xref: /dragonfly/sys/kern/kern_sig.c (revision fa71f50a)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
35  * $FreeBSD: src/sys/kern/kern_sig.c,v 1.72.2.17 2003/05/16 16:34:34 obrien Exp $
36  */
37 
38 #include "opt_ktrace.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/sysproto.h>
44 #include <sys/signalvar.h>
45 #include <sys/resourcevar.h>
46 #include <sys/vnode.h>
47 #include <sys/event.h>
48 #include <sys/proc.h>
49 #include <sys/nlookup.h>
50 #include <sys/pioctl.h>
51 #include <sys/acct.h>
52 #include <sys/fcntl.h>
53 #include <sys/lock.h>
54 #include <sys/wait.h>
55 #include <sys/ktrace.h>
56 #include <sys/syslog.h>
57 #include <sys/stat.h>
58 #include <sys/sysent.h>
59 #include <sys/sysctl.h>
60 #include <sys/malloc.h>
61 #include <sys/interrupt.h>
62 #include <sys/unistd.h>
63 #include <sys/kern_syscall.h>
64 #include <sys/vkernel.h>
65 
66 #include <sys/signal2.h>
67 #include <sys/thread2.h>
68 #include <sys/spinlock2.h>
69 
70 #include <machine/cpu.h>
71 #include <machine/smp.h>
72 
73 static int	coredump(struct lwp *, int);
74 static char	*expand_name(const char *, uid_t, pid_t);
75 static int	dokillpg(int sig, int pgid, int all);
76 static int	sig_ffs(sigset_t *set);
77 static int	sigprop(int sig);
78 static void	lwp_signotify(struct lwp *lp);
79 static void	lwp_signotify_remote(void *arg);
80 static int	kern_sigtimedwait(sigset_t set, siginfo_t *info,
81 		    struct timespec *timeout);
82 
83 static int	filt_sigattach(struct knote *kn);
84 static void	filt_sigdetach(struct knote *kn);
85 static int	filt_signal(struct knote *kn, long hint);
86 
87 struct filterops sig_filtops =
88 	{ 0, filt_sigattach, filt_sigdetach, filt_signal };
89 
90 static int	kern_logsigexit = 1;
91 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
92     &kern_logsigexit, 0,
93     "Log processes quitting on abnormal signals to syslog(3)");
94 
95 /*
96  * Can process p, with pcred pc, send the signal sig to process q?
97  */
98 #define CANSIGNAL(q, sig) \
99 	(!p_trespass(curproc->p_ucred, (q)->p_ucred) || \
100 	((sig) == SIGCONT && (q)->p_session == curproc->p_session))
101 
102 /*
103  * Policy -- Can real uid ruid with ucred uc send a signal to process q?
104  */
105 #define CANSIGIO(ruid, uc, q) \
106 	((uc)->cr_uid == 0 || \
107 	    (ruid) == (q)->p_ucred->cr_ruid || \
108 	    (uc)->cr_uid == (q)->p_ucred->cr_ruid || \
109 	    (ruid) == (q)->p_ucred->cr_uid || \
110 	    (uc)->cr_uid == (q)->p_ucred->cr_uid)
111 
112 int sugid_coredump;
113 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RW,
114 	&sugid_coredump, 0, "Enable coredumping set user/group ID processes");
115 
116 static int	do_coredump = 1;
117 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
118 	&do_coredump, 0, "Enable/Disable coredumps");
119 
120 /*
121  * Signal properties and actions.
122  * The array below categorizes the signals and their default actions
123  * according to the following properties:
124  */
125 #define	SA_KILL		0x01		/* terminates process by default */
126 #define	SA_CORE		0x02		/* ditto and coredumps */
127 #define	SA_STOP		0x04		/* suspend process */
128 #define	SA_TTYSTOP	0x08		/* ditto, from tty */
129 #define	SA_IGNORE	0x10		/* ignore by default */
130 #define	SA_CONT		0x20		/* continue if suspended */
131 #define	SA_CANTMASK	0x40		/* non-maskable, catchable */
132 #define SA_CKPT         0x80            /* checkpoint process */
133 
134 
135 static int sigproptbl[NSIG] = {
136         SA_KILL,                /* SIGHUP */
137         SA_KILL,                /* SIGINT */
138         SA_KILL|SA_CORE,        /* SIGQUIT */
139         SA_KILL|SA_CORE,        /* SIGILL */
140         SA_KILL|SA_CORE,        /* SIGTRAP */
141         SA_KILL|SA_CORE,        /* SIGABRT */
142         SA_KILL|SA_CORE,        /* SIGEMT */
143         SA_KILL|SA_CORE,        /* SIGFPE */
144         SA_KILL,                /* SIGKILL */
145         SA_KILL|SA_CORE,        /* SIGBUS */
146         SA_KILL|SA_CORE,        /* SIGSEGV */
147         SA_KILL|SA_CORE,        /* SIGSYS */
148         SA_KILL,                /* SIGPIPE */
149         SA_KILL,                /* SIGALRM */
150         SA_KILL,                /* SIGTERM */
151         SA_IGNORE,              /* SIGURG */
152         SA_STOP,                /* SIGSTOP */
153         SA_STOP|SA_TTYSTOP,     /* SIGTSTP */
154         SA_IGNORE|SA_CONT,      /* SIGCONT */
155         SA_IGNORE,              /* SIGCHLD */
156         SA_STOP|SA_TTYSTOP,     /* SIGTTIN */
157         SA_STOP|SA_TTYSTOP,     /* SIGTTOU */
158         SA_IGNORE,              /* SIGIO */
159         SA_KILL,                /* SIGXCPU */
160         SA_KILL,                /* SIGXFSZ */
161         SA_KILL,                /* SIGVTALRM */
162         SA_KILL,                /* SIGPROF */
163         SA_IGNORE,              /* SIGWINCH  */
164         SA_IGNORE,              /* SIGINFO */
165         SA_KILL,                /* SIGUSR1 */
166         SA_KILL,                /* SIGUSR2 */
167 	SA_IGNORE,              /* SIGTHR */
168 	SA_CKPT,                /* SIGCKPT */
169 	SA_KILL|SA_CKPT,        /* SIGCKPTEXIT */
170 	SA_IGNORE,
171 	SA_IGNORE,
172 	SA_IGNORE,
173 	SA_IGNORE,
174 	SA_IGNORE,
175 	SA_IGNORE,
176 	SA_IGNORE,
177 	SA_IGNORE,
178 	SA_IGNORE,
179 	SA_IGNORE,
180 	SA_IGNORE,
181 	SA_IGNORE,
182 	SA_IGNORE,
183 	SA_IGNORE,
184 	SA_IGNORE,
185 	SA_IGNORE,
186 	SA_IGNORE,
187 	SA_IGNORE,
188 	SA_IGNORE,
189 	SA_IGNORE,
190 	SA_IGNORE,
191 	SA_IGNORE,
192 	SA_IGNORE,
193 	SA_IGNORE,
194 	SA_IGNORE,
195 	SA_IGNORE,
196 	SA_IGNORE,
197 	SA_IGNORE,
198 	SA_IGNORE,
199 	SA_IGNORE,
200 
201 };
202 
203 static __inline int
204 sigprop(int sig)
205 {
206 
207 	if (sig > 0 && sig < NSIG)
208 		return (sigproptbl[_SIG_IDX(sig)]);
209 	return (0);
210 }
211 
212 static __inline int
213 sig_ffs(sigset_t *set)
214 {
215 	int i;
216 
217 	for (i = 0; i < _SIG_WORDS; i++)
218 		if (set->__bits[i])
219 			return (ffs(set->__bits[i]) + (i * 32));
220 	return (0);
221 }
222 
223 /*
224  * No requirements.
225  */
226 int
227 kern_sigaction(int sig, struct sigaction *act, struct sigaction *oact)
228 {
229 	struct thread *td = curthread;
230 	struct proc *p = td->td_proc;
231 	struct lwp *lp;
232 	struct sigacts *ps = p->p_sigacts;
233 
234 	if (sig <= 0 || sig > _SIG_MAXSIG)
235 		return (EINVAL);
236 
237 	lwkt_gettoken(&p->p_token);
238 
239 	if (oact) {
240 		oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
241 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
242 		oact->sa_flags = 0;
243 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
244 			oact->sa_flags |= SA_ONSTACK;
245 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
246 			oact->sa_flags |= SA_RESTART;
247 		if (SIGISMEMBER(ps->ps_sigreset, sig))
248 			oact->sa_flags |= SA_RESETHAND;
249 		if (SIGISMEMBER(ps->ps_signodefer, sig))
250 			oact->sa_flags |= SA_NODEFER;
251 		if (SIGISMEMBER(ps->ps_siginfo, sig))
252 			oact->sa_flags |= SA_SIGINFO;
253 		if (sig == SIGCHLD && p->p_sigacts->ps_flag & PS_NOCLDSTOP)
254 			oact->sa_flags |= SA_NOCLDSTOP;
255 		if (sig == SIGCHLD && p->p_sigacts->ps_flag & PS_NOCLDWAIT)
256 			oact->sa_flags |= SA_NOCLDWAIT;
257 	}
258 	if (act) {
259 		/*
260 		 * Check for invalid requests.  KILL and STOP cannot be
261 		 * caught.
262 		 */
263 		if (sig == SIGKILL || sig == SIGSTOP) {
264 			if (act->sa_handler != SIG_DFL) {
265 				lwkt_reltoken(&p->p_token);
266 				return (EINVAL);
267 			}
268 		}
269 
270 		/*
271 		 * Change setting atomically.
272 		 */
273 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
274 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
275 		if (act->sa_flags & SA_SIGINFO) {
276 			ps->ps_sigact[_SIG_IDX(sig)] =
277 			    (__sighandler_t *)act->sa_sigaction;
278 			SIGADDSET(ps->ps_siginfo, sig);
279 		} else {
280 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
281 			SIGDELSET(ps->ps_siginfo, sig);
282 		}
283 		if (!(act->sa_flags & SA_RESTART))
284 			SIGADDSET(ps->ps_sigintr, sig);
285 		else
286 			SIGDELSET(ps->ps_sigintr, sig);
287 		if (act->sa_flags & SA_ONSTACK)
288 			SIGADDSET(ps->ps_sigonstack, sig);
289 		else
290 			SIGDELSET(ps->ps_sigonstack, sig);
291 		if (act->sa_flags & SA_RESETHAND)
292 			SIGADDSET(ps->ps_sigreset, sig);
293 		else
294 			SIGDELSET(ps->ps_sigreset, sig);
295 		if (act->sa_flags & SA_NODEFER)
296 			SIGADDSET(ps->ps_signodefer, sig);
297 		else
298 			SIGDELSET(ps->ps_signodefer, sig);
299 		if (sig == SIGCHLD) {
300 			if (act->sa_flags & SA_NOCLDSTOP)
301 				p->p_sigacts->ps_flag |= PS_NOCLDSTOP;
302 			else
303 				p->p_sigacts->ps_flag &= ~PS_NOCLDSTOP;
304 			if (act->sa_flags & SA_NOCLDWAIT) {
305 				/*
306 				 * Paranoia: since SA_NOCLDWAIT is implemented
307 				 * by reparenting the dying child to PID 1 (and
308 				 * trust it to reap the zombie), PID 1 itself
309 				 * is forbidden to set SA_NOCLDWAIT.
310 				 */
311 				if (p->p_pid == 1)
312 					p->p_sigacts->ps_flag &= ~PS_NOCLDWAIT;
313 				else
314 					p->p_sigacts->ps_flag |= PS_NOCLDWAIT;
315 			} else {
316 				p->p_sigacts->ps_flag &= ~PS_NOCLDWAIT;
317 			}
318 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
319 				ps->ps_flag |= PS_CLDSIGIGN;
320 			else
321 				ps->ps_flag &= ~PS_CLDSIGIGN;
322 		}
323 		/*
324 		 * Set bit in p_sigignore for signals that are set to SIG_IGN,
325 		 * and for signals set to SIG_DFL where the default is to
326 		 * ignore. However, don't put SIGCONT in p_sigignore, as we
327 		 * have to restart the process.
328 		 *
329 		 * Also remove the signal from the process and lwp signal
330 		 * list.
331 		 */
332 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
333 		    (sigprop(sig) & SA_IGNORE &&
334 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
335 			SIGDELSET(p->p_siglist, sig);
336 			FOREACH_LWP_IN_PROC(lp, p) {
337 				spin_lock(&lp->lwp_spin);
338 				SIGDELSET(lp->lwp_siglist, sig);
339 				spin_unlock(&lp->lwp_spin);
340 			}
341 			if (sig != SIGCONT) {
342 				/* easier in ksignal */
343 				SIGADDSET(p->p_sigignore, sig);
344 			}
345 			SIGDELSET(p->p_sigcatch, sig);
346 		} else {
347 			SIGDELSET(p->p_sigignore, sig);
348 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
349 				SIGDELSET(p->p_sigcatch, sig);
350 			else
351 				SIGADDSET(p->p_sigcatch, sig);
352 		}
353 	}
354 	lwkt_reltoken(&p->p_token);
355 	return (0);
356 }
357 
358 int
359 sys_sigaction(struct sigaction_args *uap)
360 {
361 	struct sigaction act, oact;
362 	struct sigaction *actp, *oactp;
363 	int error;
364 
365 	actp = (uap->act != NULL) ? &act : NULL;
366 	oactp = (uap->oact != NULL) ? &oact : NULL;
367 	if (actp) {
368 		error = copyin(uap->act, actp, sizeof(act));
369 		if (error)
370 			return (error);
371 	}
372 	error = kern_sigaction(uap->sig, actp, oactp);
373 	if (oactp && !error) {
374 		error = copyout(oactp, uap->oact, sizeof(oact));
375 	}
376 	return (error);
377 }
378 
379 /*
380  * Initialize signal state for process 0;
381  * set to ignore signals that are ignored by default.
382  */
383 void
384 siginit(struct proc *p)
385 {
386 	int i;
387 
388 	for (i = 1; i <= NSIG; i++)
389 		if (sigprop(i) & SA_IGNORE && i != SIGCONT)
390 			SIGADDSET(p->p_sigignore, i);
391 }
392 
393 /*
394  * Reset signals for an exec of the specified process.
395  */
396 void
397 execsigs(struct proc *p)
398 {
399 	struct sigacts *ps = p->p_sigacts;
400 	struct lwp *lp;
401 	int sig;
402 
403 	lp = ONLY_LWP_IN_PROC(p);
404 
405 	/*
406 	 * Reset caught signals.  Held signals remain held
407 	 * through p_sigmask (unless they were caught,
408 	 * and are now ignored by default).
409 	 */
410 	while (SIGNOTEMPTY(p->p_sigcatch)) {
411 		sig = sig_ffs(&p->p_sigcatch);
412 		SIGDELSET(p->p_sigcatch, sig);
413 		if (sigprop(sig) & SA_IGNORE) {
414 			if (sig != SIGCONT)
415 				SIGADDSET(p->p_sigignore, sig);
416 			SIGDELSET(p->p_siglist, sig);
417 			/* don't need spinlock */
418 			SIGDELSET(lp->lwp_siglist, sig);
419 		}
420 		ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
421 	}
422 
423 	/*
424 	 * Reset stack state to the user stack.
425 	 * Clear set of signals caught on the signal stack.
426 	 */
427 	lp->lwp_sigstk.ss_flags = SS_DISABLE;
428 	lp->lwp_sigstk.ss_size = 0;
429 	lp->lwp_sigstk.ss_sp = NULL;
430 	lp->lwp_flags &= ~LWP_ALTSTACK;
431 	/*
432 	 * Reset no zombies if child dies flag as Solaris does.
433 	 */
434 	p->p_sigacts->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
435 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
436 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
437 }
438 
439 /*
440  * kern_sigprocmask() - MP SAFE ONLY IF p == curproc
441  *
442  *	Manipulate signal mask.  This routine is MP SAFE *ONLY* if
443  *	p == curproc.
444  */
445 int
446 kern_sigprocmask(int how, sigset_t *set, sigset_t *oset)
447 {
448 	struct thread *td = curthread;
449 	struct lwp *lp = td->td_lwp;
450 	struct proc *p = td->td_proc;
451 	int error;
452 
453 	lwkt_gettoken(&p->p_token);
454 
455 	if (oset != NULL)
456 		*oset = lp->lwp_sigmask;
457 
458 	error = 0;
459 	if (set != NULL) {
460 		switch (how) {
461 		case SIG_BLOCK:
462 			SIG_CANTMASK(*set);
463 			SIGSETOR(lp->lwp_sigmask, *set);
464 			break;
465 		case SIG_UNBLOCK:
466 			SIGSETNAND(lp->lwp_sigmask, *set);
467 			break;
468 		case SIG_SETMASK:
469 			SIG_CANTMASK(*set);
470 			lp->lwp_sigmask = *set;
471 			break;
472 		default:
473 			error = EINVAL;
474 			break;
475 		}
476 	}
477 
478 	lwkt_reltoken(&p->p_token);
479 
480 	return (error);
481 }
482 
483 /*
484  * sigprocmask()
485  *
486  * MPSAFE
487  */
488 int
489 sys_sigprocmask(struct sigprocmask_args *uap)
490 {
491 	sigset_t set, oset;
492 	sigset_t *setp, *osetp;
493 	int error;
494 
495 	setp = (uap->set != NULL) ? &set : NULL;
496 	osetp = (uap->oset != NULL) ? &oset : NULL;
497 	if (setp) {
498 		error = copyin(uap->set, setp, sizeof(set));
499 		if (error)
500 			return (error);
501 	}
502 	error = kern_sigprocmask(uap->how, setp, osetp);
503 	if (osetp && !error) {
504 		error = copyout(osetp, uap->oset, sizeof(oset));
505 	}
506 	return (error);
507 }
508 
509 /*
510  * MPSAFE
511  */
512 int
513 kern_sigpending(struct __sigset *set)
514 {
515 	struct lwp *lp = curthread->td_lwp;
516 
517 	*set = lwp_sigpend(lp);
518 
519 	return (0);
520 }
521 
522 /*
523  * MPSAFE
524  */
525 int
526 sys_sigpending(struct sigpending_args *uap)
527 {
528 	sigset_t set;
529 	int error;
530 
531 	error = kern_sigpending(&set);
532 
533 	if (error == 0)
534 		error = copyout(&set, uap->set, sizeof(set));
535 	return (error);
536 }
537 
538 /*
539  * Suspend process until signal, providing mask to be set
540  * in the meantime.
541  *
542  * MPSAFE
543  */
544 int
545 kern_sigsuspend(struct __sigset *set)
546 {
547 	struct thread *td = curthread;
548 	struct lwp *lp = td->td_lwp;
549 	struct proc *p = td->td_proc;
550 	struct sigacts *ps = p->p_sigacts;
551 
552 	/*
553 	 * When returning from sigsuspend, we want
554 	 * the old mask to be restored after the
555 	 * signal handler has finished.  Thus, we
556 	 * save it here and mark the sigacts structure
557 	 * to indicate this.
558 	 */
559 	lp->lwp_oldsigmask = lp->lwp_sigmask;
560 	lp->lwp_flags |= LWP_OLDMASK;
561 
562 	SIG_CANTMASK(*set);
563 	lp->lwp_sigmask = *set;
564 	while (tsleep(ps, PCATCH, "pause", 0) == 0)
565 		/* void */;
566 	/* always return EINTR rather than ERESTART... */
567 	return (EINTR);
568 }
569 
570 /*
571  * Note nonstandard calling convention: libc stub passes mask, not
572  * pointer, to save a copyin.
573  *
574  * MPSAFE
575  */
576 int
577 sys_sigsuspend(struct sigsuspend_args *uap)
578 {
579 	sigset_t mask;
580 	int error;
581 
582 	error = copyin(uap->sigmask, &mask, sizeof(mask));
583 	if (error)
584 		return (error);
585 
586 	error = kern_sigsuspend(&mask);
587 
588 	return (error);
589 }
590 
591 /*
592  * MPSAFE
593  */
594 int
595 kern_sigaltstack(struct sigaltstack *ss, struct sigaltstack *oss)
596 {
597 	struct thread *td = curthread;
598 	struct lwp *lp = td->td_lwp;
599 	struct proc *p = td->td_proc;
600 
601 	if ((lp->lwp_flags & LWP_ALTSTACK) == 0)
602 		lp->lwp_sigstk.ss_flags |= SS_DISABLE;
603 
604 	if (oss)
605 		*oss = lp->lwp_sigstk;
606 
607 	if (ss) {
608 		if (ss->ss_flags & ~SS_DISABLE)
609 			return (EINVAL);
610 		if (ss->ss_flags & SS_DISABLE) {
611 			if (lp->lwp_sigstk.ss_flags & SS_ONSTACK)
612 				return (EINVAL);
613 			lp->lwp_flags &= ~LWP_ALTSTACK;
614 			lp->lwp_sigstk.ss_flags = ss->ss_flags;
615 		} else {
616 			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
617 				return (ENOMEM);
618 			lp->lwp_flags |= LWP_ALTSTACK;
619 			lp->lwp_sigstk = *ss;
620 		}
621 	}
622 
623 	return (0);
624 }
625 
626 /*
627  * MPSAFE
628  */
629 int
630 sys_sigaltstack(struct sigaltstack_args *uap)
631 {
632 	stack_t ss, oss;
633 	int error;
634 
635 	if (uap->ss) {
636 		error = copyin(uap->ss, &ss, sizeof(ss));
637 		if (error)
638 			return (error);
639 	}
640 
641 	error = kern_sigaltstack(uap->ss ? &ss : NULL,
642 	    uap->oss ? &oss : NULL);
643 
644 	if (error == 0 && uap->oss)
645 		error = copyout(&oss, uap->oss, sizeof(*uap->oss));
646 	return (error);
647 }
648 
649 /*
650  * Common code for kill process group/broadcast kill.
651  * cp is calling process.
652  */
653 struct killpg_info {
654 	int nfound;
655 	int sig;
656 };
657 
658 static int killpg_all_callback(struct proc *p, void *data);
659 
660 static int
661 dokillpg(int sig, int pgid, int all)
662 {
663 	struct killpg_info info;
664 	struct proc *cp = curproc;
665 	struct proc *p;
666 	struct pgrp *pgrp;
667 
668 	info.nfound = 0;
669 	info.sig = sig;
670 
671 	if (all) {
672 		/*
673 		 * broadcast
674 		 */
675 		allproc_scan(killpg_all_callback, &info);
676 	} else {
677 		if (pgid == 0) {
678 			/*
679 			 * zero pgid means send to my process group.
680 			 */
681 			pgrp = cp->p_pgrp;
682 			pgref(pgrp);
683 		} else {
684 			pgrp = pgfind(pgid);
685 			if (pgrp == NULL)
686 				return (ESRCH);
687 		}
688 
689 		/*
690 		 * Must interlock all signals against fork
691 		 */
692 		lockmgr(&pgrp->pg_lock, LK_EXCLUSIVE);
693 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
694 			if (p->p_pid <= 1 ||
695 			    p->p_stat == SZOMB ||
696 			    (p->p_flags & P_SYSTEM) ||
697 			    !CANSIGNAL(p, sig)) {
698 				continue;
699 			}
700 			++info.nfound;
701 			if (sig)
702 				ksignal(p, sig);
703 		}
704 		lockmgr(&pgrp->pg_lock, LK_RELEASE);
705 		pgrel(pgrp);
706 	}
707 	return (info.nfound ? 0 : ESRCH);
708 }
709 
710 static int
711 killpg_all_callback(struct proc *p, void *data)
712 {
713 	struct killpg_info *info = data;
714 
715 	if (p->p_pid <= 1 || (p->p_flags & P_SYSTEM) ||
716 	    p == curproc || !CANSIGNAL(p, info->sig)) {
717 		return (0);
718 	}
719 	++info->nfound;
720 	if (info->sig)
721 		ksignal(p, info->sig);
722 	return(0);
723 }
724 
725 /*
726  * Send a general signal to a process or LWPs within that process.
727  *
728  * Note that new signals cannot be sent if a process is exiting or already
729  * a zombie, but we return success anyway as userland is likely to not handle
730  * the race properly.
731  *
732  * No requirements.
733  */
734 int
735 kern_kill(int sig, pid_t pid, lwpid_t tid)
736 {
737 	int t;
738 
739 	if ((u_int)sig > _SIG_MAXSIG)
740 		return (EINVAL);
741 
742 	if (pid > 0) {
743 		struct proc *p;
744 		struct lwp *lp = NULL;
745 
746 		/*
747 		 * Send a signal to a single process.  If the kill() is
748 		 * racing an exiting process which has not yet been reaped
749 		 * act as though the signal was delivered successfully but
750 		 * don't actually try to deliver the signal.
751 		 */
752 		if ((p = pfind(pid)) == NULL) {
753 			if ((p = zpfind(pid)) == NULL)
754 				return (ESRCH);
755 			PRELE(p);
756 			return (0);
757 		}
758 		lwkt_gettoken(&p->p_token);
759 		if (!CANSIGNAL(p, sig)) {
760 			lwkt_reltoken(&p->p_token);
761 			PRELE(p);
762 			return (EPERM);
763 		}
764 
765 		/*
766 		 * NOP if the process is exiting.  Note that lwpsignal() is
767 		 * called directly with P_WEXIT set to kill individual LWPs
768 		 * during exit, which is allowed.
769 		 */
770 		if (p->p_flags & P_WEXIT) {
771 			lwkt_reltoken(&p->p_token);
772 			PRELE(p);
773 			return (0);
774 		}
775 		if (tid != -1) {
776 			lp = lwp_rb_tree_RB_LOOKUP(&p->p_lwp_tree, tid);
777 			if (lp == NULL) {
778 				lwkt_reltoken(&p->p_token);
779 				PRELE(p);
780 				return (ESRCH);
781 			}
782 		}
783 		if (sig)
784 			lwpsignal(p, lp, sig);
785 		lwkt_reltoken(&p->p_token);
786 		PRELE(p);
787 
788 		return (0);
789 	}
790 
791 	/*
792 	 * If we come here, pid is a special broadcast pid.
793 	 * This doesn't mix with a tid.
794 	 */
795 	if (tid != -1)
796 		return (EINVAL);
797 
798 	switch (pid) {
799 	case -1:		/* broadcast signal */
800 		t = (dokillpg(sig, 0, 1));
801 		break;
802 	case 0:			/* signal own process group */
803 		t = (dokillpg(sig, 0, 0));
804 		break;
805 	default:		/* negative explicit process group */
806 		t = (dokillpg(sig, -pid, 0));
807 		break;
808 	}
809 	return t;
810 }
811 
812 int
813 sys_kill(struct kill_args *uap)
814 {
815 	int error;
816 
817 	error = kern_kill(uap->signum, uap->pid, -1);
818 	return (error);
819 }
820 
821 int
822 sys_lwp_kill(struct lwp_kill_args *uap)
823 {
824 	int error;
825 	pid_t pid = uap->pid;
826 
827 	/*
828 	 * A tid is mandatory for lwp_kill(), otherwise
829 	 * you could simply use kill().
830 	 */
831 	if (uap->tid == -1)
832 		return (EINVAL);
833 
834 	/*
835 	 * To save on a getpid() function call for intra-process
836 	 * signals, pid == -1 means current process.
837 	 */
838 	if (pid == -1)
839 		pid = curproc->p_pid;
840 
841 	error = kern_kill(uap->signum, pid, uap->tid);
842 	return (error);
843 }
844 
845 /*
846  * Send a signal to a process group.
847  */
848 void
849 gsignal(int pgid, int sig)
850 {
851 	struct pgrp *pgrp;
852 
853 	if (pgid && (pgrp = pgfind(pgid)))
854 		pgsignal(pgrp, sig, 0);
855 }
856 
857 /*
858  * Send a signal to a process group.  If checktty is 1,
859  * limit to members which have a controlling terminal.
860  *
861  * pg_lock interlocks against a fork that might be in progress, to
862  * ensure that the new child process picks up the signal.
863  */
864 void
865 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
866 {
867 	struct proc *p;
868 
869 	/*
870 	 * Must interlock all signals against fork
871 	 */
872 	if (pgrp) {
873 		pgref(pgrp);
874 		lockmgr(&pgrp->pg_lock, LK_EXCLUSIVE);
875 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
876 			if (checkctty == 0 || p->p_flags & P_CONTROLT)
877 				ksignal(p, sig);
878 		}
879 		lockmgr(&pgrp->pg_lock, LK_RELEASE);
880 		pgrel(pgrp);
881 	}
882 }
883 
884 /*
885  * Send a signal caused by a trap to the current lwp.  If it will be caught
886  * immediately, deliver it with correct code.  Otherwise, post it normally.
887  *
888  * These signals may ONLY be delivered to the specified lwp and may never
889  * be delivered to the process generically.
890  */
891 void
892 trapsignal(struct lwp *lp, int sig, u_long code)
893 {
894 	struct proc *p = lp->lwp_proc;
895 	struct sigacts *ps = p->p_sigacts;
896 
897 	/*
898 	 * If we are a virtual kernel running an emulated user process
899 	 * context, switch back to the virtual kernel context before
900 	 * trying to post the signal.
901 	 */
902 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
903 		struct trapframe *tf = lp->lwp_md.md_regs;
904 		tf->tf_trapno = 0;
905 		vkernel_trap(lp, tf);
906 	}
907 
908 
909 	if ((p->p_flags & P_TRACED) == 0 && SIGISMEMBER(p->p_sigcatch, sig) &&
910 	    !SIGISMEMBER(lp->lwp_sigmask, sig)) {
911 		lp->lwp_ru.ru_nsignals++;
912 #ifdef KTRACE
913 		if (KTRPOINT(lp->lwp_thread, KTR_PSIG))
914 			ktrpsig(lp, sig, ps->ps_sigact[_SIG_IDX(sig)],
915 				&lp->lwp_sigmask, code);
916 #endif
917 		(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)], sig,
918 						&lp->lwp_sigmask, code);
919 		SIGSETOR(lp->lwp_sigmask, ps->ps_catchmask[_SIG_IDX(sig)]);
920 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
921 			SIGADDSET(lp->lwp_sigmask, sig);
922 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
923 			/*
924 			 * See kern_sigaction() for origin of this code.
925 			 */
926 			SIGDELSET(p->p_sigcatch, sig);
927 			if (sig != SIGCONT &&
928 			    sigprop(sig) & SA_IGNORE)
929 				SIGADDSET(p->p_sigignore, sig);
930 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
931 		}
932 	} else {
933 		lp->lwp_code = code;	/* XXX for core dump/debugger */
934 		lp->lwp_sig = sig;	/* XXX to verify code */
935 		lwpsignal(p, lp, sig);
936 	}
937 }
938 
939 /*
940  * Find a suitable lwp to deliver the signal to.  Returns NULL if all
941  * lwps hold the signal blocked.
942  *
943  * Caller must hold p->p_token.
944  *
945  * Returns a lp or NULL.  If non-NULL the lp is held and its token is
946  * acquired.
947  */
948 static struct lwp *
949 find_lwp_for_signal(struct proc *p, int sig)
950 {
951 	struct lwp *lp;
952 	struct lwp *run, *sleep, *stop;
953 
954 	/*
955 	 * If the running/preempted thread belongs to the proc to which
956 	 * the signal is being delivered and this thread does not block
957 	 * the signal, then we can avoid a context switch by delivering
958 	 * the signal to this thread, because it will return to userland
959 	 * soon anyways.
960 	 */
961 	lp = lwkt_preempted_proc();
962 	if (lp != NULL && lp->lwp_proc == p) {
963 		LWPHOLD(lp);
964 		lwkt_gettoken(&lp->lwp_token);
965 		if (!SIGISMEMBER(lp->lwp_sigmask, sig)) {
966 			/* return w/ token held */
967 			return (lp);
968 		}
969 		lwkt_reltoken(&lp->lwp_token);
970 		LWPRELE(lp);
971 	}
972 
973 	run = sleep = stop = NULL;
974 	FOREACH_LWP_IN_PROC(lp, p) {
975 		/*
976 		 * If the signal is being blocked by the lwp, then this
977 		 * lwp is not eligible for receiving the signal.
978 		 */
979 		LWPHOLD(lp);
980 		lwkt_gettoken(&lp->lwp_token);
981 
982 		if (SIGISMEMBER(lp->lwp_sigmask, sig)) {
983 			lwkt_reltoken(&lp->lwp_token);
984 			LWPRELE(lp);
985 			continue;
986 		}
987 
988 		switch (lp->lwp_stat) {
989 		case LSRUN:
990 			if (sleep) {
991 				lwkt_token_swap();
992 				lwkt_reltoken(&sleep->lwp_token);
993 				LWPRELE(sleep);
994 				sleep = NULL;
995 				run = lp;
996 			} else if (stop) {
997 				lwkt_token_swap();
998 				lwkt_reltoken(&stop->lwp_token);
999 				LWPRELE(stop);
1000 				stop = NULL;
1001 				run = lp;
1002 			} else {
1003 				run = lp;
1004 			}
1005 			break;
1006 		case LSSLEEP:
1007 			if (lp->lwp_flags & LWP_SINTR) {
1008 				if (sleep) {
1009 					lwkt_reltoken(&lp->lwp_token);
1010 					LWPRELE(lp);
1011 				} else if (stop) {
1012 					lwkt_token_swap();
1013 					lwkt_reltoken(&stop->lwp_token);
1014 					LWPRELE(stop);
1015 					stop = NULL;
1016 					sleep = lp;
1017 				} else {
1018 					sleep = lp;
1019 				}
1020 			} else {
1021 				lwkt_reltoken(&lp->lwp_token);
1022 				LWPRELE(lp);
1023 			}
1024 			break;
1025 		case LSSTOP:
1026 			if (sleep) {
1027 				lwkt_reltoken(&lp->lwp_token);
1028 				LWPRELE(lp);
1029 			} else if (stop) {
1030 				lwkt_reltoken(&lp->lwp_token);
1031 				LWPRELE(lp);
1032 			} else {
1033 				stop = lp;
1034 			}
1035 			break;
1036 		}
1037 		if (run)
1038 			break;
1039 	}
1040 
1041 	if (run != NULL)
1042 		return (run);
1043 	else if (sleep != NULL)
1044 		return (sleep);
1045 	else
1046 		return (stop);
1047 }
1048 
1049 /*
1050  * Send the signal to the process.  If the signal has an action, the action
1051  * is usually performed by the target process rather than the caller; we add
1052  * the signal to the set of pending signals for the process.
1053  *
1054  * Exceptions:
1055  *   o When a stop signal is sent to a sleeping process that takes the
1056  *     default action, the process is stopped without awakening it.
1057  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
1058  *     regardless of the signal action (eg, blocked or ignored).
1059  *
1060  * Other ignored signals are discarded immediately.
1061  *
1062  * If the caller wishes to call this function from a hard code section the
1063  * caller must already hold p->p_token (see kern_clock.c).
1064  *
1065  * No requirements.
1066  */
1067 void
1068 ksignal(struct proc *p, int sig)
1069 {
1070 	lwpsignal(p, NULL, sig);
1071 }
1072 
1073 /*
1074  * The core for ksignal.  lp may be NULL, then a suitable thread
1075  * will be chosen.  If not, lp MUST be a member of p.
1076  *
1077  * If the caller wishes to call this function from a hard code section the
1078  * caller must already hold p->p_token.
1079  *
1080  * No requirements.
1081  */
1082 void
1083 lwpsignal(struct proc *p, struct lwp *lp, int sig)
1084 {
1085 	struct proc *q;
1086 	sig_t action;
1087 	int prop;
1088 
1089 	if (sig > _SIG_MAXSIG || sig <= 0) {
1090 		kprintf("lwpsignal: signal %d\n", sig);
1091 		panic("lwpsignal signal number");
1092 	}
1093 
1094 	KKASSERT(lp == NULL || lp->lwp_proc == p);
1095 
1096 	/*
1097 	 * We don't want to race... well, all sorts of things.  Get appropriate
1098 	 * tokens.
1099 	 *
1100 	 * Don't try to deliver a generic signal to an exiting process,
1101 	 * the signal structures could be in flux.  We check the LWP later
1102 	 * on.
1103 	 */
1104 	PHOLD(p);
1105 	lwkt_gettoken(&p->p_token);
1106 	if (lp) {
1107 		LWPHOLD(lp);
1108 		lwkt_gettoken(&lp->lwp_token);
1109 	} else if (p->p_flags & P_WEXIT) {
1110 		goto out;
1111 	}
1112 
1113 	prop = sigprop(sig);
1114 
1115 	/*
1116 	 * If proc is traced, always give parent a chance;
1117 	 * if signal event is tracked by procfs, give *that*
1118 	 * a chance, as well.
1119 	 */
1120 	if ((p->p_flags & P_TRACED) || (p->p_stops & S_SIG)) {
1121 		action = SIG_DFL;
1122 	} else {
1123 		/*
1124 		 * Do not try to deliver signals to an exiting lwp.  Note
1125 		 * that we must still deliver the signal if P_WEXIT is set
1126 		 * in the process flags.
1127 		 */
1128 		if (lp && (lp->lwp_mpflags & LWP_MP_WEXIT)) {
1129 			if (lp) {
1130 				lwkt_reltoken(&lp->lwp_token);
1131 				LWPRELE(lp);
1132 			}
1133 			lwkt_reltoken(&p->p_token);
1134 			PRELE(p);
1135 			return;
1136 		}
1137 
1138 		/*
1139 		 * If the signal is being ignored, then we forget about
1140 		 * it immediately.  NOTE: We don't set SIGCONT in p_sigignore,
1141 		 * and if it is set to SIG_IGN, action will be SIG_DFL here.
1142 		 */
1143 		if (SIGISMEMBER(p->p_sigignore, sig)) {
1144 			/*
1145 			 * Even if a signal is set SIG_IGN, it may still be
1146 			 * lurking in a kqueue.
1147 			 */
1148 			KNOTE(&p->p_klist, NOTE_SIGNAL | sig);
1149 			if (lp) {
1150 				lwkt_reltoken(&lp->lwp_token);
1151 				LWPRELE(lp);
1152 			}
1153 			lwkt_reltoken(&p->p_token);
1154 			PRELE(p);
1155 			return;
1156 		}
1157 		if (SIGISMEMBER(p->p_sigcatch, sig))
1158 			action = SIG_CATCH;
1159 		else
1160 			action = SIG_DFL;
1161 	}
1162 
1163 	/*
1164 	 * If continuing, clear any pending STOP signals.
1165 	 */
1166 	if (prop & SA_CONT)
1167 		SIG_STOPSIGMASK(p->p_siglist);
1168 
1169 	if (prop & SA_STOP) {
1170 		/*
1171 		 * If sending a tty stop signal to a member of an orphaned
1172 		 * process group, discard the signal here if the action
1173 		 * is default; don't stop the process below if sleeping,
1174 		 * and don't clear any pending SIGCONT.
1175 		 */
1176 		if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0 &&
1177 		    action == SIG_DFL) {
1178 			if (lp) {
1179 				lwkt_reltoken(&lp->lwp_token);
1180 				LWPRELE(lp);
1181 			}
1182 			lwkt_reltoken(&p->p_token);
1183 			PRELE(p);
1184 		        return;
1185 		}
1186 		SIG_CONTSIGMASK(p->p_siglist);
1187 		p->p_flags &= ~P_CONTINUED;
1188 	}
1189 
1190 	if (p->p_stat == SSTOP) {
1191 		/*
1192 		 * Nobody can handle this signal, add it to the lwp or
1193 		 * process pending list
1194 		 */
1195 		if (lp) {
1196 			spin_lock(&lp->lwp_spin);
1197 			SIGADDSET(lp->lwp_siglist, sig);
1198 			spin_unlock(&lp->lwp_spin);
1199 		} else {
1200 			SIGADDSET(p->p_siglist, sig);
1201 		}
1202 
1203 		/*
1204 		 * If the process is stopped and is being traced, then no
1205 		 * further action is necessary.
1206 		 */
1207 		if (p->p_flags & P_TRACED)
1208 			goto out;
1209 
1210 		/*
1211 		 * If the process is stopped and receives a KILL signal,
1212 		 * make the process runnable.
1213 		 */
1214 		if (sig == SIGKILL) {
1215 			proc_unstop(p);
1216 			goto active_process;
1217 		}
1218 
1219 		/*
1220 		 * If the process is stopped and receives a CONT signal,
1221 		 * then try to make the process runnable again.
1222 		 */
1223 		if (prop & SA_CONT) {
1224 			/*
1225 			 * If SIGCONT is default (or ignored), we continue the
1226 			 * process but don't leave the signal in p_siglist, as
1227 			 * it has no further action.  If SIGCONT is held, we
1228 			 * continue the process and leave the signal in
1229 			 * p_siglist.  If the process catches SIGCONT, let it
1230 			 * handle the signal itself.
1231 			 *
1232 			 * XXX what if the signal is being held blocked?
1233 			 *
1234 			 * Token required to interlock kern_wait().
1235 			 * Reparenting can also cause a race so we have to
1236 			 * hold (q).
1237 			 */
1238 			q = p->p_pptr;
1239 			PHOLD(q);
1240 			lwkt_gettoken(&q->p_token);
1241 			p->p_flags |= P_CONTINUED;
1242 			wakeup(q);
1243 			if (action == SIG_DFL)
1244 				SIGDELSET(p->p_siglist, sig);
1245 			proc_unstop(p);
1246 			lwkt_reltoken(&q->p_token);
1247 			PRELE(q);
1248 			if (action == SIG_CATCH)
1249 				goto active_process;
1250 			goto out;
1251 		}
1252 
1253 		/*
1254 		 * If the process is stopped and receives another STOP
1255 		 * signal, we do not need to stop it again.  If we did
1256 		 * the shell could get confused.
1257 		 *
1258 		 * However, if the current/preempted lwp is part of the
1259 		 * process receiving the signal, we need to keep it,
1260 		 * so that this lwp can stop in issignal() later, as
1261 		 * we don't want to wait until it reaches userret!
1262 		 */
1263 		if (prop & SA_STOP) {
1264 			if (lwkt_preempted_proc() == NULL ||
1265 			    lwkt_preempted_proc()->lwp_proc != p)
1266 				SIGDELSET(p->p_siglist, sig);
1267 		}
1268 
1269 		/*
1270 		 * Otherwise the process is stopped and it received some
1271 		 * signal, which does not change its stopped state.  When
1272 		 * the process is continued a wakeup(p) will be issued which
1273 		 * will wakeup any threads sleeping in tstop().
1274 		 */
1275 		if (lp == NULL) {
1276 			/* NOTE: returns lp w/ token held */
1277 			lp = find_lwp_for_signal(p, sig);
1278 		}
1279 		goto out;
1280 
1281 		/* NOTREACHED */
1282 	}
1283 	/* else not stopped */
1284 active_process:
1285 
1286 	/*
1287 	 * Never deliver a lwp-specific signal to a random lwp.
1288 	 */
1289 	if (lp == NULL) {
1290 		/* NOTE: returns lp w/ token held */
1291 		lp = find_lwp_for_signal(p, sig);
1292 		if (lp) {
1293 			if (SIGISMEMBER(lp->lwp_sigmask, sig)) {
1294 				lwkt_reltoken(&lp->lwp_token);
1295 				LWPRELE(lp);
1296 				lp = NULL;
1297 			}
1298 		}
1299 	}
1300 
1301 	/*
1302 	 * Deliver to the process generically if (1) the signal is being
1303 	 * sent to any thread or (2) we could not find a thread to deliver
1304 	 * it to.
1305 	 */
1306 	if (lp == NULL) {
1307 		SIGADDSET(p->p_siglist, sig);
1308 		goto out;
1309 	}
1310 
1311 	/*
1312 	 * Deliver to a specific LWP whether it masks it or not.  It will
1313 	 * not be dispatched if masked but we must still deliver it.
1314 	 */
1315 	if (p->p_nice > NZERO && action == SIG_DFL && (prop & SA_KILL) &&
1316 	    (p->p_flags & P_TRACED) == 0) {
1317 		p->p_nice = NZERO;
1318 	}
1319 
1320 	/*
1321 	 * If the process receives a STOP signal which indeed needs to
1322 	 * stop the process, do so.  If the process chose to catch the
1323 	 * signal, it will be treated like any other signal.
1324 	 */
1325 	if ((prop & SA_STOP) && action == SIG_DFL) {
1326 		/*
1327 		 * If a child holding parent blocked, stopping
1328 		 * could cause deadlock.  Take no action at this
1329 		 * time.
1330 		 */
1331 		if (p->p_flags & P_PPWAIT) {
1332 			SIGADDSET(p->p_siglist, sig);
1333 			goto out;
1334 		}
1335 
1336 		/*
1337 		 * Do not actually try to manipulate the process, but simply
1338 		 * stop it.  Lwps will stop as soon as they safely can.
1339 		 *
1340 		 * Ignore stop if the process is exiting.
1341 		 */
1342 		if ((p->p_flags & P_WEXIT) == 0) {
1343 			p->p_xstat = sig;
1344 			proc_stop(p);
1345 		}
1346 		goto out;
1347 	}
1348 
1349 	/*
1350 	 * If it is a CONT signal with default action, just ignore it.
1351 	 */
1352 	if ((prop & SA_CONT) && action == SIG_DFL)
1353 		goto out;
1354 
1355 	/*
1356 	 * Mark signal pending at this specific thread.
1357 	 */
1358 	spin_lock(&lp->lwp_spin);
1359 	SIGADDSET(lp->lwp_siglist, sig);
1360 	spin_unlock(&lp->lwp_spin);
1361 
1362 	lwp_signotify(lp);
1363 
1364 out:
1365 	if (lp) {
1366 		lwkt_reltoken(&lp->lwp_token);
1367 		LWPRELE(lp);
1368 	}
1369 	lwkt_reltoken(&p->p_token);
1370 	PRELE(p);
1371 }
1372 
1373 /*
1374  * Notify the LWP that a signal has arrived.  The LWP does not have to be
1375  * sleeping on the current cpu.
1376  *
1377  * p->p_token and lp->lwp_token must be held on call.
1378  *
1379  * We can only safely schedule the thread on its current cpu and only if
1380  * one of the SINTR flags is set.  If an SINTR flag is set AND we are on
1381  * the correct cpu we are properly interlocked, otherwise we could be
1382  * racing other thread transition states (or the lwp is on the user scheduler
1383  * runq but not scheduled) and must not do anything.
1384  *
1385  * Since we hold the lwp token we know the lwp cannot be ripped out from
1386  * under us so we can safely hold it to prevent it from being ripped out
1387  * from under us if we are forced to IPI another cpu to make the local
1388  * checks there.
1389  *
1390  * Adjustment of lp->lwp_stat can only occur when we hold the lwp_token,
1391  * which we won't in an IPI so any fixups have to be done here, effectively
1392  * replicating part of what setrunnable() does.
1393  */
1394 static void
1395 lwp_signotify(struct lwp *lp)
1396 {
1397 	ASSERT_LWKT_TOKEN_HELD(&lp->lwp_proc->p_token);
1398 
1399 	crit_enter();
1400 	if (lp == lwkt_preempted_proc()) {
1401 		/*
1402 		 * lwp is on the current cpu AND it is currently running
1403 		 * (we preempted it).
1404 		 */
1405 		signotify();
1406 	} else if (lp->lwp_flags & LWP_SINTR) {
1407 		/*
1408 		 * lwp is sitting in tsleep() with PCATCH set
1409 		 */
1410 		if (lp->lwp_thread->td_gd == mycpu) {
1411 			setrunnable(lp);
1412 		} else {
1413 			/*
1414 			 * We can only adjust lwp_stat while we hold the
1415 			 * lwp_token, and we won't in the IPI function.
1416 			 */
1417 			LWPHOLD(lp);
1418 			if (lp->lwp_stat == LSSTOP)
1419 				lp->lwp_stat = LSSLEEP;
1420 			lwkt_send_ipiq(lp->lwp_thread->td_gd,
1421 				       lwp_signotify_remote, lp);
1422 		}
1423 	} else if (lp->lwp_thread->td_flags & TDF_SINTR) {
1424 		/*
1425 		 * lwp is sitting in lwkt_sleep() with PCATCH set.
1426 		 */
1427 		if (lp->lwp_thread->td_gd == mycpu) {
1428 			setrunnable(lp);
1429 		} else {
1430 			/*
1431 			 * We can only adjust lwp_stat while we hold the
1432 			 * lwp_token, and we won't in the IPI function.
1433 			 */
1434 			LWPHOLD(lp);
1435 			if (lp->lwp_stat == LSSTOP)
1436 				lp->lwp_stat = LSSLEEP;
1437 			lwkt_send_ipiq(lp->lwp_thread->td_gd,
1438 				       lwp_signotify_remote, lp);
1439 		}
1440 	} else {
1441 		/*
1442 		 * Otherwise the lwp is either in some uninterruptable state
1443 		 * or it is on the userland scheduler's runqueue waiting to
1444 		 * be scheduled to a cpu.
1445 		 */
1446 	}
1447 	crit_exit();
1448 }
1449 
1450 /*
1451  * This function is called via an IPI so we cannot call setrunnable() here
1452  * (because while we hold the lp we don't own its token, and can't get it
1453  * from an IPI).
1454  *
1455  * We are interlocked by virtue of being on the same cpu as the target.  If
1456  * we still are and LWP_SINTR or TDF_SINTR is set we can safely schedule
1457  * the target thread.
1458  */
1459 static void
1460 lwp_signotify_remote(void *arg)
1461 {
1462 	struct lwp *lp = arg;
1463 	thread_t td = lp->lwp_thread;
1464 
1465 	if (lp == lwkt_preempted_proc()) {
1466 		signotify();
1467 		LWPRELE(lp);
1468 	} else if (td->td_gd == mycpu) {
1469 		if ((lp->lwp_flags & LWP_SINTR) ||
1470 		    (td->td_flags & TDF_SINTR)) {
1471 			lwkt_schedule(td);
1472 		}
1473 		LWPRELE(lp);
1474 	} else {
1475 		lwkt_send_ipiq(td->td_gd, lwp_signotify_remote, lp);
1476 		/* LWPHOLD() is forwarded to the target cpu */
1477 	}
1478 }
1479 
1480 /*
1481  * Caller must hold p->p_token
1482  */
1483 void
1484 proc_stop(struct proc *p)
1485 {
1486 	struct proc *q;
1487 	struct lwp *lp;
1488 
1489 	ASSERT_LWKT_TOKEN_HELD(&p->p_token);
1490 
1491 	/* If somebody raced us, be happy with it */
1492 	if (p->p_stat == SSTOP || p->p_stat == SZOMB) {
1493 		return;
1494 	}
1495 	p->p_stat = SSTOP;
1496 
1497 	FOREACH_LWP_IN_PROC(lp, p) {
1498 		LWPHOLD(lp);
1499 		lwkt_gettoken(&lp->lwp_token);
1500 
1501 		switch (lp->lwp_stat) {
1502 		case LSSTOP:
1503 			/*
1504 			 * Do nothing, we are already counted in
1505 			 * p_nstopped.
1506 			 */
1507 			break;
1508 
1509 		case LSSLEEP:
1510 			/*
1511 			 * We're sleeping, but we will stop before
1512 			 * returning to userspace, so count us
1513 			 * as stopped as well.  We set LWP_MP_WSTOP
1514 			 * to signal the lwp that it should not
1515 			 * increase p_nstopped when reaching tstop().
1516 			 *
1517 			 * LWP_MP_WSTOP is protected by lp->lwp_token.
1518 			 */
1519 			if ((lp->lwp_mpflags & LWP_MP_WSTOP) == 0) {
1520 				atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
1521 				++p->p_nstopped;
1522 			}
1523 			break;
1524 
1525 		case LSRUN:
1526 			/*
1527 			 * We might notify ourself, but that's not
1528 			 * a problem.
1529 			 */
1530 			lwp_signotify(lp);
1531 			break;
1532 		}
1533 		lwkt_reltoken(&lp->lwp_token);
1534 		LWPRELE(lp);
1535 	}
1536 
1537 	if (p->p_nstopped == p->p_nthreads) {
1538 		/*
1539 		 * Token required to interlock kern_wait().  Reparenting can
1540 		 * also cause a race so we have to hold (q).
1541 		 */
1542 		q = p->p_pptr;
1543 		PHOLD(q);
1544 		lwkt_gettoken(&q->p_token);
1545 		p->p_flags &= ~P_WAITED;
1546 		wakeup(q);
1547 		if ((q->p_sigacts->ps_flag & PS_NOCLDSTOP) == 0)
1548 			ksignal(p->p_pptr, SIGCHLD);
1549 		lwkt_reltoken(&q->p_token);
1550 		PRELE(q);
1551 	}
1552 }
1553 
1554 /*
1555  * Caller must hold p_token
1556  */
1557 void
1558 proc_unstop(struct proc *p)
1559 {
1560 	struct lwp *lp;
1561 
1562 	ASSERT_LWKT_TOKEN_HELD(&p->p_token);
1563 
1564 	if (p->p_stat != SSTOP)
1565 		return;
1566 
1567 	p->p_stat = SACTIVE;
1568 
1569 	FOREACH_LWP_IN_PROC(lp, p) {
1570 		LWPHOLD(lp);
1571 		lwkt_gettoken(&lp->lwp_token);
1572 
1573 		switch (lp->lwp_stat) {
1574 		case LSRUN:
1575 			/*
1576 			 * Uh?  Not stopped?  Well, I guess that's okay.
1577 			 */
1578 			if (bootverbose)
1579 				kprintf("proc_unstop: lwp %d/%d not sleeping\n",
1580 					p->p_pid, lp->lwp_tid);
1581 			break;
1582 
1583 		case LSSLEEP:
1584 			/*
1585 			 * Still sleeping.  Don't bother waking it up.
1586 			 * However, if this thread was counted as
1587 			 * stopped, undo this.
1588 			 *
1589 			 * Nevertheless we call setrunnable() so that it
1590 			 * will wake up in case a signal or timeout arrived
1591 			 * in the meantime.
1592 			 *
1593 			 * LWP_MP_WSTOP is protected by lp->lwp_token.
1594 			 */
1595 			if (lp->lwp_mpflags & LWP_MP_WSTOP) {
1596 				atomic_clear_int(&lp->lwp_mpflags,
1597 						 LWP_MP_WSTOP);
1598 				--p->p_nstopped;
1599 			} else {
1600 				if (bootverbose)
1601 					kprintf("proc_unstop: lwp %d/%d sleeping, not stopped\n",
1602 						p->p_pid, lp->lwp_tid);
1603 			}
1604 			/* FALLTHROUGH */
1605 
1606 		case LSSTOP:
1607 			/*
1608 			 * This handles any lwp's waiting in a tsleep with
1609 			 * SIGCATCH.
1610 			 */
1611 			lwp_signotify(lp);
1612 			break;
1613 
1614 		}
1615 		lwkt_reltoken(&lp->lwp_token);
1616 		LWPRELE(lp);
1617 	}
1618 
1619 	/*
1620 	 * This handles any lwp's waiting in tstop().  We have interlocked
1621 	 * the setting of p_stat by acquiring and releasing each lpw's
1622 	 * token.
1623 	 */
1624 	wakeup(p);
1625 }
1626 
1627 /*
1628  * No requirements.
1629  */
1630 static int
1631 kern_sigtimedwait(sigset_t waitset, siginfo_t *info, struct timespec *timeout)
1632 {
1633 	sigset_t savedmask, set;
1634 	struct proc *p = curproc;
1635 	struct lwp *lp = curthread->td_lwp;
1636 	int error, sig, hz, timevalid = 0;
1637 	struct timespec rts, ets, ts;
1638 	struct timeval tv;
1639 
1640 	error = 0;
1641 	sig = 0;
1642 	ets.tv_sec = 0;		/* silence compiler warning */
1643 	ets.tv_nsec = 0;	/* silence compiler warning */
1644 	SIG_CANTMASK(waitset);
1645 	savedmask = lp->lwp_sigmask;
1646 
1647 	if (timeout) {
1648 		if (timeout->tv_sec >= 0 && timeout->tv_nsec >= 0 &&
1649 		    timeout->tv_nsec < 1000000000) {
1650 			timevalid = 1;
1651 			getnanouptime(&rts);
1652 		 	ets = rts;
1653 			timespecadd(&ets, timeout);
1654 		}
1655 	}
1656 
1657 	for (;;) {
1658 		set = lwp_sigpend(lp);
1659 		SIGSETAND(set, waitset);
1660 		if ((sig = sig_ffs(&set)) != 0) {
1661 			SIGFILLSET(lp->lwp_sigmask);
1662 			SIGDELSET(lp->lwp_sigmask, sig);
1663 			SIG_CANTMASK(lp->lwp_sigmask);
1664 			sig = issignal(lp, 1);
1665 			/*
1666 			 * It may be a STOP signal, in the case, issignal
1667 			 * returns 0, because we may stop there, and new
1668 			 * signal can come in, we should restart if we got
1669 			 * nothing.
1670 			 */
1671 			if (sig == 0)
1672 				continue;
1673 			else
1674 				break;
1675 		}
1676 
1677 		/*
1678 		 * Previous checking got nothing, and we retried but still
1679 		 * got nothing, we should return the error status.
1680 		 */
1681 		if (error)
1682 			break;
1683 
1684 		/*
1685 		 * POSIX says this must be checked after looking for pending
1686 		 * signals.
1687 		 */
1688 		if (timeout) {
1689 			if (timevalid == 0) {
1690 				error = EINVAL;
1691 				break;
1692 			}
1693 			getnanouptime(&rts);
1694 			if (timespeccmp(&rts, &ets, >=)) {
1695 				error = EAGAIN;
1696 				break;
1697 			}
1698 			ts = ets;
1699 			timespecsub(&ts, &rts);
1700 			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1701 			hz = tvtohz_high(&tv);
1702 		} else {
1703 			hz = 0;
1704 		}
1705 
1706 		lp->lwp_sigmask = savedmask;
1707 		SIGSETNAND(lp->lwp_sigmask, waitset);
1708 		/*
1709 		 * We won't ever be woken up.  Instead, our sleep will
1710 		 * be broken in lwpsignal().
1711 		 */
1712 		error = tsleep(&p->p_sigacts, PCATCH, "sigwt", hz);
1713 		if (timeout) {
1714 			if (error == ERESTART) {
1715 				/* can not restart a timeout wait. */
1716 				error = EINTR;
1717 			} else if (error == EAGAIN) {
1718 				/* will calculate timeout by ourself. */
1719 				error = 0;
1720 			}
1721 		}
1722 		/* Retry ... */
1723 	}
1724 
1725 	lp->lwp_sigmask = savedmask;
1726 	if (sig) {
1727 		error = 0;
1728 		bzero(info, sizeof(*info));
1729 		info->si_signo = sig;
1730 		spin_lock(&lp->lwp_spin);
1731 		lwp_delsig(lp, sig);	/* take the signal! */
1732 		spin_unlock(&lp->lwp_spin);
1733 
1734 		if (sig == SIGKILL) {
1735 			sigexit(lp, sig);
1736 			/* NOT REACHED */
1737 		}
1738 	}
1739 
1740 	return (error);
1741 }
1742 
1743 /*
1744  * MPALMOSTSAFE
1745  */
1746 int
1747 sys_sigtimedwait(struct sigtimedwait_args *uap)
1748 {
1749 	struct timespec ts;
1750 	struct timespec *timeout;
1751 	sigset_t set;
1752 	siginfo_t info;
1753 	int error;
1754 
1755 	if (uap->timeout) {
1756 		error = copyin(uap->timeout, &ts, sizeof(ts));
1757 		if (error)
1758 			return (error);
1759 		timeout = &ts;
1760 	} else {
1761 		timeout = NULL;
1762 	}
1763 	error = copyin(uap->set, &set, sizeof(set));
1764 	if (error)
1765 		return (error);
1766 	error = kern_sigtimedwait(set, &info, timeout);
1767 	if (error)
1768 		return (error);
1769 	if (uap->info)
1770 		error = copyout(&info, uap->info, sizeof(info));
1771 	/* Repost if we got an error. */
1772 	/*
1773 	 * XXX lwp
1774 	 *
1775 	 * This could transform a thread-specific signal to another
1776 	 * thread / process pending signal.
1777 	 */
1778 	if (error) {
1779 		ksignal(curproc, info.si_signo);
1780 	} else {
1781 		uap->sysmsg_result = info.si_signo;
1782 	}
1783 	return (error);
1784 }
1785 
1786 /*
1787  * MPALMOSTSAFE
1788  */
1789 int
1790 sys_sigwaitinfo(struct sigwaitinfo_args *uap)
1791 {
1792 	siginfo_t info;
1793 	sigset_t set;
1794 	int error;
1795 
1796 	error = copyin(uap->set, &set, sizeof(set));
1797 	if (error)
1798 		return (error);
1799 	error = kern_sigtimedwait(set, &info, NULL);
1800 	if (error)
1801 		return (error);
1802 	if (uap->info)
1803 		error = copyout(&info, uap->info, sizeof(info));
1804 	/* Repost if we got an error. */
1805 	/*
1806 	 * XXX lwp
1807 	 *
1808 	 * This could transform a thread-specific signal to another
1809 	 * thread / process pending signal.
1810 	 */
1811 	if (error) {
1812 		ksignal(curproc, info.si_signo);
1813 	} else {
1814 		uap->sysmsg_result = info.si_signo;
1815 	}
1816 	return (error);
1817 }
1818 
1819 /*
1820  * If the current process has received a signal that would interrupt a
1821  * system call, return EINTR or ERESTART as appropriate.
1822  */
1823 int
1824 iscaught(struct lwp *lp)
1825 {
1826 	struct proc *p = lp->lwp_proc;
1827 	int sig;
1828 
1829 	if (p) {
1830 		if ((sig = CURSIG(lp)) != 0) {
1831 			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
1832 				return (EINTR);
1833 			return (ERESTART);
1834 		}
1835 	}
1836 	return(EWOULDBLOCK);
1837 }
1838 
1839 /*
1840  * If the current process has received a signal (should be caught or cause
1841  * termination, should interrupt current syscall), return the signal number.
1842  * Stop signals with default action are processed immediately, then cleared;
1843  * they aren't returned.  This is checked after each entry to the system for
1844  * a syscall or trap (though this can usually be done without calling issignal
1845  * by checking the pending signal masks in the CURSIG macro).
1846  *
1847  * This routine is called via CURSIG/__cursig.  We will acquire and release
1848  * p->p_token but if the caller needs to interlock the test the caller must
1849  * also hold p->p_token.
1850  *
1851  *	while (sig = CURSIG(curproc))
1852  *		postsig(sig);
1853  *
1854  * MPSAFE
1855  */
1856 int
1857 issignal(struct lwp *lp, int maytrace)
1858 {
1859 	struct proc *p = lp->lwp_proc;
1860 	sigset_t mask;
1861 	int sig, prop;
1862 
1863 	lwkt_gettoken(&p->p_token);
1864 
1865 	for (;;) {
1866 		int traced = (p->p_flags & P_TRACED) || (p->p_stops & S_SIG);
1867 
1868 		/*
1869 		 * If this process is supposed to stop, stop this thread.
1870 		 */
1871 		if (p->p_stat == SSTOP)
1872 			tstop();
1873 
1874 		mask = lwp_sigpend(lp);
1875 		SIGSETNAND(mask, lp->lwp_sigmask);
1876 		if (p->p_flags & P_PPWAIT)
1877 			SIG_STOPSIGMASK(mask);
1878 		if (SIGISEMPTY(mask)) {		/* no signal to send */
1879 			lwkt_reltoken(&p->p_token);
1880 			return (0);
1881 		}
1882 		sig = sig_ffs(&mask);
1883 
1884 		STOPEVENT(p, S_SIG, sig);
1885 
1886 		/*
1887 		 * We should see pending but ignored signals
1888 		 * only if P_TRACED was on when they were posted.
1889 		 */
1890 		if (SIGISMEMBER(p->p_sigignore, sig) && (traced == 0)) {
1891 			spin_lock(&lp->lwp_spin);
1892 			lwp_delsig(lp, sig);
1893 			spin_unlock(&lp->lwp_spin);
1894 			continue;
1895 		}
1896 		if (maytrace &&
1897 		    (p->p_flags & P_TRACED) &&
1898 		    (p->p_flags & P_PPWAIT) == 0) {
1899 			/*
1900 			 * If traced, always stop, and stay stopped until
1901 			 * released by the parent.
1902 			 *
1903 			 * NOTE: SSTOP may get cleared during the loop,
1904 			 * but we do not re-notify the parent if we have
1905 			 * to loop several times waiting for the parent
1906 			 * to let us continue.
1907 			 *
1908 			 * XXX not sure if this is still true
1909 			 */
1910 			p->p_xstat = sig;
1911 			proc_stop(p);
1912 			do {
1913 				tstop();
1914 			} while (!trace_req(p) && (p->p_flags & P_TRACED));
1915 
1916 			/*
1917 			 * If parent wants us to take the signal,
1918 			 * then it will leave it in p->p_xstat;
1919 			 * otherwise we just look for signals again.
1920 			 */
1921 			spin_lock(&lp->lwp_spin);
1922 			lwp_delsig(lp, sig);	/* clear old signal */
1923 			spin_unlock(&lp->lwp_spin);
1924 			sig = p->p_xstat;
1925 			if (sig == 0)
1926 				continue;
1927 
1928 			/*
1929 			 * Put the new signal into p_siglist.  If the
1930 			 * signal is being masked, look for other signals.
1931 			 *
1932 			 * XXX lwp might need a call to ksignal()
1933 			 */
1934 			SIGADDSET(p->p_siglist, sig);
1935 			if (SIGISMEMBER(lp->lwp_sigmask, sig))
1936 				continue;
1937 
1938 			/*
1939 			 * If the traced bit got turned off, go back up
1940 			 * to the top to rescan signals.  This ensures
1941 			 * that p_sig* and ps_sigact are consistent.
1942 			 */
1943 			if ((p->p_flags & P_TRACED) == 0)
1944 				continue;
1945 		}
1946 
1947 		prop = sigprop(sig);
1948 
1949 		/*
1950 		 * Decide whether the signal should be returned.
1951 		 * Return the signal's number, or fall through
1952 		 * to clear it from the pending mask.
1953 		 */
1954 		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
1955 		case (intptr_t)SIG_DFL:
1956 			/*
1957 			 * Don't take default actions on system processes.
1958 			 */
1959 			if (p->p_pid <= 1) {
1960 #ifdef DIAGNOSTIC
1961 				/*
1962 				 * Are you sure you want to ignore SIGSEGV
1963 				 * in init? XXX
1964 				 */
1965 				kprintf("Process (pid %lu) got signal %d\n",
1966 					(u_long)p->p_pid, sig);
1967 #endif
1968 				break;		/* == ignore */
1969 			}
1970 
1971 			/*
1972 			 * Handle the in-kernel checkpoint action
1973 			 */
1974 			if (prop & SA_CKPT) {
1975 				checkpoint_signal_handler(lp);
1976 				break;
1977 			}
1978 
1979 			/*
1980 			 * If there is a pending stop signal to process
1981 			 * with default action, stop here,
1982 			 * then clear the signal.  However,
1983 			 * if process is member of an orphaned
1984 			 * process group, ignore tty stop signals.
1985 			 */
1986 			if (prop & SA_STOP) {
1987 				if (p->p_flags & P_TRACED ||
1988 		    		    (p->p_pgrp->pg_jobc == 0 &&
1989 				    prop & SA_TTYSTOP))
1990 					break;	/* == ignore */
1991 				if ((p->p_flags & P_WEXIT) == 0) {
1992 					p->p_xstat = sig;
1993 					proc_stop(p);
1994 					tstop();
1995 				}
1996 				break;
1997 			} else if (prop & SA_IGNORE) {
1998 				/*
1999 				 * Except for SIGCONT, shouldn't get here.
2000 				 * Default action is to ignore; drop it.
2001 				 */
2002 				break;		/* == ignore */
2003 			} else {
2004 				lwkt_reltoken(&p->p_token);
2005 				return (sig);
2006 			}
2007 
2008 			/*NOTREACHED*/
2009 
2010 		case (intptr_t)SIG_IGN:
2011 			/*
2012 			 * Masking above should prevent us ever trying
2013 			 * to take action on an ignored signal other
2014 			 * than SIGCONT, unless process is traced.
2015 			 */
2016 			if ((prop & SA_CONT) == 0 &&
2017 			    (p->p_flags & P_TRACED) == 0)
2018 				kprintf("issignal\n");
2019 			break;		/* == ignore */
2020 
2021 		default:
2022 			/*
2023 			 * This signal has an action, let
2024 			 * postsig() process it.
2025 			 */
2026 			lwkt_reltoken(&p->p_token);
2027 			return (sig);
2028 		}
2029 		spin_lock(&lp->lwp_spin);
2030 		lwp_delsig(lp, sig);		/* take the signal! */
2031 		spin_unlock(&lp->lwp_spin);
2032 	}
2033 	/* NOTREACHED */
2034 }
2035 
2036 /*
2037  * Take the action for the specified signal
2038  * from the current set of pending signals.
2039  *
2040  * Caller must hold p->p_token
2041  */
2042 void
2043 postsig(int sig)
2044 {
2045 	struct lwp *lp = curthread->td_lwp;
2046 	struct proc *p = lp->lwp_proc;
2047 	struct sigacts *ps = p->p_sigacts;
2048 	sig_t action;
2049 	sigset_t returnmask;
2050 	int code;
2051 
2052 	KASSERT(sig != 0, ("postsig"));
2053 
2054 	KNOTE(&p->p_klist, NOTE_SIGNAL | sig);
2055 
2056 	/*
2057 	 * If we are a virtual kernel running an emulated user process
2058 	 * context, switch back to the virtual kernel context before
2059 	 * trying to post the signal.
2060 	 */
2061 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
2062 		struct trapframe *tf = lp->lwp_md.md_regs;
2063 		tf->tf_trapno = 0;
2064 		vkernel_trap(lp, tf);
2065 	}
2066 
2067 	spin_lock(&lp->lwp_spin);
2068 	lwp_delsig(lp, sig);
2069 	spin_unlock(&lp->lwp_spin);
2070 	action = ps->ps_sigact[_SIG_IDX(sig)];
2071 #ifdef KTRACE
2072 	if (KTRPOINT(lp->lwp_thread, KTR_PSIG))
2073 		ktrpsig(lp, sig, action, lp->lwp_flags & LWP_OLDMASK ?
2074 			&lp->lwp_oldsigmask : &lp->lwp_sigmask, 0);
2075 #endif
2076 	STOPEVENT(p, S_SIG, sig);
2077 
2078 	if (action == SIG_DFL) {
2079 		/*
2080 		 * Default action, where the default is to kill
2081 		 * the process.  (Other cases were ignored above.)
2082 		 */
2083 		sigexit(lp, sig);
2084 		/* NOTREACHED */
2085 	} else {
2086 		/*
2087 		 * If we get here, the signal must be caught.
2088 		 */
2089 		KASSERT(action != SIG_IGN && !SIGISMEMBER(lp->lwp_sigmask, sig),
2090 		    ("postsig action"));
2091 
2092 		/*
2093 		 * Reset the signal handler if asked to
2094 		 */
2095 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
2096 			/*
2097 			 * See kern_sigaction() for origin of this code.
2098 			 */
2099 			SIGDELSET(p->p_sigcatch, sig);
2100 			if (sig != SIGCONT &&
2101 			    sigprop(sig) & SA_IGNORE)
2102 				SIGADDSET(p->p_sigignore, sig);
2103 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
2104 		}
2105 
2106 		/*
2107 		 * Set the signal mask and calculate the mask to restore
2108 		 * when the signal function returns.
2109 		 *
2110 		 * Special case: user has done a sigsuspend.  Here the
2111 		 * current mask is not of interest, but rather the
2112 		 * mask from before the sigsuspend is what we want
2113 		 * restored after the signal processing is completed.
2114 		 */
2115 		if (lp->lwp_flags & LWP_OLDMASK) {
2116 			returnmask = lp->lwp_oldsigmask;
2117 			lp->lwp_flags &= ~LWP_OLDMASK;
2118 		} else {
2119 			returnmask = lp->lwp_sigmask;
2120 		}
2121 
2122 		SIGSETOR(lp->lwp_sigmask, ps->ps_catchmask[_SIG_IDX(sig)]);
2123 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
2124 			SIGADDSET(lp->lwp_sigmask, sig);
2125 
2126 		lp->lwp_ru.ru_nsignals++;
2127 		if (lp->lwp_sig != sig) {
2128 			code = 0;
2129 		} else {
2130 			code = lp->lwp_code;
2131 			lp->lwp_code = 0;
2132 			lp->lwp_sig = 0;
2133 		}
2134 		(*p->p_sysent->sv_sendsig)(action, sig, &returnmask, code);
2135 	}
2136 }
2137 
2138 /*
2139  * Kill the current process for stated reason.
2140  */
2141 void
2142 killproc(struct proc *p, char *why)
2143 {
2144 	log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n",
2145 		p->p_pid, p->p_comm,
2146 		p->p_ucred ? p->p_ucred->cr_uid : -1, why);
2147 	ksignal(p, SIGKILL);
2148 }
2149 
2150 /*
2151  * Force the current process to exit with the specified signal, dumping core
2152  * if appropriate.  We bypass the normal tests for masked and caught signals,
2153  * allowing unrecoverable failures to terminate the process without changing
2154  * signal state.  Mark the accounting record with the signal termination.
2155  * If dumping core, save the signal number for the debugger.  Calls exit and
2156  * does not return.
2157  *
2158  * This routine does not return.
2159  */
2160 void
2161 sigexit(struct lwp *lp, int sig)
2162 {
2163 	struct proc *p = lp->lwp_proc;
2164 
2165 	lwkt_gettoken(&p->p_token);
2166 	p->p_acflag |= AXSIG;
2167 	if (sigprop(sig) & SA_CORE) {
2168 		lp->lwp_sig = sig;
2169 		/*
2170 		 * Log signals which would cause core dumps
2171 		 * (Log as LOG_INFO to appease those who don't want
2172 		 * these messages.)
2173 		 * XXX : Todo, as well as euid, write out ruid too
2174 		 */
2175 		if (coredump(lp, sig) == 0)
2176 			sig |= WCOREFLAG;
2177 		if (kern_logsigexit)
2178 			log(LOG_INFO,
2179 			    "pid %d (%s), uid %d: exited on signal %d%s\n",
2180 			    p->p_pid, p->p_comm,
2181 			    p->p_ucred ? p->p_ucred->cr_uid : -1,
2182 			    sig &~ WCOREFLAG,
2183 			    sig & WCOREFLAG ? " (core dumped)" : "");
2184 	}
2185 	lwkt_reltoken(&p->p_token);
2186 	exit1(W_EXITCODE(0, sig));
2187 	/* NOTREACHED */
2188 }
2189 
2190 static char corefilename[MAXPATHLEN+1] = {"%N.core"};
2191 SYSCTL_STRING(_kern, OID_AUTO, corefile, CTLFLAG_RW, corefilename,
2192 	      sizeof(corefilename), "process corefile name format string");
2193 
2194 /*
2195  * expand_name(name, uid, pid)
2196  * Expand the name described in corefilename, using name, uid, and pid.
2197  * corefilename is a kprintf-like string, with three format specifiers:
2198  *	%N	name of process ("name")
2199  *	%P	process id (pid)
2200  *	%U	user id (uid)
2201  * For example, "%N.core" is the default; they can be disabled completely
2202  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
2203  * This is controlled by the sysctl variable kern.corefile (see above).
2204  */
2205 
2206 static char *
2207 expand_name(const char *name, uid_t uid, pid_t pid)
2208 {
2209 	char *temp;
2210 	char buf[11];		/* Buffer for pid/uid -- max 4B */
2211 	int i, n;
2212 	char *format = corefilename;
2213 	size_t namelen;
2214 
2215 	temp = kmalloc(MAXPATHLEN + 1, M_TEMP, M_NOWAIT);
2216 	if (temp == NULL)
2217 		return NULL;
2218 	namelen = strlen(name);
2219 	for (i = 0, n = 0; n < MAXPATHLEN && format[i]; i++) {
2220 		int l;
2221 		switch (format[i]) {
2222 		case '%':	/* Format character */
2223 			i++;
2224 			switch (format[i]) {
2225 			case '%':
2226 				temp[n++] = '%';
2227 				break;
2228 			case 'N':	/* process name */
2229 				if ((n + namelen) > MAXPATHLEN) {
2230 					log(LOG_ERR, "pid %d (%s), uid (%u):  Path `%s%s' is too long\n",
2231 					    pid, name, uid, temp, name);
2232 					kfree(temp, M_TEMP);
2233 					return NULL;
2234 				}
2235 				memcpy(temp+n, name, namelen);
2236 				n += namelen;
2237 				break;
2238 			case 'P':	/* process id */
2239 				l = ksprintf(buf, "%u", pid);
2240 				if ((n + l) > MAXPATHLEN) {
2241 					log(LOG_ERR, "pid %d (%s), uid (%u):  Path `%s%s' is too long\n",
2242 					    pid, name, uid, temp, name);
2243 					kfree(temp, M_TEMP);
2244 					return NULL;
2245 				}
2246 				memcpy(temp+n, buf, l);
2247 				n += l;
2248 				break;
2249 			case 'U':	/* user id */
2250 				l = ksprintf(buf, "%u", uid);
2251 				if ((n + l) > MAXPATHLEN) {
2252 					log(LOG_ERR, "pid %d (%s), uid (%u):  Path `%s%s' is too long\n",
2253 					    pid, name, uid, temp, name);
2254 					kfree(temp, M_TEMP);
2255 					return NULL;
2256 				}
2257 				memcpy(temp+n, buf, l);
2258 				n += l;
2259 				break;
2260 			default:
2261 			  	log(LOG_ERR, "Unknown format character %c in `%s'\n", format[i], format);
2262 			}
2263 			break;
2264 		default:
2265 			temp[n++] = format[i];
2266 		}
2267 	}
2268 	temp[n] = '\0';
2269 	return temp;
2270 }
2271 
2272 /*
2273  * Dump a process' core.  The main routine does some
2274  * policy checking, and creates the name of the coredump;
2275  * then it passes on a vnode and a size limit to the process-specific
2276  * coredump routine if there is one; if there _is not_ one, it returns
2277  * ENOSYS; otherwise it returns the error from the process-specific routine.
2278  *
2279  * The parameter `lp' is the lwp which triggered the coredump.
2280  */
2281 
2282 static int
2283 coredump(struct lwp *lp, int sig)
2284 {
2285 	struct proc *p = lp->lwp_proc;
2286 	struct vnode *vp;
2287 	struct ucred *cred = p->p_ucred;
2288 	struct flock lf;
2289 	struct nlookupdata nd;
2290 	struct vattr vattr;
2291 	int error, error1;
2292 	char *name;			/* name of corefile */
2293 	off_t limit;
2294 
2295 	STOPEVENT(p, S_CORE, 0);
2296 
2297 	if (((sugid_coredump == 0) && p->p_flags & P_SUGID) || do_coredump == 0)
2298 		return (EFAULT);
2299 
2300 	/*
2301 	 * Note that the bulk of limit checking is done after
2302 	 * the corefile is created.  The exception is if the limit
2303 	 * for corefiles is 0, in which case we don't bother
2304 	 * creating the corefile at all.  This layout means that
2305 	 * a corefile is truncated instead of not being created,
2306 	 * if it is larger than the limit.
2307 	 */
2308 	limit = p->p_rlimit[RLIMIT_CORE].rlim_cur;
2309 	if (limit == 0)
2310 		return EFBIG;
2311 
2312 	name = expand_name(p->p_comm, p->p_ucred->cr_uid, p->p_pid);
2313 	if (name == NULL)
2314 		return (EINVAL);
2315 	error = nlookup_init(&nd, name, UIO_SYSSPACE, NLC_LOCKVP);
2316 	if (error == 0)
2317 		error = vn_open(&nd, NULL, O_CREAT | FWRITE | O_NOFOLLOW, S_IRUSR | S_IWUSR);
2318 	kfree(name, M_TEMP);
2319 	if (error) {
2320 		nlookup_done(&nd);
2321 		return (error);
2322 	}
2323 	vp = nd.nl_open_vp;
2324 	nd.nl_open_vp = NULL;
2325 	nlookup_done(&nd);
2326 
2327 	vn_unlock(vp);
2328 	lf.l_whence = SEEK_SET;
2329 	lf.l_start = 0;
2330 	lf.l_len = 0;
2331 	lf.l_type = F_WRLCK;
2332 	error = VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, 0);
2333 	if (error)
2334 		goto out2;
2335 
2336 	/* Don't dump to non-regular files or files with links. */
2337 	if (vp->v_type != VREG ||
2338 	    VOP_GETATTR(vp, &vattr) || vattr.va_nlink != 1) {
2339 		error = EFAULT;
2340 		goto out1;
2341 	}
2342 
2343 	/* Don't dump to files current user does not own */
2344 	if (vattr.va_uid != p->p_ucred->cr_uid) {
2345 		error = EFAULT;
2346 		goto out1;
2347 	}
2348 
2349 	VATTR_NULL(&vattr);
2350 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2351 	vattr.va_size = 0;
2352 	VOP_SETATTR(vp, &vattr, cred);
2353 	p->p_acflag |= ACORE;
2354 	vn_unlock(vp);
2355 
2356 	error = p->p_sysent->sv_coredump ?
2357 		  p->p_sysent->sv_coredump(lp, sig, vp, limit) : ENOSYS;
2358 
2359 out1:
2360 	lf.l_type = F_UNLCK;
2361 	VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, 0);
2362 out2:
2363 	error1 = vn_close(vp, FWRITE);
2364 	if (error == 0)
2365 		error = error1;
2366 	return (error);
2367 }
2368 
2369 /*
2370  * Nonexistent system call-- signal process (may want to handle it).
2371  * Flag error in case process won't see signal immediately (blocked or ignored).
2372  *
2373  * MPALMOSTSAFE
2374  */
2375 /* ARGSUSED */
2376 int
2377 sys_nosys(struct nosys_args *args)
2378 {
2379 	lwpsignal(curproc, curthread->td_lwp, SIGSYS);
2380 	return (EINVAL);
2381 }
2382 
2383 /*
2384  * Send a SIGIO or SIGURG signal to a process or process group using
2385  * stored credentials rather than those of the current process.
2386  */
2387 void
2388 pgsigio(struct sigio *sigio, int sig, int checkctty)
2389 {
2390 	if (sigio == NULL)
2391 		return;
2392 
2393 	if (sigio->sio_pgid > 0) {
2394 		if (CANSIGIO(sigio->sio_ruid, sigio->sio_ucred,
2395 		             sigio->sio_proc))
2396 			ksignal(sigio->sio_proc, sig);
2397 	} else if (sigio->sio_pgid < 0) {
2398 		struct proc *p;
2399 		struct pgrp *pg = sigio->sio_pgrp;
2400 
2401 		/*
2402 		 * Must interlock all signals against fork
2403 		 */
2404 		pgref(pg);
2405 		lockmgr(&pg->pg_lock, LK_EXCLUSIVE);
2406 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
2407 			if (CANSIGIO(sigio->sio_ruid, sigio->sio_ucred, p) &&
2408 			    (checkctty == 0 || (p->p_flags & P_CONTROLT)))
2409 				ksignal(p, sig);
2410 		}
2411 		lockmgr(&pg->pg_lock, LK_RELEASE);
2412 		pgrel(pg);
2413 	}
2414 }
2415 
2416 static int
2417 filt_sigattach(struct knote *kn)
2418 {
2419 	struct proc *p = curproc;
2420 
2421 	kn->kn_ptr.p_proc = p;
2422 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
2423 
2424 	/* XXX lock the proc here while adding to the list? */
2425 	knote_insert(&p->p_klist, kn);
2426 
2427 	return (0);
2428 }
2429 
2430 static void
2431 filt_sigdetach(struct knote *kn)
2432 {
2433 	struct proc *p = kn->kn_ptr.p_proc;
2434 
2435 	knote_remove(&p->p_klist, kn);
2436 }
2437 
2438 /*
2439  * signal knotes are shared with proc knotes, so we apply a mask to
2440  * the hint in order to differentiate them from process hints.  This
2441  * could be avoided by using a signal-specific knote list, but probably
2442  * isn't worth the trouble.
2443  */
2444 static int
2445 filt_signal(struct knote *kn, long hint)
2446 {
2447 	if (hint & NOTE_SIGNAL) {
2448 		hint &= ~NOTE_SIGNAL;
2449 
2450 		if (kn->kn_id == hint)
2451 			kn->kn_data++;
2452 	}
2453 	return (kn->kn_data != 0);
2454 }
2455