1 /* 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 34 * $FreeBSD: src/sys/kern/kern_proc.c,v 1.63.2.9 2003/05/08 07:47:16 kbyanc Exp $ 35 * $DragonFly: src/sys/kern/kern_proc.c,v 1.45 2008/06/12 23:25:02 dillon Exp $ 36 */ 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/kernel.h> 41 #include <sys/sysctl.h> 42 #include <sys/malloc.h> 43 #include <sys/proc.h> 44 #include <sys/jail.h> 45 #include <sys/filedesc.h> 46 #include <sys/tty.h> 47 #include <sys/signalvar.h> 48 #include <sys/spinlock.h> 49 #include <vm/vm.h> 50 #include <sys/lock.h> 51 #include <vm/pmap.h> 52 #include <vm/vm_map.h> 53 #include <sys/user.h> 54 #include <machine/smp.h> 55 56 #include <sys/spinlock2.h> 57 58 static MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 59 MALLOC_DEFINE(M_SESSION, "session", "session header"); 60 MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 61 MALLOC_DEFINE(M_LWP, "lwp", "lwp structures"); 62 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 63 64 int ps_showallprocs = 1; 65 static int ps_showallthreads = 1; 66 SYSCTL_INT(_security, OID_AUTO, ps_showallprocs, CTLFLAG_RW, 67 &ps_showallprocs, 0, 68 "Unprivileged processes can see proccesses with different UID/GID"); 69 SYSCTL_INT(_security, OID_AUTO, ps_showallthreads, CTLFLAG_RW, 70 &ps_showallthreads, 0, 71 "Unprivileged processes can see kernel threads"); 72 73 static void pgdelete(struct pgrp *); 74 static void orphanpg(struct pgrp *pg); 75 static pid_t proc_getnewpid_locked(int random_offset); 76 77 /* 78 * Other process lists 79 */ 80 struct pidhashhead *pidhashtbl; 81 u_long pidhash; 82 struct pgrphashhead *pgrphashtbl; 83 u_long pgrphash; 84 struct proclist allproc; 85 struct proclist zombproc; 86 struct spinlock allproc_spin; 87 88 /* 89 * Random component to nextpid generation. We mix in a random factor to make 90 * it a little harder to predict. We sanity check the modulus value to avoid 91 * doing it in critical paths. Don't let it be too small or we pointlessly 92 * waste randomness entropy, and don't let it be impossibly large. Using a 93 * modulus that is too big causes a LOT more process table scans and slows 94 * down fork processing as the pidchecked caching is defeated. 95 */ 96 static int randompid = 0; 97 98 static int 99 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS) 100 { 101 int error, pid; 102 103 pid = randompid; 104 error = sysctl_handle_int(oidp, &pid, 0, req); 105 if (error || !req->newptr) 106 return (error); 107 if (pid < 0 || pid > PID_MAX - 100) /* out of range */ 108 pid = PID_MAX - 100; 109 else if (pid < 2) /* NOP */ 110 pid = 0; 111 else if (pid < 100) /* Make it reasonable */ 112 pid = 100; 113 randompid = pid; 114 return (error); 115 } 116 117 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW, 118 0, 0, sysctl_kern_randompid, "I", "Random PID modulus"); 119 120 /* 121 * Initialize global process hashing structures. 122 */ 123 void 124 procinit(void) 125 { 126 LIST_INIT(&allproc); 127 LIST_INIT(&zombproc); 128 spin_init(&allproc_spin); 129 lwkt_init(); 130 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 131 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 132 uihashinit(); 133 } 134 135 /* 136 * Is p an inferior of the current process? 137 */ 138 int 139 inferior(struct proc *p) 140 { 141 for (; p != curproc; p = p->p_pptr) 142 if (p->p_pid == 0) 143 return (0); 144 return (1); 145 } 146 147 /* 148 * Locate a process by number 149 */ 150 struct proc * 151 pfind(pid_t pid) 152 { 153 struct proc *p; 154 155 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 156 if (p->p_pid == pid) 157 return (p); 158 } 159 return (NULL); 160 } 161 162 /* 163 * Locate a process group by number 164 */ 165 struct pgrp * 166 pgfind(pid_t pgid) 167 { 168 struct pgrp *pgrp; 169 170 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 171 if (pgrp->pg_id == pgid) 172 return (pgrp); 173 } 174 return (NULL); 175 } 176 177 /* 178 * Move p to a new or existing process group (and session) 179 */ 180 int 181 enterpgrp(struct proc *p, pid_t pgid, int mksess) 182 { 183 struct pgrp *pgrp = pgfind(pgid); 184 185 KASSERT(pgrp == NULL || !mksess, 186 ("enterpgrp: setsid into non-empty pgrp")); 187 KASSERT(!SESS_LEADER(p), 188 ("enterpgrp: session leader attempted setpgrp")); 189 190 if (pgrp == NULL) { 191 pid_t savepid = p->p_pid; 192 struct proc *np; 193 /* 194 * new process group 195 */ 196 KASSERT(p->p_pid == pgid, 197 ("enterpgrp: new pgrp and pid != pgid")); 198 if ((np = pfind(savepid)) == NULL || np != p) 199 return (ESRCH); 200 MALLOC(pgrp, struct pgrp *, sizeof(struct pgrp), M_PGRP, 201 M_WAITOK); 202 if (mksess) { 203 struct session *sess; 204 205 /* 206 * new session 207 */ 208 MALLOC(sess, struct session *, sizeof(struct session), 209 M_SESSION, M_WAITOK); 210 sess->s_leader = p; 211 sess->s_sid = p->p_pid; 212 sess->s_count = 1; 213 sess->s_ttyvp = NULL; 214 sess->s_ttyp = NULL; 215 bcopy(p->p_session->s_login, sess->s_login, 216 sizeof(sess->s_login)); 217 p->p_flag &= ~P_CONTROLT; 218 pgrp->pg_session = sess; 219 KASSERT(p == curproc, 220 ("enterpgrp: mksession and p != curproc")); 221 } else { 222 pgrp->pg_session = p->p_session; 223 sess_hold(pgrp->pg_session); 224 } 225 pgrp->pg_id = pgid; 226 LIST_INIT(&pgrp->pg_members); 227 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 228 pgrp->pg_jobc = 0; 229 SLIST_INIT(&pgrp->pg_sigiolst); 230 lockinit(&pgrp->pg_lock, "pgwt", 0, 0); 231 } else if (pgrp == p->p_pgrp) 232 return (0); 233 234 /* 235 * Adjust eligibility of affected pgrps to participate in job control. 236 * Increment eligibility counts before decrementing, otherwise we 237 * could reach 0 spuriously during the first call. 238 */ 239 fixjobc(p, pgrp, 1); 240 fixjobc(p, p->p_pgrp, 0); 241 242 LIST_REMOVE(p, p_pglist); 243 if (LIST_EMPTY(&p->p_pgrp->pg_members)) 244 pgdelete(p->p_pgrp); 245 p->p_pgrp = pgrp; 246 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 247 return (0); 248 } 249 250 /* 251 * remove process from process group 252 */ 253 int 254 leavepgrp(struct proc *p) 255 { 256 257 LIST_REMOVE(p, p_pglist); 258 if (LIST_EMPTY(&p->p_pgrp->pg_members)) 259 pgdelete(p->p_pgrp); 260 p->p_pgrp = 0; 261 return (0); 262 } 263 264 /* 265 * delete a process group 266 */ 267 static void 268 pgdelete(struct pgrp *pgrp) 269 { 270 271 /* 272 * Reset any sigio structures pointing to us as a result of 273 * F_SETOWN with our pgid. 274 */ 275 funsetownlst(&pgrp->pg_sigiolst); 276 277 if (pgrp->pg_session->s_ttyp != NULL && 278 pgrp->pg_session->s_ttyp->t_pgrp == pgrp) 279 pgrp->pg_session->s_ttyp->t_pgrp = NULL; 280 LIST_REMOVE(pgrp, pg_hash); 281 sess_rele(pgrp->pg_session); 282 kfree(pgrp, M_PGRP); 283 } 284 285 /* 286 * Adjust the ref count on a session structure. When the ref count falls to 287 * zero the tty is disassociated from the session and the session structure 288 * is freed. Note that tty assocation is not itself ref-counted. 289 */ 290 void 291 sess_hold(struct session *sp) 292 { 293 ++sp->s_count; 294 } 295 296 void 297 sess_rele(struct session *sp) 298 { 299 KKASSERT(sp->s_count > 0); 300 if (--sp->s_count == 0) { 301 if (sp->s_ttyp && sp->s_ttyp->t_session) { 302 #ifdef TTY_DO_FULL_CLOSE 303 /* FULL CLOSE, see ttyclearsession() */ 304 KKASSERT(sp->s_ttyp->t_session == sp); 305 sp->s_ttyp->t_session = NULL; 306 #else 307 /* HALF CLOSE, see ttyclearsession() */ 308 if (sp->s_ttyp->t_session == sp) 309 sp->s_ttyp->t_session = NULL; 310 #endif 311 } 312 kfree(sp, M_SESSION); 313 } 314 } 315 316 /* 317 * Adjust pgrp jobc counters when specified process changes process group. 318 * We count the number of processes in each process group that "qualify" 319 * the group for terminal job control (those with a parent in a different 320 * process group of the same session). If that count reaches zero, the 321 * process group becomes orphaned. Check both the specified process' 322 * process group and that of its children. 323 * entering == 0 => p is leaving specified group. 324 * entering == 1 => p is entering specified group. 325 */ 326 void 327 fixjobc(struct proc *p, struct pgrp *pgrp, int entering) 328 { 329 struct pgrp *hispgrp; 330 struct session *mysession = pgrp->pg_session; 331 332 /* 333 * Check p's parent to see whether p qualifies its own process 334 * group; if so, adjust count for p's process group. 335 */ 336 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 337 hispgrp->pg_session == mysession) { 338 if (entering) 339 pgrp->pg_jobc++; 340 else if (--pgrp->pg_jobc == 0) 341 orphanpg(pgrp); 342 } 343 344 /* 345 * Check this process' children to see whether they qualify 346 * their process groups; if so, adjust counts for children's 347 * process groups. 348 */ 349 LIST_FOREACH(p, &p->p_children, p_sibling) 350 if ((hispgrp = p->p_pgrp) != pgrp && 351 hispgrp->pg_session == mysession && 352 p->p_stat != SZOMB) { 353 if (entering) 354 hispgrp->pg_jobc++; 355 else if (--hispgrp->pg_jobc == 0) 356 orphanpg(hispgrp); 357 } 358 } 359 360 /* 361 * A process group has become orphaned; 362 * if there are any stopped processes in the group, 363 * hang-up all process in that group. 364 */ 365 static void 366 orphanpg(struct pgrp *pg) 367 { 368 struct proc *p; 369 370 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 371 if (p->p_stat == SSTOP) { 372 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 373 ksignal(p, SIGHUP); 374 ksignal(p, SIGCONT); 375 } 376 return; 377 } 378 } 379 } 380 381 /* 382 * Add a new process to the allproc list and the PID hash. This 383 * also assigns a pid to the new process. 384 * 385 * MPALMOSTSAFE - acquires mplock for karc4random() call 386 */ 387 void 388 proc_add_allproc(struct proc *p) 389 { 390 int random_offset; 391 392 if ((random_offset = randompid) != 0) { 393 get_mplock(); 394 random_offset = karc4random() % random_offset; 395 rel_mplock(); 396 } 397 398 spin_lock_wr(&allproc_spin); 399 p->p_pid = proc_getnewpid_locked(random_offset); 400 LIST_INSERT_HEAD(&allproc, p, p_list); 401 LIST_INSERT_HEAD(PIDHASH(p->p_pid), p, p_hash); 402 spin_unlock_wr(&allproc_spin); 403 } 404 405 /* 406 * Calculate a new process pid. This function is integrated into 407 * proc_add_allproc() to guarentee that the new pid is not reused before 408 * the new process can be added to the allproc list. 409 * 410 * MPSAFE - must be called with allproc_spin held. 411 */ 412 static 413 pid_t 414 proc_getnewpid_locked(int random_offset) 415 { 416 static pid_t nextpid; 417 static pid_t pidchecked; 418 struct proc *p; 419 420 /* 421 * Find an unused process ID. We remember a range of unused IDs 422 * ready to use (from nextpid+1 through pidchecked-1). 423 */ 424 nextpid = nextpid + 1 + random_offset; 425 retry: 426 /* 427 * If the process ID prototype has wrapped around, 428 * restart somewhat above 0, as the low-numbered procs 429 * tend to include daemons that don't exit. 430 */ 431 if (nextpid >= PID_MAX) { 432 nextpid = nextpid % PID_MAX; 433 if (nextpid < 100) 434 nextpid += 100; 435 pidchecked = 0; 436 } 437 if (nextpid >= pidchecked) { 438 int doingzomb = 0; 439 440 pidchecked = PID_MAX; 441 /* 442 * Scan the active and zombie procs to check whether this pid 443 * is in use. Remember the lowest pid that's greater 444 * than nextpid, so we can avoid checking for a while. 445 */ 446 p = LIST_FIRST(&allproc); 447 again: 448 for (; p != 0; p = LIST_NEXT(p, p_list)) { 449 while (p->p_pid == nextpid || 450 p->p_pgrp->pg_id == nextpid || 451 p->p_session->s_sid == nextpid) { 452 nextpid++; 453 if (nextpid >= pidchecked) 454 goto retry; 455 } 456 if (p->p_pid > nextpid && pidchecked > p->p_pid) 457 pidchecked = p->p_pid; 458 if (p->p_pgrp->pg_id > nextpid && 459 pidchecked > p->p_pgrp->pg_id) 460 pidchecked = p->p_pgrp->pg_id; 461 if (p->p_session->s_sid > nextpid && 462 pidchecked > p->p_session->s_sid) 463 pidchecked = p->p_session->s_sid; 464 } 465 if (!doingzomb) { 466 doingzomb = 1; 467 p = LIST_FIRST(&zombproc); 468 goto again; 469 } 470 } 471 return(nextpid); 472 } 473 474 /* 475 * Called from exit1 to remove a process from the allproc 476 * list and move it to the zombie list. 477 * 478 * MPSAFE 479 */ 480 void 481 proc_move_allproc_zombie(struct proc *p) 482 { 483 spin_lock_wr(&allproc_spin); 484 while (p->p_lock) { 485 spin_unlock_wr(&allproc_spin); 486 tsleep(p, 0, "reap1", hz / 10); 487 spin_lock_wr(&allproc_spin); 488 } 489 LIST_REMOVE(p, p_list); 490 LIST_INSERT_HEAD(&zombproc, p, p_list); 491 LIST_REMOVE(p, p_hash); 492 p->p_stat = SZOMB; 493 spin_unlock_wr(&allproc_spin); 494 } 495 496 /* 497 * This routine is called from kern_wait() and will remove the process 498 * from the zombie list and the sibling list. This routine will block 499 * if someone has a lock on the proces (p_lock). 500 * 501 * MPSAFE 502 */ 503 void 504 proc_remove_zombie(struct proc *p) 505 { 506 spin_lock_wr(&allproc_spin); 507 while (p->p_lock) { 508 spin_unlock_wr(&allproc_spin); 509 tsleep(p, 0, "reap1", hz / 10); 510 spin_lock_wr(&allproc_spin); 511 } 512 LIST_REMOVE(p, p_list); /* off zombproc */ 513 LIST_REMOVE(p, p_sibling); 514 spin_unlock_wr(&allproc_spin); 515 } 516 517 /* 518 * Scan all processes on the allproc list. The process is automatically 519 * held for the callback. A return value of -1 terminates the loop. 520 * 521 * MPSAFE 522 */ 523 void 524 allproc_scan(int (*callback)(struct proc *, void *), void *data) 525 { 526 struct proc *p; 527 int r; 528 529 spin_lock_rd(&allproc_spin); 530 LIST_FOREACH(p, &allproc, p_list) { 531 PHOLD(p); 532 spin_unlock_rd(&allproc_spin); 533 r = callback(p, data); 534 spin_lock_rd(&allproc_spin); 535 PRELE(p); 536 if (r < 0) 537 break; 538 } 539 spin_unlock_rd(&allproc_spin); 540 } 541 542 /* 543 * Scan all lwps of processes on the allproc list. The lwp is automatically 544 * held for the callback. A return value of -1 terminates the loop. 545 * 546 * possibly not MPSAFE, needs to access foreingn proc structures 547 */ 548 void 549 alllwp_scan(int (*callback)(struct lwp *, void *), void *data) 550 { 551 struct proc *p; 552 struct lwp *lp; 553 int r = 0; 554 555 spin_lock_rd(&allproc_spin); 556 LIST_FOREACH(p, &allproc, p_list) { 557 PHOLD(p); 558 spin_unlock_rd(&allproc_spin); 559 FOREACH_LWP_IN_PROC(lp, p) { 560 LWPHOLD(lp); 561 r = callback(lp, data); 562 LWPRELE(lp); 563 } 564 spin_lock_rd(&allproc_spin); 565 PRELE(p); 566 if (r < 0) 567 break; 568 } 569 spin_unlock_rd(&allproc_spin); 570 } 571 572 /* 573 * Scan all processes on the zombproc list. The process is automatically 574 * held for the callback. A return value of -1 terminates the loop. 575 * 576 * MPSAFE 577 */ 578 void 579 zombproc_scan(int (*callback)(struct proc *, void *), void *data) 580 { 581 struct proc *p; 582 int r; 583 584 spin_lock_rd(&allproc_spin); 585 LIST_FOREACH(p, &zombproc, p_list) { 586 PHOLD(p); 587 spin_unlock_rd(&allproc_spin); 588 r = callback(p, data); 589 spin_lock_rd(&allproc_spin); 590 PRELE(p); 591 if (r < 0) 592 break; 593 } 594 spin_unlock_rd(&allproc_spin); 595 } 596 597 #include "opt_ddb.h" 598 #ifdef DDB 599 #include <ddb/ddb.h> 600 601 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 602 { 603 struct pgrp *pgrp; 604 struct proc *p; 605 int i; 606 607 for (i = 0; i <= pgrphash; i++) { 608 if (!LIST_EMPTY(&pgrphashtbl[i])) { 609 kprintf("\tindx %d\n", i); 610 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 611 kprintf( 612 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 613 (void *)pgrp, (long)pgrp->pg_id, 614 (void *)pgrp->pg_session, 615 pgrp->pg_session->s_count, 616 (void *)LIST_FIRST(&pgrp->pg_members)); 617 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 618 kprintf("\t\tpid %ld addr %p pgrp %p\n", 619 (long)p->p_pid, (void *)p, 620 (void *)p->p_pgrp); 621 } 622 } 623 } 624 } 625 } 626 #endif /* DDB */ 627 628 /* 629 * Locate a process on the zombie list. Return a held process or NULL. 630 */ 631 struct proc * 632 zpfind(pid_t pid) 633 { 634 struct proc *p; 635 636 LIST_FOREACH(p, &zombproc, p_list) 637 if (p->p_pid == pid) 638 return (p); 639 return (NULL); 640 } 641 642 static int 643 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 644 { 645 struct kinfo_proc ki; 646 struct lwp *lp; 647 int skp = 0, had_output = 0; 648 int error; 649 650 bzero(&ki, sizeof(ki)); 651 fill_kinfo_proc(p, &ki); 652 if ((flags & KERN_PROC_FLAG_LWP) == 0) 653 skp = 1; 654 error = 0; 655 FOREACH_LWP_IN_PROC(lp, p) { 656 LWPHOLD(lp); 657 fill_kinfo_lwp(lp, &ki.kp_lwp); 658 had_output = 1; 659 error = SYSCTL_OUT(req, &ki, sizeof(ki)); 660 LWPRELE(lp); 661 if (error) 662 break; 663 if (skp) 664 break; 665 } 666 /* We need to output at least the proc, even if there is no lwp. */ 667 if (had_output == 0) { 668 error = SYSCTL_OUT(req, &ki, sizeof(ki)); 669 } 670 return (error); 671 } 672 673 static int 674 sysctl_out_proc_kthread(struct thread *td, struct sysctl_req *req, int flags) 675 { 676 struct kinfo_proc ki; 677 int error; 678 679 fill_kinfo_proc_kthread(td, &ki); 680 error = SYSCTL_OUT(req, &ki, sizeof(ki)); 681 if (error) 682 return error; 683 return(0); 684 } 685 686 static int 687 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 688 { 689 int *name = (int*) arg1; 690 int oid = oidp->oid_number; 691 u_int namelen = arg2; 692 struct proc *p; 693 struct proclist *plist; 694 struct thread *td; 695 int doingzomb, flags = 0; 696 int error = 0; 697 int n; 698 int origcpu; 699 struct ucred *cr1 = curproc->p_ucred; 700 701 flags = oid & KERN_PROC_FLAGMASK; 702 oid &= ~KERN_PROC_FLAGMASK; 703 704 if ((oid == KERN_PROC_ALL && namelen != 0) || 705 (oid != KERN_PROC_ALL && namelen != 1)) 706 return (EINVAL); 707 708 if (oid == KERN_PROC_PID) { 709 p = pfind((pid_t)name[0]); 710 if (!p) 711 return (0); 712 if (!PRISON_CHECK(cr1, p->p_ucred)) 713 return (0); 714 PHOLD(p); 715 error = sysctl_out_proc(p, req, flags); 716 PRELE(p); 717 return (error); 718 } 719 720 if (!req->oldptr) { 721 /* overestimate by 5 procs */ 722 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 723 if (error) 724 return (error); 725 } 726 for (doingzomb = 0; doingzomb <= 1; doingzomb++) { 727 if (doingzomb) 728 plist = &zombproc; 729 else 730 plist = &allproc; 731 LIST_FOREACH(p, plist, p_list) { 732 /* 733 * Show a user only their processes. 734 */ 735 if ((!ps_showallprocs) && p_trespass(cr1, p->p_ucred)) 736 continue; 737 /* 738 * Skip embryonic processes. 739 */ 740 if (p->p_stat == SIDL) 741 continue; 742 /* 743 * TODO - make more efficient (see notes below). 744 * do by session. 745 */ 746 switch (oid) { 747 case KERN_PROC_PGRP: 748 /* could do this by traversing pgrp */ 749 if (p->p_pgrp == NULL || 750 p->p_pgrp->pg_id != (pid_t)name[0]) 751 continue; 752 break; 753 754 case KERN_PROC_TTY: 755 if ((p->p_flag & P_CONTROLT) == 0 || 756 p->p_session == NULL || 757 p->p_session->s_ttyp == NULL || 758 dev2udev(p->p_session->s_ttyp->t_dev) != 759 (udev_t)name[0]) 760 continue; 761 break; 762 763 case KERN_PROC_UID: 764 if (p->p_ucred == NULL || 765 p->p_ucred->cr_uid != (uid_t)name[0]) 766 continue; 767 break; 768 769 case KERN_PROC_RUID: 770 if (p->p_ucred == NULL || 771 p->p_ucred->cr_ruid != (uid_t)name[0]) 772 continue; 773 break; 774 } 775 776 if (!PRISON_CHECK(cr1, p->p_ucred)) 777 continue; 778 PHOLD(p); 779 error = sysctl_out_proc(p, req, flags); 780 PRELE(p); 781 if (error) 782 return (error); 783 } 784 } 785 786 /* 787 * Iterate over all active cpus and scan their thread list. Start 788 * with the next logical cpu and end with our original cpu. We 789 * migrate our own thread to each target cpu in order to safely scan 790 * its thread list. In the last loop we migrate back to our original 791 * cpu. 792 */ 793 origcpu = mycpu->gd_cpuid; 794 if (!ps_showallthreads || jailed(cr1)) 795 goto post_threads; 796 for (n = 1; n <= ncpus; ++n) { 797 globaldata_t rgd; 798 int nid; 799 800 nid = (origcpu + n) % ncpus; 801 if ((smp_active_mask & (1 << nid)) == 0) 802 continue; 803 rgd = globaldata_find(nid); 804 lwkt_setcpu_self(rgd); 805 806 TAILQ_FOREACH(td, &mycpu->gd_tdallq, td_allq) { 807 if (td->td_proc) 808 continue; 809 switch (oid) { 810 case KERN_PROC_PGRP: 811 case KERN_PROC_TTY: 812 case KERN_PROC_UID: 813 case KERN_PROC_RUID: 814 continue; 815 default: 816 break; 817 } 818 lwkt_hold(td); 819 error = sysctl_out_proc_kthread(td, req, doingzomb); 820 lwkt_rele(td); 821 if (error) 822 return (error); 823 } 824 } 825 post_threads: 826 return (0); 827 } 828 829 /* 830 * This sysctl allows a process to retrieve the argument list or process 831 * title for another process without groping around in the address space 832 * of the other process. It also allow a process to set its own "process 833 * title to a string of its own choice. 834 */ 835 static int 836 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 837 { 838 int *name = (int*) arg1; 839 u_int namelen = arg2; 840 struct proc *p; 841 struct pargs *pa; 842 int error = 0; 843 struct ucred *cr1 = curproc->p_ucred; 844 845 if (namelen != 1) 846 return (EINVAL); 847 848 p = pfind((pid_t)name[0]); 849 if (!p) 850 return (0); 851 852 if ((!ps_argsopen) && p_trespass(cr1, p->p_ucred)) 853 return (0); 854 855 if (req->newptr && curproc != p) 856 return (EPERM); 857 858 if (req->oldptr && p->p_args != NULL) 859 error = SYSCTL_OUT(req, p->p_args->ar_args, p->p_args->ar_length); 860 if (req->newptr == NULL) 861 return (error); 862 863 if (p->p_args && --p->p_args->ar_ref == 0) 864 FREE(p->p_args, M_PARGS); 865 p->p_args = NULL; 866 867 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 868 return (error); 869 870 MALLOC(pa, struct pargs *, sizeof(struct pargs) + req->newlen, 871 M_PARGS, M_WAITOK); 872 pa->ar_ref = 1; 873 pa->ar_length = req->newlen; 874 error = SYSCTL_IN(req, pa->ar_args, req->newlen); 875 if (!error) 876 p->p_args = pa; 877 else 878 FREE(pa, M_PARGS); 879 return (error); 880 } 881 882 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 883 884 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT, 885 0, 0, sysctl_kern_proc, "S,proc", "Return entire process table"); 886 887 SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD, 888 sysctl_kern_proc, "Process table"); 889 890 SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD, 891 sysctl_kern_proc, "Process table"); 892 893 SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD, 894 sysctl_kern_proc, "Process table"); 895 896 SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD, 897 sysctl_kern_proc, "Process table"); 898 899 SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD, 900 sysctl_kern_proc, "Process table"); 901 902 SYSCTL_NODE(_kern_proc, (KERN_PROC_ALL | KERN_PROC_FLAG_LWP), all_lwp, CTLFLAG_RD, 903 sysctl_kern_proc, "Process table"); 904 905 SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_FLAG_LWP), pgrp_lwp, CTLFLAG_RD, 906 sysctl_kern_proc, "Process table"); 907 908 SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_FLAG_LWP), tty_lwp, CTLFLAG_RD, 909 sysctl_kern_proc, "Process table"); 910 911 SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_FLAG_LWP), uid_lwp, CTLFLAG_RD, 912 sysctl_kern_proc, "Process table"); 913 914 SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_FLAG_LWP), ruid_lwp, CTLFLAG_RD, 915 sysctl_kern_proc, "Process table"); 916 917 SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_FLAG_LWP), pid_lwp, CTLFLAG_RD, 918 sysctl_kern_proc, "Process table"); 919 920 SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, CTLFLAG_RW | CTLFLAG_ANYBODY, 921 sysctl_kern_proc_args, "Process argument list"); 922