1 /* 2 * (MPSAFE) 3 * 4 * KERN_SLABALLOC.C - Kernel SLAB memory allocator 5 * 6 * Copyright (c) 2003,2004,2010 The DragonFly Project. All rights reserved. 7 * 8 * This code is derived from software contributed to The DragonFly Project 9 * by Matthew Dillon <dillon@backplane.com> 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in 19 * the documentation and/or other materials provided with the 20 * distribution. 21 * 3. Neither the name of The DragonFly Project nor the names of its 22 * contributors may be used to endorse or promote products derived 23 * from this software without specific, prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 28 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 29 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 30 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 31 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 32 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 33 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 34 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 35 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * This module implements a slab allocator drop-in replacement for the 39 * kernel malloc(). 40 * 41 * A slab allocator reserves a ZONE for each chunk size, then lays the 42 * chunks out in an array within the zone. Allocation and deallocation 43 * is nearly instantanious, and fragmentation/overhead losses are limited 44 * to a fixed worst-case amount. 45 * 46 * The downside of this slab implementation is in the chunk size 47 * multiplied by the number of zones. ~80 zones * 128K = 10MB of VM per cpu. 48 * In a kernel implementation all this memory will be physical so 49 * the zone size is adjusted downward on machines with less physical 50 * memory. The upside is that overhead is bounded... this is the *worst* 51 * case overhead. 52 * 53 * Slab management is done on a per-cpu basis and no locking or mutexes 54 * are required, only a critical section. When one cpu frees memory 55 * belonging to another cpu's slab manager an asynchronous IPI message 56 * will be queued to execute the operation. In addition, both the 57 * high level slab allocator and the low level zone allocator optimize 58 * M_ZERO requests, and the slab allocator does not have to pre initialize 59 * the linked list of chunks. 60 * 61 * XXX Balancing is needed between cpus. Balance will be handled through 62 * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks. 63 * 64 * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of 65 * the new zone should be restricted to M_USE_RESERVE requests only. 66 * 67 * Alloc Size Chunking Number of zones 68 * 0-127 8 16 69 * 128-255 16 8 70 * 256-511 32 8 71 * 512-1023 64 8 72 * 1024-2047 128 8 73 * 2048-4095 256 8 74 * 4096-8191 512 8 75 * 8192-16383 1024 8 76 * 16384-32767 2048 8 77 * (if PAGE_SIZE is 4K the maximum zone allocation is 16383) 78 * 79 * Allocations >= ZoneLimit go directly to kmem. 80 * (n * PAGE_SIZE, n > 2) allocations go directly to kmem. 81 * 82 * Alignment properties: 83 * - All power-of-2 sized allocations are power-of-2 aligned. 84 * - Allocations with M_POWEROF2 are power-of-2 aligned on the nearest 85 * power-of-2 round up of 'size'. 86 * - Non-power-of-2 sized allocations are zone chunk size aligned (see the 87 * above table 'Chunking' column). 88 * 89 * API REQUIREMENTS AND SIDE EFFECTS 90 * 91 * To operate as a drop-in replacement to the FreeBSD-4.x malloc() we 92 * have remained compatible with the following API requirements: 93 * 94 * + malloc(0) is allowed and returns non-NULL (ahc driver) 95 * + ability to allocate arbitrarily large chunks of memory 96 */ 97 98 #include "opt_vm.h" 99 100 #include <sys/param.h> 101 #include <sys/systm.h> 102 #include <sys/kernel.h> 103 #include <sys/slaballoc.h> 104 #include <sys/mbuf.h> 105 #include <sys/vmmeter.h> 106 #include <sys/lock.h> 107 #include <sys/thread.h> 108 #include <sys/globaldata.h> 109 #include <sys/sysctl.h> 110 #include <sys/ktr.h> 111 112 #include <vm/vm.h> 113 #include <vm/vm_param.h> 114 #include <vm/vm_kern.h> 115 #include <vm/vm_extern.h> 116 #include <vm/vm_object.h> 117 #include <vm/pmap.h> 118 #include <vm/vm_map.h> 119 #include <vm/vm_page.h> 120 #include <vm/vm_pageout.h> 121 122 #include <machine/cpu.h> 123 124 #include <sys/thread2.h> 125 #include <vm/vm_page2.h> 126 127 #define btokup(z) (&pmap_kvtom((vm_offset_t)(z))->ku_pagecnt) 128 129 #define MEMORY_STRING "ptr=%p type=%p size=%lu flags=%04x" 130 #define MEMORY_ARGS void *ptr, void *type, unsigned long size, int flags 131 132 #if !defined(KTR_MEMORY) 133 #define KTR_MEMORY KTR_ALL 134 #endif 135 KTR_INFO_MASTER(memory); 136 KTR_INFO(KTR_MEMORY, memory, malloc_beg, 0, "malloc begin"); 137 KTR_INFO(KTR_MEMORY, memory, malloc_end, 1, MEMORY_STRING, MEMORY_ARGS); 138 KTR_INFO(KTR_MEMORY, memory, free_zero, 2, MEMORY_STRING, MEMORY_ARGS); 139 KTR_INFO(KTR_MEMORY, memory, free_ovsz, 3, MEMORY_STRING, MEMORY_ARGS); 140 KTR_INFO(KTR_MEMORY, memory, free_ovsz_delayed, 4, MEMORY_STRING, MEMORY_ARGS); 141 KTR_INFO(KTR_MEMORY, memory, free_chunk, 5, MEMORY_STRING, MEMORY_ARGS); 142 KTR_INFO(KTR_MEMORY, memory, free_request, 6, MEMORY_STRING, MEMORY_ARGS); 143 KTR_INFO(KTR_MEMORY, memory, free_rem_beg, 7, MEMORY_STRING, MEMORY_ARGS); 144 KTR_INFO(KTR_MEMORY, memory, free_rem_end, 8, MEMORY_STRING, MEMORY_ARGS); 145 KTR_INFO(KTR_MEMORY, memory, free_beg, 9, "free begin"); 146 KTR_INFO(KTR_MEMORY, memory, free_end, 10, "free end"); 147 148 #define logmemory(name, ptr, type, size, flags) \ 149 KTR_LOG(memory_ ## name, ptr, type, size, flags) 150 #define logmemory_quick(name) \ 151 KTR_LOG(memory_ ## name) 152 153 /* 154 * Fixed globals (not per-cpu) 155 */ 156 static int ZoneSize; 157 static int ZoneLimit; 158 static int ZonePageCount; 159 static uintptr_t ZoneMask; 160 static int ZoneBigAlloc; /* in KB */ 161 static int ZoneGenAlloc; /* in KB */ 162 struct malloc_type *kmemstatistics; /* exported to vmstat */ 163 #ifdef INVARIANTS 164 static int32_t weirdary[16]; 165 #endif 166 167 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags); 168 static void kmem_slab_free(void *ptr, vm_size_t bytes); 169 170 #if defined(INVARIANTS) 171 static void chunk_mark_allocated(SLZone *z, void *chunk); 172 static void chunk_mark_free(SLZone *z, void *chunk); 173 #else 174 #define chunk_mark_allocated(z, chunk) 175 #define chunk_mark_free(z, chunk) 176 #endif 177 178 /* 179 * Misc constants. Note that allocations that are exact multiples of 180 * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module. 181 */ 182 #define ZONE_RELS_THRESH 32 /* threshold number of zones */ 183 184 #ifdef INVARIANTS 185 /* 186 * The WEIRD_ADDR is used as known text to copy into free objects to 187 * try to create deterministic failure cases if the data is accessed after 188 * free. 189 */ 190 #define WEIRD_ADDR 0xdeadc0de 191 #endif 192 #define ZERO_LENGTH_PTR ((void *)-8) 193 194 /* 195 * Misc global malloc buckets 196 */ 197 198 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches"); 199 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory"); 200 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers"); 201 MALLOC_DEFINE(M_DRM, "m_drm", "DRM memory allocations"); 202 203 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 204 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 205 206 /* 207 * Initialize the slab memory allocator. We have to choose a zone size based 208 * on available physical memory. We choose a zone side which is approximately 209 * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of 210 * 128K. The zone size is limited to the bounds set in slaballoc.h 211 * (typically 32K min, 128K max). 212 */ 213 static void kmeminit(void *dummy); 214 215 char *ZeroPage; 216 217 SYSINIT(kmem, SI_BOOT1_ALLOCATOR, SI_ORDER_FIRST, kmeminit, NULL); 218 219 #ifdef INVARIANTS 220 /* 221 * If enabled any memory allocated without M_ZERO is initialized to -1. 222 */ 223 static int use_malloc_pattern; 224 SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW, 225 &use_malloc_pattern, 0, 226 "Initialize memory to -1 if M_ZERO not specified"); 227 #endif 228 229 static int ZoneRelsThresh = ZONE_RELS_THRESH; 230 SYSCTL_INT(_kern, OID_AUTO, zone_big_alloc, CTLFLAG_RD, &ZoneBigAlloc, 0, ""); 231 SYSCTL_INT(_kern, OID_AUTO, zone_gen_alloc, CTLFLAG_RD, &ZoneGenAlloc, 0, ""); 232 SYSCTL_INT(_kern, OID_AUTO, zone_cache, CTLFLAG_RW, &ZoneRelsThresh, 0, ""); 233 static long SlabsAllocated; 234 static long SlabsFreed; 235 SYSCTL_LONG(_kern, OID_AUTO, slabs_allocated, CTLFLAG_RD, 236 &SlabsAllocated, 0, ""); 237 SYSCTL_LONG(_kern, OID_AUTO, slabs_freed, CTLFLAG_RD, 238 &SlabsFreed, 0, ""); 239 static int SlabFreeToTail; 240 SYSCTL_INT(_kern, OID_AUTO, slab_freetotail, CTLFLAG_RW, 241 &SlabFreeToTail, 0, ""); 242 243 static struct spinlock kmemstat_spin = 244 SPINLOCK_INITIALIZER(&kmemstat_spin, "malinit"); 245 246 /* 247 * Returns the kernel memory size limit for the purposes of initializing 248 * various subsystem caches. The smaller of available memory and the KVM 249 * memory space is returned. 250 * 251 * The size in megabytes is returned. 252 */ 253 size_t 254 kmem_lim_size(void) 255 { 256 size_t limsize; 257 258 limsize = (size_t)vmstats.v_page_count * PAGE_SIZE; 259 if (limsize > KvaSize) 260 limsize = KvaSize; 261 return (limsize / (1024 * 1024)); 262 } 263 264 static void 265 kmeminit(void *dummy) 266 { 267 size_t limsize; 268 int usesize; 269 #ifdef INVARIANTS 270 int i; 271 #endif 272 273 limsize = kmem_lim_size(); 274 usesize = (int)(limsize * 1024); /* convert to KB */ 275 276 /* 277 * If the machine has a large KVM space and more than 8G of ram, 278 * double the zone release threshold to reduce SMP invalidations. 279 * If more than 16G of ram, do it again. 280 * 281 * The BIOS eats a little ram so add some slop. We want 8G worth of 282 * memory sticks to trigger the first adjustment. 283 */ 284 if (ZoneRelsThresh == ZONE_RELS_THRESH) { 285 if (limsize >= 7 * 1024) 286 ZoneRelsThresh *= 2; 287 if (limsize >= 15 * 1024) 288 ZoneRelsThresh *= 2; 289 } 290 291 /* 292 * Calculate the zone size. This typically calculates to 293 * ZALLOC_MAX_ZONE_SIZE 294 */ 295 ZoneSize = ZALLOC_MIN_ZONE_SIZE; 296 while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize) 297 ZoneSize <<= 1; 298 ZoneLimit = ZoneSize / 4; 299 if (ZoneLimit > ZALLOC_ZONE_LIMIT) 300 ZoneLimit = ZALLOC_ZONE_LIMIT; 301 ZoneMask = ~(uintptr_t)(ZoneSize - 1); 302 ZonePageCount = ZoneSize / PAGE_SIZE; 303 304 #ifdef INVARIANTS 305 for (i = 0; i < NELEM(weirdary); ++i) 306 weirdary[i] = WEIRD_ADDR; 307 #endif 308 309 ZeroPage = kmem_slab_alloc(PAGE_SIZE, PAGE_SIZE, M_WAITOK|M_ZERO); 310 311 if (bootverbose) 312 kprintf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024); 313 } 314 315 /* 316 * (low level) Initialize slab-related elements in the globaldata structure. 317 * 318 * Occurs after kmeminit(). 319 */ 320 void 321 slab_gdinit(globaldata_t gd) 322 { 323 SLGlobalData *slgd; 324 int i; 325 326 slgd = &gd->gd_slab; 327 for (i = 0; i < NZONES; ++i) 328 TAILQ_INIT(&slgd->ZoneAry[i]); 329 TAILQ_INIT(&slgd->FreeZones); 330 TAILQ_INIT(&slgd->FreeOvZones); 331 } 332 333 /* 334 * Initialize a malloc type tracking structure. 335 */ 336 void 337 malloc_init(void *data) 338 { 339 struct malloc_type *type = data; 340 size_t limsize; 341 342 if (type->ks_magic != M_MAGIC) 343 panic("malloc type lacks magic"); 344 345 if (type->ks_limit != 0) 346 return; 347 348 if (vmstats.v_page_count == 0) 349 panic("malloc_init not allowed before vm init"); 350 351 limsize = kmem_lim_size() * (1024 * 1024); 352 type->ks_limit = limsize / 10; 353 354 spin_lock(&kmemstat_spin); 355 type->ks_next = kmemstatistics; 356 kmemstatistics = type; 357 spin_unlock(&kmemstat_spin); 358 } 359 360 void 361 malloc_uninit(void *data) 362 { 363 struct malloc_type *type = data; 364 struct malloc_type *t; 365 #ifdef INVARIANTS 366 int i; 367 long ttl; 368 #endif 369 370 if (type->ks_magic != M_MAGIC) 371 panic("malloc type lacks magic"); 372 373 if (vmstats.v_page_count == 0) 374 panic("malloc_uninit not allowed before vm init"); 375 376 if (type->ks_limit == 0) 377 panic("malloc_uninit on uninitialized type"); 378 379 /* Make sure that all pending kfree()s are finished. */ 380 lwkt_synchronize_ipiqs("muninit"); 381 382 #ifdef INVARIANTS 383 /* 384 * memuse is only correct in aggregation. Due to memory being allocated 385 * on one cpu and freed on another individual array entries may be 386 * negative or positive (canceling each other out). 387 */ 388 for (i = ttl = 0; i < ncpus; ++i) 389 ttl += type->ks_use[i].memuse; 390 if (ttl) { 391 kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n", 392 ttl, type->ks_shortdesc, i); 393 } 394 #endif 395 spin_lock(&kmemstat_spin); 396 if (type == kmemstatistics) { 397 kmemstatistics = type->ks_next; 398 } else { 399 for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) { 400 if (t->ks_next == type) { 401 t->ks_next = type->ks_next; 402 break; 403 } 404 } 405 } 406 type->ks_next = NULL; 407 type->ks_limit = 0; 408 spin_unlock(&kmemstat_spin); 409 } 410 411 /* 412 * Increase the kmalloc pool limit for the specified pool. No changes 413 * are the made if the pool would shrink. 414 */ 415 void 416 kmalloc_raise_limit(struct malloc_type *type, size_t bytes) 417 { 418 if (type->ks_limit == 0) 419 malloc_init(type); 420 if (bytes == 0) 421 bytes = KvaSize; 422 if (type->ks_limit < bytes) 423 type->ks_limit = bytes; 424 } 425 426 void 427 kmalloc_set_unlimited(struct malloc_type *type) 428 { 429 type->ks_limit = kmem_lim_size() * (1024 * 1024); 430 } 431 432 /* 433 * Dynamically create a malloc pool. This function is a NOP if *typep is 434 * already non-NULL. 435 */ 436 void 437 kmalloc_create(struct malloc_type **typep, const char *descr) 438 { 439 struct malloc_type *type; 440 441 if (*typep == NULL) { 442 type = kmalloc(sizeof(*type), M_TEMP, M_WAITOK | M_ZERO); 443 type->ks_magic = M_MAGIC; 444 type->ks_shortdesc = descr; 445 malloc_init(type); 446 *typep = type; 447 } 448 } 449 450 /* 451 * Destroy a dynamically created malloc pool. This function is a NOP if 452 * the pool has already been destroyed. 453 */ 454 void 455 kmalloc_destroy(struct malloc_type **typep) 456 { 457 if (*typep != NULL) { 458 malloc_uninit(*typep); 459 kfree(*typep, M_TEMP); 460 *typep = NULL; 461 } 462 } 463 464 /* 465 * Calculate the zone index for the allocation request size and set the 466 * allocation request size to that particular zone's chunk size. 467 */ 468 static __inline int 469 zoneindex(unsigned long *bytes, unsigned long *align) 470 { 471 unsigned int n = (unsigned int)*bytes; /* unsigned for shift opt */ 472 473 if (n < 128) { 474 *bytes = n = (n + 7) & ~7; 475 *align = 8; 476 return(n / 8 - 1); /* 8 byte chunks, 16 zones */ 477 } 478 if (n < 256) { 479 *bytes = n = (n + 15) & ~15; 480 *align = 16; 481 return(n / 16 + 7); 482 } 483 if (n < 8192) { 484 if (n < 512) { 485 *bytes = n = (n + 31) & ~31; 486 *align = 32; 487 return(n / 32 + 15); 488 } 489 if (n < 1024) { 490 *bytes = n = (n + 63) & ~63; 491 *align = 64; 492 return(n / 64 + 23); 493 } 494 if (n < 2048) { 495 *bytes = n = (n + 127) & ~127; 496 *align = 128; 497 return(n / 128 + 31); 498 } 499 if (n < 4096) { 500 *bytes = n = (n + 255) & ~255; 501 *align = 256; 502 return(n / 256 + 39); 503 } 504 *bytes = n = (n + 511) & ~511; 505 *align = 512; 506 return(n / 512 + 47); 507 } 508 #if ZALLOC_ZONE_LIMIT > 8192 509 if (n < 16384) { 510 *bytes = n = (n + 1023) & ~1023; 511 *align = 1024; 512 return(n / 1024 + 55); 513 } 514 #endif 515 #if ZALLOC_ZONE_LIMIT > 16384 516 if (n < 32768) { 517 *bytes = n = (n + 2047) & ~2047; 518 *align = 2048; 519 return(n / 2048 + 63); 520 } 521 #endif 522 panic("Unexpected byte count %d", n); 523 return(0); 524 } 525 526 static __inline void 527 clean_zone_rchunks(SLZone *z) 528 { 529 SLChunk *bchunk; 530 531 while ((bchunk = z->z_RChunks) != NULL) { 532 cpu_ccfence(); 533 if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) { 534 *z->z_LChunksp = bchunk; 535 while (bchunk) { 536 chunk_mark_free(z, bchunk); 537 z->z_LChunksp = &bchunk->c_Next; 538 bchunk = bchunk->c_Next; 539 ++z->z_NFree; 540 } 541 break; 542 } 543 /* retry */ 544 } 545 } 546 547 /* 548 * If the zone becomes totally free and is not the only zone listed for a 549 * chunk size we move it to the FreeZones list. We always leave at least 550 * one zone per chunk size listed, even if it is freeable. 551 * 552 * Do not move the zone if there is an IPI in_flight (z_RCount != 0), 553 * otherwise MP races can result in our free_remote code accessing a 554 * destroyed zone. The remote end interlocks z_RCount with z_RChunks 555 * so one has to test both z_NFree and z_RCount. 556 * 557 * Since this code can be called from an IPI callback, do *NOT* try to mess 558 * with kernel_map here. Hysteresis will be performed at kmalloc() time. 559 */ 560 static __inline SLZone * 561 check_zone_free(SLGlobalData *slgd, SLZone *z) 562 { 563 SLZone *znext; 564 565 znext = TAILQ_NEXT(z, z_Entry); 566 if (z->z_NFree == z->z_NMax && z->z_RCount == 0 && 567 (TAILQ_FIRST(&slgd->ZoneAry[z->z_ZoneIndex]) != z || znext)) { 568 int *kup; 569 570 TAILQ_REMOVE(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry); 571 572 z->z_Magic = -1; 573 TAILQ_INSERT_HEAD(&slgd->FreeZones, z, z_Entry); 574 ++slgd->NFreeZones; 575 kup = btokup(z); 576 *kup = 0; 577 } 578 return znext; 579 } 580 581 #ifdef SLAB_DEBUG 582 /* 583 * Used to debug memory corruption issues. Record up to (typically 32) 584 * allocation sources for this zone (for a particular chunk size). 585 */ 586 587 static void 588 slab_record_source(SLZone *z, const char *file, int line) 589 { 590 int i; 591 int b = line & (SLAB_DEBUG_ENTRIES - 1); 592 593 i = b; 594 do { 595 if (z->z_Sources[i].file == file && z->z_Sources[i].line == line) 596 return; 597 if (z->z_Sources[i].file == NULL) 598 break; 599 i = (i + 1) & (SLAB_DEBUG_ENTRIES - 1); 600 } while (i != b); 601 z->z_Sources[i].file = file; 602 z->z_Sources[i].line = line; 603 } 604 605 #endif 606 607 static __inline unsigned long 608 powerof2_size(unsigned long size) 609 { 610 int i; 611 612 if (size == 0 || powerof2(size)) 613 return size; 614 615 i = flsl(size); 616 return (1UL << i); 617 } 618 619 /* 620 * kmalloc() (SLAB ALLOCATOR) 621 * 622 * Allocate memory via the slab allocator. If the request is too large, 623 * or if it page-aligned beyond a certain size, we fall back to the 624 * KMEM subsystem. A SLAB tracking descriptor must be specified, use 625 * &SlabMisc if you don't care. 626 * 627 * M_RNOWAIT - don't block. 628 * M_NULLOK - return NULL instead of blocking. 629 * M_ZERO - zero the returned memory. 630 * M_USE_RESERVE - allow greater drawdown of the free list 631 * M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted 632 * M_POWEROF2 - roundup size to the nearest power of 2 633 * 634 * MPSAFE 635 */ 636 637 #ifdef SLAB_DEBUG 638 void * 639 kmalloc_debug(unsigned long size, struct malloc_type *type, int flags, 640 const char *file, int line) 641 #else 642 void * 643 kmalloc(unsigned long size, struct malloc_type *type, int flags) 644 #endif 645 { 646 SLZone *z; 647 SLChunk *chunk; 648 SLGlobalData *slgd; 649 struct globaldata *gd; 650 unsigned long align; 651 int zi; 652 #ifdef INVARIANTS 653 int i; 654 #endif 655 656 logmemory_quick(malloc_beg); 657 gd = mycpu; 658 slgd = &gd->gd_slab; 659 660 /* 661 * XXX silly to have this in the critical path. 662 */ 663 if (type->ks_limit == 0) { 664 crit_enter(); 665 malloc_init(type); 666 crit_exit(); 667 } 668 ++type->ks_use[gd->gd_cpuid].calls; 669 670 if (flags & M_POWEROF2) 671 size = powerof2_size(size); 672 673 /* 674 * Handle the case where the limit is reached. Panic if we can't return 675 * NULL. The original malloc code looped, but this tended to 676 * simply deadlock the computer. 677 * 678 * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used 679 * to determine if a more complete limit check should be done. The 680 * actual memory use is tracked via ks_use[cpu].memuse. 681 */ 682 while (type->ks_loosememuse >= type->ks_limit) { 683 int i; 684 long ttl; 685 686 for (i = ttl = 0; i < ncpus; ++i) 687 ttl += type->ks_use[i].memuse; 688 type->ks_loosememuse = ttl; /* not MP synchronized */ 689 if ((ssize_t)ttl < 0) /* deal with occassional race */ 690 ttl = 0; 691 if (ttl >= type->ks_limit) { 692 if (flags & M_NULLOK) { 693 logmemory(malloc_end, NULL, type, size, flags); 694 return(NULL); 695 } 696 panic("%s: malloc limit exceeded", type->ks_shortdesc); 697 } 698 } 699 700 /* 701 * Handle the degenerate size == 0 case. Yes, this does happen. 702 * Return a special pointer. This is to maintain compatibility with 703 * the original malloc implementation. Certain devices, such as the 704 * adaptec driver, not only allocate 0 bytes, they check for NULL and 705 * also realloc() later on. Joy. 706 */ 707 if (size == 0) { 708 logmemory(malloc_end, ZERO_LENGTH_PTR, type, size, flags); 709 return(ZERO_LENGTH_PTR); 710 } 711 712 /* 713 * Handle hysteresis from prior frees here in malloc(). We cannot 714 * safely manipulate the kernel_map in free() due to free() possibly 715 * being called via an IPI message or from sensitive interrupt code. 716 * 717 * NOTE: ku_pagecnt must be cleared before we free the slab or we 718 * might race another cpu allocating the kva and setting 719 * ku_pagecnt. 720 */ 721 while (slgd->NFreeZones > ZoneRelsThresh && (flags & M_RNOWAIT) == 0) { 722 crit_enter(); 723 if (slgd->NFreeZones > ZoneRelsThresh) { /* crit sect race */ 724 int *kup; 725 726 z = TAILQ_LAST(&slgd->FreeZones, SLZoneList); 727 KKASSERT(z != NULL); 728 TAILQ_REMOVE(&slgd->FreeZones, z, z_Entry); 729 --slgd->NFreeZones; 730 kup = btokup(z); 731 *kup = 0; 732 kmem_slab_free(z, ZoneSize); /* may block */ 733 atomic_add_int(&ZoneGenAlloc, -ZoneSize / 1024); 734 } 735 crit_exit(); 736 } 737 738 /* 739 * XXX handle oversized frees that were queued from kfree(). 740 */ 741 while (TAILQ_FIRST(&slgd->FreeOvZones) && (flags & M_RNOWAIT) == 0) { 742 crit_enter(); 743 if ((z = TAILQ_LAST(&slgd->FreeOvZones, SLZoneList)) != NULL) { 744 vm_size_t tsize; 745 746 KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC); 747 TAILQ_REMOVE(&slgd->FreeOvZones, z, z_Entry); 748 tsize = z->z_ChunkSize; 749 kmem_slab_free(z, tsize); /* may block */ 750 atomic_add_int(&ZoneBigAlloc, -(int)tsize / 1024); 751 } 752 crit_exit(); 753 } 754 755 /* 756 * Handle large allocations directly. There should not be very many of 757 * these so performance is not a big issue. 758 * 759 * The backend allocator is pretty nasty on a SMP system. Use the 760 * slab allocator for one and two page-sized chunks even though we lose 761 * some efficiency. XXX maybe fix mmio and the elf loader instead. 762 */ 763 if (size >= ZoneLimit || ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) { 764 int *kup; 765 766 size = round_page(size); 767 chunk = kmem_slab_alloc(size, PAGE_SIZE, flags); 768 if (chunk == NULL) { 769 logmemory(malloc_end, NULL, type, size, flags); 770 return(NULL); 771 } 772 atomic_add_int(&ZoneBigAlloc, (int)size / 1024); 773 flags &= ~M_ZERO; /* result already zero'd if M_ZERO was set */ 774 flags |= M_PASSIVE_ZERO; 775 kup = btokup(chunk); 776 *kup = size / PAGE_SIZE; 777 crit_enter(); 778 goto done; 779 } 780 781 /* 782 * Attempt to allocate out of an existing zone. First try the free list, 783 * then allocate out of unallocated space. If we find a good zone move 784 * it to the head of the list so later allocations find it quickly 785 * (we might have thousands of zones in the list). 786 * 787 * Note: zoneindex() will panic of size is too large. 788 */ 789 zi = zoneindex(&size, &align); 790 KKASSERT(zi < NZONES); 791 crit_enter(); 792 793 if ((z = TAILQ_LAST(&slgd->ZoneAry[zi], SLZoneList)) != NULL) { 794 /* 795 * Locate a chunk - we have to have at least one. If this is the 796 * last chunk go ahead and do the work to retrieve chunks freed 797 * from remote cpus, and if the zone is still empty move it off 798 * the ZoneAry. 799 */ 800 if (--z->z_NFree <= 0) { 801 KKASSERT(z->z_NFree == 0); 802 803 /* 804 * WARNING! This code competes with other cpus. It is ok 805 * for us to not drain RChunks here but we might as well, and 806 * it is ok if more accumulate after we're done. 807 * 808 * Set RSignal before pulling rchunks off, indicating that we 809 * will be moving ourselves off of the ZoneAry. Remote ends will 810 * read RSignal before putting rchunks on thus interlocking 811 * their IPI signaling. 812 */ 813 if (z->z_RChunks == NULL) 814 atomic_swap_int(&z->z_RSignal, 1); 815 816 clean_zone_rchunks(z); 817 818 /* 819 * Remove from the zone list if no free chunks remain. 820 * Clear RSignal 821 */ 822 if (z->z_NFree == 0) { 823 TAILQ_REMOVE(&slgd->ZoneAry[zi], z, z_Entry); 824 } else { 825 z->z_RSignal = 0; 826 } 827 } 828 829 /* 830 * Fast path, we have chunks available in z_LChunks. 831 */ 832 chunk = z->z_LChunks; 833 if (chunk) { 834 chunk_mark_allocated(z, chunk); 835 z->z_LChunks = chunk->c_Next; 836 if (z->z_LChunks == NULL) 837 z->z_LChunksp = &z->z_LChunks; 838 #ifdef SLAB_DEBUG 839 slab_record_source(z, file, line); 840 #endif 841 goto done; 842 } 843 844 /* 845 * No chunks are available in LChunks, the free chunk MUST be 846 * in the never-before-used memory area, controlled by UIndex. 847 * 848 * The consequences are very serious if our zone got corrupted so 849 * we use an explicit panic rather than a KASSERT. 850 */ 851 if (z->z_UIndex + 1 != z->z_NMax) 852 ++z->z_UIndex; 853 else 854 z->z_UIndex = 0; 855 856 if (z->z_UIndex == z->z_UEndIndex) 857 panic("slaballoc: corrupted zone"); 858 859 chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size); 860 if ((z->z_Flags & SLZF_UNOTZEROD) == 0) { 861 flags &= ~M_ZERO; 862 flags |= M_PASSIVE_ZERO; 863 } 864 chunk_mark_allocated(z, chunk); 865 #ifdef SLAB_DEBUG 866 slab_record_source(z, file, line); 867 #endif 868 goto done; 869 } 870 871 /* 872 * If all zones are exhausted we need to allocate a new zone for this 873 * index. Use M_ZERO to take advantage of pre-zerod pages. Also see 874 * UAlloc use above in regards to M_ZERO. Note that when we are reusing 875 * a zone from the FreeZones list UAlloc'd data will not be zero'd, and 876 * we do not pre-zero it because we do not want to mess up the L1 cache. 877 * 878 * At least one subsystem, the tty code (see CROUND) expects power-of-2 879 * allocations to be power-of-2 aligned. We maintain compatibility by 880 * adjusting the base offset below. 881 */ 882 { 883 int off; 884 int *kup; 885 886 if ((z = TAILQ_FIRST(&slgd->FreeZones)) != NULL) { 887 TAILQ_REMOVE(&slgd->FreeZones, z, z_Entry); 888 --slgd->NFreeZones; 889 bzero(z, sizeof(SLZone)); 890 z->z_Flags |= SLZF_UNOTZEROD; 891 } else { 892 z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO); 893 if (z == NULL) 894 goto fail; 895 atomic_add_int(&ZoneGenAlloc, ZoneSize / 1024); 896 } 897 898 /* 899 * How big is the base structure? 900 */ 901 #if defined(INVARIANTS) 902 /* 903 * Make room for z_Bitmap. An exact calculation is somewhat more 904 * complicated so don't make an exact calculation. 905 */ 906 off = offsetof(SLZone, z_Bitmap[(ZoneSize / size + 31) / 32]); 907 bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8); 908 #else 909 off = sizeof(SLZone); 910 #endif 911 912 /* 913 * Guarentee power-of-2 alignment for power-of-2-sized chunks. 914 * Otherwise properly align the data according to the chunk size. 915 */ 916 if (powerof2(size)) 917 align = size; 918 off = roundup2(off, align); 919 920 z->z_Magic = ZALLOC_SLAB_MAGIC; 921 z->z_ZoneIndex = zi; 922 z->z_NMax = (ZoneSize - off) / size; 923 z->z_NFree = z->z_NMax - 1; 924 z->z_BasePtr = (char *)z + off; 925 z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax; 926 z->z_ChunkSize = size; 927 z->z_CpuGd = gd; 928 z->z_Cpu = gd->gd_cpuid; 929 z->z_LChunksp = &z->z_LChunks; 930 #ifdef SLAB_DEBUG 931 bcopy(z->z_Sources, z->z_AltSources, sizeof(z->z_Sources)); 932 bzero(z->z_Sources, sizeof(z->z_Sources)); 933 #endif 934 chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size); 935 TAILQ_INSERT_HEAD(&slgd->ZoneAry[zi], z, z_Entry); 936 if ((z->z_Flags & SLZF_UNOTZEROD) == 0) { 937 flags &= ~M_ZERO; /* already zero'd */ 938 flags |= M_PASSIVE_ZERO; 939 } 940 kup = btokup(z); 941 *kup = -(z->z_Cpu + 1); /* -1 to -(N+1) */ 942 chunk_mark_allocated(z, chunk); 943 #ifdef SLAB_DEBUG 944 slab_record_source(z, file, line); 945 #endif 946 947 /* 948 * Slide the base index for initial allocations out of the next 949 * zone we create so we do not over-weight the lower part of the 950 * cpu memory caches. 951 */ 952 slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE) 953 & (ZALLOC_MAX_ZONE_SIZE - 1); 954 } 955 956 done: 957 ++type->ks_use[gd->gd_cpuid].inuse; 958 type->ks_use[gd->gd_cpuid].memuse += size; 959 type->ks_use[gd->gd_cpuid].loosememuse += size; 960 if (type->ks_use[gd->gd_cpuid].loosememuse >= ZoneSize) { 961 /* not MP synchronized */ 962 type->ks_loosememuse += type->ks_use[gd->gd_cpuid].loosememuse; 963 type->ks_use[gd->gd_cpuid].loosememuse = 0; 964 } 965 crit_exit(); 966 967 if (flags & M_ZERO) 968 bzero(chunk, size); 969 #ifdef INVARIANTS 970 else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) { 971 if (use_malloc_pattern) { 972 for (i = 0; i < size; i += sizeof(int)) { 973 *(int *)((char *)chunk + i) = -1; 974 } 975 } 976 chunk->c_Next = (void *)-1; /* avoid accidental double-free check */ 977 } 978 #endif 979 logmemory(malloc_end, chunk, type, size, flags); 980 return(chunk); 981 fail: 982 crit_exit(); 983 logmemory(malloc_end, NULL, type, size, flags); 984 return(NULL); 985 } 986 987 /* 988 * kernel realloc. (SLAB ALLOCATOR) (MP SAFE) 989 * 990 * Generally speaking this routine is not called very often and we do 991 * not attempt to optimize it beyond reusing the same pointer if the 992 * new size fits within the chunking of the old pointer's zone. 993 */ 994 #ifdef SLAB_DEBUG 995 void * 996 krealloc_debug(void *ptr, unsigned long size, 997 struct malloc_type *type, int flags, 998 const char *file, int line) 999 #else 1000 void * 1001 krealloc(void *ptr, unsigned long size, struct malloc_type *type, int flags) 1002 #endif 1003 { 1004 unsigned long osize; 1005 unsigned long align; 1006 SLZone *z; 1007 void *nptr; 1008 int *kup; 1009 1010 KKASSERT((flags & M_ZERO) == 0); /* not supported */ 1011 1012 if (ptr == NULL || ptr == ZERO_LENGTH_PTR) 1013 return(kmalloc_debug(size, type, flags, file, line)); 1014 if (size == 0) { 1015 kfree(ptr, type); 1016 return(NULL); 1017 } 1018 1019 /* 1020 * Handle oversized allocations. XXX we really should require that a 1021 * size be passed to free() instead of this nonsense. 1022 */ 1023 kup = btokup(ptr); 1024 if (*kup > 0) { 1025 osize = *kup << PAGE_SHIFT; 1026 if (osize == round_page(size)) 1027 return(ptr); 1028 if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL) 1029 return(NULL); 1030 bcopy(ptr, nptr, min(size, osize)); 1031 kfree(ptr, type); 1032 return(nptr); 1033 } 1034 1035 /* 1036 * Get the original allocation's zone. If the new request winds up 1037 * using the same chunk size we do not have to do anything. 1038 */ 1039 z = (SLZone *)((uintptr_t)ptr & ZoneMask); 1040 kup = btokup(z); 1041 KKASSERT(*kup < 0); 1042 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC); 1043 1044 /* 1045 * Allocate memory for the new request size. Note that zoneindex has 1046 * already adjusted the request size to the appropriate chunk size, which 1047 * should optimize our bcopy(). Then copy and return the new pointer. 1048 * 1049 * Resizing a non-power-of-2 allocation to a power-of-2 size does not 1050 * necessary align the result. 1051 * 1052 * We can only zoneindex (to align size to the chunk size) if the new 1053 * size is not too large. 1054 */ 1055 if (size < ZoneLimit) { 1056 zoneindex(&size, &align); 1057 if (z->z_ChunkSize == size) 1058 return(ptr); 1059 } 1060 if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL) 1061 return(NULL); 1062 bcopy(ptr, nptr, min(size, z->z_ChunkSize)); 1063 kfree(ptr, type); 1064 return(nptr); 1065 } 1066 1067 /* 1068 * Return the kmalloc limit for this type, in bytes. 1069 */ 1070 long 1071 kmalloc_limit(struct malloc_type *type) 1072 { 1073 if (type->ks_limit == 0) { 1074 crit_enter(); 1075 if (type->ks_limit == 0) 1076 malloc_init(type); 1077 crit_exit(); 1078 } 1079 return(type->ks_limit); 1080 } 1081 1082 /* 1083 * Allocate a copy of the specified string. 1084 * 1085 * (MP SAFE) (MAY BLOCK) 1086 */ 1087 #ifdef SLAB_DEBUG 1088 char * 1089 kstrdup_debug(const char *str, struct malloc_type *type, 1090 const char *file, int line) 1091 #else 1092 char * 1093 kstrdup(const char *str, struct malloc_type *type) 1094 #endif 1095 { 1096 int zlen; /* length inclusive of terminating NUL */ 1097 char *nstr; 1098 1099 if (str == NULL) 1100 return(NULL); 1101 zlen = strlen(str) + 1; 1102 nstr = kmalloc_debug(zlen, type, M_WAITOK, file, line); 1103 bcopy(str, nstr, zlen); 1104 return(nstr); 1105 } 1106 1107 #ifdef SLAB_DEBUG 1108 char * 1109 kstrndup_debug(const char *str, size_t maxlen, struct malloc_type *type, 1110 const char *file, int line) 1111 #else 1112 char * 1113 kstrndup(const char *str, size_t maxlen, struct malloc_type *type) 1114 #endif 1115 { 1116 int zlen; /* length inclusive of terminating NUL */ 1117 char *nstr; 1118 1119 if (str == NULL) 1120 return(NULL); 1121 zlen = strnlen(str, maxlen) + 1; 1122 nstr = kmalloc_debug(zlen, type, M_WAITOK, file, line); 1123 bcopy(str, nstr, zlen); 1124 nstr[zlen - 1] = '\0'; 1125 return(nstr); 1126 } 1127 1128 /* 1129 * Notify our cpu that a remote cpu has freed some chunks in a zone that 1130 * we own. RCount will be bumped so the memory should be good, but validate 1131 * that it really is. 1132 */ 1133 static void 1134 kfree_remote(void *ptr) 1135 { 1136 SLGlobalData *slgd; 1137 SLZone *z; 1138 int nfree; 1139 int *kup; 1140 1141 slgd = &mycpu->gd_slab; 1142 z = ptr; 1143 kup = btokup(z); 1144 KKASSERT(*kup == -((int)mycpuid + 1)); 1145 KKASSERT(z->z_RCount > 0); 1146 atomic_subtract_int(&z->z_RCount, 1); 1147 1148 logmemory(free_rem_beg, z, NULL, 0L, 0); 1149 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC); 1150 KKASSERT(z->z_Cpu == mycpu->gd_cpuid); 1151 nfree = z->z_NFree; 1152 1153 /* 1154 * Indicate that we will no longer be off of the ZoneAry by 1155 * clearing RSignal. 1156 */ 1157 if (z->z_RChunks) 1158 z->z_RSignal = 0; 1159 1160 /* 1161 * Atomically extract the bchunks list and then process it back 1162 * into the lchunks list. We want to append our bchunks to the 1163 * lchunks list and not prepend since we likely do not have 1164 * cache mastership of the related data (not that it helps since 1165 * we are using c_Next). 1166 */ 1167 clean_zone_rchunks(z); 1168 if (z->z_NFree && nfree == 0) { 1169 TAILQ_INSERT_HEAD(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry); 1170 } 1171 1172 check_zone_free(slgd, z); 1173 logmemory(free_rem_end, z, NULL, 0L, 0); 1174 } 1175 1176 /* 1177 * free (SLAB ALLOCATOR) 1178 * 1179 * Free a memory block previously allocated by malloc. 1180 * 1181 * Note: We do not attempt to update ks_loosememuse as MP races could 1182 * prevent us from checking memory limits in malloc. YYY we may 1183 * consider updating ks_cpu.loosememuse. 1184 * 1185 * MPSAFE 1186 */ 1187 void 1188 kfree(void *ptr, struct malloc_type *type) 1189 { 1190 SLZone *z; 1191 SLChunk *chunk; 1192 SLGlobalData *slgd; 1193 struct globaldata *gd; 1194 int *kup; 1195 unsigned long size; 1196 SLChunk *bchunk; 1197 int rsignal; 1198 1199 logmemory_quick(free_beg); 1200 gd = mycpu; 1201 slgd = &gd->gd_slab; 1202 1203 if (ptr == NULL) 1204 panic("trying to free NULL pointer"); 1205 1206 /* 1207 * Handle special 0-byte allocations 1208 */ 1209 if (ptr == ZERO_LENGTH_PTR) { 1210 logmemory(free_zero, ptr, type, -1UL, 0); 1211 logmemory_quick(free_end); 1212 return; 1213 } 1214 1215 /* 1216 * Panic on bad malloc type 1217 */ 1218 if (type->ks_magic != M_MAGIC) 1219 panic("free: malloc type lacks magic"); 1220 1221 /* 1222 * Handle oversized allocations. XXX we really should require that a 1223 * size be passed to free() instead of this nonsense. 1224 * 1225 * This code is never called via an ipi. 1226 */ 1227 kup = btokup(ptr); 1228 if (*kup > 0) { 1229 size = *kup << PAGE_SHIFT; 1230 *kup = 0; 1231 #ifdef INVARIANTS 1232 KKASSERT(sizeof(weirdary) <= size); 1233 bcopy(weirdary, ptr, sizeof(weirdary)); 1234 #endif 1235 /* 1236 * NOTE: For oversized allocations we do not record the 1237 * originating cpu. It gets freed on the cpu calling 1238 * kfree(). The statistics are in aggregate. 1239 * 1240 * note: XXX we have still inherited the interrupts-can't-block 1241 * assumption. An interrupt thread does not bump 1242 * gd_intr_nesting_level so check TDF_INTTHREAD. This is 1243 * primarily until we can fix softupdate's assumptions about free(). 1244 */ 1245 crit_enter(); 1246 --type->ks_use[gd->gd_cpuid].inuse; 1247 type->ks_use[gd->gd_cpuid].memuse -= size; 1248 if (mycpu->gd_intr_nesting_level || 1249 (gd->gd_curthread->td_flags & TDF_INTTHREAD)) { 1250 logmemory(free_ovsz_delayed, ptr, type, size, 0); 1251 z = (SLZone *)ptr; 1252 z->z_Magic = ZALLOC_OVSZ_MAGIC; 1253 z->z_ChunkSize = size; 1254 1255 TAILQ_INSERT_HEAD(&slgd->FreeOvZones, z, z_Entry); 1256 crit_exit(); 1257 } else { 1258 crit_exit(); 1259 logmemory(free_ovsz, ptr, type, size, 0); 1260 kmem_slab_free(ptr, size); /* may block */ 1261 atomic_add_int(&ZoneBigAlloc, -(int)size / 1024); 1262 } 1263 logmemory_quick(free_end); 1264 return; 1265 } 1266 1267 /* 1268 * Zone case. Figure out the zone based on the fact that it is 1269 * ZoneSize aligned. 1270 */ 1271 z = (SLZone *)((uintptr_t)ptr & ZoneMask); 1272 kup = btokup(z); 1273 KKASSERT(*kup < 0); 1274 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC); 1275 1276 /* 1277 * If we do not own the zone then use atomic ops to free to the 1278 * remote cpu linked list and notify the target zone using a 1279 * passive message. 1280 * 1281 * The target zone cannot be deallocated while we own a chunk of it, 1282 * so the zone header's storage is stable until the very moment 1283 * we adjust z_RChunks. After that we cannot safely dereference (z). 1284 * 1285 * (no critical section needed) 1286 */ 1287 if (z->z_CpuGd != gd) { 1288 /* 1289 * Making these adjustments now allow us to avoid passing (type) 1290 * to the remote cpu. Note that inuse/memuse is being 1291 * adjusted on OUR cpu, not the zone cpu, but it should all still 1292 * sum up properly and cancel out. 1293 */ 1294 crit_enter(); 1295 --type->ks_use[gd->gd_cpuid].inuse; 1296 type->ks_use[gd->gd_cpuid].memuse -= z->z_ChunkSize; 1297 crit_exit(); 1298 1299 /* 1300 * WARNING! This code competes with other cpus. Once we 1301 * successfully link the chunk to RChunks the remote 1302 * cpu can rip z's storage out from under us. 1303 * 1304 * Bumping RCount prevents z's storage from getting 1305 * ripped out. 1306 */ 1307 rsignal = z->z_RSignal; 1308 cpu_lfence(); 1309 if (rsignal) 1310 atomic_add_int(&z->z_RCount, 1); 1311 1312 chunk = ptr; 1313 for (;;) { 1314 bchunk = z->z_RChunks; 1315 cpu_ccfence(); 1316 chunk->c_Next = bchunk; 1317 cpu_sfence(); 1318 1319 if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, chunk)) 1320 break; 1321 } 1322 1323 /* 1324 * We have to signal the remote cpu if our actions will cause 1325 * the remote zone to be placed back on ZoneAry so it can 1326 * move the zone back on. 1327 * 1328 * We only need to deal with NULL->non-NULL RChunk transitions 1329 * and only if z_RSignal is set. We interlock by reading rsignal 1330 * before adding our chunk to RChunks. This should result in 1331 * virtually no IPI traffic. 1332 * 1333 * We can use a passive IPI to reduce overhead even further. 1334 */ 1335 if (bchunk == NULL && rsignal) { 1336 logmemory(free_request, ptr, type, 1337 (unsigned long)z->z_ChunkSize, 0); 1338 lwkt_send_ipiq_passive(z->z_CpuGd, kfree_remote, z); 1339 /* z can get ripped out from under us from this point on */ 1340 } else if (rsignal) { 1341 atomic_subtract_int(&z->z_RCount, 1); 1342 /* z can get ripped out from under us from this point on */ 1343 } 1344 logmemory_quick(free_end); 1345 return; 1346 } 1347 1348 /* 1349 * kfree locally 1350 */ 1351 logmemory(free_chunk, ptr, type, (unsigned long)z->z_ChunkSize, 0); 1352 1353 crit_enter(); 1354 chunk = ptr; 1355 chunk_mark_free(z, chunk); 1356 1357 /* 1358 * Put weird data into the memory to detect modifications after freeing, 1359 * illegal pointer use after freeing (we should fault on the odd address), 1360 * and so forth. XXX needs more work, see the old malloc code. 1361 */ 1362 #ifdef INVARIANTS 1363 if (z->z_ChunkSize < sizeof(weirdary)) 1364 bcopy(weirdary, chunk, z->z_ChunkSize); 1365 else 1366 bcopy(weirdary, chunk, sizeof(weirdary)); 1367 #endif 1368 1369 /* 1370 * Add this free non-zero'd chunk to a linked list for reuse. Add 1371 * to the front of the linked list so it is more likely to be 1372 * reallocated, since it is already in our L1 cache. 1373 */ 1374 #ifdef INVARIANTS 1375 if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd) 1376 panic("BADFREE %p", chunk); 1377 #endif 1378 chunk->c_Next = z->z_LChunks; 1379 z->z_LChunks = chunk; 1380 if (chunk->c_Next == NULL) 1381 z->z_LChunksp = &chunk->c_Next; 1382 1383 #ifdef INVARIANTS 1384 if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart) 1385 panic("BADFREE2"); 1386 #endif 1387 1388 /* 1389 * Bump the number of free chunks. If it becomes non-zero the zone 1390 * must be added back onto the appropriate list. A fully allocated 1391 * zone that sees its first free is considered 'mature' and is placed 1392 * at the head, giving the system time to potentially free the remaining 1393 * entries even while other allocations are going on and making the zone 1394 * freeable. 1395 */ 1396 if (z->z_NFree++ == 0) { 1397 if (SlabFreeToTail) 1398 TAILQ_INSERT_TAIL(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry); 1399 else 1400 TAILQ_INSERT_HEAD(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry); 1401 } 1402 1403 --type->ks_use[z->z_Cpu].inuse; 1404 type->ks_use[z->z_Cpu].memuse -= z->z_ChunkSize; 1405 1406 check_zone_free(slgd, z); 1407 logmemory_quick(free_end); 1408 crit_exit(); 1409 } 1410 1411 /* 1412 * Cleanup slabs which are hanging around due to RChunks or which are wholely 1413 * free and can be moved to the free list if not moved by other means. 1414 * 1415 * Called once every 10 seconds on all cpus. 1416 */ 1417 void 1418 slab_cleanup(void) 1419 { 1420 SLGlobalData *slgd = &mycpu->gd_slab; 1421 SLZone *z; 1422 int i; 1423 1424 crit_enter(); 1425 for (i = 0; i < NZONES; ++i) { 1426 if ((z = TAILQ_FIRST(&slgd->ZoneAry[i])) == NULL) 1427 continue; 1428 1429 /* 1430 * Scan zones. 1431 */ 1432 while (z) { 1433 /* 1434 * Shift all RChunks to the end of the LChunks list. This is 1435 * an O(1) operation. 1436 * 1437 * Then free the zone if possible. 1438 */ 1439 clean_zone_rchunks(z); 1440 z = check_zone_free(slgd, z); 1441 } 1442 } 1443 crit_exit(); 1444 } 1445 1446 #if defined(INVARIANTS) 1447 1448 /* 1449 * Helper routines for sanity checks 1450 */ 1451 static void 1452 chunk_mark_allocated(SLZone *z, void *chunk) 1453 { 1454 int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize; 1455 uint32_t *bitptr; 1456 1457 KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0); 1458 KASSERT(bitdex >= 0 && bitdex < z->z_NMax, 1459 ("memory chunk %p bit index %d is illegal", chunk, bitdex)); 1460 bitptr = &z->z_Bitmap[bitdex >> 5]; 1461 bitdex &= 31; 1462 KASSERT((*bitptr & (1 << bitdex)) == 0, 1463 ("memory chunk %p is already allocated!", chunk)); 1464 *bitptr |= 1 << bitdex; 1465 } 1466 1467 static void 1468 chunk_mark_free(SLZone *z, void *chunk) 1469 { 1470 int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize; 1471 uint32_t *bitptr; 1472 1473 KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0); 1474 KASSERT(bitdex >= 0 && bitdex < z->z_NMax, 1475 ("memory chunk %p bit index %d is illegal!", chunk, bitdex)); 1476 bitptr = &z->z_Bitmap[bitdex >> 5]; 1477 bitdex &= 31; 1478 KASSERT((*bitptr & (1 << bitdex)) != 0, 1479 ("memory chunk %p is already free!", chunk)); 1480 *bitptr &= ~(1 << bitdex); 1481 } 1482 1483 #endif 1484 1485 /* 1486 * kmem_slab_alloc() 1487 * 1488 * Directly allocate and wire kernel memory in PAGE_SIZE chunks with the 1489 * specified alignment. M_* flags are expected in the flags field. 1490 * 1491 * Alignment must be a multiple of PAGE_SIZE. 1492 * 1493 * NOTE! XXX For the moment we use vm_map_entry_reserve/release(), 1494 * but when we move zalloc() over to use this function as its backend 1495 * we will have to switch to kreserve/krelease and call reserve(0) 1496 * after the new space is made available. 1497 * 1498 * Interrupt code which has preempted other code is not allowed to 1499 * use PQ_CACHE pages. However, if an interrupt thread is run 1500 * non-preemptively or blocks and then runs non-preemptively, then 1501 * it is free to use PQ_CACHE pages. <--- may not apply any longer XXX 1502 */ 1503 static void * 1504 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags) 1505 { 1506 vm_size_t i; 1507 vm_offset_t addr; 1508 int count, vmflags, base_vmflags; 1509 vm_page_t mbase = NULL; 1510 vm_page_t m; 1511 thread_t td; 1512 1513 size = round_page(size); 1514 addr = vm_map_min(&kernel_map); 1515 1516 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1517 crit_enter(); 1518 vm_map_lock(&kernel_map); 1519 if (vm_map_findspace(&kernel_map, addr, size, align, 0, &addr)) { 1520 vm_map_unlock(&kernel_map); 1521 if ((flags & M_NULLOK) == 0) 1522 panic("kmem_slab_alloc(): kernel_map ran out of space!"); 1523 vm_map_entry_release(count); 1524 crit_exit(); 1525 return(NULL); 1526 } 1527 1528 /* 1529 * kernel_object maps 1:1 to kernel_map. 1530 */ 1531 vm_object_hold(&kernel_object); 1532 vm_object_reference_locked(&kernel_object); 1533 vm_map_insert(&kernel_map, &count, 1534 &kernel_object, NULL, 1535 addr, addr, addr + size, 1536 VM_MAPTYPE_NORMAL, 1537 VM_SUBSYS_KMALLOC, 1538 VM_PROT_ALL, VM_PROT_ALL, 0); 1539 vm_object_drop(&kernel_object); 1540 vm_map_set_wired_quick(&kernel_map, addr, size, &count); 1541 vm_map_unlock(&kernel_map); 1542 1543 td = curthread; 1544 1545 base_vmflags = 0; 1546 if (flags & M_ZERO) 1547 base_vmflags |= VM_ALLOC_ZERO; 1548 if (flags & M_USE_RESERVE) 1549 base_vmflags |= VM_ALLOC_SYSTEM; 1550 if (flags & M_USE_INTERRUPT_RESERVE) 1551 base_vmflags |= VM_ALLOC_INTERRUPT; 1552 if ((flags & (M_RNOWAIT|M_WAITOK)) == 0) { 1553 panic("kmem_slab_alloc: bad flags %08x (%p)", 1554 flags, ((int **)&size)[-1]); 1555 } 1556 1557 /* 1558 * Allocate the pages. Do not map them yet. VM_ALLOC_NORMAL can only 1559 * be set if we are not preempting. 1560 * 1561 * VM_ALLOC_SYSTEM is automatically set if we are preempting and 1562 * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is 1563 * implied in this case), though I'm not sure if we really need to 1564 * do that. 1565 */ 1566 vmflags = base_vmflags; 1567 if (flags & M_WAITOK) { 1568 if (td->td_preempted) 1569 vmflags |= VM_ALLOC_SYSTEM; 1570 else 1571 vmflags |= VM_ALLOC_NORMAL; 1572 } 1573 1574 vm_object_hold(&kernel_object); 1575 for (i = 0; i < size; i += PAGE_SIZE) { 1576 m = vm_page_alloc(&kernel_object, OFF_TO_IDX(addr + i), vmflags); 1577 if (i == 0) 1578 mbase = m; 1579 1580 /* 1581 * If the allocation failed we either return NULL or we retry. 1582 * 1583 * If M_WAITOK is specified we wait for more memory and retry. 1584 * If M_WAITOK is specified from a preemption we yield instead of 1585 * wait. Livelock will not occur because the interrupt thread 1586 * will not be preempting anyone the second time around after the 1587 * yield. 1588 */ 1589 if (m == NULL) { 1590 if (flags & M_WAITOK) { 1591 if (td->td_preempted) { 1592 lwkt_switch(); 1593 } else { 1594 vm_wait(0); 1595 } 1596 i -= PAGE_SIZE; /* retry */ 1597 continue; 1598 } 1599 break; 1600 } 1601 } 1602 1603 /* 1604 * Check and deal with an allocation failure 1605 */ 1606 if (i != size) { 1607 while (i != 0) { 1608 i -= PAGE_SIZE; 1609 m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i)); 1610 /* page should already be busy */ 1611 vm_page_free(m); 1612 } 1613 vm_map_lock(&kernel_map); 1614 vm_map_delete(&kernel_map, addr, addr + size, &count); 1615 vm_map_unlock(&kernel_map); 1616 vm_object_drop(&kernel_object); 1617 1618 vm_map_entry_release(count); 1619 crit_exit(); 1620 return(NULL); 1621 } 1622 1623 /* 1624 * Success! 1625 * 1626 * NOTE: The VM pages are still busied. mbase points to the first one 1627 * but we have to iterate via vm_page_next() 1628 */ 1629 vm_object_drop(&kernel_object); 1630 crit_exit(); 1631 1632 /* 1633 * Enter the pages into the pmap and deal with M_ZERO. 1634 */ 1635 m = mbase; 1636 i = 0; 1637 1638 while (i < size) { 1639 /* 1640 * page should already be busy 1641 */ 1642 m->valid = VM_PAGE_BITS_ALL; 1643 vm_page_wire(m); 1644 pmap_enter(&kernel_pmap, addr + i, m, 1645 VM_PROT_ALL | VM_PROT_NOSYNC, 1, NULL); 1646 if (flags & M_ZERO) 1647 pagezero((char *)addr + i); 1648 KKASSERT(m->flags & (PG_WRITEABLE | PG_MAPPED)); 1649 vm_page_flag_set(m, PG_REFERENCED); 1650 vm_page_wakeup(m); 1651 1652 i += PAGE_SIZE; 1653 vm_object_hold(&kernel_object); 1654 m = vm_page_next(m); 1655 vm_object_drop(&kernel_object); 1656 } 1657 smp_invltlb(); 1658 vm_map_entry_release(count); 1659 atomic_add_long(&SlabsAllocated, 1); 1660 return((void *)addr); 1661 } 1662 1663 /* 1664 * kmem_slab_free() 1665 */ 1666 static void 1667 kmem_slab_free(void *ptr, vm_size_t size) 1668 { 1669 crit_enter(); 1670 vm_map_remove(&kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size); 1671 atomic_add_long(&SlabsFreed, 1); 1672 crit_exit(); 1673 } 1674 1675 void * 1676 kmalloc_cachealign(unsigned long size_alloc, struct malloc_type *type, 1677 int flags) 1678 { 1679 #if (__VM_CACHELINE_SIZE == 32) 1680 #define CAN_CACHEALIGN(sz) ((sz) >= 256) 1681 #elif (__VM_CACHELINE_SIZE == 64) 1682 #define CAN_CACHEALIGN(sz) ((sz) >= 512) 1683 #elif (__VM_CACHELINE_SIZE == 128) 1684 #define CAN_CACHEALIGN(sz) ((sz) >= 1024) 1685 #else 1686 #error "unsupported cacheline size" 1687 #endif 1688 1689 void *ret; 1690 1691 if (size_alloc < __VM_CACHELINE_SIZE) 1692 size_alloc = __VM_CACHELINE_SIZE; 1693 else if (!CAN_CACHEALIGN(size_alloc)) 1694 flags |= M_POWEROF2; 1695 1696 ret = kmalloc(size_alloc, type, flags); 1697 KASSERT(((uintptr_t)ret & (__VM_CACHELINE_SIZE - 1)) == 0, 1698 ("%p(%lu) not cacheline %d aligned", 1699 ret, size_alloc, __VM_CACHELINE_SIZE)); 1700 return ret; 1701 1702 #undef CAN_CACHEALIGN 1703 } 1704