xref: /dragonfly/sys/kern/kern_ntptime.c (revision 77153250)
1 /***********************************************************************
2  *								       *
3  * Copyright (c) David L. Mills 1993-2001			       *
4  *								       *
5  * Permission to use, copy, modify, and distribute this software and   *
6  * its documentation for any purpose and without fee is hereby	       *
7  * granted, provided that the above copyright notice appears in all    *
8  * copies and that both the copyright notice and this permission       *
9  * notice appear in supporting documentation, and that the name	       *
10  * University of Delaware not be used in advertising or publicity      *
11  * pertaining to distribution of the software without specific,	       *
12  * written prior permission. The University of Delaware makes no       *
13  * representations about the suitability this software for any	       *
14  * purpose. It is provided "as is" without express or implied	       *
15  * warranty.							       *
16  *								       *
17  **********************************************************************/
18 
19 /*
20  * Adapted from the original sources for FreeBSD and timecounters by:
21  * Poul-Henning Kamp <phk@FreeBSD.org>.
22  *
23  * The 32bit version of the "LP" macros seems a bit past its "sell by"
24  * date so I have retained only the 64bit version and included it directly
25  * in this file.
26  *
27  * Only minor changes done to interface with the timecounters over in
28  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
29  * confusing and/or plain wrong in that context.
30  *
31  * $FreeBSD: src/sys/kern/kern_ntptime.c,v 1.32.2.2 2001/04/22 11:19:46 jhay Exp $
32  * $DragonFly: src/sys/kern/kern_ntptime.c,v 1.10 2005/04/20 16:37:09 cpressey Exp $
33  */
34 
35 #include "opt_ntp.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/sysproto.h>
40 #include <sys/kernel.h>
41 #include <sys/proc.h>
42 #include <sys/time.h>
43 #include <sys/timex.h>
44 #include <sys/timepps.h>
45 #include <sys/sysctl.h>
46 #include <sys/thread2.h>
47 
48 /*
49  * Single-precision macros for 64-bit machines
50  */
51 typedef long long l_fp;
52 #define L_ADD(v, u)	((v) += (u))
53 #define L_SUB(v, u)	((v) -= (u))
54 #define L_ADDHI(v, a)	((v) += (long long)(a) << 32)
55 #define L_NEG(v)	((v) = -(v))
56 #define L_RSHIFT(v, n) \
57 	do { \
58 		if ((v) < 0) \
59 			(v) = -(-(v) >> (n)); \
60 		else \
61 			(v) = (v) >> (n); \
62 	} while (0)
63 #define L_MPY(v, a)	((v) *= (a))
64 #define L_CLR(v)	((v) = 0)
65 #define L_ISNEG(v)	((v) < 0)
66 #define L_LINT(v, a)	((v) = (long long)(a) << 32)
67 #define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
68 
69 /*
70  * Generic NTP kernel interface
71  *
72  * These routines constitute the Network Time Protocol (NTP) interfaces
73  * for user and daemon application programs. The ntp_gettime() routine
74  * provides the time, maximum error (synch distance) and estimated error
75  * (dispersion) to client user application programs. The ntp_adjtime()
76  * routine is used by the NTP daemon to adjust the system clock to an
77  * externally derived time. The time offset and related variables set by
78  * this routine are used by other routines in this module to adjust the
79  * phase and frequency of the clock discipline loop which controls the
80  * system clock.
81  *
82  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
83  * defined), the time at each tick interrupt is derived directly from
84  * the kernel time variable. When the kernel time is reckoned in
85  * microseconds, (NTP_NANO undefined), the time is derived from the
86  * kernel time variable together with a variable representing the
87  * leftover nanoseconds at the last tick interrupt. In either case, the
88  * current nanosecond time is reckoned from these values plus an
89  * interpolated value derived by the clock routines in another
90  * architecture-specific module. The interpolation can use either a
91  * dedicated counter or a processor cycle counter (PCC) implemented in
92  * some architectures.
93  *
94  * Note that all routines must run at priority splclock or higher.
95  */
96 /*
97  * Phase/frequency-lock loop (PLL/FLL) definitions
98  *
99  * The nanosecond clock discipline uses two variable types, time
100  * variables and frequency variables. Both types are represented as 64-
101  * bit fixed-point quantities with the decimal point between two 32-bit
102  * halves. On a 32-bit machine, each half is represented as a single
103  * word and mathematical operations are done using multiple-precision
104  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
105  * used.
106  *
107  * A time variable is a signed 64-bit fixed-point number in ns and
108  * fraction. It represents the remaining time offset to be amortized
109  * over succeeding tick interrupts. The maximum time offset is about
110  * 0.5 s and the resolution is about 2.3e-10 ns.
111  *
112  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
113  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
114  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
115  * |s s s|			 ns				   |
116  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
117  * |			    fraction				   |
118  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
119  *
120  * A frequency variable is a signed 64-bit fixed-point number in ns/s
121  * and fraction. It represents the ns and fraction to be added to the
122  * kernel time variable at each second. The maximum frequency offset is
123  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
124  *
125  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
126  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
127  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
128  * |s s s s s s s s s s s s s|	          ns/s			   |
129  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
130  * |			    fraction				   |
131  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
132  */
133 /*
134  * The following variables establish the state of the PLL/FLL and the
135  * residual time and frequency offset of the local clock.
136  */
137 #define SHIFT_PLL	4		/* PLL loop gain (shift) */
138 #define SHIFT_FLL	2		/* FLL loop gain (shift) */
139 
140 static int time_state = TIME_OK;	/* clock state */
141 static int time_status = STA_UNSYNC;	/* clock status bits */
142 static long time_tai;			/* TAI offset (s) */
143 static long time_monitor;		/* last time offset scaled (ns) */
144 static long time_constant;		/* poll interval (shift) (s) */
145 static long time_precision = 1;		/* clock precision (ns) */
146 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
147 static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
148 static long time_reftime;		/* time at last adjustment (s) */
149 static long time_tick;			/* nanoseconds per tick (ns) */
150 static l_fp time_offset;		/* time offset (ns) */
151 static l_fp time_freq;			/* frequency offset (ns/s) */
152 static l_fp time_adj;			/* tick adjust (ns/s) */
153 
154 #ifdef PPS_SYNC
155 /*
156  * The following variables are used when a pulse-per-second (PPS) signal
157  * is available and connected via a modem control lead. They establish
158  * the engineering parameters of the clock discipline loop when
159  * controlled by the PPS signal.
160  */
161 #define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
162 #define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
163 #define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
164 #define PPS_PAVG	4		/* phase avg interval (s) (shift) */
165 #define PPS_VALID	120		/* PPS signal watchdog max (s) */
166 #define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
167 #define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
168 
169 static struct timespec pps_tf[3];	/* phase median filter */
170 static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
171 static long pps_fcount;			/* frequency accumulator */
172 static long pps_jitter;			/* nominal jitter (ns) */
173 static long pps_stabil;			/* nominal stability (scaled ns/s) */
174 static long pps_lastsec;		/* time at last calibration (s) */
175 static int pps_valid;			/* signal watchdog counter */
176 static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
177 static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
178 static int pps_intcnt;			/* wander counter */
179 
180 /*
181  * PPS signal quality monitors
182  */
183 static long pps_calcnt;			/* calibration intervals */
184 static long pps_jitcnt;			/* jitter limit exceeded */
185 static long pps_stbcnt;			/* stability limit exceeded */
186 static long pps_errcnt;			/* calibration errors */
187 #endif /* PPS_SYNC */
188 /*
189  * End of phase/frequency-lock loop (PLL/FLL) definitions
190  */
191 
192 static void ntp_init(void);
193 static void hardupdate(long offset);
194 
195 /*
196  * ntp_gettime() - NTP user application interface
197  *
198  * See the timex.h header file for synopsis and API description. Note
199  * that the TAI offset is returned in the ntvtimeval.tai structure
200  * member.
201  */
202 static int
203 ntp_sysctl(SYSCTL_HANDLER_ARGS)
204 {
205 	struct ntptimeval ntv;	/* temporary structure */
206 	struct timespec atv;	/* nanosecond time */
207 
208 	nanotime(&atv);
209 	ntv.time.tv_sec = atv.tv_sec;
210 	ntv.time.tv_nsec = atv.tv_nsec;
211 	ntv.maxerror = time_maxerror;
212 	ntv.esterror = time_esterror;
213 	ntv.tai = time_tai;
214 	ntv.time_state = time_state;
215 
216 	/*
217 	 * Status word error decode. If any of these conditions occur,
218 	 * an error is returned, instead of the status word. Most
219 	 * applications will care only about the fact the system clock
220 	 * may not be trusted, not about the details.
221 	 *
222 	 * Hardware or software error
223 	 */
224 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
225 
226 	/*
227 	 * PPS signal lost when either time or frequency synchronization
228 	 * requested
229 	 */
230 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
231 	    !(time_status & STA_PPSSIGNAL)) ||
232 
233 	/*
234 	 * PPS jitter exceeded when time synchronization requested
235 	 */
236 	    (time_status & STA_PPSTIME &&
237 	    time_status & STA_PPSJITTER) ||
238 
239 	/*
240 	 * PPS wander exceeded or calibration error when frequency
241 	 * synchronization requested
242 	 */
243 	    (time_status & STA_PPSFREQ &&
244 	    time_status & (STA_PPSWANDER | STA_PPSERROR)))
245 		ntv.time_state = TIME_ERROR;
246 	return (sysctl_handle_opaque(oidp, &ntv, sizeof ntv, req));
247 }
248 
249 SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
250 SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
251 	0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
252 
253 #ifdef PPS_SYNC
254 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, "");
255 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW, &pps_shift, 0, "");
256 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD, &time_monitor, 0, "");
257 
258 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD, &pps_freq, sizeof(pps_freq), "I", "");
259 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD, &time_freq, sizeof(time_freq), "I", "");
260 #endif
261 /*
262  * ntp_adjtime() - NTP daemon application interface
263  *
264  * See the timex.h header file for synopsis and API description. Note
265  * that the timex.constant structure member has a dual purpose to set
266  * the time constant and to set the TAI offset.
267  */
268 int
269 ntp_adjtime(struct ntp_adjtime_args *uap)
270 {
271 	struct thread *td = curthread;
272 	struct timex ntv;	/* temporary structure */
273 	long freq;		/* frequency ns/s) */
274 	int modes;		/* mode bits from structure */
275 	int error;
276 
277 	error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
278 	if (error)
279 		return(error);
280 
281 	/*
282 	 * Update selected clock variables - only the superuser can
283 	 * change anything. Note that there is no error checking here on
284 	 * the assumption the superuser should know what it is doing.
285 	 * Note that either the time constant or TAI offset are loaded
286 	 * from the ntv.constant member, depending on the mode bits. If
287 	 * the STA_PLL bit in the status word is cleared, the state and
288 	 * status words are reset to the initial values at boot.
289 	 */
290 	modes = ntv.modes;
291 	if (modes)
292 		error = suser(td);
293 	if (error)
294 		return (error);
295 	crit_enter();
296 	if (modes & MOD_MAXERROR)
297 		time_maxerror = ntv.maxerror;
298 	if (modes & MOD_ESTERROR)
299 		time_esterror = ntv.esterror;
300 	if (modes & MOD_STATUS) {
301 		if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
302 			time_state = TIME_OK;
303 			time_status = STA_UNSYNC;
304 #ifdef PPS_SYNC
305 			pps_shift = PPS_FAVG;
306 #endif /* PPS_SYNC */
307 		}
308 		time_status &= STA_RONLY;
309 		time_status |= ntv.status & ~STA_RONLY;
310 	}
311 	if (modes & MOD_TIMECONST) {
312 		if (ntv.constant < 0)
313 			time_constant = 0;
314 		else if (ntv.constant > MAXTC)
315 			time_constant = MAXTC;
316 		else
317 			time_constant = ntv.constant;
318 	}
319 	if (modes & MOD_TAI) {
320 		if (ntv.constant > 0) /* XXX zero & negative numbers ? */
321 			time_tai = ntv.constant;
322 	}
323 #ifdef PPS_SYNC
324 	if (modes & MOD_PPSMAX) {
325 		if (ntv.shift < PPS_FAVG)
326 			pps_shiftmax = PPS_FAVG;
327 		else if (ntv.shift > PPS_FAVGMAX)
328 			pps_shiftmax = PPS_FAVGMAX;
329 		else
330 			pps_shiftmax = ntv.shift;
331 	}
332 #endif /* PPS_SYNC */
333 	if (modes & MOD_NANO)
334 		time_status |= STA_NANO;
335 	if (modes & MOD_MICRO)
336 		time_status &= ~STA_NANO;
337 	if (modes & MOD_CLKB)
338 		time_status |= STA_CLK;
339 	if (modes & MOD_CLKA)
340 		time_status &= ~STA_CLK;
341 	if (modes & MOD_OFFSET) {
342 		if (time_status & STA_NANO)
343 			hardupdate(ntv.offset);
344 		else
345 			hardupdate(ntv.offset * 1000);
346 	}
347 	/*
348 	 * Note: the userland specified frequency is in seconds per second
349 	 * times 65536e+6.  Multiply by a thousand and divide by 65336 to
350 	 * get nanoseconds.
351 	 */
352 	if (modes & MOD_FREQUENCY) {
353 		freq = (ntv.freq * 1000LL) >> 16;
354 		if (freq > MAXFREQ)
355 			L_LINT(time_freq, MAXFREQ);
356 		else if (freq < -MAXFREQ)
357 			L_LINT(time_freq, -MAXFREQ);
358 		else
359 			L_LINT(time_freq, freq);
360 #ifdef PPS_SYNC
361 		pps_freq = time_freq;
362 #endif /* PPS_SYNC */
363 	}
364 
365 	/*
366 	 * Retrieve all clock variables. Note that the TAI offset is
367 	 * returned only by ntp_gettime();
368 	 */
369 	if (time_status & STA_NANO)
370 		ntv.offset = time_monitor;
371 	else
372 		ntv.offset = time_monitor / 1000; /* XXX rounding ? */
373 	ntv.freq = L_GINT((time_freq / 1000LL) << 16);
374 	ntv.maxerror = time_maxerror;
375 	ntv.esterror = time_esterror;
376 	ntv.status = time_status;
377 	ntv.constant = time_constant;
378 	if (time_status & STA_NANO)
379 		ntv.precision = time_precision;
380 	else
381 		ntv.precision = time_precision / 1000;
382 	ntv.tolerance = MAXFREQ * SCALE_PPM;
383 #ifdef PPS_SYNC
384 	ntv.shift = pps_shift;
385 	ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
386 	if (time_status & STA_NANO)
387 		ntv.jitter = pps_jitter;
388 	else
389 		ntv.jitter = pps_jitter / 1000;
390 	ntv.stabil = pps_stabil;
391 	ntv.calcnt = pps_calcnt;
392 	ntv.errcnt = pps_errcnt;
393 	ntv.jitcnt = pps_jitcnt;
394 	ntv.stbcnt = pps_stbcnt;
395 #endif /* PPS_SYNC */
396 	crit_exit();
397 
398 	error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
399 	if (error)
400 		return (error);
401 
402 	/*
403 	 * Status word error decode. See comments in
404 	 * ntp_gettime() routine.
405 	 */
406 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
407 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
408 	    !(time_status & STA_PPSSIGNAL)) ||
409 	    (time_status & STA_PPSTIME &&
410 	    time_status & STA_PPSJITTER) ||
411 	    (time_status & STA_PPSFREQ &&
412 	    time_status & (STA_PPSWANDER | STA_PPSERROR))) {
413 		uap->sysmsg_result = TIME_ERROR;
414 	} else {
415 		uap->sysmsg_result = time_state;
416 	}
417 	return (error);
418 }
419 
420 /*
421  * second_overflow() - called after ntp_tick_adjust()
422  *
423  * This routine is ordinarily called from hardclock() whenever the seconds
424  * hand rolls over.  It returns leap seconds to add or drop, and sets nsec_adj
425  * to the total adjustment to make over the next second in (ns << 32).
426  */
427 int
428 ntp_update_second(time_t newsec, int64_t *nsec_adj)
429 {
430 	l_fp ftemp;		/* 32/64-bit temporary */
431 	int  adjsec = 0;
432 
433 	/*
434 	 * On rollover of the second both the nanosecond and microsecond
435 	 * clocks are updated and the state machine cranked as
436 	 * necessary. The phase adjustment to be used for the next
437 	 * second is calculated and the maximum error is increased by
438 	 * the tolerance.
439 	 */
440 	time_maxerror += MAXFREQ / 1000;
441 
442 	/*
443 	 * Leap second processing. If in leap-insert state at
444 	 * the end of the day, the system clock is set back one
445 	 * second; if in leap-delete state, the system clock is
446 	 * set ahead one second. The nano_time() routine or
447 	 * external clock driver will insure that reported time
448 	 * is always monotonic.
449 	 */
450 	switch (time_state) {
451 
452 		/*
453 		 * No warning.
454 		 */
455 		case TIME_OK:
456 		if (time_status & STA_INS)
457 			time_state = TIME_INS;
458 		else if (time_status & STA_DEL)
459 			time_state = TIME_DEL;
460 		break;
461 
462 		/*
463 		 * Insert second 23:59:60 following second
464 		 * 23:59:59.
465 		 */
466 		case TIME_INS:
467 		if (!(time_status & STA_INS))
468 			time_state = TIME_OK;
469 		else if ((newsec) % 86400 == 0) {
470 			--adjsec;
471 			time_state = TIME_OOP;
472 		}
473 		break;
474 
475 		/*
476 		 * Delete second 23:59:59.
477 		 */
478 		case TIME_DEL:
479 		if (!(time_status & STA_DEL))
480 			time_state = TIME_OK;
481 		else if (((newsec) + 1) % 86400 == 0) {
482 			++adjsec;
483 			time_tai--;
484 			time_state = TIME_WAIT;
485 		}
486 		break;
487 
488 		/*
489 		 * Insert second in progress.
490 		 */
491 		case TIME_OOP:
492 			time_tai++;
493 			time_state = TIME_WAIT;
494 		break;
495 
496 		/*
497 		 * Wait for status bits to clear.
498 		 */
499 		case TIME_WAIT:
500 		if (!(time_status & (STA_INS | STA_DEL)))
501 			time_state = TIME_OK;
502 	}
503 
504 	/*
505 	 * time_offset represents the total time adjustment we wish to
506 	 * make (over no particular period of time).  time_freq represents
507 	 * the frequency compensation we wish to apply.
508 	 *
509 	 * time_adj represents the total adjustment we wish to make over
510 	 * one full second.  hardclock usually applies this adjustment in
511 	 * time_adj / hz jumps, hz times a second.
512 	 */
513 	ftemp = time_offset;
514 #ifdef PPS_SYNC
515 	/* XXX even if PPS signal dies we should finish adjustment ? */
516 	if ((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL))
517 		L_RSHIFT(ftemp, pps_shift);
518 	else
519 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
520 #else
521 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
522 #endif /* PPS_SYNC */
523 	time_adj = ftemp;		/* adjustment for part of the offset */
524 	L_SUB(time_offset, ftemp);
525 	L_ADD(time_adj, time_freq);	/* add frequency correction */
526 	*nsec_adj = time_adj;
527 #ifdef PPS_SYNC
528 	if (pps_valid > 0)
529 		pps_valid--;
530 	else
531 		time_status &= ~STA_PPSSIGNAL;
532 #endif /* PPS_SYNC */
533 	return(adjsec);
534 }
535 
536 /*
537  * ntp_init() - initialize variables and structures
538  *
539  * This routine must be called after the kernel variables hz and tick
540  * are set or changed and before the next tick interrupt. In this
541  * particular implementation, these values are assumed set elsewhere in
542  * the kernel. The design allows the clock frequency and tick interval
543  * to be changed while the system is running. So, this routine should
544  * probably be integrated with the code that does that.
545  */
546 static void
547 ntp_init(void)
548 {
549 
550 	/*
551 	 * The following variable must be initialized any time the
552 	 * kernel variable hz is changed.
553 	 */
554 	time_tick = NANOSECOND / hz;
555 
556 	/*
557 	 * The following variables are initialized only at startup. Only
558 	 * those structures not cleared by the compiler need to be
559 	 * initialized, and these only in the simulator. In the actual
560 	 * kernel, any nonzero values here will quickly evaporate.
561 	 */
562 	L_CLR(time_offset);
563 	L_CLR(time_freq);
564 #ifdef PPS_SYNC
565 	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
566 	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
567 	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
568 	pps_fcount = 0;
569 	L_CLR(pps_freq);
570 #endif /* PPS_SYNC */
571 }
572 
573 SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, ntp_init, NULL)
574 
575 /*
576  * hardupdate() - local clock update
577  *
578  * This routine is called by ntp_adjtime() to update the local clock
579  * phase and frequency. The implementation is of an adaptive-parameter,
580  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
581  * time and frequency offset estimates for each call. If the kernel PPS
582  * discipline code is configured (PPS_SYNC), the PPS signal itself
583  * determines the new time offset, instead of the calling argument.
584  * Presumably, calls to ntp_adjtime() occur only when the caller
585  * believes the local clock is valid within some bound (+-128 ms with
586  * NTP). If the caller's time is far different than the PPS time, an
587  * argument will ensue, and it's not clear who will lose.
588  *
589  * For uncompensated quartz crystal oscillators and nominal update
590  * intervals less than 256 s, operation should be in phase-lock mode,
591  * where the loop is disciplined to phase. For update intervals greater
592  * than 1024 s, operation should be in frequency-lock mode, where the
593  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
594  * is selected by the STA_MODE status bit.
595  */
596 static void
597 hardupdate(long offset)
598 {
599 	long mtemp;
600 	l_fp ftemp;
601 	globaldata_t gd;
602 
603 	gd = mycpu;
604 
605 	/*
606 	 * Select how the phase is to be controlled and from which
607 	 * source. If the PPS signal is present and enabled to
608 	 * discipline the time, the PPS offset is used; otherwise, the
609 	 * argument offset is used.
610 	 */
611 	if (!(time_status & STA_PLL))
612 		return;
613 	if (!((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL))) {
614 		if (offset > MAXPHASE)
615 			time_monitor = MAXPHASE;
616 		else if (offset < -MAXPHASE)
617 			time_monitor = -MAXPHASE;
618 		else
619 			time_monitor = offset;
620 		L_LINT(time_offset, time_monitor);
621 	}
622 
623 	/*
624 	 * Select how the frequency is to be controlled and in which
625 	 * mode (PLL or FLL). If the PPS signal is present and enabled
626 	 * to discipline the frequency, the PPS frequency is used;
627 	 * otherwise, the argument offset is used to compute it.
628 	 *
629 	 * gd_time_seconds is basically an uncompensated uptime.  We use
630 	 * this for consistency.
631 	 */
632 	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
633 		time_reftime = time_second;
634 		return;
635 	}
636 	if (time_status & STA_FREQHOLD || time_reftime == 0)
637 		time_reftime = time_second;
638 	mtemp = time_second - time_reftime;
639 	L_LINT(ftemp, time_monitor);
640 	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
641 	L_MPY(ftemp, mtemp);
642 	L_ADD(time_freq, ftemp);
643 	time_status &= ~STA_MODE;
644 	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > MAXSEC)) {
645 		L_LINT(ftemp, (time_monitor << 4) / mtemp);
646 		L_RSHIFT(ftemp, SHIFT_FLL + 4);
647 		L_ADD(time_freq, ftemp);
648 		time_status |= STA_MODE;
649 	}
650 	time_reftime = time_second;
651 	if (L_GINT(time_freq) > MAXFREQ)
652 		L_LINT(time_freq, MAXFREQ);
653 	else if (L_GINT(time_freq) < -MAXFREQ)
654 		L_LINT(time_freq, -MAXFREQ);
655 }
656 
657 #ifdef PPS_SYNC
658 /*
659  * hardpps() - discipline CPU clock oscillator to external PPS signal
660  *
661  * This routine is called at each PPS interrupt in order to discipline
662  * the CPU clock oscillator to the PPS signal. There are two independent
663  * first-order feedback loops, one for the phase, the other for the
664  * frequency. The phase loop measures and grooms the PPS phase offset
665  * and leaves it in a handy spot for the seconds overflow routine. The
666  * frequency loop averages successive PPS phase differences and
667  * calculates the PPS frequency offset, which is also processed by the
668  * seconds overflow routine. The code requires the caller to capture the
669  * time and architecture-dependent hardware counter values in
670  * nanoseconds at the on-time PPS signal transition.
671  *
672  * Note that, on some Unix systems this routine runs at an interrupt
673  * priority level higher than the timer interrupt routine hardclock().
674  * Therefore, the variables used are distinct from the hardclock()
675  * variables, except for the actual time and frequency variables, which
676  * are determined by this routine and updated atomically.
677  */
678 void
679 hardpps(struct timespec *tsp, long nsec)
680 {
681 	long u_sec, u_nsec, v_nsec; /* temps */
682 	l_fp ftemp;
683 
684 	/*
685 	 * The signal is first processed by a range gate and frequency
686 	 * discriminator. The range gate rejects noise spikes outside
687 	 * the range +-500 us. The frequency discriminator rejects input
688 	 * signals with apparent frequency outside the range 1 +-500
689 	 * PPM. If two hits occur in the same second, we ignore the
690 	 * later hit; if not and a hit occurs outside the range gate,
691 	 * keep the later hit for later comparison, but do not process
692 	 * it.
693 	 */
694 	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
695 	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
696 	pps_valid = PPS_VALID;
697 	u_sec = tsp->tv_sec;
698 	u_nsec = tsp->tv_nsec;
699 	if (u_nsec >= (NANOSECOND >> 1)) {
700 		u_nsec -= NANOSECOND;
701 		u_sec++;
702 	}
703 	v_nsec = u_nsec - pps_tf[0].tv_nsec;
704 	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
705 	    MAXFREQ)
706 		return;
707 	pps_tf[2] = pps_tf[1];
708 	pps_tf[1] = pps_tf[0];
709 	pps_tf[0].tv_sec = u_sec;
710 	pps_tf[0].tv_nsec = u_nsec;
711 
712 	/*
713 	 * Compute the difference between the current and previous
714 	 * counter values. If the difference exceeds 0.5 s, assume it
715 	 * has wrapped around, so correct 1.0 s. If the result exceeds
716 	 * the tick interval, the sample point has crossed a tick
717 	 * boundary during the last second, so correct the tick. Very
718 	 * intricate.
719 	 */
720 	u_nsec = nsec;
721 	if (u_nsec > (NANOSECOND >> 1))
722 		u_nsec -= NANOSECOND;
723 	else if (u_nsec < -(NANOSECOND >> 1))
724 		u_nsec += NANOSECOND;
725 	pps_fcount += u_nsec;
726 	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
727 		return;
728 	time_status &= ~STA_PPSJITTER;
729 
730 	/*
731 	 * A three-stage median filter is used to help denoise the PPS
732 	 * time. The median sample becomes the time offset estimate; the
733 	 * difference between the other two samples becomes the time
734 	 * dispersion (jitter) estimate.
735 	 */
736 	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
737 		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
738 			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
739 			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
740 		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
741 			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
742 			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
743 		} else {
744 			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
745 			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
746 		}
747 	} else {
748 		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
749 			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
750 			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
751 		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
752 			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
753 			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
754 		} else {
755 			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
756 			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
757 		}
758 	}
759 
760 	/*
761 	 * Nominal jitter is due to PPS signal noise and interrupt
762 	 * latency. If it exceeds the popcorn threshold, the sample is
763 	 * discarded. otherwise, if so enabled, the time offset is
764 	 * updated. We can tolerate a modest loss of data here without
765 	 * much degrading time accuracy.
766 	 */
767 	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
768 		time_status |= STA_PPSJITTER;
769 		pps_jitcnt++;
770 	} else if (time_status & STA_PPSTIME) {
771 		time_monitor = -v_nsec;
772 		L_LINT(time_offset, time_monitor);
773 	}
774 	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
775 	u_sec = pps_tf[0].tv_sec - pps_lastsec;
776 	if (u_sec < (1 << pps_shift))
777 		return;
778 
779 	/*
780 	 * At the end of the calibration interval the difference between
781 	 * the first and last counter values becomes the scaled
782 	 * frequency. It will later be divided by the length of the
783 	 * interval to determine the frequency update. If the frequency
784 	 * exceeds a sanity threshold, or if the actual calibration
785 	 * interval is not equal to the expected length, the data are
786 	 * discarded. We can tolerate a modest loss of data here without
787 	 * much degrading frequency accuracy.
788 	 */
789 	pps_calcnt++;
790 	v_nsec = -pps_fcount;
791 	pps_lastsec = pps_tf[0].tv_sec;
792 	pps_fcount = 0;
793 	u_nsec = MAXFREQ << pps_shift;
794 	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
795 	    pps_shift)) {
796 		time_status |= STA_PPSERROR;
797 		pps_errcnt++;
798 		return;
799 	}
800 
801 	/*
802 	 * Here the raw frequency offset and wander (stability) is
803 	 * calculated. If the wander is less than the wander threshold
804 	 * for four consecutive averaging intervals, the interval is
805 	 * doubled; if it is greater than the threshold for four
806 	 * consecutive intervals, the interval is halved. The scaled
807 	 * frequency offset is converted to frequency offset. The
808 	 * stability metric is calculated as the average of recent
809 	 * frequency changes, but is used only for performance
810 	 * monitoring.
811 	 */
812 	L_LINT(ftemp, v_nsec);
813 	L_RSHIFT(ftemp, pps_shift);
814 	L_SUB(ftemp, pps_freq);
815 	u_nsec = L_GINT(ftemp);
816 	if (u_nsec > PPS_MAXWANDER) {
817 		L_LINT(ftemp, PPS_MAXWANDER);
818 		pps_intcnt--;
819 		time_status |= STA_PPSWANDER;
820 		pps_stbcnt++;
821 	} else if (u_nsec < -PPS_MAXWANDER) {
822 		L_LINT(ftemp, -PPS_MAXWANDER);
823 		pps_intcnt--;
824 		time_status |= STA_PPSWANDER;
825 		pps_stbcnt++;
826 	} else {
827 		pps_intcnt++;
828 	}
829 	if (pps_intcnt >= 4) {
830 		pps_intcnt = 4;
831 		if (pps_shift < pps_shiftmax) {
832 			pps_shift++;
833 			pps_intcnt = 0;
834 		}
835 	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
836 		pps_intcnt = -4;
837 		if (pps_shift > PPS_FAVG) {
838 			pps_shift--;
839 			pps_intcnt = 0;
840 		}
841 	}
842 	if (u_nsec < 0)
843 		u_nsec = -u_nsec;
844 	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
845 
846 	/*
847 	 * The PPS frequency is recalculated and clamped to the maximum
848 	 * MAXFREQ. If enabled, the system clock frequency is updated as
849 	 * well.
850 	 */
851 	L_ADD(pps_freq, ftemp);
852 	u_nsec = L_GINT(pps_freq);
853 	if (u_nsec > MAXFREQ)
854 		L_LINT(pps_freq, MAXFREQ);
855 	else if (u_nsec < -MAXFREQ)
856 		L_LINT(pps_freq, -MAXFREQ);
857 	if (time_status & STA_PPSFREQ)
858 		time_freq = pps_freq;
859 }
860 #endif /* PPS_SYNC */
861