xref: /dragonfly/sys/kern/kern_synch.c (revision a68e0df0)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39  * $FreeBSD: src/sys/kern/kern_synch.c,v 1.87.2.6 2002/10/13 07:29:53 kbyanc Exp $
40  * $DragonFly: src/sys/kern/kern_synch.c,v 1.91 2008/09/09 04:06:13 dillon Exp $
41  */
42 
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/kernel.h>
49 #include <sys/signalvar.h>
50 #include <sys/resourcevar.h>
51 #include <sys/vmmeter.h>
52 #include <sys/sysctl.h>
53 #include <sys/lock.h>
54 #ifdef KTRACE
55 #include <sys/uio.h>
56 #include <sys/ktrace.h>
57 #endif
58 #include <sys/xwait.h>
59 #include <sys/ktr.h>
60 #include <sys/serialize.h>
61 
62 #include <sys/signal2.h>
63 #include <sys/thread2.h>
64 #include <sys/spinlock2.h>
65 #include <sys/mutex2.h>
66 #include <sys/mplock2.h>
67 
68 #include <machine/cpu.h>
69 #include <machine/smp.h>
70 
71 TAILQ_HEAD(tslpque, thread);
72 
73 static void sched_setup (void *dummy);
74 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
75 
76 int	hogticks;
77 int	lbolt;
78 int	lbolt_syncer;
79 int	sched_quantum;		/* Roundrobin scheduling quantum in ticks. */
80 int	ncpus;
81 int	ncpus2, ncpus2_shift, ncpus2_mask;
82 int	ncpus_fit, ncpus_fit_mask;
83 int	safepri;
84 int	tsleep_now_works;
85 
86 static struct callout loadav_callout;
87 static struct callout schedcpu_callout;
88 MALLOC_DEFINE(M_TSLEEP, "tslpque", "tsleep queues");
89 
90 #define __DEALL(ident)	__DEQUALIFY(void *, ident)
91 
92 #if !defined(KTR_TSLEEP)
93 #define KTR_TSLEEP	KTR_ALL
94 #endif
95 KTR_INFO_MASTER(tsleep);
96 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_beg, 0, "tsleep enter %p", sizeof(void *));
97 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_end, 1, "tsleep exit", 0);
98 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_beg, 2, "wakeup enter %p", sizeof(void *));
99 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_end, 3, "wakeup exit", 0);
100 KTR_INFO(KTR_TSLEEP, tsleep, ilockfail,  4, "interlock failed %p", sizeof(void *));
101 
102 #define logtsleep1(name)	KTR_LOG(tsleep_ ## name)
103 #define logtsleep2(name, val)	KTR_LOG(tsleep_ ## name, val)
104 
105 struct loadavg averunnable =
106 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
107 /*
108  * Constants for averages over 1, 5, and 15 minutes
109  * when sampling at 5 second intervals.
110  */
111 static fixpt_t cexp[3] = {
112 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
113 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
114 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
115 };
116 
117 static void	endtsleep (void *);
118 static void	loadav (void *arg);
119 static void	schedcpu (void *arg);
120 #ifdef SMP
121 static void	tsleep_wakeup(struct thread *td);
122 #endif
123 
124 /*
125  * Adjust the scheduler quantum.  The quantum is specified in microseconds.
126  * Note that 'tick' is in microseconds per tick.
127  */
128 static int
129 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
130 {
131 	int error, new_val;
132 
133 	new_val = sched_quantum * ustick;
134 	error = sysctl_handle_int(oidp, &new_val, 0, req);
135         if (error != 0 || req->newptr == NULL)
136 		return (error);
137 	if (new_val < ustick)
138 		return (EINVAL);
139 	sched_quantum = new_val / ustick;
140 	hogticks = 2 * sched_quantum;
141 	return (0);
142 }
143 
144 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
145 	0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
146 
147 /*
148  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
149  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
150  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
151  *
152  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
153  *     1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
154  *
155  * If you don't want to bother with the faster/more-accurate formula, you
156  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
157  * (more general) method of calculating the %age of CPU used by a process.
158  *
159  * decay 95% of `lwp_pctcpu' in 60 seconds; see CCPU_SHIFT before changing
160  */
161 #define CCPU_SHIFT	11
162 
163 static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
164 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
165 
166 /*
167  * kernel uses `FSCALE', userland (SHOULD) use kern.fscale
168  */
169 int     fscale __unused = FSCALE;	/* exported to systat */
170 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
171 
172 /*
173  * Recompute process priorities, once a second.
174  *
175  * Since the userland schedulers are typically event oriented, if the
176  * estcpu calculation at wakeup() time is not sufficient to make a
177  * process runnable relative to other processes in the system we have
178  * a 1-second recalc to help out.
179  *
180  * This code also allows us to store sysclock_t data in the process structure
181  * without fear of an overrun, since sysclock_t are guarenteed to hold
182  * several seconds worth of count.
183  *
184  * WARNING!  callouts can preempt normal threads.  However, they will not
185  * preempt a thread holding a spinlock so we *can* safely use spinlocks.
186  */
187 static int schedcpu_stats(struct proc *p, void *data __unused);
188 static int schedcpu_resource(struct proc *p, void *data __unused);
189 
190 static void
191 schedcpu(void *arg)
192 {
193 	allproc_scan(schedcpu_stats, NULL);
194 	allproc_scan(schedcpu_resource, NULL);
195 	wakeup((caddr_t)&lbolt);
196 	wakeup((caddr_t)&lbolt_syncer);
197 	callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
198 }
199 
200 /*
201  * General process statistics once a second
202  */
203 static int
204 schedcpu_stats(struct proc *p, void *data __unused)
205 {
206 	struct lwp *lp;
207 
208 	crit_enter();
209 	p->p_swtime++;
210 	FOREACH_LWP_IN_PROC(lp, p) {
211 		if (lp->lwp_stat == LSSLEEP)
212 			lp->lwp_slptime++;
213 
214 		/*
215 		 * Only recalculate processes that are active or have slept
216 		 * less then 2 seconds.  The schedulers understand this.
217 		 */
218 		if (lp->lwp_slptime <= 1) {
219 			p->p_usched->recalculate(lp);
220 		} else {
221 			lp->lwp_pctcpu = (lp->lwp_pctcpu * ccpu) >> FSHIFT;
222 		}
223 	}
224 	crit_exit();
225 	return(0);
226 }
227 
228 /*
229  * Resource checks.  XXX break out since ksignal/killproc can block,
230  * limiting us to one process killed per second.  There is probably
231  * a better way.
232  */
233 static int
234 schedcpu_resource(struct proc *p, void *data __unused)
235 {
236 	u_int64_t ttime;
237 	struct lwp *lp;
238 
239 	crit_enter();
240 	if (p->p_stat == SIDL ||
241 	    p->p_stat == SZOMB ||
242 	    p->p_limit == NULL
243 	) {
244 		crit_exit();
245 		return(0);
246 	}
247 
248 	ttime = 0;
249 	FOREACH_LWP_IN_PROC(lp, p) {
250 		/*
251 		 * We may have caught an lp in the middle of being
252 		 * created, lwp_thread can be NULL.
253 		 */
254 		if (lp->lwp_thread) {
255 			ttime += lp->lwp_thread->td_sticks;
256 			ttime += lp->lwp_thread->td_uticks;
257 		}
258 	}
259 
260 	switch(plimit_testcpulimit(p->p_limit, ttime)) {
261 	case PLIMIT_TESTCPU_KILL:
262 		killproc(p, "exceeded maximum CPU limit");
263 		break;
264 	case PLIMIT_TESTCPU_XCPU:
265 		if ((p->p_flag & P_XCPU) == 0) {
266 			p->p_flag |= P_XCPU;
267 			ksignal(p, SIGXCPU);
268 		}
269 		break;
270 	default:
271 		break;
272 	}
273 	crit_exit();
274 	return(0);
275 }
276 
277 /*
278  * This is only used by ps.  Generate a cpu percentage use over
279  * a period of one second.
280  *
281  * MPSAFE
282  */
283 void
284 updatepcpu(struct lwp *lp, int cpticks, int ttlticks)
285 {
286 	fixpt_t acc;
287 	int remticks;
288 
289 	acc = (cpticks << FSHIFT) / ttlticks;
290 	if (ttlticks >= ESTCPUFREQ) {
291 		lp->lwp_pctcpu = acc;
292 	} else {
293 		remticks = ESTCPUFREQ - ttlticks;
294 		lp->lwp_pctcpu = (acc * ttlticks + lp->lwp_pctcpu * remticks) /
295 				ESTCPUFREQ;
296 	}
297 }
298 
299 /*
300  * tsleep/wakeup hash table parameters.  Try to find the sweet spot for
301  * like addresses being slept on.
302  */
303 #define TABLESIZE	1024
304 #define LOOKUP(x)	(((intptr_t)(x) >> 6) & (TABLESIZE - 1))
305 
306 static cpumask_t slpque_cpumasks[TABLESIZE];
307 
308 /*
309  * General scheduler initialization.  We force a reschedule 25 times
310  * a second by default.  Note that cpu0 is initialized in early boot and
311  * cannot make any high level calls.
312  *
313  * Each cpu has its own sleep queue.
314  */
315 void
316 sleep_gdinit(globaldata_t gd)
317 {
318 	static struct tslpque slpque_cpu0[TABLESIZE];
319 	int i;
320 
321 	if (gd->gd_cpuid == 0) {
322 		sched_quantum = (hz + 24) / 25;
323 		hogticks = 2 * sched_quantum;
324 
325 		gd->gd_tsleep_hash = slpque_cpu0;
326 	} else {
327 		gd->gd_tsleep_hash = kmalloc(sizeof(slpque_cpu0),
328 					    M_TSLEEP, M_WAITOK | M_ZERO);
329 	}
330 	for (i = 0; i < TABLESIZE; ++i)
331 		TAILQ_INIT(&gd->gd_tsleep_hash[i]);
332 }
333 
334 /*
335  * This is a dandy function that allows us to interlock tsleep/wakeup
336  * operations with unspecified upper level locks, such as lockmgr locks,
337  * simply by holding a critical section.  The sequence is:
338  *
339  *	(acquire upper level lock)
340  *	tsleep_interlock(blah)
341  *	(release upper level lock)
342  *	tsleep(blah, ...)
343  *
344  * Basically this functions queues us on the tsleep queue without actually
345  * descheduling us.  When tsleep() is later called with PINTERLOCK it
346  * assumes the thread was already queued, otherwise it queues it there.
347  *
348  * Thus it is possible to receive the wakeup prior to going to sleep and
349  * the race conditions are covered.
350  */
351 static __inline void
352 _tsleep_interlock(globaldata_t gd, const volatile void *ident, int flags)
353 {
354 	thread_t td = gd->gd_curthread;
355 	int id;
356 
357 	crit_enter_quick(td);
358 	if (td->td_flags & TDF_TSLEEPQ) {
359 		id = LOOKUP(td->td_wchan);
360 		TAILQ_REMOVE(&gd->gd_tsleep_hash[id], td, td_sleepq);
361 		if (TAILQ_FIRST(&gd->gd_tsleep_hash[id]) == NULL)
362 			atomic_clear_int(&slpque_cpumasks[id], gd->gd_cpumask);
363 	} else {
364 		td->td_flags |= TDF_TSLEEPQ;
365 	}
366 	id = LOOKUP(ident);
367 	TAILQ_INSERT_TAIL(&gd->gd_tsleep_hash[id], td, td_sleepq);
368 	atomic_set_int(&slpque_cpumasks[id], gd->gd_cpumask);
369 	td->td_wchan = ident;
370 	td->td_wdomain = flags & PDOMAIN_MASK;
371 	crit_exit_quick(td);
372 }
373 
374 void
375 tsleep_interlock(const volatile void *ident, int flags)
376 {
377 	_tsleep_interlock(mycpu, ident, flags);
378 }
379 
380 /*
381  * Remove thread from sleepq.  Must be called with a critical section held.
382  */
383 static __inline void
384 _tsleep_remove(thread_t td)
385 {
386 	globaldata_t gd = mycpu;
387 	int id;
388 
389 	KKASSERT(td->td_gd == gd);
390 	if (td->td_flags & TDF_TSLEEPQ) {
391 		td->td_flags &= ~TDF_TSLEEPQ;
392 		id = LOOKUP(td->td_wchan);
393 		TAILQ_REMOVE(&gd->gd_tsleep_hash[id], td, td_sleepq);
394 		if (TAILQ_FIRST(&gd->gd_tsleep_hash[id]) == NULL)
395 			atomic_clear_int(&slpque_cpumasks[id], gd->gd_cpumask);
396 		td->td_wchan = NULL;
397 		td->td_wdomain = 0;
398 	}
399 }
400 
401 void
402 tsleep_remove(thread_t td)
403 {
404 	_tsleep_remove(td);
405 }
406 
407 /*
408  * This function removes a thread from the tsleep queue and schedules
409  * it.  This function may act asynchronously.  The target thread may be
410  * sleeping on a different cpu.
411  *
412  * This function mus be called while in a critical section but if the
413  * target thread is sleeping on a different cpu we cannot safely probe
414  * td_flags.
415  */
416 static __inline
417 void
418 _tsleep_wakeup(struct thread *td)
419 {
420 #ifdef SMP
421 	globaldata_t gd = mycpu;
422 
423 	if (td->td_gd != gd) {
424 		lwkt_send_ipiq(td->td_gd, (ipifunc1_t)tsleep_wakeup, td);
425 		return;
426 	}
427 #endif
428 	_tsleep_remove(td);
429 	if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
430 		td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
431 		lwkt_schedule(td);
432 	}
433 }
434 
435 #ifdef SMP
436 static
437 void
438 tsleep_wakeup(struct thread *td)
439 {
440 	_tsleep_wakeup(td);
441 }
442 #endif
443 
444 
445 /*
446  * General sleep call.  Suspends the current process until a wakeup is
447  * performed on the specified identifier.  The process will then be made
448  * runnable with the specified priority.  Sleeps at most timo/hz seconds
449  * (0 means no timeout).  If flags includes PCATCH flag, signals are checked
450  * before and after sleeping, else signals are not checked.  Returns 0 if
451  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
452  * signal needs to be delivered, ERESTART is returned if the current system
453  * call should be restarted if possible, and EINTR is returned if the system
454  * call should be interrupted by the signal (return EINTR).
455  *
456  * Note that if we are a process, we release_curproc() before messing with
457  * the LWKT scheduler.
458  *
459  * During autoconfiguration or after a panic, a sleep will simply
460  * lower the priority briefly to allow interrupts, then return.
461  */
462 int
463 tsleep(const volatile void *ident, int flags, const char *wmesg, int timo)
464 {
465 	struct thread *td = curthread;
466 	struct lwp *lp = td->td_lwp;
467 	struct proc *p = td->td_proc;		/* may be NULL */
468 	globaldata_t gd;
469 	int sig;
470 	int catch;
471 	int id;
472 	int error;
473 	int oldpri;
474 	struct callout thandle;
475 
476 	/*
477 	 * NOTE: removed KTRPOINT, it could cause races due to blocking
478 	 * even in stable.  Just scrap it for now.
479 	 */
480 	if (tsleep_now_works == 0 || panicstr) {
481 		/*
482 		 * After a panic, or before we actually have an operational
483 		 * softclock, just give interrupts a chance, then just return;
484 		 *
485 		 * don't run any other procs or panic below,
486 		 * in case this is the idle process and already asleep.
487 		 */
488 		splz();
489 		oldpri = td->td_pri & TDPRI_MASK;
490 		lwkt_setpri_self(safepri);
491 		lwkt_switch();
492 		lwkt_setpri_self(oldpri);
493 		return (0);
494 	}
495 	logtsleep2(tsleep_beg, ident);
496 	gd = td->td_gd;
497 	KKASSERT(td != &gd->gd_idlethread);	/* you must be kidding! */
498 
499 	/*
500 	 * NOTE: all of this occurs on the current cpu, including any
501 	 * callout-based wakeups, so a critical section is a sufficient
502 	 * interlock.
503 	 *
504 	 * The entire sequence through to where we actually sleep must
505 	 * run without breaking the critical section.
506 	 */
507 	catch = flags & PCATCH;
508 	error = 0;
509 	sig = 0;
510 
511 	crit_enter_quick(td);
512 
513 	KASSERT(ident != NULL, ("tsleep: no ident"));
514 	KASSERT(lp == NULL ||
515 		lp->lwp_stat == LSRUN ||	/* Obvious */
516 		lp->lwp_stat == LSSTOP,		/* Set in tstop */
517 		("tsleep %p %s %d",
518 			ident, wmesg, lp->lwp_stat));
519 
520 	/*
521 	 * Setup for the current process (if this is a process).
522 	 */
523 	if (lp) {
524 		if (catch) {
525 			/*
526 			 * Early termination if PCATCH was set and a
527 			 * signal is pending, interlocked with the
528 			 * critical section.
529 			 *
530 			 * Early termination only occurs when tsleep() is
531 			 * entered while in a normal LSRUN state.
532 			 */
533 			if ((sig = CURSIG(lp)) != 0)
534 				goto resume;
535 
536 			/*
537 			 * Early termination if PCATCH was set and a
538 			 * mailbox signal was possibly delivered prior to
539 			 * the system call even being made, in order to
540 			 * allow the user to interlock without having to
541 			 * make additional system calls.
542 			 */
543 			if (p->p_flag & P_MAILBOX)
544 				goto resume;
545 
546 			/*
547 			 * Causes ksignal to wake us up when.
548 			 */
549 			lp->lwp_flag |= LWP_SINTR;
550 		}
551 	}
552 
553 	/*
554 	 * We interlock the sleep queue if the caller has not already done
555 	 * it for us.
556 	 */
557 	if ((flags & PINTERLOCKED) == 0) {
558 		id = LOOKUP(ident);
559 		_tsleep_interlock(gd, ident, flags);
560 	}
561 
562 	/*
563 	 *
564 	 * If no interlock was set we do an integrated interlock here.
565 	 * Make sure the current process has been untangled from
566 	 * the userland scheduler and initialize slptime to start
567 	 * counting.  We must interlock the sleep queue before doing
568 	 * this to avoid wakeup/process-ipi races which can occur under
569 	 * heavy loads.
570 	 */
571 	if (lp) {
572 		p->p_usched->release_curproc(lp);
573 		lp->lwp_slptime = 0;
574 	}
575 
576 	/*
577 	 * If the interlocked flag is set but our cpu bit in the slpqueue
578 	 * is no longer set, then a wakeup was processed inbetween the
579 	 * tsleep_interlock() (ours or the callers), and here.  This can
580 	 * occur under numerous circumstances including when we release the
581 	 * current process.
582 	 *
583 	 * Extreme loads can cause the sending of an IPI (e.g. wakeup()'s)
584 	 * to process incoming IPIs, thus draining incoming wakeups.
585 	 */
586 	if ((td->td_flags & TDF_TSLEEPQ) == 0) {
587 		logtsleep2(ilockfail, ident);
588 		goto resume;
589 	}
590 
591 	/*
592 	 * scheduling is blocked while in a critical section.  Coincide
593 	 * the descheduled-by-tsleep flag with the descheduling of the
594 	 * lwkt.
595 	 */
596 	lwkt_deschedule_self(td);
597 	td->td_flags |= TDF_TSLEEP_DESCHEDULED;
598 	td->td_wmesg = wmesg;
599 
600 	/*
601 	 * Setup the timeout, if any
602 	 */
603 	if (timo) {
604 		callout_init(&thandle);
605 		callout_reset(&thandle, timo, endtsleep, td);
606 	}
607 
608 	/*
609 	 * Beddy bye bye.
610 	 */
611 	if (lp) {
612 		/*
613 		 * Ok, we are sleeping.  Place us in the SSLEEP state.
614 		 */
615 		KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0);
616 		/*
617 		 * tstop() sets LSSTOP, so don't fiddle with that.
618 		 */
619 		if (lp->lwp_stat != LSSTOP)
620 			lp->lwp_stat = LSSLEEP;
621 		lp->lwp_ru.ru_nvcsw++;
622 		lwkt_switch();
623 
624 		/*
625 		 * And when we are woken up, put us back in LSRUN.  If we
626 		 * slept for over a second, recalculate our estcpu.
627 		 */
628 		lp->lwp_stat = LSRUN;
629 		if (lp->lwp_slptime)
630 			p->p_usched->recalculate(lp);
631 		lp->lwp_slptime = 0;
632 	} else {
633 		lwkt_switch();
634 	}
635 
636 	/*
637 	 * Make sure we haven't switched cpus while we were asleep.  It's
638 	 * not supposed to happen.  Cleanup our temporary flags.
639 	 */
640 	KKASSERT(gd == td->td_gd);
641 
642 	/*
643 	 * Cleanup the timeout.
644 	 */
645 	if (timo) {
646 		if (td->td_flags & TDF_TIMEOUT) {
647 			td->td_flags &= ~TDF_TIMEOUT;
648 			error = EWOULDBLOCK;
649 		} else {
650 			callout_stop(&thandle);
651 		}
652 	}
653 
654 	/*
655 	 * Make sure we have been removed from the sleepq.  This should
656 	 * have been done for us already.
657 	 */
658 	_tsleep_remove(td);
659 	td->td_wmesg = NULL;
660 	if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
661 		td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
662 		kprintf("td %p (%s) unexpectedly rescheduled\n",
663 			td, td->td_comm);
664 	}
665 
666 	/*
667 	 * Figure out the correct error return.  If interrupted by a
668 	 * signal we want to return EINTR or ERESTART.
669 	 *
670 	 * If P_MAILBOX is set no automatic system call restart occurs
671 	 * and we return EINTR.  P_MAILBOX is meant to be used as an
672 	 * interlock, the user must poll it prior to any system call
673 	 * that it wishes to interlock a mailbox signal against since
674 	 * the flag is cleared on *any* system call that sleeps.
675 	 */
676 resume:
677 	if (p) {
678 		if (catch && error == 0) {
679 			if ((p->p_flag & P_MAILBOX) && sig == 0) {
680 				error = EINTR;
681 			} else if (sig != 0 || (sig = CURSIG(lp))) {
682 				if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
683 					error = EINTR;
684 				else
685 					error = ERESTART;
686 			}
687 		}
688 		lp->lwp_flag &= ~(LWP_BREAKTSLEEP | LWP_SINTR);
689 		p->p_flag &= ~P_MAILBOX;
690 	}
691 	logtsleep1(tsleep_end);
692 	crit_exit_quick(td);
693 	return (error);
694 }
695 
696 /*
697  * Interlocked spinlock sleep.  An exclusively held spinlock must
698  * be passed to ssleep().  The function will atomically release the
699  * spinlock and tsleep on the ident, then reacquire the spinlock and
700  * return.
701  *
702  * This routine is fairly important along the critical path, so optimize it
703  * heavily.
704  */
705 int
706 ssleep(const volatile void *ident, struct spinlock *spin, int flags,
707        const char *wmesg, int timo)
708 {
709 	globaldata_t gd = mycpu;
710 	int error;
711 
712 	_tsleep_interlock(gd, ident, flags);
713 	spin_unlock_wr_quick(gd, spin);
714 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
715 	spin_lock_wr_quick(gd, spin);
716 
717 	return (error);
718 }
719 
720 int
721 lksleep(const volatile void *ident, struct lock *lock, int flags,
722 	const char *wmesg, int timo)
723 {
724 	globaldata_t gd = mycpu;
725 	int error;
726 
727 	_tsleep_interlock(gd, ident, flags);
728 	lockmgr(lock, LK_RELEASE);
729 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
730 	lockmgr(lock, LK_EXCLUSIVE);
731 
732 	return (error);
733 }
734 
735 /*
736  * Interlocked mutex sleep.  An exclusively held mutex must be passed
737  * to mtxsleep().  The function will atomically release the mutex
738  * and tsleep on the ident, then reacquire the mutex and return.
739  */
740 int
741 mtxsleep(const volatile void *ident, struct mtx *mtx, int flags,
742 	 const char *wmesg, int timo)
743 {
744 	globaldata_t gd = mycpu;
745 	int error;
746 
747 	_tsleep_interlock(gd, ident, flags);
748 	mtx_unlock(mtx);
749 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
750 	mtx_lock_ex_quick(mtx, wmesg);
751 
752 	return (error);
753 }
754 
755 /*
756  * Interlocked serializer sleep.  An exclusively held serializer must
757  * be passed to zsleep().  The function will atomically release
758  * the serializer and tsleep on the ident, then reacquire the serializer
759  * and return.
760  */
761 int
762 zsleep(const volatile void *ident, struct lwkt_serialize *slz, int flags,
763        const char *wmesg, int timo)
764 {
765 	globaldata_t gd = mycpu;
766 	int ret;
767 
768 	ASSERT_SERIALIZED(slz);
769 
770 	_tsleep_interlock(gd, ident, flags);
771 	lwkt_serialize_exit(slz);
772 	ret = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
773 	lwkt_serialize_enter(slz);
774 
775 	return ret;
776 }
777 
778 /*
779  * Directly block on the LWKT thread by descheduling it.  This
780  * is much faster then tsleep(), but the only legal way to wake
781  * us up is to directly schedule the thread.
782  *
783  * Setting TDF_SINTR will cause new signals to directly schedule us.
784  *
785  * This routine must be called while in a critical section.
786  */
787 int
788 lwkt_sleep(const char *wmesg, int flags)
789 {
790 	thread_t td = curthread;
791 	int sig;
792 
793 	if ((flags & PCATCH) == 0 || td->td_lwp == NULL) {
794 		td->td_flags |= TDF_BLOCKED;
795 		td->td_wmesg = wmesg;
796 		lwkt_deschedule_self(td);
797 		lwkt_switch();
798 		td->td_wmesg = NULL;
799 		td->td_flags &= ~TDF_BLOCKED;
800 		return(0);
801 	}
802 	if ((sig = CURSIG(td->td_lwp)) != 0) {
803 		if (SIGISMEMBER(td->td_proc->p_sigacts->ps_sigintr, sig))
804 			return(EINTR);
805 		else
806 			return(ERESTART);
807 
808 	}
809 	td->td_flags |= TDF_BLOCKED | TDF_SINTR;
810 	td->td_wmesg = wmesg;
811 	lwkt_deschedule_self(td);
812 	lwkt_switch();
813 	td->td_flags &= ~(TDF_BLOCKED | TDF_SINTR);
814 	td->td_wmesg = NULL;
815 	return(0);
816 }
817 
818 /*
819  * Implement the timeout for tsleep.
820  *
821  * We set LWP_BREAKTSLEEP to indicate that an event has occured, but
822  * we only call setrunnable if the process is not stopped.
823  *
824  * This type of callout timeout is scheduled on the same cpu the process
825  * is sleeping on.  Also, at the moment, the MP lock is held.
826  */
827 static void
828 endtsleep(void *arg)
829 {
830 	thread_t td = arg;
831 	struct lwp *lp;
832 
833 	ASSERT_MP_LOCK_HELD(curthread);
834 	crit_enter();
835 
836 	/*
837 	 * cpu interlock.  Thread flags are only manipulated on
838 	 * the cpu owning the thread.  proc flags are only manipulated
839 	 * by the older of the MP lock.  We have both.
840 	 */
841 	if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
842 		td->td_flags |= TDF_TIMEOUT;
843 
844 		if ((lp = td->td_lwp) != NULL) {
845 			lp->lwp_flag |= LWP_BREAKTSLEEP;
846 			if (lp->lwp_proc->p_stat != SSTOP)
847 				setrunnable(lp);
848 		} else {
849 			_tsleep_wakeup(td);
850 		}
851 	}
852 	crit_exit();
853 }
854 
855 /*
856  * Make all processes sleeping on the specified identifier runnable.
857  * count may be zero or one only.
858  *
859  * The domain encodes the sleep/wakeup domain AND the first cpu to check
860  * (which is always the current cpu).  As we iterate across cpus
861  *
862  * This call may run without the MP lock held.  We can only manipulate thread
863  * state on the cpu owning the thread.  We CANNOT manipulate process state
864  * at all.
865  *
866  * _wakeup() can be passed to an IPI so we can't use (const volatile
867  * void *ident).
868  */
869 static void
870 _wakeup(void *ident, int domain)
871 {
872 	struct tslpque *qp;
873 	struct thread *td;
874 	struct thread *ntd;
875 	globaldata_t gd;
876 #ifdef SMP
877 	cpumask_t mask;
878 #endif
879 	int id;
880 
881 	crit_enter();
882 	logtsleep2(wakeup_beg, ident);
883 	gd = mycpu;
884 	id = LOOKUP(ident);
885 	qp = &gd->gd_tsleep_hash[id];
886 restart:
887 	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
888 		ntd = TAILQ_NEXT(td, td_sleepq);
889 		if (td->td_wchan == ident &&
890 		    td->td_wdomain == (domain & PDOMAIN_MASK)
891 		) {
892 			KKASSERT(td->td_gd == gd);
893 			_tsleep_remove(td);
894 			if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
895 				td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
896 				lwkt_schedule(td);
897 				if (domain & PWAKEUP_ONE)
898 					goto done;
899 			}
900 			goto restart;
901 		}
902 	}
903 
904 #ifdef SMP
905 	/*
906 	 * We finished checking the current cpu but there still may be
907 	 * more work to do.  Either wakeup_one was requested and no matching
908 	 * thread was found, or a normal wakeup was requested and we have
909 	 * to continue checking cpus.
910 	 *
911 	 * It should be noted that this scheme is actually less expensive then
912 	 * the old scheme when waking up multiple threads, since we send
913 	 * only one IPI message per target candidate which may then schedule
914 	 * multiple threads.  Before we could have wound up sending an IPI
915 	 * message for each thread on the target cpu (!= current cpu) that
916 	 * needed to be woken up.
917 	 *
918 	 * NOTE: Wakeups occuring on remote cpus are asynchronous.  This
919 	 * should be ok since we are passing idents in the IPI rather then
920 	 * thread pointers.
921 	 */
922 	if ((domain & PWAKEUP_MYCPU) == 0 &&
923 	    (mask = slpque_cpumasks[id] & gd->gd_other_cpus) != 0) {
924 		lwkt_send_ipiq2_mask(mask, _wakeup, ident,
925 				     domain | PWAKEUP_MYCPU);
926 	}
927 #endif
928 done:
929 	logtsleep1(wakeup_end);
930 	crit_exit();
931 }
932 
933 /*
934  * Wakeup all threads tsleep()ing on the specified ident, on all cpus
935  */
936 void
937 wakeup(const volatile void *ident)
938 {
939     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid));
940 }
941 
942 /*
943  * Wakeup one thread tsleep()ing on the specified ident, on any cpu.
944  */
945 void
946 wakeup_one(const volatile void *ident)
947 {
948     /* XXX potentially round-robin the first responding cpu */
949     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) | PWAKEUP_ONE);
950 }
951 
952 /*
953  * Wakeup threads tsleep()ing on the specified ident on the current cpu
954  * only.
955  */
956 void
957 wakeup_mycpu(const volatile void *ident)
958 {
959     _wakeup(__DEALL(ident), PWAKEUP_MYCPU);
960 }
961 
962 /*
963  * Wakeup one thread tsleep()ing on the specified ident on the current cpu
964  * only.
965  */
966 void
967 wakeup_mycpu_one(const volatile void *ident)
968 {
969     /* XXX potentially round-robin the first responding cpu */
970     _wakeup(__DEALL(ident), PWAKEUP_MYCPU|PWAKEUP_ONE);
971 }
972 
973 /*
974  * Wakeup all thread tsleep()ing on the specified ident on the specified cpu
975  * only.
976  */
977 void
978 wakeup_oncpu(globaldata_t gd, const volatile void *ident)
979 {
980 #ifdef SMP
981     if (gd == mycpu) {
982 	_wakeup(__DEALL(ident), PWAKEUP_MYCPU);
983     } else {
984 	lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident), PWAKEUP_MYCPU);
985     }
986 #else
987     _wakeup(__DEALL(ident), PWAKEUP_MYCPU);
988 #endif
989 }
990 
991 /*
992  * Wakeup one thread tsleep()ing on the specified ident on the specified cpu
993  * only.
994  */
995 void
996 wakeup_oncpu_one(globaldata_t gd, const volatile void *ident)
997 {
998 #ifdef SMP
999     if (gd == mycpu) {
1000 	_wakeup(__DEALL(ident), PWAKEUP_MYCPU | PWAKEUP_ONE);
1001     } else {
1002 	lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident),
1003 			PWAKEUP_MYCPU | PWAKEUP_ONE);
1004     }
1005 #else
1006     _wakeup(__DEALL(ident), PWAKEUP_MYCPU | PWAKEUP_ONE);
1007 #endif
1008 }
1009 
1010 /*
1011  * Wakeup all threads waiting on the specified ident that slept using
1012  * the specified domain, on all cpus.
1013  */
1014 void
1015 wakeup_domain(const volatile void *ident, int domain)
1016 {
1017     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(domain, mycpu->gd_cpuid));
1018 }
1019 
1020 /*
1021  * Wakeup one thread waiting on the specified ident that slept using
1022  * the specified  domain, on any cpu.
1023  */
1024 void
1025 wakeup_domain_one(const volatile void *ident, int domain)
1026 {
1027     /* XXX potentially round-robin the first responding cpu */
1028     _wakeup(__DEALL(ident),
1029 	    PWAKEUP_ENCODE(domain, mycpu->gd_cpuid) | PWAKEUP_ONE);
1030 }
1031 
1032 /*
1033  * setrunnable()
1034  *
1035  * Make a process runnable.  The MP lock must be held on call.  This only
1036  * has an effect if we are in SSLEEP.  We only break out of the
1037  * tsleep if LWP_BREAKTSLEEP is set, otherwise we just fix-up the state.
1038  *
1039  * NOTE: With the MP lock held we can only safely manipulate the process
1040  * structure.  We cannot safely manipulate the thread structure.
1041  */
1042 void
1043 setrunnable(struct lwp *lp)
1044 {
1045 	crit_enter();
1046 	ASSERT_MP_LOCK_HELD(curthread);
1047 	if (lp->lwp_stat == LSSTOP)
1048 		lp->lwp_stat = LSSLEEP;
1049 	if (lp->lwp_stat == LSSLEEP && (lp->lwp_flag & LWP_BREAKTSLEEP))
1050 		_tsleep_wakeup(lp->lwp_thread);
1051 	crit_exit();
1052 }
1053 
1054 /*
1055  * The process is stopped due to some condition, usually because p_stat is
1056  * set to SSTOP, but also possibly due to being traced.
1057  *
1058  * NOTE!  If the caller sets SSTOP, the caller must also clear P_WAITED
1059  * because the parent may check the child's status before the child actually
1060  * gets to this routine.
1061  *
1062  * This routine is called with the current lwp only, typically just
1063  * before returning to userland.
1064  *
1065  * Setting LWP_BREAKTSLEEP before entering the tsleep will cause a passive
1066  * SIGCONT to break out of the tsleep.
1067  */
1068 void
1069 tstop(void)
1070 {
1071 	struct lwp *lp = curthread->td_lwp;
1072 	struct proc *p = lp->lwp_proc;
1073 
1074 	crit_enter();
1075 	/*
1076 	 * If LWP_WSTOP is set, we were sleeping
1077 	 * while our process was stopped.  At this point
1078 	 * we were already counted as stopped.
1079 	 */
1080 	if ((lp->lwp_flag & LWP_WSTOP) == 0) {
1081 		/*
1082 		 * If we're the last thread to stop, signal
1083 		 * our parent.
1084 		 */
1085 		p->p_nstopped++;
1086 		lp->lwp_flag |= LWP_WSTOP;
1087 		wakeup(&p->p_nstopped);
1088 		if (p->p_nstopped == p->p_nthreads) {
1089 			p->p_flag &= ~P_WAITED;
1090 			wakeup(p->p_pptr);
1091 			if ((p->p_pptr->p_sigacts->ps_flag & PS_NOCLDSTOP) == 0)
1092 				ksignal(p->p_pptr, SIGCHLD);
1093 		}
1094 	}
1095 	while (p->p_stat == SSTOP) {
1096 		lp->lwp_flag |= LWP_BREAKTSLEEP;
1097 		lp->lwp_stat = LSSTOP;
1098 		tsleep(p, 0, "stop", 0);
1099 	}
1100 	p->p_nstopped--;
1101 	lp->lwp_flag &= ~LWP_WSTOP;
1102 	crit_exit();
1103 }
1104 
1105 /*
1106  * Yield / synchronous reschedule.  This is a bit tricky because the trap
1107  * code might have set a lazy release on the switch function.   Setting
1108  * P_PASSIVE_ACQ will ensure that the lazy release executes when we call
1109  * switch, and that we are given a greater chance of affinity with our
1110  * current cpu.
1111  *
1112  * We call lwkt_setpri_self() to rotate our thread to the end of the lwkt
1113  * run queue.  lwkt_switch() will also execute any assigned passive release
1114  * (which usually calls release_curproc()), allowing a same/higher priority
1115  * process to be designated as the current process.
1116  *
1117  * While it is possible for a lower priority process to be designated,
1118  * it's call to lwkt_maybe_switch() in acquire_curproc() will likely
1119  * round-robin back to us and we will be able to re-acquire the current
1120  * process designation.
1121  *
1122  * MPSAFE
1123  */
1124 void
1125 uio_yield(void)
1126 {
1127 	struct thread *td = curthread;
1128 	struct proc *p = td->td_proc;
1129 
1130 	lwkt_setpri_self(td->td_pri & TDPRI_MASK);
1131 	if (p) {
1132 		p->p_flag |= P_PASSIVE_ACQ;
1133 		lwkt_switch();
1134 		p->p_flag &= ~P_PASSIVE_ACQ;
1135 	} else {
1136 		lwkt_switch();
1137 	}
1138 }
1139 
1140 /*
1141  * Compute a tenex style load average of a quantity on
1142  * 1, 5 and 15 minute intervals.
1143  */
1144 static int loadav_count_runnable(struct lwp *p, void *data);
1145 
1146 static void
1147 loadav(void *arg)
1148 {
1149 	struct loadavg *avg;
1150 	int i, nrun;
1151 
1152 	nrun = 0;
1153 	alllwp_scan(loadav_count_runnable, &nrun);
1154 	avg = &averunnable;
1155 	for (i = 0; i < 3; i++) {
1156 		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1157 		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1158 	}
1159 
1160 	/*
1161 	 * Schedule the next update to occur after 5 seconds, but add a
1162 	 * random variation to avoid synchronisation with processes that
1163 	 * run at regular intervals.
1164 	 */
1165 	callout_reset(&loadav_callout, hz * 4 + (int)(krandom() % (hz * 2 + 1)),
1166 		      loadav, NULL);
1167 }
1168 
1169 static int
1170 loadav_count_runnable(struct lwp *lp, void *data)
1171 {
1172 	int *nrunp = data;
1173 	thread_t td;
1174 
1175 	switch (lp->lwp_stat) {
1176 	case LSRUN:
1177 		if ((td = lp->lwp_thread) == NULL)
1178 			break;
1179 		if (td->td_flags & TDF_BLOCKED)
1180 			break;
1181 		++*nrunp;
1182 		break;
1183 	default:
1184 		break;
1185 	}
1186 	return(0);
1187 }
1188 
1189 /* ARGSUSED */
1190 static void
1191 sched_setup(void *dummy)
1192 {
1193 	callout_init(&loadav_callout);
1194 	callout_init(&schedcpu_callout);
1195 
1196 	/* Kick off timeout driven events by calling first time. */
1197 	schedcpu(NULL);
1198 	loadav(NULL);
1199 }
1200 
1201