1 /* 2 * KERN_SLABALLOC.C - Kernel SLAB memory allocator 3 * 4 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved. 5 * 6 * This code is derived from software contributed to The DragonFly Project 7 * by Matthew Dillon <dillon@backplane.com> 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in 17 * the documentation and/or other materials provided with the 18 * distribution. 19 * 3. Neither the name of The DragonFly Project nor the names of its 20 * contributors may be used to endorse or promote products derived 21 * from this software without specific, prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 26 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 27 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 28 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 31 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 32 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 33 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * $DragonFly: src/sys/kern/kern_slaballoc.c,v 1.50 2007/06/07 20:34:14 dillon Exp $ 37 * 38 * This module implements a slab allocator drop-in replacement for the 39 * kernel malloc(). 40 * 41 * A slab allocator reserves a ZONE for each chunk size, then lays the 42 * chunks out in an array within the zone. Allocation and deallocation 43 * is nearly instantanious, and fragmentation/overhead losses are limited 44 * to a fixed worst-case amount. 45 * 46 * The downside of this slab implementation is in the chunk size 47 * multiplied by the number of zones. ~80 zones * 128K = 10MB of VM per cpu. 48 * In a kernel implementation all this memory will be physical so 49 * the zone size is adjusted downward on machines with less physical 50 * memory. The upside is that overhead is bounded... this is the *worst* 51 * case overhead. 52 * 53 * Slab management is done on a per-cpu basis and no locking or mutexes 54 * are required, only a critical section. When one cpu frees memory 55 * belonging to another cpu's slab manager an asynchronous IPI message 56 * will be queued to execute the operation. In addition, both the 57 * high level slab allocator and the low level zone allocator optimize 58 * M_ZERO requests, and the slab allocator does not have to pre initialize 59 * the linked list of chunks. 60 * 61 * XXX Balancing is needed between cpus. Balance will be handled through 62 * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks. 63 * 64 * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of 65 * the new zone should be restricted to M_USE_RESERVE requests only. 66 * 67 * Alloc Size Chunking Number of zones 68 * 0-127 8 16 69 * 128-255 16 8 70 * 256-511 32 8 71 * 512-1023 64 8 72 * 1024-2047 128 8 73 * 2048-4095 256 8 74 * 4096-8191 512 8 75 * 8192-16383 1024 8 76 * 16384-32767 2048 8 77 * (if PAGE_SIZE is 4K the maximum zone allocation is 16383) 78 * 79 * Allocations >= ZoneLimit go directly to kmem. 80 * 81 * API REQUIREMENTS AND SIDE EFFECTS 82 * 83 * To operate as a drop-in replacement to the FreeBSD-4.x malloc() we 84 * have remained compatible with the following API requirements: 85 * 86 * + small power-of-2 sized allocations are power-of-2 aligned (kern_tty) 87 * + all power-of-2 sized allocations are power-of-2 aligned (twe) 88 * + malloc(0) is allowed and returns non-NULL (ahc driver) 89 * + ability to allocate arbitrarily large chunks of memory 90 */ 91 92 #include "opt_vm.h" 93 94 #include <sys/param.h> 95 #include <sys/systm.h> 96 #include <sys/kernel.h> 97 #include <sys/slaballoc.h> 98 #include <sys/mbuf.h> 99 #include <sys/vmmeter.h> 100 #include <sys/lock.h> 101 #include <sys/thread.h> 102 #include <sys/globaldata.h> 103 #include <sys/sysctl.h> 104 #include <sys/ktr.h> 105 106 #include <vm/vm.h> 107 #include <vm/vm_param.h> 108 #include <vm/vm_kern.h> 109 #include <vm/vm_extern.h> 110 #include <vm/vm_object.h> 111 #include <vm/pmap.h> 112 #include <vm/vm_map.h> 113 #include <vm/vm_page.h> 114 #include <vm/vm_pageout.h> 115 116 #include <machine/cpu.h> 117 118 #include <sys/thread2.h> 119 120 #define arysize(ary) (sizeof(ary)/sizeof((ary)[0])) 121 122 #define MEMORY_STRING "ptr=%p type=%p size=%d flags=%04x" 123 #define MEMORY_ARG_SIZE (sizeof(void *) * 2 + sizeof(unsigned long) + \ 124 sizeof(int)) 125 126 #if !defined(KTR_MEMORY) 127 #define KTR_MEMORY KTR_ALL 128 #endif 129 KTR_INFO_MASTER(memory); 130 KTR_INFO(KTR_MEMORY, memory, malloc, 0, MEMORY_STRING, MEMORY_ARG_SIZE); 131 KTR_INFO(KTR_MEMORY, memory, free_zero, 1, MEMORY_STRING, MEMORY_ARG_SIZE); 132 KTR_INFO(KTR_MEMORY, memory, free_ovsz, 2, MEMORY_STRING, MEMORY_ARG_SIZE); 133 KTR_INFO(KTR_MEMORY, memory, free_ovsz_delayed, 3, MEMORY_STRING, MEMORY_ARG_SIZE); 134 KTR_INFO(KTR_MEMORY, memory, free_chunk, 4, MEMORY_STRING, MEMORY_ARG_SIZE); 135 #ifdef SMP 136 KTR_INFO(KTR_MEMORY, memory, free_request, 5, MEMORY_STRING, MEMORY_ARG_SIZE); 137 KTR_INFO(KTR_MEMORY, memory, free_remote, 6, MEMORY_STRING, MEMORY_ARG_SIZE); 138 #endif 139 KTR_INFO(KTR_MEMORY, memory, malloc_beg, 0, "malloc begin", 0); 140 KTR_INFO(KTR_MEMORY, memory, free_beg, 0, "free begin", 0); 141 KTR_INFO(KTR_MEMORY, memory, free_end, 0, "free end", 0); 142 143 #define logmemory(name, ptr, type, size, flags) \ 144 KTR_LOG(memory_ ## name, ptr, type, size, flags) 145 #define logmemory_quick(name) \ 146 KTR_LOG(memory_ ## name) 147 148 /* 149 * Fixed globals (not per-cpu) 150 */ 151 static int ZoneSize; 152 static int ZoneLimit; 153 static int ZonePageCount; 154 static int ZoneMask; 155 struct malloc_type *kmemstatistics; /* exported to vmstat */ 156 static struct kmemusage *kmemusage; 157 static int32_t weirdary[16]; 158 159 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags); 160 static void kmem_slab_free(void *ptr, vm_size_t bytes); 161 #if defined(INVARIANTS) 162 static void chunk_mark_allocated(SLZone *z, void *chunk); 163 static void chunk_mark_free(SLZone *z, void *chunk); 164 #endif 165 166 /* 167 * Misc constants. Note that allocations that are exact multiples of 168 * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module. 169 * IN_SAME_PAGE_MASK is used to sanity-check the per-page free lists. 170 */ 171 #define MIN_CHUNK_SIZE 8 /* in bytes */ 172 #define MIN_CHUNK_MASK (MIN_CHUNK_SIZE - 1) 173 #define ZONE_RELS_THRESH 2 /* threshold number of zones */ 174 #define IN_SAME_PAGE_MASK (~(intptr_t)PAGE_MASK | MIN_CHUNK_MASK) 175 176 /* 177 * The WEIRD_ADDR is used as known text to copy into free objects to 178 * try to create deterministic failure cases if the data is accessed after 179 * free. 180 */ 181 #define WEIRD_ADDR 0xdeadc0de 182 #define MAX_COPY sizeof(weirdary) 183 #define ZERO_LENGTH_PTR ((void *)-8) 184 185 /* 186 * Misc global malloc buckets 187 */ 188 189 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches"); 190 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory"); 191 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers"); 192 193 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 194 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 195 196 /* 197 * Initialize the slab memory allocator. We have to choose a zone size based 198 * on available physical memory. We choose a zone side which is approximately 199 * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of 200 * 128K. The zone size is limited to the bounds set in slaballoc.h 201 * (typically 32K min, 128K max). 202 */ 203 static void kmeminit(void *dummy); 204 205 SYSINIT(kmem, SI_BOOT1_ALLOCATOR, SI_ORDER_FIRST, kmeminit, NULL) 206 207 #ifdef INVARIANTS 208 /* 209 * If enabled any memory allocated without M_ZERO is initialized to -1. 210 */ 211 static int use_malloc_pattern; 212 SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW, 213 &use_malloc_pattern, 0, ""); 214 #endif 215 216 static void 217 kmeminit(void *dummy) 218 { 219 vm_poff_t limsize; 220 int usesize; 221 int i; 222 vm_pindex_t npg; 223 224 limsize = (vm_poff_t)vmstats.v_page_count * PAGE_SIZE; 225 if (limsize > KvaSize) 226 limsize = KvaSize; 227 228 usesize = (int)(limsize / 1024); /* convert to KB */ 229 230 ZoneSize = ZALLOC_MIN_ZONE_SIZE; 231 while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize) 232 ZoneSize <<= 1; 233 ZoneLimit = ZoneSize / 4; 234 if (ZoneLimit > ZALLOC_ZONE_LIMIT) 235 ZoneLimit = ZALLOC_ZONE_LIMIT; 236 ZoneMask = ZoneSize - 1; 237 ZonePageCount = ZoneSize / PAGE_SIZE; 238 239 npg = KvaSize / PAGE_SIZE; 240 kmemusage = kmem_slab_alloc(npg * sizeof(struct kmemusage), 241 PAGE_SIZE, M_WAITOK|M_ZERO); 242 243 for (i = 0; i < arysize(weirdary); ++i) 244 weirdary[i] = WEIRD_ADDR; 245 246 if (bootverbose) 247 kprintf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024); 248 } 249 250 /* 251 * Initialize a malloc type tracking structure. 252 */ 253 void 254 malloc_init(void *data) 255 { 256 struct malloc_type *type = data; 257 vm_poff_t limsize; 258 259 if (type->ks_magic != M_MAGIC) 260 panic("malloc type lacks magic"); 261 262 if (type->ks_limit != 0) 263 return; 264 265 if (vmstats.v_page_count == 0) 266 panic("malloc_init not allowed before vm init"); 267 268 limsize = (vm_poff_t)vmstats.v_page_count * PAGE_SIZE; 269 if (limsize > KvaSize) 270 limsize = KvaSize; 271 type->ks_limit = limsize / 10; 272 273 type->ks_next = kmemstatistics; 274 kmemstatistics = type; 275 } 276 277 void 278 malloc_uninit(void *data) 279 { 280 struct malloc_type *type = data; 281 struct malloc_type *t; 282 #ifdef INVARIANTS 283 int i; 284 long ttl; 285 #endif 286 287 if (type->ks_magic != M_MAGIC) 288 panic("malloc type lacks magic"); 289 290 if (vmstats.v_page_count == 0) 291 panic("malloc_uninit not allowed before vm init"); 292 293 if (type->ks_limit == 0) 294 panic("malloc_uninit on uninitialized type"); 295 296 #ifdef INVARIANTS 297 /* 298 * memuse is only correct in aggregation. Due to memory being allocated 299 * on one cpu and freed on another individual array entries may be 300 * negative or positive (canceling each other out). 301 */ 302 for (i = ttl = 0; i < ncpus; ++i) 303 ttl += type->ks_memuse[i]; 304 if (ttl) { 305 kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n", 306 ttl, type->ks_shortdesc, i); 307 } 308 #endif 309 if (type == kmemstatistics) { 310 kmemstatistics = type->ks_next; 311 } else { 312 for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) { 313 if (t->ks_next == type) { 314 t->ks_next = type->ks_next; 315 break; 316 } 317 } 318 } 319 type->ks_next = NULL; 320 type->ks_limit = 0; 321 } 322 323 /* 324 * Calculate the zone index for the allocation request size and set the 325 * allocation request size to that particular zone's chunk size. 326 */ 327 static __inline int 328 zoneindex(unsigned long *bytes) 329 { 330 unsigned int n = (unsigned int)*bytes; /* unsigned for shift opt */ 331 if (n < 128) { 332 *bytes = n = (n + 7) & ~7; 333 return(n / 8 - 1); /* 8 byte chunks, 16 zones */ 334 } 335 if (n < 256) { 336 *bytes = n = (n + 15) & ~15; 337 return(n / 16 + 7); 338 } 339 if (n < 8192) { 340 if (n < 512) { 341 *bytes = n = (n + 31) & ~31; 342 return(n / 32 + 15); 343 } 344 if (n < 1024) { 345 *bytes = n = (n + 63) & ~63; 346 return(n / 64 + 23); 347 } 348 if (n < 2048) { 349 *bytes = n = (n + 127) & ~127; 350 return(n / 128 + 31); 351 } 352 if (n < 4096) { 353 *bytes = n = (n + 255) & ~255; 354 return(n / 256 + 39); 355 } 356 *bytes = n = (n + 511) & ~511; 357 return(n / 512 + 47); 358 } 359 #if ZALLOC_ZONE_LIMIT > 8192 360 if (n < 16384) { 361 *bytes = n = (n + 1023) & ~1023; 362 return(n / 1024 + 55); 363 } 364 #endif 365 #if ZALLOC_ZONE_LIMIT > 16384 366 if (n < 32768) { 367 *bytes = n = (n + 2047) & ~2047; 368 return(n / 2048 + 63); 369 } 370 #endif 371 panic("Unexpected byte count %d", n); 372 return(0); 373 } 374 375 /* 376 * malloc() (SLAB ALLOCATOR) 377 * 378 * Allocate memory via the slab allocator. If the request is too large, 379 * or if it page-aligned beyond a certain size, we fall back to the 380 * KMEM subsystem. A SLAB tracking descriptor must be specified, use 381 * &SlabMisc if you don't care. 382 * 383 * M_RNOWAIT - don't block. 384 * M_NULLOK - return NULL instead of blocking. 385 * M_ZERO - zero the returned memory. 386 * M_USE_RESERVE - allow greater drawdown of the free list 387 * M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted 388 * 389 * MPSAFE 390 */ 391 392 void * 393 kmalloc(unsigned long size, struct malloc_type *type, int flags) 394 { 395 SLZone *z; 396 SLChunk *chunk; 397 SLGlobalData *slgd; 398 struct globaldata *gd; 399 int zi; 400 #ifdef INVARIANTS 401 int i; 402 #endif 403 404 logmemory_quick(malloc_beg); 405 gd = mycpu; 406 slgd = &gd->gd_slab; 407 408 /* 409 * XXX silly to have this in the critical path. 410 */ 411 if (type->ks_limit == 0) { 412 crit_enter(); 413 if (type->ks_limit == 0) 414 malloc_init(type); 415 crit_exit(); 416 } 417 ++type->ks_calls; 418 419 /* 420 * Handle the case where the limit is reached. Panic if we can't return 421 * NULL. The original malloc code looped, but this tended to 422 * simply deadlock the computer. 423 * 424 * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used 425 * to determine if a more complete limit check should be done. The 426 * actual memory use is tracked via ks_memuse[cpu]. 427 */ 428 while (type->ks_loosememuse >= type->ks_limit) { 429 int i; 430 long ttl; 431 432 for (i = ttl = 0; i < ncpus; ++i) 433 ttl += type->ks_memuse[i]; 434 type->ks_loosememuse = ttl; /* not MP synchronized */ 435 if (ttl >= type->ks_limit) { 436 if (flags & M_NULLOK) { 437 logmemory(malloc, NULL, type, size, flags); 438 return(NULL); 439 } 440 panic("%s: malloc limit exceeded", type->ks_shortdesc); 441 } 442 } 443 444 /* 445 * Handle the degenerate size == 0 case. Yes, this does happen. 446 * Return a special pointer. This is to maintain compatibility with 447 * the original malloc implementation. Certain devices, such as the 448 * adaptec driver, not only allocate 0 bytes, they check for NULL and 449 * also realloc() later on. Joy. 450 */ 451 if (size == 0) { 452 logmemory(malloc, ZERO_LENGTH_PTR, type, size, flags); 453 return(ZERO_LENGTH_PTR); 454 } 455 456 /* 457 * Handle hysteresis from prior frees here in malloc(). We cannot 458 * safely manipulate the kernel_map in free() due to free() possibly 459 * being called via an IPI message or from sensitive interrupt code. 460 */ 461 while (slgd->NFreeZones > ZONE_RELS_THRESH && (flags & M_RNOWAIT) == 0) { 462 crit_enter(); 463 if (slgd->NFreeZones > ZONE_RELS_THRESH) { /* crit sect race */ 464 z = slgd->FreeZones; 465 slgd->FreeZones = z->z_Next; 466 --slgd->NFreeZones; 467 kmem_slab_free(z, ZoneSize); /* may block */ 468 } 469 crit_exit(); 470 } 471 /* 472 * XXX handle oversized frees that were queued from free(). 473 */ 474 while (slgd->FreeOvZones && (flags & M_RNOWAIT) == 0) { 475 crit_enter(); 476 if ((z = slgd->FreeOvZones) != NULL) { 477 KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC); 478 slgd->FreeOvZones = z->z_Next; 479 kmem_slab_free(z, z->z_ChunkSize); /* may block */ 480 } 481 crit_exit(); 482 } 483 484 /* 485 * Handle large allocations directly. There should not be very many of 486 * these so performance is not a big issue. 487 * 488 * The backend allocator is pretty nasty on a SMP system. Use the 489 * slab allocator for one and two page-sized chunks even though we lose 490 * some efficiency. XXX maybe fix mmio and the elf loader instead. 491 */ 492 if (size >= ZoneLimit || ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) { 493 struct kmemusage *kup; 494 495 size = round_page(size); 496 chunk = kmem_slab_alloc(size, PAGE_SIZE, flags); 497 if (chunk == NULL) { 498 logmemory(malloc, NULL, type, size, flags); 499 return(NULL); 500 } 501 flags &= ~M_ZERO; /* result already zero'd if M_ZERO was set */ 502 flags |= M_PASSIVE_ZERO; 503 kup = btokup(chunk); 504 kup->ku_pagecnt = size / PAGE_SIZE; 505 kup->ku_cpu = gd->gd_cpuid; 506 crit_enter(); 507 goto done; 508 } 509 510 /* 511 * Attempt to allocate out of an existing zone. First try the free list, 512 * then allocate out of unallocated space. If we find a good zone move 513 * it to the head of the list so later allocations find it quickly 514 * (we might have thousands of zones in the list). 515 * 516 * Note: zoneindex() will panic of size is too large. 517 */ 518 zi = zoneindex(&size); 519 KKASSERT(zi < NZONES); 520 crit_enter(); 521 if ((z = slgd->ZoneAry[zi]) != NULL) { 522 KKASSERT(z->z_NFree > 0); 523 524 /* 525 * Remove us from the ZoneAry[] when we become empty 526 */ 527 if (--z->z_NFree == 0) { 528 slgd->ZoneAry[zi] = z->z_Next; 529 z->z_Next = NULL; 530 } 531 532 /* 533 * Locate a chunk in a free page. This attempts to localize 534 * reallocations into earlier pages without us having to sort 535 * the chunk list. A chunk may still overlap a page boundary. 536 */ 537 while (z->z_FirstFreePg < ZonePageCount) { 538 if ((chunk = z->z_PageAry[z->z_FirstFreePg]) != NULL) { 539 #ifdef DIAGNOSTIC 540 /* 541 * Diagnostic: c_Next is not total garbage. 542 */ 543 KKASSERT(chunk->c_Next == NULL || 544 ((intptr_t)chunk->c_Next & IN_SAME_PAGE_MASK) == 545 ((intptr_t)chunk & IN_SAME_PAGE_MASK)); 546 #endif 547 #ifdef INVARIANTS 548 if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd) 549 panic("chunk %p FFPG %d/%d", chunk, z->z_FirstFreePg, ZonePageCount); 550 if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart) 551 panic("chunkNEXT %p %p FFPG %d/%d", chunk, chunk->c_Next, z->z_FirstFreePg, ZonePageCount); 552 chunk_mark_allocated(z, chunk); 553 #endif 554 z->z_PageAry[z->z_FirstFreePg] = chunk->c_Next; 555 goto done; 556 } 557 ++z->z_FirstFreePg; 558 } 559 560 /* 561 * No chunks are available but NFree said we had some memory, so 562 * it must be available in the never-before-used-memory area 563 * governed by UIndex. The consequences are very serious if our zone 564 * got corrupted so we use an explicit panic rather then a KASSERT. 565 */ 566 if (z->z_UIndex + 1 != z->z_NMax) 567 z->z_UIndex = z->z_UIndex + 1; 568 else 569 z->z_UIndex = 0; 570 if (z->z_UIndex == z->z_UEndIndex) 571 panic("slaballoc: corrupted zone"); 572 chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size); 573 if ((z->z_Flags & SLZF_UNOTZEROD) == 0) { 574 flags &= ~M_ZERO; 575 flags |= M_PASSIVE_ZERO; 576 } 577 #if defined(INVARIANTS) 578 chunk_mark_allocated(z, chunk); 579 #endif 580 goto done; 581 } 582 583 /* 584 * If all zones are exhausted we need to allocate a new zone for this 585 * index. Use M_ZERO to take advantage of pre-zerod pages. Also see 586 * UAlloc use above in regards to M_ZERO. Note that when we are reusing 587 * a zone from the FreeZones list UAlloc'd data will not be zero'd, and 588 * we do not pre-zero it because we do not want to mess up the L1 cache. 589 * 590 * At least one subsystem, the tty code (see CROUND) expects power-of-2 591 * allocations to be power-of-2 aligned. We maintain compatibility by 592 * adjusting the base offset below. 593 */ 594 { 595 int off; 596 597 if ((z = slgd->FreeZones) != NULL) { 598 slgd->FreeZones = z->z_Next; 599 --slgd->NFreeZones; 600 bzero(z, sizeof(SLZone)); 601 z->z_Flags |= SLZF_UNOTZEROD; 602 } else { 603 z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO); 604 if (z == NULL) 605 goto fail; 606 } 607 608 /* 609 * How big is the base structure? 610 */ 611 #if defined(INVARIANTS) 612 /* 613 * Make room for z_Bitmap. An exact calculation is somewhat more 614 * complicated so don't make an exact calculation. 615 */ 616 off = offsetof(SLZone, z_Bitmap[(ZoneSize / size + 31) / 32]); 617 bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8); 618 #else 619 off = sizeof(SLZone); 620 #endif 621 622 /* 623 * Guarentee power-of-2 alignment for power-of-2-sized chunks. 624 * Otherwise just 8-byte align the data. 625 */ 626 if ((size | (size - 1)) + 1 == (size << 1)) 627 off = (off + size - 1) & ~(size - 1); 628 else 629 off = (off + MIN_CHUNK_MASK) & ~MIN_CHUNK_MASK; 630 z->z_Magic = ZALLOC_SLAB_MAGIC; 631 z->z_ZoneIndex = zi; 632 z->z_NMax = (ZoneSize - off) / size; 633 z->z_NFree = z->z_NMax - 1; 634 z->z_BasePtr = (char *)z + off; 635 z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax; 636 z->z_ChunkSize = size; 637 z->z_FirstFreePg = ZonePageCount; 638 z->z_CpuGd = gd; 639 z->z_Cpu = gd->gd_cpuid; 640 chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size); 641 z->z_Next = slgd->ZoneAry[zi]; 642 slgd->ZoneAry[zi] = z; 643 if ((z->z_Flags & SLZF_UNOTZEROD) == 0) { 644 flags &= ~M_ZERO; /* already zero'd */ 645 flags |= M_PASSIVE_ZERO; 646 } 647 #if defined(INVARIANTS) 648 chunk_mark_allocated(z, chunk); 649 #endif 650 651 /* 652 * Slide the base index for initial allocations out of the next 653 * zone we create so we do not over-weight the lower part of the 654 * cpu memory caches. 655 */ 656 slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE) 657 & (ZALLOC_MAX_ZONE_SIZE - 1); 658 } 659 done: 660 ++type->ks_inuse[gd->gd_cpuid]; 661 type->ks_memuse[gd->gd_cpuid] += size; 662 type->ks_loosememuse += size; /* not MP synchronized */ 663 crit_exit(); 664 if (flags & M_ZERO) 665 bzero(chunk, size); 666 #ifdef INVARIANTS 667 else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) { 668 if (use_malloc_pattern) { 669 for (i = 0; i < size; i += sizeof(int)) { 670 *(int *)((char *)chunk + i) = -1; 671 } 672 } 673 chunk->c_Next = (void *)-1; /* avoid accidental double-free check */ 674 } 675 #endif 676 logmemory(malloc, chunk, type, size, flags); 677 return(chunk); 678 fail: 679 crit_exit(); 680 logmemory(malloc, NULL, type, size, flags); 681 return(NULL); 682 } 683 684 /* 685 * kernel realloc. (SLAB ALLOCATOR) (MP SAFE) 686 * 687 * Generally speaking this routine is not called very often and we do 688 * not attempt to optimize it beyond reusing the same pointer if the 689 * new size fits within the chunking of the old pointer's zone. 690 */ 691 void * 692 krealloc(void *ptr, unsigned long size, struct malloc_type *type, int flags) 693 { 694 SLZone *z; 695 void *nptr; 696 unsigned long osize; 697 698 KKASSERT((flags & M_ZERO) == 0); /* not supported */ 699 700 if (ptr == NULL || ptr == ZERO_LENGTH_PTR) 701 return(kmalloc(size, type, flags)); 702 if (size == 0) { 703 kfree(ptr, type); 704 return(NULL); 705 } 706 707 /* 708 * Handle oversized allocations. XXX we really should require that a 709 * size be passed to free() instead of this nonsense. 710 */ 711 { 712 struct kmemusage *kup; 713 714 kup = btokup(ptr); 715 if (kup->ku_pagecnt) { 716 osize = kup->ku_pagecnt << PAGE_SHIFT; 717 if (osize == round_page(size)) 718 return(ptr); 719 if ((nptr = kmalloc(size, type, flags)) == NULL) 720 return(NULL); 721 bcopy(ptr, nptr, min(size, osize)); 722 kfree(ptr, type); 723 return(nptr); 724 } 725 } 726 727 /* 728 * Get the original allocation's zone. If the new request winds up 729 * using the same chunk size we do not have to do anything. 730 */ 731 z = (SLZone *)((uintptr_t)ptr & ~(uintptr_t)ZoneMask); 732 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC); 733 734 zoneindex(&size); 735 if (z->z_ChunkSize == size) 736 return(ptr); 737 738 /* 739 * Allocate memory for the new request size. Note that zoneindex has 740 * already adjusted the request size to the appropriate chunk size, which 741 * should optimize our bcopy(). Then copy and return the new pointer. 742 */ 743 if ((nptr = kmalloc(size, type, flags)) == NULL) 744 return(NULL); 745 bcopy(ptr, nptr, min(size, z->z_ChunkSize)); 746 kfree(ptr, type); 747 return(nptr); 748 } 749 750 /* 751 * Allocate a copy of the specified string. 752 * 753 * (MP SAFE) (MAY BLOCK) 754 */ 755 char * 756 kstrdup(const char *str, struct malloc_type *type) 757 { 758 int zlen; /* length inclusive of terminating NUL */ 759 char *nstr; 760 761 if (str == NULL) 762 return(NULL); 763 zlen = strlen(str) + 1; 764 nstr = kmalloc(zlen, type, M_WAITOK); 765 bcopy(str, nstr, zlen); 766 return(nstr); 767 } 768 769 #ifdef SMP 770 /* 771 * free() (SLAB ALLOCATOR) 772 * 773 * Free the specified chunk of memory. 774 */ 775 static 776 void 777 free_remote(void *ptr) 778 { 779 logmemory(free_remote, ptr, *(struct malloc_type **)ptr, -1, 0); 780 kfree(ptr, *(struct malloc_type **)ptr); 781 } 782 783 #endif 784 785 /* 786 * free (SLAB ALLOCATOR) 787 * 788 * Free a memory block previously allocated by malloc. Note that we do not 789 * attempt to uplodate ks_loosememuse as MP races could prevent us from 790 * checking memory limits in malloc. 791 * 792 * MPSAFE 793 */ 794 void 795 kfree(void *ptr, struct malloc_type *type) 796 { 797 SLZone *z; 798 SLChunk *chunk; 799 SLGlobalData *slgd; 800 struct globaldata *gd; 801 int pgno; 802 803 logmemory_quick(free_beg); 804 gd = mycpu; 805 slgd = &gd->gd_slab; 806 807 if (ptr == NULL) 808 panic("trying to free NULL pointer"); 809 810 /* 811 * Handle special 0-byte allocations 812 */ 813 if (ptr == ZERO_LENGTH_PTR) { 814 logmemory(free_zero, ptr, type, -1, 0); 815 logmemory_quick(free_end); 816 return; 817 } 818 819 /* 820 * Handle oversized allocations. XXX we really should require that a 821 * size be passed to free() instead of this nonsense. 822 * 823 * This code is never called via an ipi. 824 */ 825 { 826 struct kmemusage *kup; 827 unsigned long size; 828 829 kup = btokup(ptr); 830 if (kup->ku_pagecnt) { 831 size = kup->ku_pagecnt << PAGE_SHIFT; 832 kup->ku_pagecnt = 0; 833 #ifdef INVARIANTS 834 KKASSERT(sizeof(weirdary) <= size); 835 bcopy(weirdary, ptr, sizeof(weirdary)); 836 #endif 837 /* 838 * note: we always adjust our cpu's slot, not the originating 839 * cpu (kup->ku_cpuid). The statistics are in aggregate. 840 * 841 * note: XXX we have still inherited the interrupts-can't-block 842 * assumption. An interrupt thread does not bump 843 * gd_intr_nesting_level so check TDF_INTTHREAD. This is 844 * primarily until we can fix softupdate's assumptions about free(). 845 */ 846 crit_enter(); 847 --type->ks_inuse[gd->gd_cpuid]; 848 type->ks_memuse[gd->gd_cpuid] -= size; 849 if (mycpu->gd_intr_nesting_level || (gd->gd_curthread->td_flags & TDF_INTTHREAD)) { 850 logmemory(free_ovsz_delayed, ptr, type, size, 0); 851 z = (SLZone *)ptr; 852 z->z_Magic = ZALLOC_OVSZ_MAGIC; 853 z->z_Next = slgd->FreeOvZones; 854 z->z_ChunkSize = size; 855 slgd->FreeOvZones = z; 856 crit_exit(); 857 } else { 858 crit_exit(); 859 logmemory(free_ovsz, ptr, type, size, 0); 860 kmem_slab_free(ptr, size); /* may block */ 861 } 862 logmemory_quick(free_end); 863 return; 864 } 865 } 866 867 /* 868 * Zone case. Figure out the zone based on the fact that it is 869 * ZoneSize aligned. 870 */ 871 z = (SLZone *)((uintptr_t)ptr & ~(uintptr_t)ZoneMask); 872 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC); 873 874 /* 875 * If we do not own the zone then forward the request to the 876 * cpu that does. Since the timing is non-critical, a passive 877 * message is sent. 878 */ 879 if (z->z_CpuGd != gd) { 880 *(struct malloc_type **)ptr = type; 881 #ifdef SMP 882 logmemory(free_request, ptr, type, z->z_ChunkSize, 0); 883 lwkt_send_ipiq_passive(z->z_CpuGd, free_remote, ptr); 884 #else 885 panic("Corrupt SLZone"); 886 #endif 887 logmemory_quick(free_end); 888 return; 889 } 890 891 logmemory(free_chunk, ptr, type, z->z_ChunkSize, 0); 892 893 if (type->ks_magic != M_MAGIC) 894 panic("free: malloc type lacks magic"); 895 896 crit_enter(); 897 pgno = ((char *)ptr - (char *)z) >> PAGE_SHIFT; 898 chunk = ptr; 899 900 #ifdef INVARIANTS 901 /* 902 * Attempt to detect a double-free. To reduce overhead we only check 903 * if there appears to be link pointer at the base of the data. 904 */ 905 if (((intptr_t)chunk->c_Next - (intptr_t)z) >> PAGE_SHIFT == pgno) { 906 SLChunk *scan; 907 for (scan = z->z_PageAry[pgno]; scan; scan = scan->c_Next) { 908 if (scan == chunk) 909 panic("Double free at %p", chunk); 910 } 911 } 912 chunk_mark_free(z, chunk); 913 #endif 914 915 /* 916 * Put weird data into the memory to detect modifications after freeing, 917 * illegal pointer use after freeing (we should fault on the odd address), 918 * and so forth. XXX needs more work, see the old malloc code. 919 */ 920 #ifdef INVARIANTS 921 if (z->z_ChunkSize < sizeof(weirdary)) 922 bcopy(weirdary, chunk, z->z_ChunkSize); 923 else 924 bcopy(weirdary, chunk, sizeof(weirdary)); 925 #endif 926 927 /* 928 * Add this free non-zero'd chunk to a linked list for reuse, adjust 929 * z_FirstFreePg. 930 */ 931 #ifdef INVARIANTS 932 if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd) 933 panic("BADFREE %p", chunk); 934 #endif 935 chunk->c_Next = z->z_PageAry[pgno]; 936 z->z_PageAry[pgno] = chunk; 937 #ifdef INVARIANTS 938 if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart) 939 panic("BADFREE2"); 940 #endif 941 if (z->z_FirstFreePg > pgno) 942 z->z_FirstFreePg = pgno; 943 944 /* 945 * Bump the number of free chunks. If it becomes non-zero the zone 946 * must be added back onto the appropriate list. 947 */ 948 if (z->z_NFree++ == 0) { 949 z->z_Next = slgd->ZoneAry[z->z_ZoneIndex]; 950 slgd->ZoneAry[z->z_ZoneIndex] = z; 951 } 952 953 --type->ks_inuse[z->z_Cpu]; 954 type->ks_memuse[z->z_Cpu] -= z->z_ChunkSize; 955 956 /* 957 * If the zone becomes totally free, and there are other zones we 958 * can allocate from, move this zone to the FreeZones list. Since 959 * this code can be called from an IPI callback, do *NOT* try to mess 960 * with kernel_map here. Hysteresis will be performed at malloc() time. 961 */ 962 if (z->z_NFree == z->z_NMax && 963 (z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z) 964 ) { 965 SLZone **pz; 966 967 for (pz = &slgd->ZoneAry[z->z_ZoneIndex]; z != *pz; pz = &(*pz)->z_Next) 968 ; 969 *pz = z->z_Next; 970 z->z_Magic = -1; 971 z->z_Next = slgd->FreeZones; 972 slgd->FreeZones = z; 973 ++slgd->NFreeZones; 974 } 975 logmemory_quick(free_end); 976 crit_exit(); 977 } 978 979 #if defined(INVARIANTS) 980 /* 981 * Helper routines for sanity checks 982 */ 983 static 984 void 985 chunk_mark_allocated(SLZone *z, void *chunk) 986 { 987 int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize; 988 __uint32_t *bitptr; 989 990 KASSERT(bitdex >= 0 && bitdex < z->z_NMax, ("memory chunk %p bit index %d is illegal", chunk, bitdex)); 991 bitptr = &z->z_Bitmap[bitdex >> 5]; 992 bitdex &= 31; 993 KASSERT((*bitptr & (1 << bitdex)) == 0, ("memory chunk %p is already allocated!", chunk)); 994 *bitptr |= 1 << bitdex; 995 } 996 997 static 998 void 999 chunk_mark_free(SLZone *z, void *chunk) 1000 { 1001 int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize; 1002 __uint32_t *bitptr; 1003 1004 KASSERT(bitdex >= 0 && bitdex < z->z_NMax, ("memory chunk %p bit index %d is illegal!", chunk, bitdex)); 1005 bitptr = &z->z_Bitmap[bitdex >> 5]; 1006 bitdex &= 31; 1007 KASSERT((*bitptr & (1 << bitdex)) != 0, ("memory chunk %p is already free!", chunk)); 1008 *bitptr &= ~(1 << bitdex); 1009 } 1010 1011 #endif 1012 1013 /* 1014 * kmem_slab_alloc() 1015 * 1016 * Directly allocate and wire kernel memory in PAGE_SIZE chunks with the 1017 * specified alignment. M_* flags are expected in the flags field. 1018 * 1019 * Alignment must be a multiple of PAGE_SIZE. 1020 * 1021 * NOTE! XXX For the moment we use vm_map_entry_reserve/release(), 1022 * but when we move zalloc() over to use this function as its backend 1023 * we will have to switch to kreserve/krelease and call reserve(0) 1024 * after the new space is made available. 1025 * 1026 * Interrupt code which has preempted other code is not allowed to 1027 * use PQ_CACHE pages. However, if an interrupt thread is run 1028 * non-preemptively or blocks and then runs non-preemptively, then 1029 * it is free to use PQ_CACHE pages. 1030 * 1031 * This routine will currently obtain the BGL. 1032 * 1033 * MPALMOSTSAFE - acquires mplock 1034 */ 1035 static void * 1036 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags) 1037 { 1038 vm_size_t i; 1039 vm_offset_t addr; 1040 int count, vmflags, base_vmflags; 1041 thread_t td; 1042 1043 size = round_page(size); 1044 addr = vm_map_min(&kernel_map); 1045 1046 /* 1047 * Reserve properly aligned space from kernel_map. RNOWAIT allocations 1048 * cannot block. 1049 */ 1050 if (flags & M_RNOWAIT) { 1051 if (try_mplock() == 0) 1052 return(NULL); 1053 } else { 1054 get_mplock(); 1055 } 1056 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1057 crit_enter(); 1058 vm_map_lock(&kernel_map); 1059 if (vm_map_findspace(&kernel_map, addr, size, align, &addr)) { 1060 vm_map_unlock(&kernel_map); 1061 if ((flags & M_NULLOK) == 0) 1062 panic("kmem_slab_alloc(): kernel_map ran out of space!"); 1063 crit_exit(); 1064 vm_map_entry_release(count); 1065 rel_mplock(); 1066 return(NULL); 1067 } 1068 1069 /* 1070 * kernel_object maps 1:1 to kernel_map. 1071 */ 1072 vm_object_reference(&kernel_object); 1073 vm_map_insert(&kernel_map, &count, 1074 &kernel_object, addr, addr, addr + size, 1075 VM_MAPTYPE_NORMAL, 1076 VM_PROT_ALL, VM_PROT_ALL, 1077 0); 1078 1079 td = curthread; 1080 1081 base_vmflags = 0; 1082 if (flags & M_ZERO) 1083 base_vmflags |= VM_ALLOC_ZERO; 1084 if (flags & M_USE_RESERVE) 1085 base_vmflags |= VM_ALLOC_SYSTEM; 1086 if (flags & M_USE_INTERRUPT_RESERVE) 1087 base_vmflags |= VM_ALLOC_INTERRUPT; 1088 if ((flags & (M_RNOWAIT|M_WAITOK)) == 0) 1089 panic("kmem_slab_alloc: bad flags %08x (%p)", flags, ((int **)&size)[-1]); 1090 1091 1092 /* 1093 * Allocate the pages. Do not mess with the PG_ZERO flag yet. 1094 */ 1095 for (i = 0; i < size; i += PAGE_SIZE) { 1096 vm_page_t m; 1097 1098 /* 1099 * VM_ALLOC_NORMAL can only be set if we are not preempting. 1100 * 1101 * VM_ALLOC_SYSTEM is automatically set if we are preempting and 1102 * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is 1103 * implied in this case), though I'm sure if we really need to do 1104 * that. 1105 */ 1106 vmflags = base_vmflags; 1107 if (flags & M_WAITOK) { 1108 if (td->td_preempted) 1109 vmflags |= VM_ALLOC_SYSTEM; 1110 else 1111 vmflags |= VM_ALLOC_NORMAL; 1112 } 1113 1114 m = vm_page_alloc(&kernel_object, OFF_TO_IDX(addr + i), vmflags); 1115 1116 /* 1117 * If the allocation failed we either return NULL or we retry. 1118 * 1119 * If M_WAITOK is specified we wait for more memory and retry. 1120 * If M_WAITOK is specified from a preemption we yield instead of 1121 * wait. Livelock will not occur because the interrupt thread 1122 * will not be preempting anyone the second time around after the 1123 * yield. 1124 */ 1125 if (m == NULL) { 1126 if (flags & M_WAITOK) { 1127 if (td->td_preempted) { 1128 vm_map_unlock(&kernel_map); 1129 lwkt_yield(); 1130 vm_map_lock(&kernel_map); 1131 } else { 1132 vm_map_unlock(&kernel_map); 1133 vm_wait(); 1134 vm_map_lock(&kernel_map); 1135 } 1136 i -= PAGE_SIZE; /* retry */ 1137 continue; 1138 } 1139 1140 /* 1141 * We were unable to recover, cleanup and return NULL 1142 */ 1143 while (i != 0) { 1144 i -= PAGE_SIZE; 1145 m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i)); 1146 vm_page_free(m); 1147 } 1148 vm_map_delete(&kernel_map, addr, addr + size, &count); 1149 vm_map_unlock(&kernel_map); 1150 crit_exit(); 1151 vm_map_entry_release(count); 1152 rel_mplock(); 1153 return(NULL); 1154 } 1155 } 1156 1157 /* 1158 * Success! 1159 * 1160 * Mark the map entry as non-pageable using a routine that allows us to 1161 * populate the underlying pages. 1162 */ 1163 vm_map_set_wired_quick(&kernel_map, addr, size, &count); 1164 crit_exit(); 1165 1166 /* 1167 * Enter the pages into the pmap and deal with PG_ZERO and M_ZERO. 1168 */ 1169 for (i = 0; i < size; i += PAGE_SIZE) { 1170 vm_page_t m; 1171 1172 m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i)); 1173 m->valid = VM_PAGE_BITS_ALL; 1174 vm_page_wire(m); 1175 vm_page_wakeup(m); 1176 pmap_enter(&kernel_pmap, addr + i, m, VM_PROT_ALL, 1); 1177 if ((m->flags & PG_ZERO) == 0 && (flags & M_ZERO)) 1178 bzero((char *)addr + i, PAGE_SIZE); 1179 vm_page_flag_clear(m, PG_ZERO); 1180 vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_REFERENCED); 1181 } 1182 vm_map_unlock(&kernel_map); 1183 vm_map_entry_release(count); 1184 rel_mplock(); 1185 return((void *)addr); 1186 } 1187 1188 /* 1189 * kmem_slab_free() 1190 * 1191 * MPALMOSTSAFE - acquires mplock 1192 */ 1193 static void 1194 kmem_slab_free(void *ptr, vm_size_t size) 1195 { 1196 get_mplock(); 1197 crit_enter(); 1198 vm_map_remove(&kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size); 1199 crit_exit(); 1200 rel_mplock(); 1201 } 1202 1203