg = mem_range_softc.mr_ndesc;
428 	} else {
429 		bcopy(mem_range_softc.mr_desc, mrd, (*arg) * sizeof(struct mem_range_desc));
430 	}
431 	return (0);
432 }
433 
434 int
435 mem_range_attr_set(mrd, arg)
436 	struct mem_range_desc *mrd;
437 	int *arg;
438 {
439 	/* can we handle this? */
440 	if (mem_range_softc.mr_op == NULL)
441 		return (EOPNOTSUPP);
442 
443 	return (mem_range_softc.mr_op->set(&mem_range_softc, mrd, arg));
444 }
445 
446 #ifdef SMP
447 void
448 mem_range_AP_init(void)
449 {
450 	if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
451 		return (mem_range_softc.mr_op->initAP(&mem_range_softc));
452 }
453 #endif
454 
455 static int
456 random_ioctl(dev, cmd, data, flags, p)
457 	dev_t dev;
458 	u_long cmd;
459 	caddr_t data;
460 	int flags;
461 	struct proc *p;
462 {
463 	static intrmask_t interrupt_allowed;
464 	intrmask_t interrupt_mask;
465 	int error, intr;
466 	struct random_softc *sc;
467 
468 	/*
469 	 * We're the random or urandom device.  The only ioctls are for
470 	 * selecting and inspecting which interrupts are used in the muck
471 	 * gathering business and the fcntl() stuff.
472 	 */
473 	if (cmd != MEM_SETIRQ && cmd != MEM_CLEARIRQ && cmd != MEM_RETURNIRQ
474 		&& cmd != FIONBIO && cmd != FIOASYNC)
475 		return (ENOTTY);
476 
477 	/*
478 	 * XXX the data is 16-bit due to a historical botch, so we use
479 	 * magic 16's instead of ICU_LEN and can't support 24 interrupts
480 	 * under SMP.
481 	 * Even inspecting the state is privileged, since it gives a hint
482 	 * about how easily the randomness might be guessed.
483 	 */
484 	intr = *(int16_t *)data;
485 	interrupt_mask = 1 << intr;
486 	sc = &random_softc[intr];
487 	switch (cmd) {
488 	/* Really handled in upper layer */
489 	case FIOASYNC:
490 	case FIONBIO:
491 		break;
492 	case MEM_SETIRQ:
493 		error = suser(p);
494 		if (error != 0)
495 			return (error);
496 		if (intr < 0 || intr >= 16)
497 			return (EINVAL);
498 		if (interrupt_allowed & interrupt_mask)
499 			break;
500 		interrupt_allowed |= interrupt_mask;
501 		sc->sc_intr = intr;
502 		disable_intr();
503 		sc->sc_handler = intr_handler[intr];
504 		intr_handler[intr] = add_interrupt_randomness;
505 		sc->sc_arg = intr_unit[intr];
506 		intr_unit[intr] = sc;
507 		enable_intr();
508 		break;
509 	case MEM_CLEARIRQ:
510 		error = suser(p);
511 		if (error != 0)
512 			return (error);
513 		if (intr < 0 || intr >= 16)
514 			return (EINVAL);
515 		if (!(interrupt_allowed & interrupt_mask))
516 			break;
517 		interrupt_allowed &= ~interrupt_mask;
518 		disable_intr();
519 		intr_handler[intr] = sc->sc_handler;
520 		intr_unit[intr] = sc->sc_arg;
521 		enable_intr();
522 		break;
523 	case MEM_RETURNIRQ:
524 		error = suser(p);
525 		if (error != 0)
526 			return (error);
527 		*(u_int16_t *)data = interrupt_allowed;
528 		break;
529 	}
530 	return (0);
531 }
532 
533 int
534 mmpoll(dev, events, p)
535 	dev_t dev;
536 	int events;
537 	struct proc *p;
538 {
539 	switch (minor(dev)) {
540 	case 3:		/* /dev/random */
541 		return random_poll(dev, events, p);
542 	case 4:		/* /dev/urandom */
543 	default:
544 		return seltrue(dev, events, p);
545 	}
546 }
547 
548 int
549 iszerodev(dev)
550 	dev_t dev;
551 {
552 	return ((major(dev) == mem_cdevsw.d_maj)
553 	  && minor(dev) == 12);
554 }
555 
556 static void
557 mem_drvinit(void *unused)
558 {
559 
560 	/* Initialise memory range handling */
561 	if (mem_range_softc.mr_op != NULL)
562 		mem_range_softc.mr_op->init(&mem_range_softc);
563 
564 	make_dev(&mem_cdevsw, 0, UID_ROOT, GID_KMEM, 0640, "mem");
565 	make_dev(&mem_cdevsw, 1, UID_ROOT, GID_KMEM, 0640, "kmem");
566 	make_dev(&mem_cdevsw, 2, UID_ROOT, GID_WHEEL, 0666, "null");
567 	make_dev(&mem_cdevsw, 3, UID_ROOT, GID_WHEEL, 0644, "random");
568 	make_dev(&mem_cdevsw, 4, UID_ROOT, GID_WHEEL, 0644, "urandom");
569 	make_dev(&mem_cdevsw, 12, UID_ROOT, GID_WHEEL, 0666, "zero");
570 	make_dev(&mem_cdevsw, 14, UID_ROOT, GID_WHEEL, 0600, "io");
571 }
572 
573 SYSINIT(memdev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE+CDEV_MAJOR,mem_drvinit,NULL)
574 
575