1 /*********************************************************************** 2 * * 3 * Copyright (c) David L. Mills 1993-2001 * 4 * * 5 * Permission to use, copy, modify, and distribute this software and * 6 * its documentation for any purpose and without fee is hereby * 7 * granted, provided that the above copyright notice appears in all * 8 * copies and that both the copyright notice and this permission * 9 * notice appear in supporting documentation, and that the name * 10 * University of Delaware not be used in advertising or publicity * 11 * pertaining to distribution of the software without specific, * 12 * written prior permission. The University of Delaware makes no * 13 * representations about the suitability this software for any * 14 * purpose. It is provided "as is" without express or implied * 15 * warranty. * 16 * * 17 **********************************************************************/ 18 19 /* 20 * Adapted from the original sources for FreeBSD and timecounters by: 21 * Poul-Henning Kamp <phk@FreeBSD.org>. 22 * 23 * The 32bit version of the "LP" macros seems a bit past its "sell by" 24 * date so I have retained only the 64bit version and included it directly 25 * in this file. 26 * 27 * Only minor changes done to interface with the timecounters over in 28 * sys/kern/kern_clock.c. Some of the comments below may be (even more) 29 * confusing and/or plain wrong in that context. 30 * 31 * $FreeBSD: src/sys/kern/kern_ntptime.c,v 1.32.2.2 2001/04/22 11:19:46 jhay Exp $ 32 * $DragonFly: src/sys/kern/kern_ntptime.c,v 1.13 2007/04/30 07:18:53 dillon Exp $ 33 */ 34 35 #include "opt_ntp.h" 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/sysproto.h> 40 #include <sys/kernel.h> 41 #include <sys/proc.h> 42 #include <sys/time.h> 43 #include <sys/timex.h> 44 #include <sys/timepps.h> 45 #include <sys/sysctl.h> 46 #include <sys/thread2.h> 47 48 /* 49 * Single-precision macros for 64-bit machines 50 */ 51 typedef long long l_fp; 52 #define L_ADD(v, u) ((v) += (u)) 53 #define L_SUB(v, u) ((v) -= (u)) 54 #define L_ADDHI(v, a) ((v) += (long long)(a) << 32) 55 #define L_NEG(v) ((v) = -(v)) 56 #define L_RSHIFT(v, n) \ 57 do { \ 58 if ((v) < 0) \ 59 (v) = -(-(v) >> (n)); \ 60 else \ 61 (v) = (v) >> (n); \ 62 } while (0) 63 #define L_MPY(v, a) ((v) *= (a)) 64 #define L_CLR(v) ((v) = 0) 65 #define L_ISNEG(v) ((v) < 0) 66 #define L_LINT(v, a) ((v) = (long long)(a) << 32) 67 #define L_GINT(v) ((v) < 0 ? -(-(v) >> 32) : (v) >> 32) 68 69 /* 70 * Generic NTP kernel interface 71 * 72 * These routines constitute the Network Time Protocol (NTP) interfaces 73 * for user and daemon application programs. The ntp_gettime() routine 74 * provides the time, maximum error (synch distance) and estimated error 75 * (dispersion) to client user application programs. The ntp_adjtime() 76 * routine is used by the NTP daemon to adjust the system clock to an 77 * externally derived time. The time offset and related variables set by 78 * this routine are used by other routines in this module to adjust the 79 * phase and frequency of the clock discipline loop which controls the 80 * system clock. 81 * 82 * When the kernel time is reckoned directly in nanoseconds (NTP_NANO 83 * defined), the time at each tick interrupt is derived directly from 84 * the kernel time variable. When the kernel time is reckoned in 85 * microseconds, (NTP_NANO undefined), the time is derived from the 86 * kernel time variable together with a variable representing the 87 * leftover nanoseconds at the last tick interrupt. In either case, the 88 * current nanosecond time is reckoned from these values plus an 89 * interpolated value derived by the clock routines in another 90 * architecture-specific module. The interpolation can use either a 91 * dedicated counter or a processor cycle counter (PCC) implemented in 92 * some architectures. 93 * 94 * Note that all routines must run at priority splclock or higher. 95 */ 96 /* 97 * Phase/frequency-lock loop (PLL/FLL) definitions 98 * 99 * The nanosecond clock discipline uses two variable types, time 100 * variables and frequency variables. Both types are represented as 64- 101 * bit fixed-point quantities with the decimal point between two 32-bit 102 * halves. On a 32-bit machine, each half is represented as a single 103 * word and mathematical operations are done using multiple-precision 104 * arithmetic. On a 64-bit machine, ordinary computer arithmetic is 105 * used. 106 * 107 * A time variable is a signed 64-bit fixed-point number in ns and 108 * fraction. It represents the remaining time offset to be amortized 109 * over succeeding tick interrupts. The maximum time offset is about 110 * 0.5 s and the resolution is about 2.3e-10 ns. 111 * 112 * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 113 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 114 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 115 * |s s s| ns | 116 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 117 * | fraction | 118 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 119 * 120 * A frequency variable is a signed 64-bit fixed-point number in ns/s 121 * and fraction. It represents the ns and fraction to be added to the 122 * kernel time variable at each second. The maximum frequency offset is 123 * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s. 124 * 125 * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 126 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 127 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 128 * |s s s s s s s s s s s s s| ns/s | 129 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 130 * | fraction | 131 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 132 */ 133 /* 134 * The following variables establish the state of the PLL/FLL and the 135 * residual time and frequency offset of the local clock. 136 */ 137 #define SHIFT_PLL 4 /* PLL loop gain (shift) */ 138 #define SHIFT_FLL 2 /* FLL loop gain (shift) */ 139 140 static int time_state = TIME_OK; /* clock state */ 141 static int time_status = STA_UNSYNC; /* clock status bits */ 142 static long time_tai; /* TAI offset (s) */ 143 static long time_monitor; /* last time offset scaled (ns) */ 144 static long time_constant; /* poll interval (shift) (s) */ 145 static long time_precision = 1; /* clock precision (ns) */ 146 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */ 147 static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */ 148 static long time_reftime; /* time at last adjustment (s) */ 149 static long time_tick; /* nanoseconds per tick (ns) */ 150 static l_fp time_offset; /* time offset (ns) */ 151 static l_fp time_freq; /* frequency offset (ns/s) */ 152 static l_fp time_adj; /* tick adjust (ns/s) */ 153 154 #ifdef PPS_SYNC 155 /* 156 * The following variables are used when a pulse-per-second (PPS) signal 157 * is available and connected via a modem control lead. They establish 158 * the engineering parameters of the clock discipline loop when 159 * controlled by the PPS signal. 160 */ 161 #define PPS_FAVG 2 /* min freq avg interval (s) (shift) */ 162 #define PPS_FAVGDEF 8 /* default freq avg int (s) (shift) */ 163 #define PPS_FAVGMAX 15 /* max freq avg interval (s) (shift) */ 164 #define PPS_PAVG 4 /* phase avg interval (s) (shift) */ 165 #define PPS_VALID 120 /* PPS signal watchdog max (s) */ 166 #define PPS_MAXWANDER 100000 /* max PPS wander (ns/s) */ 167 #define PPS_POPCORN 2 /* popcorn spike threshold (shift) */ 168 169 static struct timespec pps_tf[3]; /* phase median filter */ 170 static l_fp pps_freq; /* scaled frequency offset (ns/s) */ 171 static long pps_fcount; /* frequency accumulator */ 172 static long pps_jitter; /* nominal jitter (ns) */ 173 static long pps_stabil; /* nominal stability (scaled ns/s) */ 174 static long pps_lastsec; /* time at last calibration (s) */ 175 static int pps_valid; /* signal watchdog counter */ 176 static int pps_shift = PPS_FAVG; /* interval duration (s) (shift) */ 177 static int pps_shiftmax = PPS_FAVGDEF; /* max interval duration (s) (shift) */ 178 static int pps_intcnt; /* wander counter */ 179 180 /* 181 * PPS signal quality monitors 182 */ 183 static long pps_calcnt; /* calibration intervals */ 184 static long pps_jitcnt; /* jitter limit exceeded */ 185 static long pps_stbcnt; /* stability limit exceeded */ 186 static long pps_errcnt; /* calibration errors */ 187 #endif /* PPS_SYNC */ 188 /* 189 * End of phase/frequency-lock loop (PLL/FLL) definitions 190 */ 191 192 static void ntp_init(void); 193 static void hardupdate(long offset); 194 195 /* 196 * ntp_gettime() - NTP user application interface 197 * 198 * See the timex.h header file for synopsis and API description. Note 199 * that the TAI offset is returned in the ntvtimeval.tai structure 200 * member. 201 */ 202 static int 203 ntp_sysctl(SYSCTL_HANDLER_ARGS) 204 { 205 struct ntptimeval ntv; /* temporary structure */ 206 struct timespec atv; /* nanosecond time */ 207 208 nanotime(&atv); 209 ntv.time.tv_sec = atv.tv_sec; 210 ntv.time.tv_nsec = atv.tv_nsec; 211 ntv.maxerror = time_maxerror; 212 ntv.esterror = time_esterror; 213 ntv.tai = time_tai; 214 ntv.time_state = time_state; 215 216 /* 217 * Status word error decode. If any of these conditions occur, 218 * an error is returned, instead of the status word. Most 219 * applications will care only about the fact the system clock 220 * may not be trusted, not about the details. 221 * 222 * Hardware or software error 223 */ 224 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) || 225 226 /* 227 * PPS signal lost when either time or frequency synchronization 228 * requested 229 */ 230 (time_status & (STA_PPSFREQ | STA_PPSTIME) && 231 !(time_status & STA_PPSSIGNAL)) || 232 233 /* 234 * PPS jitter exceeded when time synchronization requested 235 */ 236 (time_status & STA_PPSTIME && 237 time_status & STA_PPSJITTER) || 238 239 /* 240 * PPS wander exceeded or calibration error when frequency 241 * synchronization requested 242 */ 243 (time_status & STA_PPSFREQ && 244 time_status & (STA_PPSWANDER | STA_PPSERROR))) 245 ntv.time_state = TIME_ERROR; 246 return (sysctl_handle_opaque(oidp, &ntv, sizeof ntv, req)); 247 } 248 249 SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, ""); 250 SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD, 251 0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", ""); 252 253 #ifdef PPS_SYNC 254 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, ""); 255 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW, &pps_shift, 0, ""); 256 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD, &time_monitor, 0, ""); 257 258 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD, &pps_freq, sizeof(pps_freq), "I", ""); 259 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD, &time_freq, sizeof(time_freq), "I", ""); 260 #endif 261 /* 262 * ntp_adjtime() - NTP daemon application interface 263 * 264 * See the timex.h header file for synopsis and API description. Note 265 * that the timex.constant structure member has a dual purpose to set 266 * the time constant and to set the TAI offset. 267 */ 268 int 269 sys_ntp_adjtime(struct ntp_adjtime_args *uap) 270 { 271 struct thread *td = curthread; 272 struct timex ntv; /* temporary structure */ 273 long freq; /* frequency ns/s) */ 274 int modes; /* mode bits from structure */ 275 int error; 276 277 error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv)); 278 if (error) 279 return(error); 280 281 /* 282 * Update selected clock variables - only the superuser can 283 * change anything. Note that there is no error checking here on 284 * the assumption the superuser should know what it is doing. 285 * Note that either the time constant or TAI offset are loaded 286 * from the ntv.constant member, depending on the mode bits. If 287 * the STA_PLL bit in the status word is cleared, the state and 288 * status words are reset to the initial values at boot. 289 */ 290 modes = ntv.modes; 291 if (modes) 292 error = suser(td); 293 if (error) 294 return (error); 295 crit_enter(); 296 if (modes & MOD_MAXERROR) 297 time_maxerror = ntv.maxerror; 298 if (modes & MOD_ESTERROR) 299 time_esterror = ntv.esterror; 300 if (modes & MOD_STATUS) { 301 if (time_status & STA_PLL && !(ntv.status & STA_PLL)) { 302 time_state = TIME_OK; 303 time_status = STA_UNSYNC; 304 #ifdef PPS_SYNC 305 pps_shift = PPS_FAVG; 306 #endif /* PPS_SYNC */ 307 } 308 time_status &= STA_RONLY; 309 time_status |= ntv.status & ~STA_RONLY; 310 } 311 if (modes & MOD_TIMECONST) { 312 if (ntv.constant < 0) 313 time_constant = 0; 314 else if (ntv.constant > MAXTC) 315 time_constant = MAXTC; 316 else 317 time_constant = ntv.constant; 318 } 319 if (modes & MOD_TAI) { 320 if (ntv.constant > 0) /* XXX zero & negative numbers ? */ 321 time_tai = ntv.constant; 322 } 323 #ifdef PPS_SYNC 324 if (modes & MOD_PPSMAX) { 325 if (ntv.shift < PPS_FAVG) 326 pps_shiftmax = PPS_FAVG; 327 else if (ntv.shift > PPS_FAVGMAX) 328 pps_shiftmax = PPS_FAVGMAX; 329 else 330 pps_shiftmax = ntv.shift; 331 } 332 #endif /* PPS_SYNC */ 333 if (modes & MOD_NANO) 334 time_status |= STA_NANO; 335 if (modes & MOD_MICRO) 336 time_status &= ~STA_NANO; 337 if (modes & MOD_CLKB) 338 time_status |= STA_CLK; 339 if (modes & MOD_CLKA) 340 time_status &= ~STA_CLK; 341 if (modes & MOD_OFFSET) { 342 if (time_status & STA_NANO) 343 hardupdate(ntv.offset); 344 else 345 hardupdate(ntv.offset * 1000); 346 } 347 /* 348 * Note: the userland specified frequency is in seconds per second 349 * times 65536e+6. Multiply by a thousand and divide by 65336 to 350 * get nanoseconds. 351 */ 352 if (modes & MOD_FREQUENCY) { 353 freq = (ntv.freq * 1000LL) >> 16; 354 if (freq > MAXFREQ) 355 L_LINT(time_freq, MAXFREQ); 356 else if (freq < -MAXFREQ) 357 L_LINT(time_freq, -MAXFREQ); 358 else 359 L_LINT(time_freq, freq); 360 #ifdef PPS_SYNC 361 pps_freq = time_freq; 362 #endif /* PPS_SYNC */ 363 } 364 365 /* 366 * Retrieve all clock variables. Note that the TAI offset is 367 * returned only by ntp_gettime(); 368 */ 369 if (time_status & STA_NANO) 370 ntv.offset = time_monitor; 371 else 372 ntv.offset = time_monitor / 1000; /* XXX rounding ? */ 373 ntv.freq = L_GINT((time_freq / 1000LL) << 16); 374 ntv.maxerror = time_maxerror; 375 ntv.esterror = time_esterror; 376 ntv.status = time_status; 377 ntv.constant = time_constant; 378 if (time_status & STA_NANO) 379 ntv.precision = time_precision; 380 else 381 ntv.precision = time_precision / 1000; 382 ntv.tolerance = MAXFREQ * SCALE_PPM; 383 #ifdef PPS_SYNC 384 ntv.shift = pps_shift; 385 ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16); 386 if (time_status & STA_NANO) 387 ntv.jitter = pps_jitter; 388 else 389 ntv.jitter = pps_jitter / 1000; 390 ntv.stabil = pps_stabil; 391 ntv.calcnt = pps_calcnt; 392 ntv.errcnt = pps_errcnt; 393 ntv.jitcnt = pps_jitcnt; 394 ntv.stbcnt = pps_stbcnt; 395 #endif /* PPS_SYNC */ 396 crit_exit(); 397 398 error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv)); 399 if (error) 400 return (error); 401 402 /* 403 * Status word error decode. See comments in 404 * ntp_gettime() routine. 405 */ 406 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) || 407 (time_status & (STA_PPSFREQ | STA_PPSTIME) && 408 !(time_status & STA_PPSSIGNAL)) || 409 (time_status & STA_PPSTIME && 410 time_status & STA_PPSJITTER) || 411 (time_status & STA_PPSFREQ && 412 time_status & (STA_PPSWANDER | STA_PPSERROR))) { 413 uap->sysmsg_result = TIME_ERROR; 414 } else { 415 uap->sysmsg_result = time_state; 416 } 417 return (error); 418 } 419 420 /* 421 * second_overflow() - called after ntp_tick_adjust() 422 * 423 * This routine is ordinarily called from hardclock() whenever the seconds 424 * hand rolls over. It returns leap seconds to add or drop, and sets nsec_adj 425 * to the total adjustment to make over the next second in (ns << 32). 426 * 427 * This routine is only called by cpu #0. 428 */ 429 int 430 ntp_update_second(time_t newsec, int64_t *nsec_adj) 431 { 432 l_fp ftemp; /* 32/64-bit temporary */ 433 int adjsec = 0; 434 435 /* 436 * On rollover of the second both the nanosecond and microsecond 437 * clocks are updated and the state machine cranked as 438 * necessary. The phase adjustment to be used for the next 439 * second is calculated and the maximum error is increased by 440 * the tolerance. 441 */ 442 time_maxerror += MAXFREQ / 1000; 443 444 /* 445 * Leap second processing. If in leap-insert state at 446 * the end of the day, the system clock is set back one 447 * second; if in leap-delete state, the system clock is 448 * set ahead one second. The nano_time() routine or 449 * external clock driver will insure that reported time 450 * is always monotonic. 451 */ 452 switch (time_state) { 453 454 /* 455 * No warning. 456 */ 457 case TIME_OK: 458 if (time_status & STA_INS) 459 time_state = TIME_INS; 460 else if (time_status & STA_DEL) 461 time_state = TIME_DEL; 462 break; 463 464 /* 465 * Insert second 23:59:60 following second 466 * 23:59:59. 467 */ 468 case TIME_INS: 469 if (!(time_status & STA_INS)) 470 time_state = TIME_OK; 471 else if ((newsec) % 86400 == 0) { 472 --adjsec; 473 time_state = TIME_OOP; 474 } 475 break; 476 477 /* 478 * Delete second 23:59:59. 479 */ 480 case TIME_DEL: 481 if (!(time_status & STA_DEL)) 482 time_state = TIME_OK; 483 else if (((newsec) + 1) % 86400 == 0) { 484 ++adjsec; 485 time_tai--; 486 time_state = TIME_WAIT; 487 } 488 break; 489 490 /* 491 * Insert second in progress. 492 */ 493 case TIME_OOP: 494 time_tai++; 495 time_state = TIME_WAIT; 496 break; 497 498 /* 499 * Wait for status bits to clear. 500 */ 501 case TIME_WAIT: 502 if (!(time_status & (STA_INS | STA_DEL))) 503 time_state = TIME_OK; 504 } 505 506 /* 507 * time_offset represents the total time adjustment we wish to 508 * make (over no particular period of time). time_freq represents 509 * the frequency compensation we wish to apply. 510 * 511 * time_adj represents the total adjustment we wish to make over 512 * one full second. hardclock usually applies this adjustment in 513 * time_adj / hz jumps, hz times a second. 514 */ 515 ftemp = time_offset; 516 #ifdef PPS_SYNC 517 /* XXX even if PPS signal dies we should finish adjustment ? */ 518 if ((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL)) 519 L_RSHIFT(ftemp, pps_shift); 520 else 521 L_RSHIFT(ftemp, SHIFT_PLL + time_constant); 522 #else 523 L_RSHIFT(ftemp, SHIFT_PLL + time_constant); 524 #endif /* PPS_SYNC */ 525 time_adj = ftemp; /* adjustment for part of the offset */ 526 L_SUB(time_offset, ftemp); 527 L_ADD(time_adj, time_freq); /* add frequency correction */ 528 *nsec_adj = time_adj; 529 #ifdef PPS_SYNC 530 if (pps_valid > 0) 531 pps_valid--; 532 else 533 time_status &= ~STA_PPSSIGNAL; 534 #endif /* PPS_SYNC */ 535 return(adjsec); 536 } 537 538 /* 539 * ntp_init() - initialize variables and structures 540 * 541 * This routine must be called after the kernel variables hz and tick 542 * are set or changed and before the next tick interrupt. In this 543 * particular implementation, these values are assumed set elsewhere in 544 * the kernel. The design allows the clock frequency and tick interval 545 * to be changed while the system is running. So, this routine should 546 * probably be integrated with the code that does that. 547 */ 548 static void 549 ntp_init(void) 550 { 551 552 /* 553 * The following variable must be initialized any time the 554 * kernel variable hz is changed. 555 */ 556 time_tick = NANOSECOND / hz; 557 558 /* 559 * The following variables are initialized only at startup. Only 560 * those structures not cleared by the compiler need to be 561 * initialized, and these only in the simulator. In the actual 562 * kernel, any nonzero values here will quickly evaporate. 563 */ 564 L_CLR(time_offset); 565 L_CLR(time_freq); 566 #ifdef PPS_SYNC 567 pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0; 568 pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0; 569 pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0; 570 pps_fcount = 0; 571 L_CLR(pps_freq); 572 #endif /* PPS_SYNC */ 573 } 574 575 SYSINIT(ntpclocks, SI_BOOT2_CLOCKS, SI_ORDER_FIRST, ntp_init, NULL) 576 577 /* 578 * hardupdate() - local clock update 579 * 580 * This routine is called by ntp_adjtime() to update the local clock 581 * phase and frequency. The implementation is of an adaptive-parameter, 582 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new 583 * time and frequency offset estimates for each call. If the kernel PPS 584 * discipline code is configured (PPS_SYNC), the PPS signal itself 585 * determines the new time offset, instead of the calling argument. 586 * Presumably, calls to ntp_adjtime() occur only when the caller 587 * believes the local clock is valid within some bound (+-128 ms with 588 * NTP). If the caller's time is far different than the PPS time, an 589 * argument will ensue, and it's not clear who will lose. 590 * 591 * For uncompensated quartz crystal oscillators and nominal update 592 * intervals less than 256 s, operation should be in phase-lock mode, 593 * where the loop is disciplined to phase. For update intervals greater 594 * than 1024 s, operation should be in frequency-lock mode, where the 595 * loop is disciplined to frequency. Between 256 s and 1024 s, the mode 596 * is selected by the STA_MODE status bit. 597 */ 598 static void 599 hardupdate(long offset) 600 { 601 long mtemp; 602 l_fp ftemp; 603 globaldata_t gd; 604 605 gd = mycpu; 606 607 /* 608 * Select how the phase is to be controlled and from which 609 * source. If the PPS signal is present and enabled to 610 * discipline the time, the PPS offset is used; otherwise, the 611 * argument offset is used. 612 */ 613 if (!(time_status & STA_PLL)) 614 return; 615 if (!((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL))) { 616 if (offset > MAXPHASE) 617 time_monitor = MAXPHASE; 618 else if (offset < -MAXPHASE) 619 time_monitor = -MAXPHASE; 620 else 621 time_monitor = offset; 622 L_LINT(time_offset, time_monitor); 623 } 624 625 /* 626 * Select how the frequency is to be controlled and in which 627 * mode (PLL or FLL). If the PPS signal is present and enabled 628 * to discipline the frequency, the PPS frequency is used; 629 * otherwise, the argument offset is used to compute it. 630 * 631 * gd_time_seconds is basically an uncompensated uptime. We use 632 * this for consistency. 633 */ 634 if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) { 635 time_reftime = time_second; 636 return; 637 } 638 if (time_status & STA_FREQHOLD || time_reftime == 0) 639 time_reftime = time_second; 640 mtemp = time_second - time_reftime; 641 L_LINT(ftemp, time_monitor); 642 L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1); 643 L_MPY(ftemp, mtemp); 644 L_ADD(time_freq, ftemp); 645 time_status &= ~STA_MODE; 646 if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > MAXSEC)) { 647 L_LINT(ftemp, (time_monitor << 4) / mtemp); 648 L_RSHIFT(ftemp, SHIFT_FLL + 4); 649 L_ADD(time_freq, ftemp); 650 time_status |= STA_MODE; 651 } 652 time_reftime = time_second; 653 if (L_GINT(time_freq) > MAXFREQ) 654 L_LINT(time_freq, MAXFREQ); 655 else if (L_GINT(time_freq) < -MAXFREQ) 656 L_LINT(time_freq, -MAXFREQ); 657 } 658 659 #ifdef PPS_SYNC 660 /* 661 * hardpps() - discipline CPU clock oscillator to external PPS signal 662 * 663 * This routine is called at each PPS interrupt in order to discipline 664 * the CPU clock oscillator to the PPS signal. There are two independent 665 * first-order feedback loops, one for the phase, the other for the 666 * frequency. The phase loop measures and grooms the PPS phase offset 667 * and leaves it in a handy spot for the seconds overflow routine. The 668 * frequency loop averages successive PPS phase differences and 669 * calculates the PPS frequency offset, which is also processed by the 670 * seconds overflow routine. The code requires the caller to capture the 671 * time and architecture-dependent hardware counter values in 672 * nanoseconds at the on-time PPS signal transition. 673 * 674 * Note that, on some Unix systems this routine runs at an interrupt 675 * priority level higher than the timer interrupt routine hardclock(). 676 * Therefore, the variables used are distinct from the hardclock() 677 * variables, except for the actual time and frequency variables, which 678 * are determined by this routine and updated atomically. 679 */ 680 void 681 hardpps(struct timespec *tsp, long nsec) 682 { 683 long u_sec, u_nsec, v_nsec; /* temps */ 684 l_fp ftemp; 685 686 /* 687 * The signal is first processed by a range gate and frequency 688 * discriminator. The range gate rejects noise spikes outside 689 * the range +-500 us. The frequency discriminator rejects input 690 * signals with apparent frequency outside the range 1 +-500 691 * PPM. If two hits occur in the same second, we ignore the 692 * later hit; if not and a hit occurs outside the range gate, 693 * keep the later hit for later comparison, but do not process 694 * it. 695 */ 696 time_status |= STA_PPSSIGNAL | STA_PPSJITTER; 697 time_status &= ~(STA_PPSWANDER | STA_PPSERROR); 698 pps_valid = PPS_VALID; 699 u_sec = tsp->tv_sec; 700 u_nsec = tsp->tv_nsec; 701 if (u_nsec >= (NANOSECOND >> 1)) { 702 u_nsec -= NANOSECOND; 703 u_sec++; 704 } 705 v_nsec = u_nsec - pps_tf[0].tv_nsec; 706 if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND - 707 MAXFREQ) 708 return; 709 pps_tf[2] = pps_tf[1]; 710 pps_tf[1] = pps_tf[0]; 711 pps_tf[0].tv_sec = u_sec; 712 pps_tf[0].tv_nsec = u_nsec; 713 714 /* 715 * Compute the difference between the current and previous 716 * counter values. If the difference exceeds 0.5 s, assume it 717 * has wrapped around, so correct 1.0 s. If the result exceeds 718 * the tick interval, the sample point has crossed a tick 719 * boundary during the last second, so correct the tick. Very 720 * intricate. 721 */ 722 u_nsec = nsec; 723 if (u_nsec > (NANOSECOND >> 1)) 724 u_nsec -= NANOSECOND; 725 else if (u_nsec < -(NANOSECOND >> 1)) 726 u_nsec += NANOSECOND; 727 pps_fcount += u_nsec; 728 if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ) 729 return; 730 time_status &= ~STA_PPSJITTER; 731 732 /* 733 * A three-stage median filter is used to help denoise the PPS 734 * time. The median sample becomes the time offset estimate; the 735 * difference between the other two samples becomes the time 736 * dispersion (jitter) estimate. 737 */ 738 if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) { 739 if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) { 740 v_nsec = pps_tf[1].tv_nsec; /* 0 1 2 */ 741 u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec; 742 } else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) { 743 v_nsec = pps_tf[0].tv_nsec; /* 2 0 1 */ 744 u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec; 745 } else { 746 v_nsec = pps_tf[2].tv_nsec; /* 0 2 1 */ 747 u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec; 748 } 749 } else { 750 if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) { 751 v_nsec = pps_tf[1].tv_nsec; /* 2 1 0 */ 752 u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec; 753 } else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) { 754 v_nsec = pps_tf[0].tv_nsec; /* 1 0 2 */ 755 u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec; 756 } else { 757 v_nsec = pps_tf[2].tv_nsec; /* 1 2 0 */ 758 u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec; 759 } 760 } 761 762 /* 763 * Nominal jitter is due to PPS signal noise and interrupt 764 * latency. If it exceeds the popcorn threshold, the sample is 765 * discarded. otherwise, if so enabled, the time offset is 766 * updated. We can tolerate a modest loss of data here without 767 * much degrading time accuracy. 768 */ 769 if (u_nsec > (pps_jitter << PPS_POPCORN)) { 770 time_status |= STA_PPSJITTER; 771 pps_jitcnt++; 772 } else if (time_status & STA_PPSTIME) { 773 time_monitor = -v_nsec; 774 L_LINT(time_offset, time_monitor); 775 } 776 pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG; 777 u_sec = pps_tf[0].tv_sec - pps_lastsec; 778 if (u_sec < (1 << pps_shift)) 779 return; 780 781 /* 782 * At the end of the calibration interval the difference between 783 * the first and last counter values becomes the scaled 784 * frequency. It will later be divided by the length of the 785 * interval to determine the frequency update. If the frequency 786 * exceeds a sanity threshold, or if the actual calibration 787 * interval is not equal to the expected length, the data are 788 * discarded. We can tolerate a modest loss of data here without 789 * much degrading frequency accuracy. 790 */ 791 pps_calcnt++; 792 v_nsec = -pps_fcount; 793 pps_lastsec = pps_tf[0].tv_sec; 794 pps_fcount = 0; 795 u_nsec = MAXFREQ << pps_shift; 796 if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 << 797 pps_shift)) { 798 time_status |= STA_PPSERROR; 799 pps_errcnt++; 800 return; 801 } 802 803 /* 804 * Here the raw frequency offset and wander (stability) is 805 * calculated. If the wander is less than the wander threshold 806 * for four consecutive averaging intervals, the interval is 807 * doubled; if it is greater than the threshold for four 808 * consecutive intervals, the interval is halved. The scaled 809 * frequency offset is converted to frequency offset. The 810 * stability metric is calculated as the average of recent 811 * frequency changes, but is used only for performance 812 * monitoring. 813 */ 814 L_LINT(ftemp, v_nsec); 815 L_RSHIFT(ftemp, pps_shift); 816 L_SUB(ftemp, pps_freq); 817 u_nsec = L_GINT(ftemp); 818 if (u_nsec > PPS_MAXWANDER) { 819 L_LINT(ftemp, PPS_MAXWANDER); 820 pps_intcnt--; 821 time_status |= STA_PPSWANDER; 822 pps_stbcnt++; 823 } else if (u_nsec < -PPS_MAXWANDER) { 824 L_LINT(ftemp, -PPS_MAXWANDER); 825 pps_intcnt--; 826 time_status |= STA_PPSWANDER; 827 pps_stbcnt++; 828 } else { 829 pps_intcnt++; 830 } 831 if (pps_intcnt >= 4) { 832 pps_intcnt = 4; 833 if (pps_shift < pps_shiftmax) { 834 pps_shift++; 835 pps_intcnt = 0; 836 } 837 } else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) { 838 pps_intcnt = -4; 839 if (pps_shift > PPS_FAVG) { 840 pps_shift--; 841 pps_intcnt = 0; 842 } 843 } 844 if (u_nsec < 0) 845 u_nsec = -u_nsec; 846 pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG; 847 848 /* 849 * The PPS frequency is recalculated and clamped to the maximum 850 * MAXFREQ. If enabled, the system clock frequency is updated as 851 * well. 852 */ 853 L_ADD(pps_freq, ftemp); 854 u_nsec = L_GINT(pps_freq); 855 if (u_nsec > MAXFREQ) 856 L_LINT(pps_freq, MAXFREQ); 857 else if (u_nsec < -MAXFREQ) 858 L_LINT(pps_freq, -MAXFREQ); 859 if (time_status & STA_PPSFREQ) 860 time_freq = pps_freq; 861 } 862 #endif /* PPS_SYNC */ 863