xref: /dragonfly/sys/kern/kern_synch.c (revision 6fb88001)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39  * $FreeBSD: src/sys/kern/kern_synch.c,v 1.87.2.6 2002/10/13 07:29:53 kbyanc Exp $
40  * $DragonFly: src/sys/kern/kern_synch.c,v 1.57 2005/12/10 18:27:24 dillon Exp $
41  */
42 
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/kernel.h>
49 #include <sys/signalvar.h>
50 #include <sys/resourcevar.h>
51 #include <sys/vmmeter.h>
52 #include <sys/sysctl.h>
53 #include <sys/thread2.h>
54 #include <sys/lock.h>
55 #ifdef KTRACE
56 #include <sys/uio.h>
57 #include <sys/ktrace.h>
58 #endif
59 #include <sys/xwait.h>
60 #include <sys/ktr.h>
61 
62 #include <machine/cpu.h>
63 #include <machine/ipl.h>
64 #include <machine/smp.h>
65 
66 TAILQ_HEAD(tslpque, thread);
67 
68 static void sched_setup (void *dummy);
69 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
70 
71 int	hogticks;
72 int	lbolt;
73 int	lbolt_syncer;
74 int	sched_quantum;		/* Roundrobin scheduling quantum in ticks. */
75 int	ncpus;
76 int	ncpus2, ncpus2_shift, ncpus2_mask;
77 int	safepri;
78 
79 static struct callout loadav_callout;
80 static struct callout schedcpu_callout;
81 MALLOC_DEFINE(M_TSLEEP, "tslpque", "tsleep queues");
82 
83 #if !defined(KTR_TSLEEP)
84 #define KTR_TSLEEP	KTR_ALL
85 #endif
86 KTR_INFO_MASTER(tsleep);
87 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_beg, 0, "tsleep enter", 0);
88 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_end, 0, "tsleep exit", 0);
89 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_beg, 0, "wakeup enter", 0);
90 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_end, 0, "wakeup exit", 0);
91 #define logtsleep(name)	KTR_LOG(tsleep_ ## name)
92 
93 struct loadavg averunnable =
94 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
95 /*
96  * Constants for averages over 1, 5, and 15 minutes
97  * when sampling at 5 second intervals.
98  */
99 static fixpt_t cexp[3] = {
100 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
101 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
102 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
103 };
104 
105 static void	endtsleep (void *);
106 static void	unsleep_and_wakeup_thread(struct thread *td);
107 static void	loadav (void *arg);
108 static void	schedcpu (void *arg);
109 
110 /*
111  * Adjust the scheduler quantum.  The quantum is specified in microseconds.
112  * Note that 'tick' is in microseconds per tick.
113  */
114 static int
115 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
116 {
117 	int error, new_val;
118 
119 	new_val = sched_quantum * tick;
120 	error = sysctl_handle_int(oidp, &new_val, 0, req);
121         if (error != 0 || req->newptr == NULL)
122 		return (error);
123 	if (new_val < tick)
124 		return (EINVAL);
125 	sched_quantum = new_val / tick;
126 	hogticks = 2 * sched_quantum;
127 	return (0);
128 }
129 
130 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
131 	0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
132 
133 /*
134  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
135  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
136  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
137  *
138  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
139  *     1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
140  *
141  * If you don't want to bother with the faster/more-accurate formula, you
142  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
143  * (more general) method of calculating the %age of CPU used by a process.
144  *
145  * decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing
146  */
147 #define CCPU_SHIFT	11
148 
149 static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
150 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
151 
152 /*
153  * kernel uses `FSCALE', userland (SHOULD) use kern.fscale
154  */
155 static int     fscale __unused = FSCALE;
156 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
157 
158 /*
159  * Recompute process priorities, once a second.
160  *
161  * Since the userland schedulers are typically event oriented, if the
162  * estcpu calculation at wakeup() time is not sufficient to make a
163  * process runnable relative to other processes in the system we have
164  * a 1-second recalc to help out.
165  *
166  * This code also allows us to store sysclock_t data in the process structure
167  * without fear of an overrun, since sysclock_t are guarenteed to hold
168  * several seconds worth of count.
169  */
170 /* ARGSUSED */
171 static void
172 schedcpu(void *arg)
173 {
174 	struct rlimit *rlim;
175 	struct proc *p;
176 	u_int64_t ttime;
177 
178 	/*
179 	 * General process statistics once a second
180 	 */
181 	FOREACH_PROC_IN_SYSTEM(p) {
182 		crit_enter();
183 		p->p_swtime++;
184 		if (p->p_stat == SSLEEP)
185 			p->p_slptime++;
186 
187 		/*
188 		 * Only recalculate processes that are active or have slept
189 		 * less then 2 seconds.  The schedulers understand this.
190 		 */
191 		if (p->p_slptime <= 1) {
192 			p->p_usched->recalculate(&p->p_lwp);
193 		} else {
194 			p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
195 		}
196 		crit_exit();
197 	}
198 
199 	/*
200 	 * Resource checks.  XXX break out since psignal/killproc can block,
201 	 * limiting us to one process killed per second.  There is probably
202 	 * a better way.
203 	 */
204 	FOREACH_PROC_IN_SYSTEM(p) {
205 		crit_enter();
206 		if (p->p_stat == SIDL ||
207 		    (p->p_flag & P_ZOMBIE) ||
208 		    p->p_limit == NULL ||
209 		    p->p_thread == NULL
210 		) {
211 			crit_exit();
212 			continue;
213 		}
214 		ttime = p->p_thread->td_sticks + p->p_thread->td_uticks;
215 		if (p->p_limit->p_cpulimit != RLIM_INFINITY &&
216 		    ttime > p->p_limit->p_cpulimit
217 		) {
218 			rlim = &p->p_rlimit[RLIMIT_CPU];
219 			if (ttime / (rlim_t)1000000 >= rlim->rlim_max) {
220 				killproc(p, "exceeded maximum CPU limit");
221 			} else {
222 				psignal(p, SIGXCPU);
223 				if (rlim->rlim_cur < rlim->rlim_max) {
224 					/* XXX: we should make a private copy */
225 					rlim->rlim_cur += 5;
226 				}
227 			}
228 			crit_exit();
229 			break;
230 		}
231 		crit_exit();
232 	}
233 
234 	wakeup((caddr_t)&lbolt);
235 	wakeup((caddr_t)&lbolt_syncer);
236 	callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
237 }
238 
239 /*
240  * This is only used by ps.  Generate a cpu percentage use over
241  * a period of one second.
242  */
243 void
244 updatepcpu(struct lwp *lp, int cpticks, int ttlticks)
245 {
246 	fixpt_t acc;
247 	int remticks;
248 
249 	acc = (cpticks << FSHIFT) / ttlticks;
250 	if (ttlticks >= ESTCPUFREQ) {
251 		lp->lwp_pctcpu = acc;
252 	} else {
253 		remticks = ESTCPUFREQ - ttlticks;
254 		lp->lwp_pctcpu = (acc * ttlticks + lp->lwp_pctcpu * remticks) /
255 				ESTCPUFREQ;
256 	}
257 }
258 
259 /*
260  * We're only looking at 7 bits of the address; everything is
261  * aligned to 4, lots of things are aligned to greater powers
262  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
263  */
264 #define TABLESIZE	128
265 #define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
266 
267 static cpumask_t slpque_cpumasks[TABLESIZE];
268 
269 /*
270  * General scheduler initialization.  We force a reschedule 25 times
271  * a second by default.  Note that cpu0 is initialized in early boot and
272  * cannot make any high level calls.
273  *
274  * Each cpu has its own sleep queue.
275  */
276 void
277 sleep_gdinit(globaldata_t gd)
278 {
279 	static struct tslpque slpque_cpu0[TABLESIZE];
280 	int i;
281 
282 	if (gd->gd_cpuid == 0) {
283 		sched_quantum = (hz + 24) / 25;
284 		hogticks = 2 * sched_quantum;
285 
286 		gd->gd_tsleep_hash = slpque_cpu0;
287 	} else {
288 		gd->gd_tsleep_hash = malloc(sizeof(slpque_cpu0),
289 					    M_TSLEEP, M_WAITOK | M_ZERO);
290 	}
291 	for (i = 0; i < TABLESIZE; ++i)
292 		TAILQ_INIT(&gd->gd_tsleep_hash[i]);
293 }
294 
295 /*
296  * General sleep call.  Suspends the current process until a wakeup is
297  * performed on the specified identifier.  The process will then be made
298  * runnable with the specified priority.  Sleeps at most timo/hz seconds
299  * (0 means no timeout).  If flags includes PCATCH flag, signals are checked
300  * before and after sleeping, else signals are not checked.  Returns 0 if
301  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
302  * signal needs to be delivered, ERESTART is returned if the current system
303  * call should be restarted if possible, and EINTR is returned if the system
304  * call should be interrupted by the signal (return EINTR).
305  *
306  * Note that if we are a process, we release_curproc() before messing with
307  * the LWKT scheduler.
308  *
309  * During autoconfiguration or after a panic, a sleep will simply
310  * lower the priority briefly to allow interrupts, then return.
311  */
312 int
313 tsleep(void *ident, int flags, const char *wmesg, int timo)
314 {
315 	struct thread *td = curthread;
316 	struct proc *p = td->td_proc;		/* may be NULL */
317 	globaldata_t gd;
318 	int sig;
319 	int catch;
320 	int id;
321 	int error;
322 	int oldpri;
323 	struct callout thandle;
324 
325 	/*
326 	 * NOTE: removed KTRPOINT, it could cause races due to blocking
327 	 * even in stable.  Just scrap it for now.
328 	 */
329 	if (cold || panicstr) {
330 		/*
331 		 * After a panic, or during autoconfiguration,
332 		 * just give interrupts a chance, then just return;
333 		 * don't run any other procs or panic below,
334 		 * in case this is the idle process and already asleep.
335 		 */
336 		splz();
337 		oldpri = td->td_pri & TDPRI_MASK;
338 		lwkt_setpri_self(safepri);
339 		lwkt_switch();
340 		lwkt_setpri_self(oldpri);
341 		return (0);
342 	}
343 	logtsleep(tsleep_beg);
344 	gd = td->td_gd;
345 	KKASSERT(td != &gd->gd_idlethread);	/* you must be kidding! */
346 
347 	/*
348 	 * NOTE: all of this occurs on the current cpu, including any
349 	 * callout-based wakeups, so a critical section is a sufficient
350 	 * interlock.
351 	 *
352 	 * The entire sequence through to where we actually sleep must
353 	 * run without breaking the critical section.
354 	 */
355 	id = LOOKUP(ident);
356 	catch = flags & PCATCH;
357 	error = 0;
358 	sig = 0;
359 
360 	crit_enter_quick(td);
361 
362 	KASSERT(ident != NULL, ("tsleep: no ident"));
363 	KASSERT(p == NULL || p->p_stat == SRUN, ("tsleep %p %s %d",
364 		ident, wmesg, p->p_stat));
365 
366 	/*
367 	 * Setup for the current process (if this is a process).
368 	 */
369 	if (p) {
370 		if (catch) {
371 			/*
372 			 * Early termination if PCATCH was set and a
373 			 * signal is pending, interlocked with the
374 			 * critical section.
375 			 *
376 			 * Early termination only occurs when tsleep() is
377 			 * entered while in a normal SRUN state.
378 			 */
379 			if ((sig = CURSIG(p)) != 0)
380 				goto resume;
381 
382 			/*
383 			 * Causes psignal to wake us up when.
384 			 */
385 			p->p_flag |= P_SINTR;
386 		}
387 
388 		/*
389 		 * Make sure the current process has been untangled from
390 		 * the userland scheduler and initialize slptime to start
391 		 * counting.
392 		 */
393 		if (flags & PNORESCHED)
394 			td->td_flags |= TDF_NORESCHED;
395 		p->p_usched->release_curproc(&p->p_lwp);
396 		p->p_slptime = 0;
397 	}
398 
399 	/*
400 	 * Move our thread to the correct queue and setup our wchan, etc.
401 	 */
402 	lwkt_deschedule_self(td);
403 	td->td_flags |= TDF_TSLEEPQ;
404 	TAILQ_INSERT_TAIL(&gd->gd_tsleep_hash[id], td, td_threadq);
405 	atomic_set_int(&slpque_cpumasks[id], gd->gd_cpumask);
406 
407 	td->td_wchan = ident;
408 	td->td_wmesg = wmesg;
409 	td->td_wdomain = flags & PDOMAIN_MASK;
410 
411 	/*
412 	 * Setup the timeout, if any
413 	 */
414 	if (timo) {
415 		callout_init(&thandle);
416 		callout_reset(&thandle, timo, endtsleep, td);
417 	}
418 
419 	/*
420 	 * Beddy bye bye.
421 	 */
422 	if (p) {
423 		/*
424 		 * Ok, we are sleeping.  Remove us from the userland runq
425 		 * and place us in the SSLEEP state.
426 		 */
427 		if (p->p_flag & P_ONRUNQ)
428 			p->p_usched->remrunqueue(&p->p_lwp);
429 		p->p_stat = SSLEEP;
430 		p->p_stats->p_ru.ru_nvcsw++;
431 		lwkt_switch();
432 		p->p_stat = SRUN;
433 	} else {
434 		lwkt_switch();
435 	}
436 
437 	/*
438 	 * Make sure we haven't switched cpus while we were asleep.  It's
439 	 * not supposed to happen.  Cleanup our temporary flags.
440 	 */
441 	KKASSERT(gd == td->td_gd);
442 	td->td_flags &= ~TDF_NORESCHED;
443 
444 	/*
445 	 * Cleanup the timeout.
446 	 */
447 	if (timo) {
448 		if (td->td_flags & TDF_TIMEOUT) {
449 			td->td_flags &= ~TDF_TIMEOUT;
450 			if (sig == 0)
451 				error = EWOULDBLOCK;
452 		} else {
453 			callout_stop(&thandle);
454 		}
455 	}
456 
457 	/*
458 	 * Since td_threadq is used both for our run queue AND for the
459 	 * tsleep hash queue, we can't still be on it at this point because
460 	 * we've gotten cpu back.
461 	 */
462 	KASSERT((td->td_flags & TDF_TSLEEPQ) == 0, ("tsleep: impossible thread flags %08x", td->td_flags));
463 	td->td_wchan = NULL;
464 	td->td_wmesg = NULL;
465 	td->td_wdomain = 0;
466 
467 	/*
468 	 * Figure out the correct error return
469 	 */
470 resume:
471 	if (p) {
472 		p->p_flag &= ~(P_BREAKTSLEEP | P_SINTR);
473 		if (catch && error == 0 && (sig != 0 || (sig = CURSIG(p)))) {
474 			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
475 				error = EINTR;
476 			else
477 				error = ERESTART;
478 		}
479 	}
480 	logtsleep(tsleep_end);
481 	crit_exit_quick(td);
482 	return (error);
483 }
484 
485 /*
486  * This is a dandy function that allows us to interlock tsleep/wakeup
487  * operations with unspecified upper level locks, such as lockmgr locks,
488  * simply by holding a critical section.  The sequence is:
489  *
490  *	(enter critical section)
491  *	(acquire upper level lock)
492  *	tsleep_interlock(blah)
493  *	(release upper level lock)
494  *	tsleep(blah, ...)
495  *	(exit critical section)
496  *
497  * Basically this function sets our cpumask for the ident which informs
498  * other cpus that our cpu 'might' be waiting (or about to wait on) the
499  * hash index related to the ident.  The critical section prevents another
500  * cpu's wakeup() from being processed on our cpu until we are actually
501  * able to enter the tsleep().  Thus, no race occurs between our attempt
502  * to release a resource and sleep, and another cpu's attempt to acquire
503  * a resource and call wakeup.
504  *
505  * There isn't much of a point to this function unless you call it while
506  * holding a critical section.
507  */
508 void
509 tsleep_interlock(void *ident)
510 {
511 	int id = LOOKUP(ident);
512 
513 	atomic_set_int(&slpque_cpumasks[id], mycpu->gd_cpumask);
514 }
515 
516 /*
517  * Implement the timeout for tsleep.
518  *
519  * We set P_BREAKTSLEEP to indicate that an event has occured, but
520  * we only call setrunnable if the process is not stopped.
521  *
522  * This type of callout timeout is scheduled on the same cpu the process
523  * is sleeping on.  Also, at the moment, the MP lock is held.
524  */
525 static void
526 endtsleep(void *arg)
527 {
528 	thread_t td = arg;
529 	struct proc *p;
530 
531 	ASSERT_MP_LOCK_HELD(curthread);
532 	crit_enter();
533 
534 	/*
535 	 * cpu interlock.  Thread flags are only manipulated on
536 	 * the cpu owning the thread.  proc flags are only manipulated
537 	 * by the older of the MP lock.  We have both.
538 	 */
539 	if (td->td_flags & TDF_TSLEEPQ) {
540 		td->td_flags |= TDF_TIMEOUT;
541 
542 		if ((p = td->td_proc) != NULL) {
543 			p->p_flag |= P_BREAKTSLEEP;
544 			if ((p->p_flag & P_STOPPED) == 0)
545 				setrunnable(p);
546 		} else {
547 			unsleep_and_wakeup_thread(td);
548 		}
549 	}
550 	crit_exit();
551 }
552 
553 /*
554  * Unsleep and wakeup a thread.  This function runs without the MP lock
555  * which means that it can only manipulate thread state on the owning cpu,
556  * and cannot touch the process state at all.
557  */
558 static
559 void
560 unsleep_and_wakeup_thread(struct thread *td)
561 {
562 	globaldata_t gd = mycpu;
563 	int id;
564 
565 #ifdef SMP
566 	if (td->td_gd != gd) {
567 		lwkt_send_ipiq(td->td_gd, (ipifunc1_t)unsleep_and_wakeup_thread, td);
568 		return;
569 	}
570 #endif
571 	crit_enter();
572 	if (td->td_flags & TDF_TSLEEPQ) {
573 		td->td_flags &= ~TDF_TSLEEPQ;
574 		id = LOOKUP(td->td_wchan);
575 		TAILQ_REMOVE(&gd->gd_tsleep_hash[id], td, td_threadq);
576 		if (TAILQ_FIRST(&gd->gd_tsleep_hash[id]) == NULL)
577 			atomic_clear_int(&slpque_cpumasks[id], gd->gd_cpumask);
578 		lwkt_schedule(td);
579 	}
580 	crit_exit();
581 }
582 
583 /*
584  * Make all processes sleeping on the specified identifier runnable.
585  * count may be zero or one only.
586  *
587  * The domain encodes the sleep/wakeup domain AND the first cpu to check
588  * (which is always the current cpu).  As we iterate across cpus
589  *
590  * This call may run without the MP lock held.  We can only manipulate thread
591  * state on the cpu owning the thread.  We CANNOT manipulate process state
592  * at all.
593  */
594 static void
595 _wakeup(void *ident, int domain)
596 {
597 	struct tslpque *qp;
598 	struct thread *td;
599 	struct thread *ntd;
600 	globaldata_t gd;
601 #ifdef SMP
602 	cpumask_t mask;
603 	cpumask_t tmask;
604 	int startcpu;
605 	int nextcpu;
606 #endif
607 	int id;
608 
609 	crit_enter();
610 	logtsleep(wakeup_beg);
611 	gd = mycpu;
612 	id = LOOKUP(ident);
613 	qp = &gd->gd_tsleep_hash[id];
614 restart:
615 	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
616 		ntd = TAILQ_NEXT(td, td_threadq);
617 		if (td->td_wchan == ident &&
618 		    td->td_wdomain == (domain & PDOMAIN_MASK)
619 		) {
620 			KKASSERT(td->td_flags & TDF_TSLEEPQ);
621 			td->td_flags &= ~TDF_TSLEEPQ;
622 			TAILQ_REMOVE(qp, td, td_threadq);
623 			if (TAILQ_FIRST(qp) == NULL) {
624 				atomic_clear_int(&slpque_cpumasks[id],
625 						 gd->gd_cpumask);
626 			}
627 			lwkt_schedule(td);
628 			if (domain & PWAKEUP_ONE)
629 				goto done;
630 			goto restart;
631 		}
632 	}
633 
634 #ifdef SMP
635 	/*
636 	 * We finished checking the current cpu but there still may be
637 	 * more work to do.  Either wakeup_one was requested and no matching
638 	 * thread was found, or a normal wakeup was requested and we have
639 	 * to continue checking cpus.
640 	 *
641 	 * The cpu that started the wakeup sequence is encoded in the domain.
642 	 * We use this information to determine which cpus still need to be
643 	 * checked, locate a candidate cpu, and chain the wakeup
644 	 * asynchronously with an IPI message.
645 	 *
646 	 * It should be noted that this scheme is actually less expensive then
647 	 * the old scheme when waking up multiple threads, since we send
648 	 * only one IPI message per target candidate which may then schedule
649 	 * multiple threads.  Before we could have wound up sending an IPI
650 	 * message for each thread on the target cpu (!= current cpu) that
651 	 * needed to be woken up.
652 	 *
653 	 * NOTE: Wakeups occuring on remote cpus are asynchronous.  This
654 	 * should be ok since we are passing idents in the IPI rather then
655 	 * thread pointers.
656 	 */
657 	if ((mask = slpque_cpumasks[id]) != 0) {
658 		/*
659 		 * Look for a cpu that might have work to do.  Mask out cpus
660 		 * which have already been processed.
661 		 *
662 		 * 31xxxxxxxxxxxxxxxxxxxxxxxxxxxxx0
663 		 *        ^        ^           ^
664 		 *      start   currentcpu    start
665 		 *      case2                 case1
666 		 *        *        *           *
667 		 * 11111111111111110000000000000111	case1
668 		 * 00000000111111110000000000000000	case2
669 		 *
670 		 * case1:  We started at start_case1 and processed through
671 		 *  	   to the current cpu.  We have to check any bits
672 		 *	   after the current cpu, then check bits before
673 		 *         the starting cpu.
674 		 *
675 		 * case2:  We have already checked all the bits from
676 		 *         start_case2 to the end, and from 0 to the current
677 		 *         cpu.  We just have the bits from the current cpu
678 		 *         to start_case2 left to check.
679 		 */
680 		startcpu = PWAKEUP_DECODE(domain);
681 		if (gd->gd_cpuid >= startcpu) {
682 			/*
683 			 * CASE1
684 			 */
685 			tmask = mask & ~((gd->gd_cpumask << 1) - 1);
686 			if (mask & tmask) {
687 				nextcpu = bsfl(mask & tmask);
688 				lwkt_send_ipiq2(globaldata_find(nextcpu),
689 						_wakeup, ident, domain);
690 			} else {
691 				tmask = (1 << startcpu) - 1;
692 				if (mask & tmask) {
693 					nextcpu = bsfl(mask & tmask);
694 					lwkt_send_ipiq2(
695 						    globaldata_find(nextcpu),
696 						    _wakeup, ident, domain);
697 				}
698 			}
699 		} else {
700 			/*
701 			 * CASE2
702 			 */
703 			tmask = ~((gd->gd_cpumask << 1) - 1) &
704 				 ((1 << startcpu) - 1);
705 			if (mask & tmask) {
706 				nextcpu = bsfl(mask & tmask);
707 				lwkt_send_ipiq2(globaldata_find(nextcpu),
708 						_wakeup, ident, domain);
709 			}
710 		}
711 	}
712 #endif
713 done:
714 	logtsleep(wakeup_end);
715 	crit_exit();
716 }
717 
718 void
719 wakeup(void *ident)
720 {
721     _wakeup(ident, PWAKEUP_ENCODE(0, mycpu->gd_cpuid));
722 }
723 
724 void
725 wakeup_one(void *ident)
726 {
727     /* XXX potentially round-robin the first responding cpu */
728     _wakeup(ident, PWAKEUP_ENCODE(0, mycpu->gd_cpuid) | PWAKEUP_ONE);
729 }
730 
731 void
732 wakeup_domain(void *ident, int domain)
733 {
734     _wakeup(ident, PWAKEUP_ENCODE(domain, mycpu->gd_cpuid));
735 }
736 
737 void
738 wakeup_domain_one(void *ident, int domain)
739 {
740     /* XXX potentially round-robin the first responding cpu */
741     _wakeup(ident, PWAKEUP_ENCODE(domain, mycpu->gd_cpuid) | PWAKEUP_ONE);
742 }
743 
744 /*
745  * setrunnable()
746  *
747  * Make a process runnable.  The MP lock must be held on call.  This only
748  * has an effect if we are in SSLEEP.  We only break out of the
749  * tsleep if P_BREAKTSLEEP is set, otherwise we just fix-up the state.
750  *
751  * NOTE: With the MP lock held we can only safely manipulate the process
752  * structure.  We cannot safely manipulate the thread structure.
753  */
754 void
755 setrunnable(struct proc *p)
756 {
757 	crit_enter();
758 	ASSERT_MP_LOCK_HELD(curthread);
759 	p->p_flag &= ~P_STOPPED;
760 	if (p->p_stat == SSLEEP && (p->p_flag & P_BREAKTSLEEP)) {
761 		unsleep_and_wakeup_thread(p->p_thread);
762 	}
763 	crit_exit();
764 }
765 
766 /*
767  * The process is stopped due to some condition, usually because P_STOPPED
768  * is set but also possibly due to being traced.
769  *
770  * NOTE!  If the caller sets P_STOPPED, the caller must also clear P_WAITED
771  * because the parent may check the child's status before the child actually
772  * gets to this routine.
773  *
774  * This routine is called with the current process only, typically just
775  * before returning to userland.
776  *
777  * Setting P_BREAKTSLEEP before entering the tsleep will cause a passive
778  * SIGCONT to break out of the tsleep.
779  */
780 void
781 tstop(struct proc *p)
782 {
783 	wakeup((caddr_t)p->p_pptr);
784 	p->p_flag |= P_BREAKTSLEEP;
785 	tsleep(p, 0, "stop", 0);
786 }
787 
788 /*
789  * Yield / synchronous reschedule.  This is a bit tricky because the trap
790  * code might have set a lazy release on the switch function.   Setting
791  * P_PASSIVE_ACQ will ensure that the lazy release executes when we call
792  * switch, and that we are given a greater chance of affinity with our
793  * current cpu.
794  *
795  * We call lwkt_setpri_self() to rotate our thread to the end of the lwkt
796  * run queue.  lwkt_switch() will also execute any assigned passive release
797  * (which usually calls release_curproc()), allowing a same/higher priority
798  * process to be designated as the current process.
799  *
800  * While it is possible for a lower priority process to be designated,
801  * it's call to lwkt_maybe_switch() in acquire_curproc() will likely
802  * round-robin back to us and we will be able to re-acquire the current
803  * process designation.
804  */
805 void
806 uio_yield(void)
807 {
808 	struct thread *td = curthread;
809 	struct proc *p = td->td_proc;
810 
811 	lwkt_setpri_self(td->td_pri & TDPRI_MASK);
812 	if (p) {
813 		p->p_flag |= P_PASSIVE_ACQ;
814 		lwkt_switch();
815 		p->p_flag &= ~P_PASSIVE_ACQ;
816 	} else {
817 		lwkt_switch();
818 	}
819 }
820 
821 /*
822  * Compute a tenex style load average of a quantity on
823  * 1, 5 and 15 minute intervals.
824  */
825 static void
826 loadav(void *arg)
827 {
828 	int i, nrun;
829 	struct loadavg *avg;
830 	struct proc *p;
831 	thread_t td;
832 
833 	avg = &averunnable;
834 	nrun = 0;
835 	FOREACH_PROC_IN_SYSTEM(p) {
836 		switch (p->p_stat) {
837 		case SRUN:
838 			if ((td = p->p_thread) == NULL)
839 				break;
840 			if (td->td_flags & TDF_BLOCKED)
841 				break;
842 			/* fall through */
843 		case SIDL:
844 			nrun++;
845 			break;
846 		default:
847 			break;
848 		}
849 	}
850 	for (i = 0; i < 3; i++)
851 		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
852 		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
853 
854 	/*
855 	 * Schedule the next update to occur after 5 seconds, but add a
856 	 * random variation to avoid synchronisation with processes that
857 	 * run at regular intervals.
858 	 */
859 	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
860 	    loadav, NULL);
861 }
862 
863 /* ARGSUSED */
864 static void
865 sched_setup(void *dummy)
866 {
867 	callout_init(&loadav_callout);
868 	callout_init(&schedcpu_callout);
869 
870 	/* Kick off timeout driven events by calling first time. */
871 	schedcpu(NULL);
872 	loadav(NULL);
873 }
874 
875