xref: /dragonfly/sys/kern/kern_synch.c (revision b608d1d3)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
35  * $FreeBSD: src/sys/kern/kern_synch.c,v 1.87.2.6 2002/10/13 07:29:53 kbyanc Exp $
36  */
37 
38 #include "opt_ktrace.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/kernel.h>
44 #include <sys/signalvar.h>
45 #include <sys/resourcevar.h>
46 #include <sys/vmmeter.h>
47 #include <sys/sysctl.h>
48 #include <sys/lock.h>
49 #include <sys/uio.h>
50 #include <sys/priv.h>
51 #include <sys/kcollect.h>
52 #ifdef KTRACE
53 #include <sys/ktrace.h>
54 #endif
55 #include <sys/ktr.h>
56 #include <sys/serialize.h>
57 
58 #include <sys/signal2.h>
59 #include <sys/thread2.h>
60 #include <sys/spinlock2.h>
61 #include <sys/mutex2.h>
62 
63 #include <machine/cpu.h>
64 #include <machine/smp.h>
65 
66 #include <vm/vm_extern.h>
67 
68 struct tslpque {
69 	TAILQ_HEAD(, thread)	queue;
70 	const volatile void	*ident0;
71 	const volatile void	*ident1;
72 	const volatile void	*ident2;
73 	const volatile void	*ident3;
74 };
75 
76 static void sched_setup (void *dummy);
77 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL);
78 static void sched_dyninit (void *dummy);
79 SYSINIT(sched_dyninit, SI_BOOT1_DYNALLOC, SI_ORDER_FIRST, sched_dyninit, NULL);
80 
81 int	lbolt;
82 void	*lbolt_syncer;
83 __read_mostly int tsleep_crypto_dump = 0;
84 __read_mostly int ncpus;
85 __read_mostly int ncpus_fit, ncpus_fit_mask;	/* note: mask not cpumask_t */
86 __read_mostly int safepri;
87 __read_mostly int tsleep_now_works;
88 
89 MALLOC_DEFINE(M_TSLEEP, "tslpque", "tsleep queues");
90 
91 #define __DEALL(ident)	__DEQUALIFY(void *, ident)
92 
93 #if !defined(KTR_TSLEEP)
94 #define KTR_TSLEEP	KTR_ALL
95 #endif
96 KTR_INFO_MASTER(tsleep);
97 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_beg, 0, "tsleep enter %p", const volatile void *ident);
98 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_end, 1, "tsleep exit");
99 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_beg, 2, "wakeup enter %p", const volatile void *ident);
100 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_end, 3, "wakeup exit");
101 KTR_INFO(KTR_TSLEEP, tsleep, ilockfail,  4, "interlock failed %p", const volatile void *ident);
102 
103 #define logtsleep1(name)	KTR_LOG(tsleep_ ## name)
104 #define logtsleep2(name, val)	KTR_LOG(tsleep_ ## name, val)
105 
106 __exclusive_cache_line
107 struct loadavg averunnable =
108 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
109 /*
110  * Constants for averages over 1, 5, and 15 minutes
111  * when sampling at 5 second intervals.
112  */
113 __read_mostly
114 static fixpt_t cexp[3] = {
115 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
116 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
117 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
118 };
119 
120 static void	endtsleep (void *);
121 static void	loadav (void *arg);
122 static void	schedcpu (void *arg);
123 
124 __read_mostly static int pctcpu_decay = 10;
125 SYSCTL_INT(_kern, OID_AUTO, pctcpu_decay, CTLFLAG_RW,
126 	   &pctcpu_decay, 0, "");
127 
128 /*
129  * kernel uses `FSCALE', userland (SHOULD) use kern.fscale
130  */
131 __read_mostly int fscale __unused = FSCALE;	/* exported to systat */
132 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
133 
134 /*
135  * Issue a wakeup() from userland (debugging)
136  */
137 static int
138 sysctl_wakeup(SYSCTL_HANDLER_ARGS)
139 {
140 	uint64_t ident = 1;
141 	int error = 0;
142 
143 	if (req->newptr != NULL) {
144 		if (priv_check(curthread, PRIV_ROOT))
145 			return (EPERM);
146 		error = SYSCTL_IN(req, &ident, sizeof(ident));
147 		if (error)
148 			return error;
149 		kprintf("issue wakeup %016jx\n", ident);
150 		wakeup((void *)(intptr_t)ident);
151 	}
152 	if (req->oldptr != NULL) {
153 		error = SYSCTL_OUT(req, &ident, sizeof(ident));
154 	}
155 	return error;
156 }
157 
158 static int
159 sysctl_wakeup_umtx(SYSCTL_HANDLER_ARGS)
160 {
161 	uint64_t ident = 1;
162 	int error = 0;
163 
164 	if (req->newptr != NULL) {
165 		if (priv_check(curthread, PRIV_ROOT))
166 			return (EPERM);
167 		error = SYSCTL_IN(req, &ident, sizeof(ident));
168 		if (error)
169 			return error;
170 		kprintf("issue wakeup %016jx, PDOMAIN_UMTX\n", ident);
171 		wakeup_domain((void *)(intptr_t)ident, PDOMAIN_UMTX);
172 	}
173 	if (req->oldptr != NULL) {
174 		error = SYSCTL_OUT(req, &ident, sizeof(ident));
175 	}
176 	return error;
177 }
178 
179 SYSCTL_PROC(_debug, OID_AUTO, wakeup, CTLTYPE_UQUAD|CTLFLAG_RW, 0, 0,
180 	    sysctl_wakeup, "Q", "issue wakeup(addr)");
181 SYSCTL_PROC(_debug, OID_AUTO, wakeup_umtx, CTLTYPE_UQUAD|CTLFLAG_RW, 0, 0,
182 	    sysctl_wakeup_umtx, "Q", "issue wakeup(addr, PDOMAIN_UMTX)");
183 
184 /*
185  * Recompute process priorities, once a second.
186  *
187  * Since the userland schedulers are typically event oriented, if the
188  * estcpu calculation at wakeup() time is not sufficient to make a
189  * process runnable relative to other processes in the system we have
190  * a 1-second recalc to help out.
191  *
192  * This code also allows us to store sysclock_t data in the process structure
193  * without fear of an overrun, since sysclock_t are guarenteed to hold
194  * several seconds worth of count.
195  *
196  * WARNING!  callouts can preempt normal threads.  However, they will not
197  * preempt a thread holding a spinlock so we *can* safely use spinlocks.
198  */
199 static int schedcpu_stats(struct proc *p, void *data __unused);
200 static int schedcpu_resource(struct proc *p, void *data __unused);
201 
202 static void
203 schedcpu(void *arg)
204 {
205 	allproc_scan(schedcpu_stats, NULL, 1);
206 	allproc_scan(schedcpu_resource, NULL, 1);
207 	if (mycpu->gd_cpuid == 0) {
208 		wakeup((caddr_t)&lbolt);
209 		wakeup(lbolt_syncer);
210 	}
211 	callout_reset(&mycpu->gd_schedcpu_callout, hz, schedcpu, NULL);
212 }
213 
214 /*
215  * General process statistics once a second
216  */
217 static int
218 schedcpu_stats(struct proc *p, void *data __unused)
219 {
220 	struct lwp *lp;
221 
222 	/*
223 	 * Threads may not be completely set up if process in SIDL state.
224 	 */
225 	if (p->p_stat == SIDL)
226 		return(0);
227 
228 	PHOLD(p);
229 	if (lwkt_trytoken(&p->p_token) == FALSE) {
230 		PRELE(p);
231 		return(0);
232 	}
233 
234 	p->p_swtime++;
235 	FOREACH_LWP_IN_PROC(lp, p) {
236 		if (lp->lwp_stat == LSSLEEP) {
237 			++lp->lwp_slptime;
238 			if (lp->lwp_slptime == 1)
239 				p->p_usched->uload_update(lp);
240 		}
241 
242 		/*
243 		 * Only recalculate processes that are active or have slept
244 		 * less then 2 seconds.  The schedulers understand this.
245 		 * Otherwise decay by 50% per second.
246 		 */
247 		if (lp->lwp_slptime <= 1) {
248 			p->p_usched->recalculate(lp);
249 		} else {
250 			int decay;
251 
252 			decay = pctcpu_decay;
253 			cpu_ccfence();
254 			if (decay <= 1)
255 				decay = 1;
256 			if (decay > 100)
257 				decay = 100;
258 			lp->lwp_pctcpu = (lp->lwp_pctcpu * (decay - 1)) / decay;
259 		}
260 	}
261 	lwkt_reltoken(&p->p_token);
262 	lwkt_yield();
263 	PRELE(p);
264 	return(0);
265 }
266 
267 /*
268  * Resource checks.  XXX break out since ksignal/killproc can block,
269  * limiting us to one process killed per second.  There is probably
270  * a better way.
271  */
272 static int
273 schedcpu_resource(struct proc *p, void *data __unused)
274 {
275 	u_int64_t ttime;
276 	struct lwp *lp;
277 
278 	if (p->p_stat == SIDL)
279 		return(0);
280 
281 	PHOLD(p);
282 	if (lwkt_trytoken(&p->p_token) == FALSE) {
283 		PRELE(p);
284 		return(0);
285 	}
286 
287 	if (p->p_stat == SZOMB || p->p_limit == NULL) {
288 		lwkt_reltoken(&p->p_token);
289 		PRELE(p);
290 		return(0);
291 	}
292 
293 	ttime = 0;
294 	FOREACH_LWP_IN_PROC(lp, p) {
295 		/*
296 		 * We may have caught an lp in the middle of being
297 		 * created, lwp_thread can be NULL.
298 		 */
299 		if (lp->lwp_thread) {
300 			ttime += lp->lwp_thread->td_sticks;
301 			ttime += lp->lwp_thread->td_uticks;
302 		}
303 	}
304 
305 	switch(plimit_testcpulimit(p, ttime)) {
306 	case PLIMIT_TESTCPU_KILL:
307 		killproc(p, "exceeded maximum CPU limit");
308 		break;
309 	case PLIMIT_TESTCPU_XCPU:
310 		if ((p->p_flags & P_XCPU) == 0) {
311 			p->p_flags |= P_XCPU;
312 			ksignal(p, SIGXCPU);
313 		}
314 		break;
315 	default:
316 		break;
317 	}
318 	lwkt_reltoken(&p->p_token);
319 	lwkt_yield();
320 	PRELE(p);
321 	return(0);
322 }
323 
324 /*
325  * This is only used by ps.  Generate a cpu percentage use over
326  * a period of one second.
327  */
328 void
329 updatepcpu(struct lwp *lp, int cpticks, int ttlticks)
330 {
331 	fixpt_t acc;
332 	int remticks;
333 
334 	acc = (cpticks << FSHIFT) / ttlticks;
335 	if (ttlticks >= ESTCPUFREQ) {
336 		lp->lwp_pctcpu = acc;
337 	} else {
338 		remticks = ESTCPUFREQ - ttlticks;
339 		lp->lwp_pctcpu = (acc * ttlticks + lp->lwp_pctcpu * remticks) /
340 				ESTCPUFREQ;
341 	}
342 }
343 
344 /*
345  * Handy macros to calculate hash indices.  LOOKUP() calculates the
346  * global cpumask hash index, TCHASHSHIFT() converts that into the
347  * pcpu hash index.
348  *
349  * By making the pcpu hash arrays smaller we save a significant amount
350  * of memory at very low cost.  The real cost is in IPIs, which are handled
351  * by the much larger global cpumask hash table.
352  */
353 #define LOOKUP_PRIME	66555444443333333ULL
354 #define LOOKUP(x)	((((uintptr_t)(x) + ((uintptr_t)(x) >> 18)) ^	\
355 			  LOOKUP_PRIME) % slpque_tablesize)
356 #define TCHASHSHIFT(x)	((x) >> 4)
357 
358 static uint32_t	slpque_tablesize;
359 static cpumask_t *slpque_cpumasks;
360 
361 SYSCTL_UINT(_kern, OID_AUTO, slpque_tablesize, CTLFLAG_RD, &slpque_tablesize,
362     0, "");
363 
364 /*
365  * This is a dandy function that allows us to interlock tsleep/wakeup
366  * operations with unspecified upper level locks, such as lockmgr locks,
367  * simply by holding a critical section.  The sequence is:
368  *
369  *	(acquire upper level lock)
370  *	tsleep_interlock(blah)
371  *	(release upper level lock)
372  *	tsleep(blah, ...)
373  *
374  * Basically this functions queues us on the tsleep queue without actually
375  * descheduling us.  When tsleep() is later called with PINTERLOCK it
376  * assumes the thread was already queued, otherwise it queues it there.
377  *
378  * Thus it is possible to receive the wakeup prior to going to sleep and
379  * the race conditions are covered.
380  */
381 static __inline void
382 _tsleep_interlock(globaldata_t gd, const volatile void *ident, int flags)
383 {
384 	thread_t td = gd->gd_curthread;
385 	struct tslpque *qp;
386 	uint32_t cid;
387 	uint32_t gid;
388 
389 	if (ident == NULL) {
390 		kprintf("tsleep_interlock: NULL ident %s\n", td->td_comm);
391 		print_backtrace(5);
392 	}
393 
394 	crit_enter_quick(td);
395 	if (td->td_flags & TDF_TSLEEPQ) {
396 		/*
397 		 * Shortcut if unchanged
398 		 */
399 		if (td->td_wchan == ident &&
400 		    td->td_wdomain == (flags & PDOMAIN_MASK)) {
401 			crit_exit_quick(td);
402 			return;
403 		}
404 
405 		/*
406 		 * Remove current sleepq
407 		 */
408 		cid = LOOKUP(td->td_wchan);
409 		gid = TCHASHSHIFT(cid);
410 		qp = &gd->gd_tsleep_hash[gid];
411 		TAILQ_REMOVE(&qp->queue, td, td_sleepq);
412 		if (TAILQ_FIRST(&qp->queue) == NULL) {
413 			qp->ident0 = NULL;
414 			qp->ident1 = NULL;
415 			qp->ident2 = NULL;
416 			qp->ident3 = NULL;
417 			ATOMIC_CPUMASK_NANDBIT(slpque_cpumasks[cid],
418 					       gd->gd_cpuid);
419 		}
420 	} else {
421 		td->td_flags |= TDF_TSLEEPQ;
422 	}
423 	cid = LOOKUP(ident);
424 	gid = TCHASHSHIFT(cid);
425 	qp = &gd->gd_tsleep_hash[gid];
426 	TAILQ_INSERT_TAIL(&qp->queue, td, td_sleepq);
427 	if (qp->ident0 != ident && qp->ident1 != ident &&
428 	    qp->ident2 != ident && qp->ident3 != ident) {
429 		if (qp->ident0 == NULL)
430 			qp->ident0 = ident;
431 		else if (qp->ident1 == NULL)
432 			qp->ident1 = ident;
433 		else if (qp->ident2 == NULL)
434 			qp->ident2 = ident;
435 		else if (qp->ident3 == NULL)
436 			qp->ident3 = ident;
437 		else
438 			qp->ident0 = (void *)(intptr_t)-1;
439 	}
440 	ATOMIC_CPUMASK_ORBIT(slpque_cpumasks[cid], gd->gd_cpuid);
441 	td->td_wchan = ident;
442 	td->td_wdomain = flags & PDOMAIN_MASK;
443 	crit_exit_quick(td);
444 }
445 
446 void
447 tsleep_interlock(const volatile void *ident, int flags)
448 {
449 	_tsleep_interlock(mycpu, ident, flags);
450 }
451 
452 /*
453  * Remove thread from sleepq.  Must be called with a critical section held.
454  * The thread must not be migrating.
455  */
456 static __inline void
457 _tsleep_remove(thread_t td)
458 {
459 	globaldata_t gd = mycpu;
460 	struct tslpque *qp;
461 	uint32_t cid;
462 	uint32_t gid;
463 
464 	KKASSERT(td->td_gd == gd && IN_CRITICAL_SECT(td));
465 	KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
466 	if (td->td_flags & TDF_TSLEEPQ) {
467 		td->td_flags &= ~TDF_TSLEEPQ;
468 		cid = LOOKUP(td->td_wchan);
469 		gid = TCHASHSHIFT(cid);
470 		qp = &gd->gd_tsleep_hash[gid];
471 		TAILQ_REMOVE(&qp->queue, td, td_sleepq);
472 		if (TAILQ_FIRST(&qp->queue) == NULL) {
473 			ATOMIC_CPUMASK_NANDBIT(slpque_cpumasks[cid],
474 					       gd->gd_cpuid);
475 		}
476 		td->td_wchan = NULL;
477 		td->td_wdomain = 0;
478 	}
479 }
480 
481 void
482 tsleep_remove(thread_t td)
483 {
484 	_tsleep_remove(td);
485 }
486 
487 /*
488  * General sleep call.  Suspends the current process until a wakeup is
489  * performed on the specified identifier.  The process will then be made
490  * runnable with the specified priority.  Sleeps at most timo/hz seconds
491  * (0 means no timeout).  If flags includes PCATCH flag, signals are checked
492  * before and after sleeping, else signals are not checked.  Returns 0 if
493  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
494  * signal needs to be delivered, ERESTART is returned if the current system
495  * call should be restarted if possible, and EINTR is returned if the system
496  * call should be interrupted by the signal (return EINTR).
497  *
498  * Note that if we are a process, we release_curproc() before messing with
499  * the LWKT scheduler.
500  *
501  * During autoconfiguration or after a panic, a sleep will simply
502  * lower the priority briefly to allow interrupts, then return.
503  *
504  * WARNING!  This code can't block (short of switching away), or bad things
505  *           will happen.  No getting tokens, no blocking locks, etc.
506  */
507 int
508 tsleep(const volatile void *ident, int flags, const char *wmesg, int timo)
509 {
510 	struct thread *td = curthread;
511 	struct lwp *lp = td->td_lwp;
512 	struct proc *p = td->td_proc;		/* may be NULL */
513 	globaldata_t gd;
514 	int sig;
515 	int catch;
516 	int error;
517 	int oldpri;
518 	struct callout thandle;
519 
520 	/*
521 	 * Currently a severe hack.  Make sure any delayed wakeups
522 	 * are flushed before we sleep or we might deadlock on whatever
523 	 * event we are sleeping on.
524 	 */
525 	if (td->td_flags & TDF_DELAYED_WAKEUP)
526 		wakeup_end_delayed();
527 
528 	/*
529 	 * NOTE: removed KTRPOINT, it could cause races due to blocking
530 	 * even in stable.  Just scrap it for now.
531 	 */
532 	if (!tsleep_crypto_dump && (tsleep_now_works == 0 || panicstr)) {
533 		/*
534 		 * After a panic, or before we actually have an operational
535 		 * softclock, just give interrupts a chance, then just return;
536 		 *
537 		 * don't run any other procs or panic below,
538 		 * in case this is the idle process and already asleep.
539 		 */
540 		splz();
541 		oldpri = td->td_pri;
542 		lwkt_setpri_self(safepri);
543 		lwkt_switch();
544 		lwkt_setpri_self(oldpri);
545 		return (0);
546 	}
547 	logtsleep2(tsleep_beg, ident);
548 	gd = td->td_gd;
549 	KKASSERT(td != &gd->gd_idlethread);	/* you must be kidding! */
550 
551 	/*
552 	 * NOTE: all of this occurs on the current cpu, including any
553 	 * callout-based wakeups, so a critical section is a sufficient
554 	 * interlock.
555 	 *
556 	 * The entire sequence through to where we actually sleep must
557 	 * run without breaking the critical section.
558 	 */
559 	catch = flags & PCATCH;
560 	error = 0;
561 	sig = 0;
562 
563 	crit_enter_quick(td);
564 
565 	KASSERT(ident != NULL, ("tsleep: no ident"));
566 	KASSERT(lp == NULL ||
567 		lp->lwp_stat == LSRUN ||	/* Obvious */
568 		lp->lwp_stat == LSSTOP,		/* Set in tstop */
569 		("tsleep %p %s %d",
570 			ident, wmesg, lp->lwp_stat));
571 
572 	/*
573 	 * We interlock the sleep queue if the caller has not already done
574 	 * it for us.  This must be done before we potentially acquire any
575 	 * tokens or we can loose the wakeup.
576 	 */
577 	if ((flags & PINTERLOCKED) == 0) {
578 		_tsleep_interlock(gd, ident, flags);
579 	}
580 
581 	/*
582 	 * Setup for the current process (if this is a process).  We must
583 	 * interlock with lwp_token to avoid remote wakeup races via
584 	 * setrunnable()
585 	 */
586 	if (lp) {
587 		lwkt_gettoken(&lp->lwp_token);
588 
589 		/*
590 		 * If the umbrella process is in the SCORE state then
591 		 * make sure that the thread is flagged going into a
592 		 * normal sleep to allow the core dump to proceed, otherwise
593 		 * the coredump can end up waiting forever.  If the normal
594 		 * sleep is woken up, the thread will enter a stopped state
595 		 * upon return to userland.
596 		 *
597 		 * We do not want to interrupt or cause a thread exist at
598 		 * this juncture because that will mess-up the state the
599 		 * coredump is trying to save.
600 		 */
601 		if (p->p_stat == SCORE) {
602 			lwkt_gettoken(&p->p_token);
603 			if ((lp->lwp_mpflags & LWP_MP_WSTOP) == 0) {
604 				atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
605 				++p->p_nstopped;
606 			}
607 			lwkt_reltoken(&p->p_token);
608 		}
609 
610 		/*
611 		 * PCATCH requested.
612 		 */
613 		if (catch) {
614 			/*
615 			 * Early termination if PCATCH was set and a
616 			 * signal is pending, interlocked with the
617 			 * critical section.
618 			 *
619 			 * Early termination only occurs when tsleep() is
620 			 * entered while in a normal LSRUN state.
621 			 */
622 			if ((sig = CURSIG(lp)) != 0)
623 				goto resume;
624 
625 			/*
626 			 * Causes ksignal to wake us up if a signal is
627 			 * received (interlocked with lp->lwp_token).
628 			 */
629 			lp->lwp_flags |= LWP_SINTR;
630 		}
631 	} else {
632 		KKASSERT(p == NULL);
633 	}
634 
635 	/*
636 	 * Make sure the current process has been untangled from
637 	 * the userland scheduler and initialize slptime to start
638 	 * counting.
639 	 *
640 	 * NOTE: td->td_wakefromcpu is pre-set by the release function
641 	 *	 for the dfly scheduler, and then adjusted by _wakeup()
642 	 */
643 	if (lp) {
644 		p->p_usched->release_curproc(lp);
645 		lp->lwp_slptime = 0;
646 	}
647 
648 	/*
649 	 * For PINTERLOCKED operation, TDF_TSLEEPQ might not be set if
650 	 * a wakeup() was processed before the thread could go to sleep.
651 	 *
652 	 * If TDF_TSLEEPQ is set, make sure the ident matches the recorded
653 	 * ident.  If it does not then the thread slept inbetween the
654 	 * caller's initial tsleep_interlock() call and the caller's tsleep()
655 	 * call.
656 	 *
657 	 * Extreme loads can cause the sending of an IPI (e.g. wakeup()'s)
658 	 * to process incoming IPIs, thus draining incoming wakeups.
659 	 */
660 	if ((td->td_flags & TDF_TSLEEPQ) == 0) {
661 		logtsleep2(ilockfail, ident);
662 		goto resume;
663 	} else if (td->td_wchan != ident ||
664 		   td->td_wdomain != (flags & PDOMAIN_MASK)) {
665 		logtsleep2(ilockfail, ident);
666 		goto resume;
667 	}
668 
669 	/*
670 	 * scheduling is blocked while in a critical section.  Coincide
671 	 * the descheduled-by-tsleep flag with the descheduling of the
672 	 * lwkt.
673 	 *
674 	 * The timer callout is localized on our cpu and interlocked by
675 	 * our critical section.
676 	 */
677 	lwkt_deschedule_self(td);
678 	td->td_flags |= TDF_TSLEEP_DESCHEDULED;
679 	td->td_wmesg = wmesg;
680 
681 	/*
682 	 * Setup the timeout, if any.  The timeout is only operable while
683 	 * the thread is flagged descheduled.
684 	 */
685 	KKASSERT((td->td_flags & TDF_TIMEOUT) == 0);
686 	if (timo) {
687 		callout_init_mp(&thandle);
688 		callout_reset(&thandle, timo, endtsleep, td);
689 	}
690 
691 	/*
692 	 * Beddy bye bye.
693 	 */
694 	if (lp) {
695 		/*
696 		 * Ok, we are sleeping.  Place us in the SSLEEP state.
697 		 */
698 		KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
699 
700 		/*
701 		 * tstop() sets LSSTOP, so don't fiddle with that.
702 		 */
703 		if (lp->lwp_stat != LSSTOP)
704 			lp->lwp_stat = LSSLEEP;
705 		lp->lwp_ru.ru_nvcsw++;
706 		p->p_usched->uload_update(lp);
707 		lwkt_switch();
708 
709 		/*
710 		 * And when we are woken up, put us back in LSRUN.  If we
711 		 * slept for over a second, recalculate our estcpu.
712 		 */
713 		lp->lwp_stat = LSRUN;
714 		if (lp->lwp_slptime) {
715 			p->p_usched->uload_update(lp);
716 			p->p_usched->recalculate(lp);
717 		}
718 		lp->lwp_slptime = 0;
719 	} else {
720 		lwkt_switch();
721 	}
722 
723 	/*
724 	 * Make sure we haven't switched cpus while we were asleep.  It's
725 	 * not supposed to happen.  Cleanup our temporary flags.
726 	 */
727 	KKASSERT(gd == td->td_gd);
728 
729 	/*
730 	 * Cleanup the timeout.  If the timeout has already occured thandle
731 	 * has already been stopped, otherwise stop thandle.  If the timeout
732 	 * is running (the callout thread must be blocked trying to get
733 	 * lwp_token) then wait for us to get scheduled.
734 	 */
735 	if (timo) {
736 		while (td->td_flags & TDF_TIMEOUT_RUNNING) {
737 			/* else we won't get rescheduled! */
738 			if (lp->lwp_stat != LSSTOP)
739 				lp->lwp_stat = LSSLEEP;
740 			lwkt_deschedule_self(td);
741 			td->td_wmesg = "tsrace";
742 			lwkt_switch();
743 			kprintf("td %p %s: timeout race\n", td, td->td_comm);
744 		}
745 		if (td->td_flags & TDF_TIMEOUT) {
746 			td->td_flags &= ~TDF_TIMEOUT;
747 			error = EWOULDBLOCK;
748 		} else {
749 			/* does not block when on same cpu */
750 			callout_cancel(&thandle);
751 		}
752 	}
753 	td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
754 
755 	/*
756 	 * Make sure we have been removed from the sleepq.  In most
757 	 * cases this will have been done for us already but it is
758 	 * possible for a scheduling IPI to be in-flight from a
759 	 * previous tsleep/tsleep_interlock() or due to a straight-out
760 	 * call to lwkt_schedule() (in the case of an interrupt thread),
761 	 * causing a spurious wakeup.
762 	 */
763 	_tsleep_remove(td);
764 	td->td_wmesg = NULL;
765 
766 	/*
767 	 * Figure out the correct error return.  If interrupted by a
768 	 * signal we want to return EINTR or ERESTART.
769 	 */
770 resume:
771 	if (lp) {
772 		if (catch && error == 0) {
773 			if (sig != 0 || (sig = CURSIG(lp))) {
774 				if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
775 					error = EINTR;
776 				else
777 					error = ERESTART;
778 			}
779 		}
780 
781 		lp->lwp_flags &= ~LWP_SINTR;
782 
783 		/*
784 		 * Unconditionally set us to LSRUN on resume.  lwp_stat could
785 		 * be in a weird state due to the goto resume, particularly
786 		 * when tsleep() is called from tstop().
787 		 */
788 		lp->lwp_stat = LSRUN;
789 		lwkt_reltoken(&lp->lwp_token);
790 	}
791 	logtsleep1(tsleep_end);
792 	crit_exit_quick(td);
793 
794 	return (error);
795 }
796 
797 /*
798  * Interlocked spinlock sleep.  An exclusively held spinlock must
799  * be passed to ssleep().  The function will atomically release the
800  * spinlock and tsleep on the ident, then reacquire the spinlock and
801  * return.
802  *
803  * This routine is fairly important along the critical path, so optimize it
804  * heavily.
805  */
806 int
807 ssleep(const volatile void *ident, struct spinlock *spin, int flags,
808        const char *wmesg, int timo)
809 {
810 	globaldata_t gd = mycpu;
811 	int error;
812 
813 	_tsleep_interlock(gd, ident, flags);
814 	spin_unlock_quick(gd, spin);
815 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
816 	KKASSERT(gd == mycpu);
817 	_spin_lock_quick(gd, spin, wmesg);
818 
819 	return (error);
820 }
821 
822 int
823 lksleep(const volatile void *ident, struct lock *lock, int flags,
824 	const char *wmesg, int timo)
825 {
826 	globaldata_t gd = mycpu;
827 	int error;
828 
829 	_tsleep_interlock(gd, ident, flags);
830 	lockmgr(lock, LK_RELEASE);
831 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
832 	lockmgr(lock, LK_EXCLUSIVE);
833 
834 	return (error);
835 }
836 
837 /*
838  * Interlocked mutex sleep.  An exclusively held mutex must be passed
839  * to mtxsleep().  The function will atomically release the mutex
840  * and tsleep on the ident, then reacquire the mutex and return.
841  */
842 int
843 mtxsleep(const volatile void *ident, struct mtx *mtx, int flags,
844 	 const char *wmesg, int timo)
845 {
846 	globaldata_t gd = mycpu;
847 	int error;
848 
849 	_tsleep_interlock(gd, ident, flags);
850 	mtx_unlock(mtx);
851 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
852 	mtx_lock_ex_quick(mtx);
853 
854 	return (error);
855 }
856 
857 /*
858  * Interlocked serializer sleep.  An exclusively held serializer must
859  * be passed to zsleep().  The function will atomically release
860  * the serializer and tsleep on the ident, then reacquire the serializer
861  * and return.
862  */
863 int
864 zsleep(const volatile void *ident, struct lwkt_serialize *slz, int flags,
865        const char *wmesg, int timo)
866 {
867 	globaldata_t gd = mycpu;
868 	int ret;
869 
870 	ASSERT_SERIALIZED(slz);
871 
872 	_tsleep_interlock(gd, ident, flags);
873 	lwkt_serialize_exit(slz);
874 	ret = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
875 	lwkt_serialize_enter(slz);
876 
877 	return ret;
878 }
879 
880 /*
881  * Directly block on the LWKT thread by descheduling it.  This
882  * is much faster then tsleep(), but the only legal way to wake
883  * us up is to directly schedule the thread.
884  *
885  * Setting TDF_SINTR will cause new signals to directly schedule us.
886  *
887  * This routine must be called while in a critical section.
888  */
889 int
890 lwkt_sleep(const char *wmesg, int flags)
891 {
892 	thread_t td = curthread;
893 	int sig;
894 
895 	if ((flags & PCATCH) == 0 || td->td_lwp == NULL) {
896 		td->td_flags |= TDF_BLOCKED;
897 		td->td_wmesg = wmesg;
898 		lwkt_deschedule_self(td);
899 		lwkt_switch();
900 		td->td_wmesg = NULL;
901 		td->td_flags &= ~TDF_BLOCKED;
902 		return(0);
903 	}
904 	if ((sig = CURSIG(td->td_lwp)) != 0) {
905 		if (SIGISMEMBER(td->td_proc->p_sigacts->ps_sigintr, sig))
906 			return(EINTR);
907 		else
908 			return(ERESTART);
909 
910 	}
911 	td->td_flags |= TDF_BLOCKED | TDF_SINTR;
912 	td->td_wmesg = wmesg;
913 	lwkt_deschedule_self(td);
914 	lwkt_switch();
915 	td->td_flags &= ~(TDF_BLOCKED | TDF_SINTR);
916 	td->td_wmesg = NULL;
917 	return(0);
918 }
919 
920 /*
921  * Implement the timeout for tsleep.
922  *
923  * This type of callout timeout is scheduled on the same cpu the process
924  * is sleeping on.  Also, at the moment, the MP lock is held.
925  */
926 static void
927 endtsleep(void *arg)
928 {
929 	thread_t td = arg;
930 	struct lwp *lp;
931 
932 	/*
933 	 * We are going to have to get the lwp_token, which means we might
934 	 * block.  This can race a tsleep getting woken up by other means
935 	 * so set TDF_TIMEOUT_RUNNING to force the tsleep to wait for our
936 	 * processing to complete (sorry tsleep!).
937 	 *
938 	 * We can safely set td_flags because td MUST be on the same cpu
939 	 * as we are.
940 	 */
941 	KKASSERT(td->td_gd == mycpu);
942 	crit_enter();
943 	td->td_flags |= TDF_TIMEOUT_RUNNING | TDF_TIMEOUT;
944 
945 	/*
946 	 * This can block but TDF_TIMEOUT_RUNNING will prevent the thread
947 	 * from exiting the tsleep on us.  The flag is interlocked by virtue
948 	 * of lp being on the same cpu as we are.
949 	 */
950 	if ((lp = td->td_lwp) != NULL)
951 		lwkt_gettoken(&lp->lwp_token);
952 
953 	KKASSERT(td->td_flags & TDF_TSLEEP_DESCHEDULED);
954 
955 	if (lp) {
956 		/*
957 		 * callout timer should normally never be set in tstop()
958 		 * because it passes a timeout of 0.  However, there is a
959 		 * case during thread exit (which SSTOP's all the threads)
960 		 * for which tstop() must break out and can (properly) leave
961 		 * the thread in LSSTOP.
962 		 */
963 		KKASSERT(lp->lwp_stat != LSSTOP ||
964 			 (lp->lwp_mpflags & LWP_MP_WEXIT));
965 		setrunnable(lp);
966 		lwkt_reltoken(&lp->lwp_token);
967 	} else {
968 		_tsleep_remove(td);
969 		lwkt_schedule(td);
970 	}
971 	KKASSERT(td->td_gd == mycpu);
972 	td->td_flags &= ~TDF_TIMEOUT_RUNNING;
973 	crit_exit();
974 }
975 
976 /*
977  * Make all processes sleeping on the specified identifier runnable.
978  * count may be zero or one only.
979  *
980  * The domain encodes the sleep/wakeup domain, flags, plus the originating
981  * cpu.
982  *
983  * This call may run without the MP lock held.  We can only manipulate thread
984  * state on the cpu owning the thread.  We CANNOT manipulate process state
985  * at all.
986  *
987  * _wakeup() can be passed to an IPI so we can't use (const volatile
988  * void *ident).
989  */
990 static void
991 _wakeup(void *ident, int domain)
992 {
993 	struct tslpque *qp;
994 	struct thread *td;
995 	struct thread *ntd;
996 	globaldata_t gd;
997 	cpumask_t mask;
998 	uint32_t cid;
999 	uint32_t gid;
1000 	int wids = 0;
1001 
1002 	crit_enter();
1003 	logtsleep2(wakeup_beg, ident);
1004 	gd = mycpu;
1005 	cid = LOOKUP(ident);
1006 	gid = TCHASHSHIFT(cid);
1007 	qp = &gd->gd_tsleep_hash[gid];
1008 restart:
1009 	for (td = TAILQ_FIRST(&qp->queue); td != NULL; td = ntd) {
1010 		ntd = TAILQ_NEXT(td, td_sleepq);
1011 		if (td->td_wchan == ident &&
1012 		    td->td_wdomain == (domain & PDOMAIN_MASK)
1013 		) {
1014 			KKASSERT(td->td_gd == gd);
1015 			_tsleep_remove(td);
1016 			td->td_wakefromcpu = PWAKEUP_DECODE(domain);
1017 			if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
1018 				lwkt_schedule(td);
1019 				if (domain & PWAKEUP_ONE)
1020 					goto done;
1021 			}
1022 			goto restart;
1023 		}
1024 		if (td->td_wchan == qp->ident0)
1025 			wids |= 1;
1026 		else if (td->td_wchan == qp->ident1)
1027 			wids |= 2;
1028 		else if (td->td_wchan == qp->ident2)
1029 			wids |= 4;
1030 		else if (td->td_wchan == qp->ident3)
1031 			wids |= 8;
1032 		else
1033 			wids |= 16;	/* force ident0 to be retained (-1) */
1034 	}
1035 
1036 	/*
1037 	 * Because a bunch of cpumask array entries cover the same queue, it
1038 	 * is possible for our bit to remain set in some of them and cause
1039 	 * spurious wakeup IPIs later on.  Make sure that the bit is cleared
1040 	 * when a spurious IPI occurs to prevent further spurious IPIs.
1041 	 */
1042 	if (TAILQ_FIRST(&qp->queue) == NULL) {
1043 		ATOMIC_CPUMASK_NANDBIT(slpque_cpumasks[cid], gd->gd_cpuid);
1044 		qp->ident0 = NULL;
1045 		qp->ident1 = NULL;
1046 		qp->ident2 = NULL;
1047 		qp->ident3 = NULL;
1048 	} else {
1049 		if ((wids & 1) == 0) {
1050 			if ((wids & 16) == 0) {
1051 				qp->ident0 = NULL;
1052 			} else {
1053 				KKASSERT(qp->ident0 == (void *)(intptr_t)-1);
1054 			}
1055 		}
1056 		if ((wids & 2) == 0)
1057 			qp->ident1 = NULL;
1058 		if ((wids & 4) == 0)
1059 			qp->ident2 = NULL;
1060 		if ((wids & 8) == 0)
1061 			qp->ident3 = NULL;
1062 	}
1063 
1064 	/*
1065 	 * We finished checking the current cpu but there still may be
1066 	 * more work to do.  Either wakeup_one was requested and no matching
1067 	 * thread was found, or a normal wakeup was requested and we have
1068 	 * to continue checking cpus.
1069 	 *
1070 	 * It should be noted that this scheme is actually less expensive then
1071 	 * the old scheme when waking up multiple threads, since we send
1072 	 * only one IPI message per target candidate which may then schedule
1073 	 * multiple threads.  Before we could have wound up sending an IPI
1074 	 * message for each thread on the target cpu (!= current cpu) that
1075 	 * needed to be woken up.
1076 	 *
1077 	 * NOTE: Wakeups occuring on remote cpus are asynchronous.  This
1078 	 *	 should be ok since we are passing idents in the IPI rather
1079 	 *	 then thread pointers.
1080 	 *
1081 	 * NOTE: We MUST mfence (or use an atomic op) prior to reading
1082 	 *	 the cpumask, as another cpu may have written to it in
1083 	 *	 a fashion interlocked with whatever the caller did before
1084 	 *	 calling wakeup().  Otherwise we might miss the interaction
1085 	 *	 (kern_mutex.c can cause this problem).
1086 	 *
1087 	 *	 lfence is insufficient as it may allow a written state to
1088 	 *	 reorder around the cpumask load.
1089 	 */
1090 	if ((domain & PWAKEUP_MYCPU) == 0) {
1091 		globaldata_t tgd;
1092 		const volatile void *id0;
1093 		int n;
1094 
1095 		cpu_mfence();
1096 		/* cpu_lfence(); */
1097 		mask = slpque_cpumasks[cid];
1098 		CPUMASK_ANDMASK(mask, gd->gd_other_cpus);
1099 		while (CPUMASK_TESTNZERO(mask)) {
1100 			n = BSRCPUMASK(mask);
1101 			CPUMASK_NANDBIT(mask, n);
1102 			tgd = globaldata_find(n);
1103 
1104 			/*
1105 			 * Both ident0 compares must from a single load
1106 			 * to avoid ident0 update races crossing the two
1107 			 * compares.
1108 			 */
1109 			qp = &tgd->gd_tsleep_hash[gid];
1110 			id0 = qp->ident0;
1111 			cpu_ccfence();
1112 			if (id0 == (void *)(intptr_t)-1) {
1113 				lwkt_send_ipiq2(tgd, _wakeup, ident,
1114 						domain | PWAKEUP_MYCPU);
1115 				++tgd->gd_cnt.v_wakeup_colls;
1116 			} else if (id0 == ident ||
1117 				   qp->ident1 == ident ||
1118 				   qp->ident2 == ident ||
1119 				   qp->ident3 == ident) {
1120 				lwkt_send_ipiq2(tgd, _wakeup, ident,
1121 						domain | PWAKEUP_MYCPU);
1122 			}
1123 		}
1124 #if 0
1125 		if (CPUMASK_TESTNZERO(mask)) {
1126 			lwkt_send_ipiq2_mask(mask, _wakeup, ident,
1127 					     domain | PWAKEUP_MYCPU);
1128 		}
1129 #endif
1130 	}
1131 done:
1132 	logtsleep1(wakeup_end);
1133 	crit_exit();
1134 }
1135 
1136 /*
1137  * Wakeup all threads tsleep()ing on the specified ident, on all cpus
1138  */
1139 void
1140 wakeup(const volatile void *ident)
1141 {
1142     globaldata_t gd = mycpu;
1143     thread_t td = gd->gd_curthread;
1144 
1145     if (td && (td->td_flags & TDF_DELAYED_WAKEUP)) {
1146 	/*
1147 	 * If we are in a delayed wakeup section, record up to two wakeups in
1148 	 * a per-CPU queue and issue them when we block or exit the delayed
1149 	 * wakeup section.
1150 	 */
1151 	if (atomic_cmpset_ptr(&gd->gd_delayed_wakeup[0], NULL, ident))
1152 		return;
1153 	if (atomic_cmpset_ptr(&gd->gd_delayed_wakeup[1], NULL, ident))
1154 		return;
1155 
1156 	ident = atomic_swap_ptr(__DEQUALIFY(volatile void **, &gd->gd_delayed_wakeup[1]),
1157 				__DEALL(ident));
1158 	ident = atomic_swap_ptr(__DEQUALIFY(volatile void **, &gd->gd_delayed_wakeup[0]),
1159 				__DEALL(ident));
1160     }
1161 
1162     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, gd->gd_cpuid));
1163 }
1164 
1165 /*
1166  * Wakeup one thread tsleep()ing on the specified ident, on any cpu.
1167  */
1168 void
1169 wakeup_one(const volatile void *ident)
1170 {
1171     /* XXX potentially round-robin the first responding cpu */
1172     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
1173 			    PWAKEUP_ONE);
1174 }
1175 
1176 /*
1177  * Wakeup threads tsleep()ing on the specified ident on the current cpu
1178  * only.
1179  */
1180 void
1181 wakeup_mycpu(const volatile void *ident)
1182 {
1183     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
1184 			    PWAKEUP_MYCPU);
1185 }
1186 
1187 /*
1188  * Wakeup one thread tsleep()ing on the specified ident on the current cpu
1189  * only.
1190  */
1191 void
1192 wakeup_mycpu_one(const volatile void *ident)
1193 {
1194     /* XXX potentially round-robin the first responding cpu */
1195     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
1196 			    PWAKEUP_MYCPU | PWAKEUP_ONE);
1197 }
1198 
1199 /*
1200  * Wakeup all thread tsleep()ing on the specified ident on the specified cpu
1201  * only.
1202  */
1203 void
1204 wakeup_oncpu(globaldata_t gd, const volatile void *ident)
1205 {
1206     globaldata_t mygd = mycpu;
1207     if (gd == mycpu) {
1208 	_wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1209 				PWAKEUP_MYCPU);
1210     } else {
1211 	lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident),
1212 			PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1213 			PWAKEUP_MYCPU);
1214     }
1215 }
1216 
1217 /*
1218  * Wakeup one thread tsleep()ing on the specified ident on the specified cpu
1219  * only.
1220  */
1221 void
1222 wakeup_oncpu_one(globaldata_t gd, const volatile void *ident)
1223 {
1224     globaldata_t mygd = mycpu;
1225     if (gd == mygd) {
1226 	_wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1227 				PWAKEUP_MYCPU | PWAKEUP_ONE);
1228     } else {
1229 	lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident),
1230 			PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1231 			PWAKEUP_MYCPU | PWAKEUP_ONE);
1232     }
1233 }
1234 
1235 /*
1236  * Wakeup all threads waiting on the specified ident that slept using
1237  * the specified domain, on all cpus.
1238  */
1239 void
1240 wakeup_domain(const volatile void *ident, int domain)
1241 {
1242     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(domain, mycpu->gd_cpuid));
1243 }
1244 
1245 /*
1246  * Wakeup one thread waiting on the specified ident that slept using
1247  * the specified  domain, on any cpu.
1248  */
1249 void
1250 wakeup_domain_one(const volatile void *ident, int domain)
1251 {
1252     /* XXX potentially round-robin the first responding cpu */
1253     _wakeup(__DEALL(ident),
1254 	    PWAKEUP_ENCODE(domain, mycpu->gd_cpuid) | PWAKEUP_ONE);
1255 }
1256 
1257 void
1258 wakeup_start_delayed(void)
1259 {
1260     globaldata_t gd = mycpu;
1261 
1262     crit_enter();
1263     gd->gd_curthread->td_flags |= TDF_DELAYED_WAKEUP;
1264     crit_exit();
1265 }
1266 
1267 void
1268 wakeup_end_delayed(void)
1269 {
1270     globaldata_t gd = mycpu;
1271 
1272     if (gd->gd_curthread->td_flags & TDF_DELAYED_WAKEUP) {
1273 	crit_enter();
1274 	gd->gd_curthread->td_flags &= ~TDF_DELAYED_WAKEUP;
1275 	if (gd->gd_delayed_wakeup[0] || gd->gd_delayed_wakeup[1]) {
1276 	    if (gd->gd_delayed_wakeup[0]) {
1277 		    wakeup(gd->gd_delayed_wakeup[0]);
1278 		    gd->gd_delayed_wakeup[0] = NULL;
1279 	    }
1280 	    if (gd->gd_delayed_wakeup[1]) {
1281 		    wakeup(gd->gd_delayed_wakeup[1]);
1282 		    gd->gd_delayed_wakeup[1] = NULL;
1283 	    }
1284 	}
1285 	crit_exit();
1286     }
1287 }
1288 
1289 /*
1290  * setrunnable()
1291  *
1292  * Make a process runnable.  lp->lwp_token must be held on call and this
1293  * function must be called from the cpu owning lp.
1294  *
1295  * This only has an effect if we are in LSSTOP or LSSLEEP.
1296  */
1297 void
1298 setrunnable(struct lwp *lp)
1299 {
1300 	thread_t td = lp->lwp_thread;
1301 
1302 	ASSERT_LWKT_TOKEN_HELD(&lp->lwp_token);
1303 	KKASSERT(td->td_gd == mycpu);
1304 	crit_enter();
1305 	if (lp->lwp_stat == LSSTOP)
1306 		lp->lwp_stat = LSSLEEP;
1307 	if (lp->lwp_stat == LSSLEEP) {
1308 		_tsleep_remove(td);
1309 		lwkt_schedule(td);
1310 	} else if (td->td_flags & TDF_SINTR) {
1311 		lwkt_schedule(td);
1312 	}
1313 	crit_exit();
1314 }
1315 
1316 /*
1317  * The process is stopped due to some condition, usually because p_stat is
1318  * set to SSTOP, but also possibly due to being traced.
1319  *
1320  * Caller must hold p->p_token
1321  *
1322  * NOTE!  If the caller sets SSTOP, the caller must also clear P_WAITED
1323  * because the parent may check the child's status before the child actually
1324  * gets to this routine.
1325  *
1326  * This routine is called with the current lwp only, typically just
1327  * before returning to userland if the process state is detected as
1328  * possibly being in a stopped state.
1329  */
1330 void
1331 tstop(void)
1332 {
1333 	struct lwp *lp = curthread->td_lwp;
1334 	struct proc *p = lp->lwp_proc;
1335 	struct proc *q;
1336 
1337 	lwkt_gettoken(&lp->lwp_token);
1338 	crit_enter();
1339 
1340 	/*
1341 	 * If LWP_MP_WSTOP is set, we were sleeping
1342 	 * while our process was stopped.  At this point
1343 	 * we were already counted as stopped.
1344 	 */
1345 	if ((lp->lwp_mpflags & LWP_MP_WSTOP) == 0) {
1346 		/*
1347 		 * If we're the last thread to stop, signal
1348 		 * our parent.
1349 		 */
1350 		p->p_nstopped++;
1351 		atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
1352 		wakeup(&p->p_nstopped);
1353 		if (p->p_nstopped == p->p_nthreads) {
1354 			/*
1355 			 * Token required to interlock kern_wait()
1356 			 */
1357 			q = p->p_pptr;
1358 			PHOLD(q);
1359 			lwkt_gettoken(&q->p_token);
1360 			p->p_flags &= ~P_WAITED;
1361 			wakeup(p->p_pptr);
1362 			if ((q->p_sigacts->ps_flag & PS_NOCLDSTOP) == 0)
1363 				ksignal(q, SIGCHLD);
1364 			lwkt_reltoken(&q->p_token);
1365 			PRELE(q);
1366 		}
1367 	}
1368 
1369 	/*
1370 	 * Wait here while in a stopped state, interlocked with lwp_token.
1371 	 * We must break-out if the whole process is trying to exit.
1372 	 */
1373 	while (STOPLWP(p, lp)) {
1374 		lp->lwp_stat = LSSTOP;
1375 		tsleep(p, 0, "stop", 0);
1376 	}
1377 	p->p_nstopped--;
1378 	atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
1379 	crit_exit();
1380 	lwkt_reltoken(&lp->lwp_token);
1381 }
1382 
1383 /*
1384  * Compute a tenex style load average of a quantity on
1385  * 1, 5 and 15 minute intervals.  This is a pcpu callout.
1386  *
1387  * We segment the lwp scan on a pcpu basis.  This does NOT
1388  * mean the associated lwps are on this cpu, it is done
1389  * just to break the work up.
1390  *
1391  * The callout on cpu0 rolls up the stats from the other
1392  * cpus.
1393  */
1394 static int loadav_count_runnable(struct lwp *p, void *data);
1395 
1396 static void
1397 loadav(void *arg)
1398 {
1399 	globaldata_t gd = mycpu;
1400 	struct loadavg *avg;
1401 	int i, nrun;
1402 
1403 	nrun = 0;
1404 	alllwp_scan(loadav_count_runnable, &nrun, 1);
1405 	gd->gd_loadav_nrunnable = nrun;
1406 	if (gd->gd_cpuid == 0) {
1407 		avg = &averunnable;
1408 		nrun = 0;
1409 		for (i = 0; i < ncpus; ++i)
1410 			nrun += globaldata_find(i)->gd_loadav_nrunnable;
1411 		for (i = 0; i < 3; i++) {
1412 			avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1413 			    (long)nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1414 		}
1415 	}
1416 
1417 	/*
1418 	 * Schedule the next update to occur after 5 seconds, but add a
1419 	 * random variation to avoid synchronisation with processes that
1420 	 * run at regular intervals.
1421 	 */
1422 	callout_reset(&gd->gd_loadav_callout,
1423 		      hz * 4 + (int)(krandom() % (hz * 2 + 1)),
1424 		      loadav, NULL);
1425 }
1426 
1427 static int
1428 loadav_count_runnable(struct lwp *lp, void *data)
1429 {
1430 	int *nrunp = data;
1431 	thread_t td;
1432 
1433 	switch (lp->lwp_stat) {
1434 	case LSRUN:
1435 		if ((td = lp->lwp_thread) == NULL)
1436 			break;
1437 		if (td->td_flags & TDF_BLOCKED)
1438 			break;
1439 		++*nrunp;
1440 		break;
1441 	default:
1442 		break;
1443 	}
1444 	lwkt_yield();
1445 	return(0);
1446 }
1447 
1448 /*
1449  * Regular data collection
1450  */
1451 static uint64_t
1452 collect_load_callback(int n)
1453 {
1454 	int fscale = averunnable.fscale;
1455 
1456 	return ((averunnable.ldavg[0] * 100 + (fscale >> 1)) / fscale);
1457 }
1458 
1459 static void
1460 sched_setup(void *dummy __unused)
1461 {
1462 	globaldata_t save_gd = mycpu;
1463 	globaldata_t gd;
1464 	int n;
1465 
1466 	kcollect_register(KCOLLECT_LOAD, "load", collect_load_callback,
1467 			  KCOLLECT_SCALE(KCOLLECT_LOAD_FORMAT, 0));
1468 
1469 	/*
1470 	 * Kick off timeout driven events by calling first time.  We
1471 	 * split the work across available cpus to help scale it,
1472 	 * it can eat a lot of cpu when there are a lot of processes
1473 	 * on the system.
1474 	 */
1475 	for (n = 0; n < ncpus; ++n) {
1476 		gd = globaldata_find(n);
1477 		lwkt_setcpu_self(gd);
1478 		callout_init_mp(&gd->gd_loadav_callout);
1479 		callout_init_mp(&gd->gd_schedcpu_callout);
1480 		schedcpu(NULL);
1481 		loadav(NULL);
1482 	}
1483 	lwkt_setcpu_self(save_gd);
1484 }
1485 
1486 /*
1487  * Extremely early initialization, dummy-up the tables so we don't have
1488  * to conditionalize for NULL in _wakeup() and tsleep_interlock().  Even
1489  * though the system isn't blocking this early, these functions still
1490  * try to access the hash table.
1491  *
1492  * This setup will be overridden once sched_dyninit() -> sleep_gdinit()
1493  * is called.
1494  */
1495 void
1496 sleep_early_gdinit(globaldata_t gd)
1497 {
1498 	static struct tslpque	dummy_slpque;
1499 	static cpumask_t dummy_cpumasks;
1500 
1501 	slpque_tablesize = 1;
1502 	gd->gd_tsleep_hash = &dummy_slpque;
1503 	slpque_cpumasks = &dummy_cpumasks;
1504 	TAILQ_INIT(&dummy_slpque.queue);
1505 }
1506 
1507 /*
1508  * PCPU initialization.  Called after KMALLOC is operational, by
1509  * sched_dyninit() for cpu 0, and by mi_gdinit() for other cpus later.
1510  *
1511  * WARNING! The pcpu hash table is smaller than the global cpumask
1512  *	    hash table, which can save us a lot of memory when maxproc
1513  *	    is set high.
1514  */
1515 void
1516 sleep_gdinit(globaldata_t gd)
1517 {
1518 	struct thread *td;
1519 	size_t hash_size;
1520 	uint32_t n;
1521 	uint32_t i;
1522 
1523 	/*
1524 	 * This shouldn't happen, that is there shouldn't be any threads
1525 	 * waiting on the dummy tsleep queue this early in the boot.
1526 	 */
1527 	if (gd->gd_cpuid == 0) {
1528 		struct tslpque *qp = &gd->gd_tsleep_hash[0];
1529 		TAILQ_FOREACH(td, &qp->queue, td_sleepq) {
1530 			kprintf("SLEEP_GDINIT SWITCH %s\n", td->td_comm);
1531 		}
1532 	}
1533 
1534 	/*
1535 	 * Note that we have to allocate one extra slot because we are
1536 	 * shifting a modulo value.  TCHASHSHIFT(slpque_tablesize - 1) can
1537 	 * return the same value as TCHASHSHIFT(slpque_tablesize).
1538 	 */
1539 	n = TCHASHSHIFT(slpque_tablesize) + 1;
1540 
1541 	hash_size = sizeof(struct tslpque) * n;
1542 	gd->gd_tsleep_hash = (void *)kmem_alloc3(&kernel_map, hash_size,
1543 						 VM_SUBSYS_GD,
1544 						 KM_CPU(gd->gd_cpuid));
1545 	memset(gd->gd_tsleep_hash, 0, hash_size);
1546 	for (i = 0; i < n; ++i)
1547 		TAILQ_INIT(&gd->gd_tsleep_hash[i].queue);
1548 }
1549 
1550 /*
1551  * Dynamic initialization after the memory system is operational.
1552  */
1553 static void
1554 sched_dyninit(void *dummy __unused)
1555 {
1556 	int tblsize;
1557 	int tblsize2;
1558 	int n;
1559 
1560 	/*
1561 	 * Calculate table size for slpque hash.  We want a prime number
1562 	 * large enough to avoid overloading slpque_cpumasks when the
1563 	 * system has a large number of sleeping processes, which will
1564 	 * spam IPIs on wakeup().
1565 	 *
1566 	 * While it is true this is really a per-lwp factor, generally
1567 	 * speaking the maxproc limit is a good metric to go by.
1568 	 */
1569 	for (tblsize = maxproc | 1; ; tblsize += 2) {
1570 		if (tblsize % 3 == 0)
1571 			continue;
1572 		if (tblsize % 5 == 0)
1573 			continue;
1574 		tblsize2 = (tblsize / 2) | 1;
1575 		for (n = 7; n < tblsize2; n += 2) {
1576 			if (tblsize % n == 0)
1577 				break;
1578 		}
1579 		if (n == tblsize2)
1580 			break;
1581 	}
1582 
1583 	/*
1584 	 * PIDs are currently limited to 6 digits.  Cap the table size
1585 	 * at double this.
1586 	 */
1587 	if (tblsize > 2000003)
1588 		tblsize = 2000003;
1589 
1590 	slpque_tablesize = tblsize;
1591 	slpque_cpumasks = kmalloc(sizeof(*slpque_cpumasks) * slpque_tablesize,
1592 				  M_TSLEEP, M_WAITOK | M_ZERO);
1593 	sleep_gdinit(mycpu);
1594 }
1595