xref: /dragonfly/sys/kern/kern_ntptime.c (revision 984263bc)
1 /***********************************************************************
2  *								       *
3  * Copyright (c) David L. Mills 1993-2001			       *
4  *								       *
5  * Permission to use, copy, modify, and distribute this software and   *
6  * its documentation for any purpose and without fee is hereby	       *
7  * granted, provided that the above copyright notice appears in all    *
8  * copies and that both the copyright notice and this permission       *
9  * notice appear in supporting documentation, and that the name	       *
10  * University of Delaware not be used in advertising or publicity      *
11  * pertaining to distribution of the software without specific,	       *
12  * written prior permission. The University of Delaware makes no       *
13  * representations about the suitability this software for any	       *
14  * purpose. It is provided "as is" without express or implied	       *
15  * warranty.							       *
16  *								       *
17  **********************************************************************/
18 
19 /*
20  * Adapted from the original sources for FreeBSD and timecounters by:
21  * Poul-Henning Kamp <phk@FreeBSD.org>.
22  *
23  * The 32bit version of the "LP" macros seems a bit past its "sell by"
24  * date so I have retained only the 64bit version and included it directly
25  * in this file.
26  *
27  * Only minor changes done to interface with the timecounters over in
28  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
29  * confusing and/or plain wrong in that context.
30  *
31  * $FreeBSD: src/sys/kern/kern_ntptime.c,v 1.32.2.2 2001/04/22 11:19:46 jhay Exp $
32  */
33 
34 #include "opt_ntp.h"
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/sysproto.h>
39 #include <sys/kernel.h>
40 #include <sys/proc.h>
41 #include <sys/time.h>
42 #include <sys/timex.h>
43 #include <sys/timepps.h>
44 #include <sys/sysctl.h>
45 
46 /*
47  * Single-precision macros for 64-bit machines
48  */
49 typedef long long l_fp;
50 #define L_ADD(v, u)	((v) += (u))
51 #define L_SUB(v, u)	((v) -= (u))
52 #define L_ADDHI(v, a)	((v) += (long long)(a) << 32)
53 #define L_NEG(v)	((v) = -(v))
54 #define L_RSHIFT(v, n) \
55 	do { \
56 		if ((v) < 0) \
57 			(v) = -(-(v) >> (n)); \
58 		else \
59 			(v) = (v) >> (n); \
60 	} while (0)
61 #define L_MPY(v, a)	((v) *= (a))
62 #define L_CLR(v)	((v) = 0)
63 #define L_ISNEG(v)	((v) < 0)
64 #define L_LINT(v, a)	((v) = (long long)(a) << 32)
65 #define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
66 
67 /*
68  * Generic NTP kernel interface
69  *
70  * These routines constitute the Network Time Protocol (NTP) interfaces
71  * for user and daemon application programs. The ntp_gettime() routine
72  * provides the time, maximum error (synch distance) and estimated error
73  * (dispersion) to client user application programs. The ntp_adjtime()
74  * routine is used by the NTP daemon to adjust the system clock to an
75  * externally derived time. The time offset and related variables set by
76  * this routine are used by other routines in this module to adjust the
77  * phase and frequency of the clock discipline loop which controls the
78  * system clock.
79  *
80  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
81  * defined), the time at each tick interrupt is derived directly from
82  * the kernel time variable. When the kernel time is reckoned in
83  * microseconds, (NTP_NANO undefined), the time is derived from the
84  * kernel time variable together with a variable representing the
85  * leftover nanoseconds at the last tick interrupt. In either case, the
86  * current nanosecond time is reckoned from these values plus an
87  * interpolated value derived by the clock routines in another
88  * architecture-specific module. The interpolation can use either a
89  * dedicated counter or a processor cycle counter (PCC) implemented in
90  * some architectures.
91  *
92  * Note that all routines must run at priority splclock or higher.
93  */
94 /*
95  * Phase/frequency-lock loop (PLL/FLL) definitions
96  *
97  * The nanosecond clock discipline uses two variable types, time
98  * variables and frequency variables. Both types are represented as 64-
99  * bit fixed-point quantities with the decimal point between two 32-bit
100  * halves. On a 32-bit machine, each half is represented as a single
101  * word and mathematical operations are done using multiple-precision
102  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
103  * used.
104  *
105  * A time variable is a signed 64-bit fixed-point number in ns and
106  * fraction. It represents the remaining time offset to be amortized
107  * over succeeding tick interrupts. The maximum time offset is about
108  * 0.5 s and the resolution is about 2.3e-10 ns.
109  *
110  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
111  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
112  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
113  * |s s s|			 ns				   |
114  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
115  * |			    fraction				   |
116  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
117  *
118  * A frequency variable is a signed 64-bit fixed-point number in ns/s
119  * and fraction. It represents the ns and fraction to be added to the
120  * kernel time variable at each second. The maximum frequency offset is
121  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
122  *
123  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
124  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
125  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
126  * |s s s s s s s s s s s s s|	          ns/s			   |
127  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
128  * |			    fraction				   |
129  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
130  */
131 /*
132  * The following variables establish the state of the PLL/FLL and the
133  * residual time and frequency offset of the local clock.
134  */
135 #define SHIFT_PLL	4		/* PLL loop gain (shift) */
136 #define SHIFT_FLL	2		/* FLL loop gain (shift) */
137 
138 static int time_state = TIME_OK;	/* clock state */
139 static int time_status = STA_UNSYNC;	/* clock status bits */
140 static long time_tai;			/* TAI offset (s) */
141 static long time_monitor;		/* last time offset scaled (ns) */
142 static long time_constant;		/* poll interval (shift) (s) */
143 static long time_precision = 1;		/* clock precision (ns) */
144 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
145 static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
146 static long time_reftime;		/* time at last adjustment (s) */
147 static long time_tick;			/* nanoseconds per tick (ns) */
148 static l_fp time_offset;		/* time offset (ns) */
149 static l_fp time_freq;			/* frequency offset (ns/s) */
150 static l_fp time_adj;			/* tick adjust (ns/s) */
151 
152 #ifdef PPS_SYNC
153 /*
154  * The following variables are used when a pulse-per-second (PPS) signal
155  * is available and connected via a modem control lead. They establish
156  * the engineering parameters of the clock discipline loop when
157  * controlled by the PPS signal.
158  */
159 #define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
160 #define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
161 #define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
162 #define PPS_PAVG	4		/* phase avg interval (s) (shift) */
163 #define PPS_VALID	120		/* PPS signal watchdog max (s) */
164 #define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
165 #define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
166 
167 static struct timespec pps_tf[3];	/* phase median filter */
168 static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
169 static long pps_fcount;			/* frequency accumulator */
170 static long pps_jitter;			/* nominal jitter (ns) */
171 static long pps_stabil;			/* nominal stability (scaled ns/s) */
172 static long pps_lastsec;		/* time at last calibration (s) */
173 static int pps_valid;			/* signal watchdog counter */
174 static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
175 static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
176 static int pps_intcnt;			/* wander counter */
177 
178 /*
179  * PPS signal quality monitors
180  */
181 static long pps_calcnt;			/* calibration intervals */
182 static long pps_jitcnt;			/* jitter limit exceeded */
183 static long pps_stbcnt;			/* stability limit exceeded */
184 static long pps_errcnt;			/* calibration errors */
185 #endif /* PPS_SYNC */
186 /*
187  * End of phase/frequency-lock loop (PLL/FLL) definitions
188  */
189 
190 static void ntp_init(void);
191 static void hardupdate(long offset);
192 
193 /*
194  * ntp_gettime() - NTP user application interface
195  *
196  * See the timex.h header file for synopsis and API description. Note
197  * that the TAI offset is returned in the ntvtimeval.tai structure
198  * member.
199  */
200 static int
201 ntp_sysctl(SYSCTL_HANDLER_ARGS)
202 {
203 	struct ntptimeval ntv;	/* temporary structure */
204 	struct timespec atv;	/* nanosecond time */
205 
206 	nanotime(&atv);
207 	ntv.time.tv_sec = atv.tv_sec;
208 	ntv.time.tv_nsec = atv.tv_nsec;
209 	ntv.maxerror = time_maxerror;
210 	ntv.esterror = time_esterror;
211 	ntv.tai = time_tai;
212 	ntv.time_state = time_state;
213 
214 	/*
215 	 * Status word error decode. If any of these conditions occur,
216 	 * an error is returned, instead of the status word. Most
217 	 * applications will care only about the fact the system clock
218 	 * may not be trusted, not about the details.
219 	 *
220 	 * Hardware or software error
221 	 */
222 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
223 
224 	/*
225 	 * PPS signal lost when either time or frequency synchronization
226 	 * requested
227 	 */
228 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
229 	    !(time_status & STA_PPSSIGNAL)) ||
230 
231 	/*
232 	 * PPS jitter exceeded when time synchronization requested
233 	 */
234 	    (time_status & STA_PPSTIME &&
235 	    time_status & STA_PPSJITTER) ||
236 
237 	/*
238 	 * PPS wander exceeded or calibration error when frequency
239 	 * synchronization requested
240 	 */
241 	    (time_status & STA_PPSFREQ &&
242 	    time_status & (STA_PPSWANDER | STA_PPSERROR)))
243 		ntv.time_state = TIME_ERROR;
244 	return (sysctl_handle_opaque(oidp, &ntv, sizeof ntv, req));
245 }
246 
247 SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
248 SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
249 	0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
250 
251 #ifdef PPS_SYNC
252 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, "");
253 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW, &pps_shift, 0, "");
254 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD, &time_monitor, 0, "");
255 
256 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD, &pps_freq, sizeof(pps_freq), "I", "");
257 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD, &time_freq, sizeof(time_freq), "I", "");
258 #endif
259 /*
260  * ntp_adjtime() - NTP daemon application interface
261  *
262  * See the timex.h header file for synopsis and API description. Note
263  * that the timex.constant structure member has a dual purpose to set
264  * the time constant and to set the TAI offset.
265  */
266 #ifndef _SYS_SYSPROTO_H_
267 struct ntp_adjtime_args {
268 	struct timex *tp;
269 };
270 #endif
271 
272 int
273 ntp_adjtime(struct proc *p, struct ntp_adjtime_args *uap)
274 {
275 	struct timex ntv;	/* temporary structure */
276 	long freq;		/* frequency ns/s) */
277 	int modes;		/* mode bits from structure */
278 	int s;			/* caller priority */
279 	int error;
280 
281 	error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
282 	if (error)
283 		return(error);
284 
285 	/*
286 	 * Update selected clock variables - only the superuser can
287 	 * change anything. Note that there is no error checking here on
288 	 * the assumption the superuser should know what it is doing.
289 	 * Note that either the time constant or TAI offset are loaded
290 	 * from the ntv.constant member, depending on the mode bits. If
291 	 * the STA_PLL bit in the status word is cleared, the state and
292 	 * status words are reset to the initial values at boot.
293 	 */
294 	modes = ntv.modes;
295 	if (modes)
296 		error = suser(p);
297 	if (error)
298 		return (error);
299 	s = splclock();
300 	if (modes & MOD_MAXERROR)
301 		time_maxerror = ntv.maxerror;
302 	if (modes & MOD_ESTERROR)
303 		time_esterror = ntv.esterror;
304 	if (modes & MOD_STATUS) {
305 		if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
306 			time_state = TIME_OK;
307 			time_status = STA_UNSYNC;
308 #ifdef PPS_SYNC
309 			pps_shift = PPS_FAVG;
310 #endif /* PPS_SYNC */
311 		}
312 		time_status &= STA_RONLY;
313 		time_status |= ntv.status & ~STA_RONLY;
314 	}
315 	if (modes & MOD_TIMECONST) {
316 		if (ntv.constant < 0)
317 			time_constant = 0;
318 		else if (ntv.constant > MAXTC)
319 			time_constant = MAXTC;
320 		else
321 			time_constant = ntv.constant;
322 	}
323 	if (modes & MOD_TAI) {
324 		if (ntv.constant > 0) /* XXX zero & negative numbers ? */
325 			time_tai = ntv.constant;
326 	}
327 #ifdef PPS_SYNC
328 	if (modes & MOD_PPSMAX) {
329 		if (ntv.shift < PPS_FAVG)
330 			pps_shiftmax = PPS_FAVG;
331 		else if (ntv.shift > PPS_FAVGMAX)
332 			pps_shiftmax = PPS_FAVGMAX;
333 		else
334 			pps_shiftmax = ntv.shift;
335 	}
336 #endif /* PPS_SYNC */
337 	if (modes & MOD_NANO)
338 		time_status |= STA_NANO;
339 	if (modes & MOD_MICRO)
340 		time_status &= ~STA_NANO;
341 	if (modes & MOD_CLKB)
342 		time_status |= STA_CLK;
343 	if (modes & MOD_CLKA)
344 		time_status &= ~STA_CLK;
345 	if (modes & MOD_OFFSET) {
346 		if (time_status & STA_NANO)
347 			hardupdate(ntv.offset);
348 		else
349 			hardupdate(ntv.offset * 1000);
350 	}
351 	if (modes & MOD_FREQUENCY) {
352 		freq = (ntv.freq * 1000LL) >> 16;
353 		if (freq > MAXFREQ)
354 			L_LINT(time_freq, MAXFREQ);
355 		else if (freq < -MAXFREQ)
356 			L_LINT(time_freq, -MAXFREQ);
357 		else
358 			L_LINT(time_freq, freq);
359 #ifdef PPS_SYNC
360 		pps_freq = time_freq;
361 #endif /* PPS_SYNC */
362 	}
363 
364 	/*
365 	 * Retrieve all clock variables. Note that the TAI offset is
366 	 * returned only by ntp_gettime();
367 	 */
368 	if (time_status & STA_NANO)
369 		ntv.offset = time_monitor;
370 	else
371 		ntv.offset = time_monitor / 1000; /* XXX rounding ? */
372 	ntv.freq = L_GINT((time_freq / 1000LL) << 16);
373 	ntv.maxerror = time_maxerror;
374 	ntv.esterror = time_esterror;
375 	ntv.status = time_status;
376 	ntv.constant = time_constant;
377 	if (time_status & STA_NANO)
378 		ntv.precision = time_precision;
379 	else
380 		ntv.precision = time_precision / 1000;
381 	ntv.tolerance = MAXFREQ * SCALE_PPM;
382 #ifdef PPS_SYNC
383 	ntv.shift = pps_shift;
384 	ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
385 	if (time_status & STA_NANO)
386 		ntv.jitter = pps_jitter;
387 	else
388 		ntv.jitter = pps_jitter / 1000;
389 	ntv.stabil = pps_stabil;
390 	ntv.calcnt = pps_calcnt;
391 	ntv.errcnt = pps_errcnt;
392 	ntv.jitcnt = pps_jitcnt;
393 	ntv.stbcnt = pps_stbcnt;
394 #endif /* PPS_SYNC */
395 	splx(s);
396 
397 	error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
398 	if (error)
399 		return (error);
400 
401 	/*
402 	 * Status word error decode. See comments in
403 	 * ntp_gettime() routine.
404 	 */
405 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
406 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
407 	    !(time_status & STA_PPSSIGNAL)) ||
408 	    (time_status & STA_PPSTIME &&
409 	    time_status & STA_PPSJITTER) ||
410 	    (time_status & STA_PPSFREQ &&
411 	    time_status & (STA_PPSWANDER | STA_PPSERROR)))
412 		p->p_retval[0] = TIME_ERROR;
413 	else
414 		p->p_retval[0] = time_state;
415 	return (error);
416 }
417 
418 /*
419  * second_overflow() - called after ntp_tick_adjust()
420  *
421  * This routine is ordinarily called immediately following the above
422  * routine ntp_tick_adjust(). While these two routines are normally
423  * combined, they are separated here only for the purposes of
424  * simulation.
425  */
426 void
427 ntp_update_second(struct timecounter *tcp)
428 {
429 	u_int32_t *newsec;
430 	l_fp ftemp;		/* 32/64-bit temporary */
431 
432 	newsec = &tcp->tc_offset_sec;
433 	/*
434 	 * On rollover of the second both the nanosecond and microsecond
435 	 * clocks are updated and the state machine cranked as
436 	 * necessary. The phase adjustment to be used for the next
437 	 * second is calculated and the maximum error is increased by
438 	 * the tolerance.
439 	 */
440 	time_maxerror += MAXFREQ / 1000;
441 
442 	/*
443 	 * Leap second processing. If in leap-insert state at
444 	 * the end of the day, the system clock is set back one
445 	 * second; if in leap-delete state, the system clock is
446 	 * set ahead one second. The nano_time() routine or
447 	 * external clock driver will insure that reported time
448 	 * is always monotonic.
449 	 */
450 	switch (time_state) {
451 
452 		/*
453 		 * No warning.
454 		 */
455 		case TIME_OK:
456 		if (time_status & STA_INS)
457 			time_state = TIME_INS;
458 		else if (time_status & STA_DEL)
459 			time_state = TIME_DEL;
460 		break;
461 
462 		/*
463 		 * Insert second 23:59:60 following second
464 		 * 23:59:59.
465 		 */
466 		case TIME_INS:
467 		if (!(time_status & STA_INS))
468 			time_state = TIME_OK;
469 		else if ((*newsec) % 86400 == 0) {
470 			(*newsec)--;
471 			time_state = TIME_OOP;
472 		}
473 		break;
474 
475 		/*
476 		 * Delete second 23:59:59.
477 		 */
478 		case TIME_DEL:
479 		if (!(time_status & STA_DEL))
480 			time_state = TIME_OK;
481 		else if (((*newsec) + 1) % 86400 == 0) {
482 			(*newsec)++;
483 			time_tai--;
484 			time_state = TIME_WAIT;
485 		}
486 		break;
487 
488 		/*
489 		 * Insert second in progress.
490 		 */
491 		case TIME_OOP:
492 			time_tai++;
493 			time_state = TIME_WAIT;
494 		break;
495 
496 		/*
497 		 * Wait for status bits to clear.
498 		 */
499 		case TIME_WAIT:
500 		if (!(time_status & (STA_INS | STA_DEL)))
501 			time_state = TIME_OK;
502 	}
503 
504 	/*
505 	 * Compute the total time adjustment for the next second
506 	 * in ns. The offset is reduced by a factor depending on
507 	 * whether the PPS signal is operating. Note that the
508 	 * value is in effect scaled by the clock frequency,
509 	 * since the adjustment is added at each tick interrupt.
510 	 */
511 	ftemp = time_offset;
512 #ifdef PPS_SYNC
513 	/* XXX even if PPS signal dies we should finish adjustment ? */
514 	if (time_status & STA_PPSTIME && time_status &
515 	    STA_PPSSIGNAL)
516 		L_RSHIFT(ftemp, pps_shift);
517 	else
518 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
519 #else
520 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
521 #endif /* PPS_SYNC */
522 	time_adj = ftemp;
523 	L_SUB(time_offset, ftemp);
524 	L_ADD(time_adj, time_freq);
525 	tcp->tc_adjustment = time_adj;
526 #ifdef PPS_SYNC
527 	if (pps_valid > 0)
528 		pps_valid--;
529 	else
530 		time_status &= ~STA_PPSSIGNAL;
531 #endif /* PPS_SYNC */
532 }
533 
534 /*
535  * ntp_init() - initialize variables and structures
536  *
537  * This routine must be called after the kernel variables hz and tick
538  * are set or changed and before the next tick interrupt. In this
539  * particular implementation, these values are assumed set elsewhere in
540  * the kernel. The design allows the clock frequency and tick interval
541  * to be changed while the system is running. So, this routine should
542  * probably be integrated with the code that does that.
543  */
544 static void
545 ntp_init()
546 {
547 
548 	/*
549 	 * The following variable must be initialized any time the
550 	 * kernel variable hz is changed.
551 	 */
552 	time_tick = NANOSECOND / hz;
553 
554 	/*
555 	 * The following variables are initialized only at startup. Only
556 	 * those structures not cleared by the compiler need to be
557 	 * initialized, and these only in the simulator. In the actual
558 	 * kernel, any nonzero values here will quickly evaporate.
559 	 */
560 	L_CLR(time_offset);
561 	L_CLR(time_freq);
562 #ifdef PPS_SYNC
563 	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
564 	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
565 	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
566 	pps_fcount = 0;
567 	L_CLR(pps_freq);
568 #endif /* PPS_SYNC */
569 }
570 
571 SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, ntp_init, NULL)
572 
573 /*
574  * hardupdate() - local clock update
575  *
576  * This routine is called by ntp_adjtime() to update the local clock
577  * phase and frequency. The implementation is of an adaptive-parameter,
578  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
579  * time and frequency offset estimates for each call. If the kernel PPS
580  * discipline code is configured (PPS_SYNC), the PPS signal itself
581  * determines the new time offset, instead of the calling argument.
582  * Presumably, calls to ntp_adjtime() occur only when the caller
583  * believes the local clock is valid within some bound (+-128 ms with
584  * NTP). If the caller's time is far different than the PPS time, an
585  * argument will ensue, and it's not clear who will lose.
586  *
587  * For uncompensated quartz crystal oscillators and nominal update
588  * intervals less than 256 s, operation should be in phase-lock mode,
589  * where the loop is disciplined to phase. For update intervals greater
590  * than 1024 s, operation should be in frequency-lock mode, where the
591  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
592  * is selected by the STA_MODE status bit.
593  */
594 static void
595 hardupdate(offset)
596 	long offset;		/* clock offset (ns) */
597 {
598 	long mtemp;
599 	l_fp ftemp;
600 
601 	/*
602 	 * Select how the phase is to be controlled and from which
603 	 * source. If the PPS signal is present and enabled to
604 	 * discipline the time, the PPS offset is used; otherwise, the
605 	 * argument offset is used.
606 	 */
607 	if (!(time_status & STA_PLL))
608 		return;
609 	if (!(time_status & STA_PPSTIME && time_status &
610 	    STA_PPSSIGNAL)) {
611 		if (offset > MAXPHASE)
612 			time_monitor = MAXPHASE;
613 		else if (offset < -MAXPHASE)
614 			time_monitor = -MAXPHASE;
615 		else
616 			time_monitor = offset;
617 		L_LINT(time_offset, time_monitor);
618 	}
619 
620 	/*
621 	 * Select how the frequency is to be controlled and in which
622 	 * mode (PLL or FLL). If the PPS signal is present and enabled
623 	 * to discipline the frequency, the PPS frequency is used;
624 	 * otherwise, the argument offset is used to compute it.
625 	 */
626 	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
627 		time_reftime = time_second;
628 		return;
629 	}
630 	if (time_status & STA_FREQHOLD || time_reftime == 0)
631 		time_reftime = time_second;
632 	mtemp = time_second - time_reftime;
633 	L_LINT(ftemp, time_monitor);
634 	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
635 	L_MPY(ftemp, mtemp);
636 	L_ADD(time_freq, ftemp);
637 	time_status &= ~STA_MODE;
638 	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
639 	    MAXSEC)) {
640 		L_LINT(ftemp, (time_monitor << 4) / mtemp);
641 		L_RSHIFT(ftemp, SHIFT_FLL + 4);
642 		L_ADD(time_freq, ftemp);
643 		time_status |= STA_MODE;
644 	}
645 	time_reftime = time_second;
646 	if (L_GINT(time_freq) > MAXFREQ)
647 		L_LINT(time_freq, MAXFREQ);
648 	else if (L_GINT(time_freq) < -MAXFREQ)
649 		L_LINT(time_freq, -MAXFREQ);
650 }
651 
652 #ifdef PPS_SYNC
653 /*
654  * hardpps() - discipline CPU clock oscillator to external PPS signal
655  *
656  * This routine is called at each PPS interrupt in order to discipline
657  * the CPU clock oscillator to the PPS signal. There are two independent
658  * first-order feedback loops, one for the phase, the other for the
659  * frequency. The phase loop measures and grooms the PPS phase offset
660  * and leaves it in a handy spot for the seconds overflow routine. The
661  * frequency loop averages successive PPS phase differences and
662  * calculates the PPS frequency offset, which is also processed by the
663  * seconds overflow routine. The code requires the caller to capture the
664  * time and architecture-dependent hardware counter values in
665  * nanoseconds at the on-time PPS signal transition.
666  *
667  * Note that, on some Unix systems this routine runs at an interrupt
668  * priority level higher than the timer interrupt routine hardclock().
669  * Therefore, the variables used are distinct from the hardclock()
670  * variables, except for the actual time and frequency variables, which
671  * are determined by this routine and updated atomically.
672  */
673 void
674 hardpps(tsp, nsec)
675 	struct timespec *tsp;	/* time at PPS */
676 	long nsec;		/* hardware counter at PPS */
677 {
678 	long u_sec, u_nsec, v_nsec; /* temps */
679 	l_fp ftemp;
680 
681 	/*
682 	 * The signal is first processed by a range gate and frequency
683 	 * discriminator. The range gate rejects noise spikes outside
684 	 * the range +-500 us. The frequency discriminator rejects input
685 	 * signals with apparent frequency outside the range 1 +-500
686 	 * PPM. If two hits occur in the same second, we ignore the
687 	 * later hit; if not and a hit occurs outside the range gate,
688 	 * keep the later hit for later comparison, but do not process
689 	 * it.
690 	 */
691 	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
692 	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
693 	pps_valid = PPS_VALID;
694 	u_sec = tsp->tv_sec;
695 	u_nsec = tsp->tv_nsec;
696 	if (u_nsec >= (NANOSECOND >> 1)) {
697 		u_nsec -= NANOSECOND;
698 		u_sec++;
699 	}
700 	v_nsec = u_nsec - pps_tf[0].tv_nsec;
701 	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
702 	    MAXFREQ)
703 		return;
704 	pps_tf[2] = pps_tf[1];
705 	pps_tf[1] = pps_tf[0];
706 	pps_tf[0].tv_sec = u_sec;
707 	pps_tf[0].tv_nsec = u_nsec;
708 
709 	/*
710 	 * Compute the difference between the current and previous
711 	 * counter values. If the difference exceeds 0.5 s, assume it
712 	 * has wrapped around, so correct 1.0 s. If the result exceeds
713 	 * the tick interval, the sample point has crossed a tick
714 	 * boundary during the last second, so correct the tick. Very
715 	 * intricate.
716 	 */
717 	u_nsec = nsec;
718 	if (u_nsec > (NANOSECOND >> 1))
719 		u_nsec -= NANOSECOND;
720 	else if (u_nsec < -(NANOSECOND >> 1))
721 		u_nsec += NANOSECOND;
722 	pps_fcount += u_nsec;
723 	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
724 		return;
725 	time_status &= ~STA_PPSJITTER;
726 
727 	/*
728 	 * A three-stage median filter is used to help denoise the PPS
729 	 * time. The median sample becomes the time offset estimate; the
730 	 * difference between the other two samples becomes the time
731 	 * dispersion (jitter) estimate.
732 	 */
733 	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
734 		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
735 			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
736 			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
737 		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
738 			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
739 			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
740 		} else {
741 			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
742 			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
743 		}
744 	} else {
745 		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
746 			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
747 			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
748 		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
749 			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
750 			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
751 		} else {
752 			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
753 			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
754 		}
755 	}
756 
757 	/*
758 	 * Nominal jitter is due to PPS signal noise and interrupt
759 	 * latency. If it exceeds the popcorn threshold, the sample is
760 	 * discarded. otherwise, if so enabled, the time offset is
761 	 * updated. We can tolerate a modest loss of data here without
762 	 * much degrading time accuracy.
763 	 */
764 	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
765 		time_status |= STA_PPSJITTER;
766 		pps_jitcnt++;
767 	} else if (time_status & STA_PPSTIME) {
768 		time_monitor = -v_nsec;
769 		L_LINT(time_offset, time_monitor);
770 	}
771 	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
772 	u_sec = pps_tf[0].tv_sec - pps_lastsec;
773 	if (u_sec < (1 << pps_shift))
774 		return;
775 
776 	/*
777 	 * At the end of the calibration interval the difference between
778 	 * the first and last counter values becomes the scaled
779 	 * frequency. It will later be divided by the length of the
780 	 * interval to determine the frequency update. If the frequency
781 	 * exceeds a sanity threshold, or if the actual calibration
782 	 * interval is not equal to the expected length, the data are
783 	 * discarded. We can tolerate a modest loss of data here without
784 	 * much degrading frequency accuracy.
785 	 */
786 	pps_calcnt++;
787 	v_nsec = -pps_fcount;
788 	pps_lastsec = pps_tf[0].tv_sec;
789 	pps_fcount = 0;
790 	u_nsec = MAXFREQ << pps_shift;
791 	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
792 	    pps_shift)) {
793 		time_status |= STA_PPSERROR;
794 		pps_errcnt++;
795 		return;
796 	}
797 
798 	/*
799 	 * Here the raw frequency offset and wander (stability) is
800 	 * calculated. If the wander is less than the wander threshold
801 	 * for four consecutive averaging intervals, the interval is
802 	 * doubled; if it is greater than the threshold for four
803 	 * consecutive intervals, the interval is halved. The scaled
804 	 * frequency offset is converted to frequency offset. The
805 	 * stability metric is calculated as the average of recent
806 	 * frequency changes, but is used only for performance
807 	 * monitoring.
808 	 */
809 	L_LINT(ftemp, v_nsec);
810 	L_RSHIFT(ftemp, pps_shift);
811 	L_SUB(ftemp, pps_freq);
812 	u_nsec = L_GINT(ftemp);
813 	if (u_nsec > PPS_MAXWANDER) {
814 		L_LINT(ftemp, PPS_MAXWANDER);
815 		pps_intcnt--;
816 		time_status |= STA_PPSWANDER;
817 		pps_stbcnt++;
818 	} else if (u_nsec < -PPS_MAXWANDER) {
819 		L_LINT(ftemp, -PPS_MAXWANDER);
820 		pps_intcnt--;
821 		time_status |= STA_PPSWANDER;
822 		pps_stbcnt++;
823 	} else {
824 		pps_intcnt++;
825 	}
826 	if (pps_intcnt >= 4) {
827 		pps_intcnt = 4;
828 		if (pps_shift < pps_shiftmax) {
829 			pps_shift++;
830 			pps_intcnt = 0;
831 		}
832 	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
833 		pps_intcnt = -4;
834 		if (pps_shift > PPS_FAVG) {
835 			pps_shift--;
836 			pps_intcnt = 0;
837 		}
838 	}
839 	if (u_nsec < 0)
840 		u_nsec = -u_nsec;
841 	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
842 
843 	/*
844 	 * The PPS frequency is recalculated and clamped to the maximum
845 	 * MAXFREQ. If enabled, the system clock frequency is updated as
846 	 * well.
847 	 */
848 	L_ADD(pps_freq, ftemp);
849 	u_nsec = L_GINT(pps_freq);
850 	if (u_nsec > MAXFREQ)
851 		L_LINT(pps_freq, MAXFREQ);
852 	else if (u_nsec < -MAXFREQ)
853 		L_LINT(pps_freq, -MAXFREQ);
854 	if (time_status & STA_PPSFREQ)
855 		time_freq = pps_freq;
856 }
857 #endif /* PPS_SYNC */
858