xref: /dragonfly/sys/kern/kern_synch.c (revision b71f52a9)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39  * $FreeBSD: src/sys/kern/kern_synch.c,v 1.87.2.6 2002/10/13 07:29:53 kbyanc Exp $
40  * $DragonFly: src/sys/kern/kern_synch.c,v 1.91 2008/09/09 04:06:13 dillon Exp $
41  */
42 
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/kernel.h>
49 #include <sys/signalvar.h>
50 #include <sys/signal2.h>
51 #include <sys/resourcevar.h>
52 #include <sys/vmmeter.h>
53 #include <sys/sysctl.h>
54 #include <sys/lock.h>
55 #ifdef KTRACE
56 #include <sys/uio.h>
57 #include <sys/ktrace.h>
58 #endif
59 #include <sys/xwait.h>
60 #include <sys/ktr.h>
61 
62 #include <sys/thread2.h>
63 #include <sys/spinlock2.h>
64 #include <sys/serialize.h>
65 
66 #include <machine/cpu.h>
67 #include <machine/smp.h>
68 
69 TAILQ_HEAD(tslpque, thread);
70 
71 static void sched_setup (void *dummy);
72 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
73 
74 int	hogticks;
75 int	lbolt;
76 int	lbolt_syncer;
77 int	sched_quantum;		/* Roundrobin scheduling quantum in ticks. */
78 int	ncpus;
79 int	ncpus2, ncpus2_shift, ncpus2_mask;
80 int	ncpus_fit, ncpus_fit_mask;
81 int	safepri;
82 int	tsleep_now_works;
83 
84 static struct callout loadav_callout;
85 static struct callout schedcpu_callout;
86 MALLOC_DEFINE(M_TSLEEP, "tslpque", "tsleep queues");
87 
88 #if !defined(KTR_TSLEEP)
89 #define KTR_TSLEEP	KTR_ALL
90 #endif
91 KTR_INFO_MASTER(tsleep);
92 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_beg, 0, "tsleep enter %p", sizeof(void *));
93 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_end, 1, "tsleep exit", 0);
94 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_beg, 2, "wakeup enter %p", sizeof(void *));
95 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_end, 3, "wakeup exit", 0);
96 KTR_INFO(KTR_TSLEEP, tsleep, ilockfail,  4, "interlock failed %p", sizeof(void *));
97 
98 #define logtsleep1(name)	KTR_LOG(tsleep_ ## name)
99 #define logtsleep2(name, val)	KTR_LOG(tsleep_ ## name, val)
100 
101 struct loadavg averunnable =
102 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
103 /*
104  * Constants for averages over 1, 5, and 15 minutes
105  * when sampling at 5 second intervals.
106  */
107 static fixpt_t cexp[3] = {
108 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
109 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
110 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
111 };
112 
113 static void	endtsleep (void *);
114 static void	tsleep_wakeup(struct thread *td);
115 static void	loadav (void *arg);
116 static void	schedcpu (void *arg);
117 
118 /*
119  * Adjust the scheduler quantum.  The quantum is specified in microseconds.
120  * Note that 'tick' is in microseconds per tick.
121  */
122 static int
123 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
124 {
125 	int error, new_val;
126 
127 	new_val = sched_quantum * tick;
128 	error = sysctl_handle_int(oidp, &new_val, 0, req);
129         if (error != 0 || req->newptr == NULL)
130 		return (error);
131 	if (new_val < tick)
132 		return (EINVAL);
133 	sched_quantum = new_val / tick;
134 	hogticks = 2 * sched_quantum;
135 	return (0);
136 }
137 
138 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
139 	0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
140 
141 /*
142  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
143  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
144  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
145  *
146  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
147  *     1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
148  *
149  * If you don't want to bother with the faster/more-accurate formula, you
150  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
151  * (more general) method of calculating the %age of CPU used by a process.
152  *
153  * decay 95% of `lwp_pctcpu' in 60 seconds; see CCPU_SHIFT before changing
154  */
155 #define CCPU_SHIFT	11
156 
157 static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
158 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
159 
160 /*
161  * kernel uses `FSCALE', userland (SHOULD) use kern.fscale
162  */
163 int     fscale __unused = FSCALE;	/* exported to systat */
164 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
165 
166 /*
167  * Recompute process priorities, once a second.
168  *
169  * Since the userland schedulers are typically event oriented, if the
170  * estcpu calculation at wakeup() time is not sufficient to make a
171  * process runnable relative to other processes in the system we have
172  * a 1-second recalc to help out.
173  *
174  * This code also allows us to store sysclock_t data in the process structure
175  * without fear of an overrun, since sysclock_t are guarenteed to hold
176  * several seconds worth of count.
177  *
178  * WARNING!  callouts can preempt normal threads.  However, they will not
179  * preempt a thread holding a spinlock so we *can* safely use spinlocks.
180  */
181 static int schedcpu_stats(struct proc *p, void *data __unused);
182 static int schedcpu_resource(struct proc *p, void *data __unused);
183 
184 static void
185 schedcpu(void *arg)
186 {
187 	allproc_scan(schedcpu_stats, NULL);
188 	allproc_scan(schedcpu_resource, NULL);
189 	wakeup((caddr_t)&lbolt);
190 	wakeup((caddr_t)&lbolt_syncer);
191 	callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
192 }
193 
194 /*
195  * General process statistics once a second
196  */
197 static int
198 schedcpu_stats(struct proc *p, void *data __unused)
199 {
200 	struct lwp *lp;
201 
202 	crit_enter();
203 	p->p_swtime++;
204 	FOREACH_LWP_IN_PROC(lp, p) {
205 		if (lp->lwp_stat == LSSLEEP)
206 			lp->lwp_slptime++;
207 
208 		/*
209 		 * Only recalculate processes that are active or have slept
210 		 * less then 2 seconds.  The schedulers understand this.
211 		 */
212 		if (lp->lwp_slptime <= 1) {
213 			p->p_usched->recalculate(lp);
214 		} else {
215 			lp->lwp_pctcpu = (lp->lwp_pctcpu * ccpu) >> FSHIFT;
216 		}
217 	}
218 	crit_exit();
219 	return(0);
220 }
221 
222 /*
223  * Resource checks.  XXX break out since ksignal/killproc can block,
224  * limiting us to one process killed per second.  There is probably
225  * a better way.
226  */
227 static int
228 schedcpu_resource(struct proc *p, void *data __unused)
229 {
230 	u_int64_t ttime;
231 	struct lwp *lp;
232 
233 	crit_enter();
234 	if (p->p_stat == SIDL ||
235 	    p->p_stat == SZOMB ||
236 	    p->p_limit == NULL
237 	) {
238 		crit_exit();
239 		return(0);
240 	}
241 
242 	ttime = 0;
243 	FOREACH_LWP_IN_PROC(lp, p) {
244 		/*
245 		 * We may have caught an lp in the middle of being
246 		 * created, lwp_thread can be NULL.
247 		 */
248 		if (lp->lwp_thread) {
249 			ttime += lp->lwp_thread->td_sticks;
250 			ttime += lp->lwp_thread->td_uticks;
251 		}
252 	}
253 
254 	switch(plimit_testcpulimit(p->p_limit, ttime)) {
255 	case PLIMIT_TESTCPU_KILL:
256 		killproc(p, "exceeded maximum CPU limit");
257 		break;
258 	case PLIMIT_TESTCPU_XCPU:
259 		if ((p->p_flag & P_XCPU) == 0) {
260 			p->p_flag |= P_XCPU;
261 			ksignal(p, SIGXCPU);
262 		}
263 		break;
264 	default:
265 		break;
266 	}
267 	crit_exit();
268 	return(0);
269 }
270 
271 /*
272  * This is only used by ps.  Generate a cpu percentage use over
273  * a period of one second.
274  *
275  * MPSAFE
276  */
277 void
278 updatepcpu(struct lwp *lp, int cpticks, int ttlticks)
279 {
280 	fixpt_t acc;
281 	int remticks;
282 
283 	acc = (cpticks << FSHIFT) / ttlticks;
284 	if (ttlticks >= ESTCPUFREQ) {
285 		lp->lwp_pctcpu = acc;
286 	} else {
287 		remticks = ESTCPUFREQ - ttlticks;
288 		lp->lwp_pctcpu = (acc * ttlticks + lp->lwp_pctcpu * remticks) /
289 				ESTCPUFREQ;
290 	}
291 }
292 
293 /*
294  * tsleep/wakeup hash table parameters.  Try to find the sweet spot for
295  * like addresses being slept on.
296  */
297 #define TABLESIZE	1024
298 #define LOOKUP(x)	(((intptr_t)(x) >> 6) & (TABLESIZE - 1))
299 
300 static cpumask_t slpque_cpumasks[TABLESIZE];
301 
302 /*
303  * General scheduler initialization.  We force a reschedule 25 times
304  * a second by default.  Note that cpu0 is initialized in early boot and
305  * cannot make any high level calls.
306  *
307  * Each cpu has its own sleep queue.
308  */
309 void
310 sleep_gdinit(globaldata_t gd)
311 {
312 	static struct tslpque slpque_cpu0[TABLESIZE];
313 	int i;
314 
315 	if (gd->gd_cpuid == 0) {
316 		sched_quantum = (hz + 24) / 25;
317 		hogticks = 2 * sched_quantum;
318 
319 		gd->gd_tsleep_hash = slpque_cpu0;
320 	} else {
321 		gd->gd_tsleep_hash = kmalloc(sizeof(slpque_cpu0),
322 					    M_TSLEEP, M_WAITOK | M_ZERO);
323 	}
324 	for (i = 0; i < TABLESIZE; ++i)
325 		TAILQ_INIT(&gd->gd_tsleep_hash[i]);
326 }
327 
328 /*
329  * This is a dandy function that allows us to interlock tsleep/wakeup
330  * operations with unspecified upper level locks, such as lockmgr locks,
331  * simply by holding a critical section.  The sequence is:
332  *
333  *	(acquire upper level lock)
334  *	tsleep_interlock(blah)
335  *	(release upper level lock)
336  *	tsleep(blah, ...)
337  *
338  * Basically this functions queues us on the tsleep queue without actually
339  * descheduling us.  When tsleep() is later called with PINTERLOCK it
340  * assumes the thread was already queued, otherwise it queues it there.
341  *
342  * Thus it is possible to receive the wakeup prior to going to sleep and
343  * the race conditions are covered.
344  */
345 static __inline void
346 _tsleep_interlock(globaldata_t gd, void *ident, int flags)
347 {
348 	thread_t td = gd->gd_curthread;
349 	int id;
350 
351 	crit_enter_quick(td);
352 	if (td->td_flags & TDF_TSLEEPQ) {
353 		id = LOOKUP(td->td_wchan);
354 		TAILQ_REMOVE(&gd->gd_tsleep_hash[id], td, td_sleepq);
355 		if (TAILQ_FIRST(&gd->gd_tsleep_hash[id]) == NULL)
356 			atomic_clear_int(&slpque_cpumasks[id], gd->gd_cpumask);
357 	} else {
358 		td->td_flags |= TDF_TSLEEPQ;
359 	}
360 	id = LOOKUP(ident);
361 	TAILQ_INSERT_TAIL(&gd->gd_tsleep_hash[id], td, td_sleepq);
362 	atomic_set_int(&slpque_cpumasks[id], gd->gd_cpumask);
363 	td->td_wchan = ident;
364 	td->td_wdomain = flags & PDOMAIN_MASK;
365 	atomic_set_int(&slpque_cpumasks[id], gd->gd_cpumask);
366 	crit_exit_quick(td);
367 }
368 
369 void
370 tsleep_interlock(void *ident, int flags)
371 {
372 	_tsleep_interlock(mycpu, ident, flags);
373 }
374 
375 /*
376  * Remove thread from sleepq.  Must be called with a critical section held.
377  */
378 static __inline void
379 _tsleep_remove(thread_t td)
380 {
381 	globaldata_t gd = mycpu;
382 	int id;
383 
384 	KKASSERT(td->td_gd == gd);
385 	if (td->td_flags & TDF_TSLEEPQ) {
386 		td->td_flags &= ~TDF_TSLEEPQ;
387 		id = LOOKUP(td->td_wchan);
388 		TAILQ_REMOVE(&gd->gd_tsleep_hash[id], td, td_sleepq);
389 		if (TAILQ_FIRST(&gd->gd_tsleep_hash[id]) == NULL)
390 			atomic_clear_int(&slpque_cpumasks[id], gd->gd_cpumask);
391 		td->td_wchan = NULL;
392 		td->td_wdomain = 0;
393 	}
394 }
395 
396 void
397 tsleep_remove(thread_t td)
398 {
399 	_tsleep_remove(td);
400 }
401 
402 /*
403  * This function removes a thread from the tsleep queue and schedules
404  * it.  This function may act asynchronously.  The target thread may be
405  * sleeping on a different cpu.
406  *
407  * This function mus be called while in a critical section but if the
408  * target thread is sleeping on a different cpu we cannot safely probe
409  * td_flags.
410  */
411 static __inline
412 void
413 _tsleep_wakeup(struct thread *td)
414 {
415 	globaldata_t gd = mycpu;
416 
417 #ifdef SMP
418 	if (td->td_gd != gd) {
419 		lwkt_send_ipiq(td->td_gd, (ipifunc1_t)tsleep_wakeup, td);
420 		return;
421 	}
422 #endif
423 	_tsleep_remove(td);
424 	if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
425 		td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
426 		lwkt_schedule(td);
427 	}
428 }
429 
430 static
431 void
432 tsleep_wakeup(struct thread *td)
433 {
434 	_tsleep_wakeup(td);
435 }
436 
437 
438 /*
439  * General sleep call.  Suspends the current process until a wakeup is
440  * performed on the specified identifier.  The process will then be made
441  * runnable with the specified priority.  Sleeps at most timo/hz seconds
442  * (0 means no timeout).  If flags includes PCATCH flag, signals are checked
443  * before and after sleeping, else signals are not checked.  Returns 0 if
444  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
445  * signal needs to be delivered, ERESTART is returned if the current system
446  * call should be restarted if possible, and EINTR is returned if the system
447  * call should be interrupted by the signal (return EINTR).
448  *
449  * Note that if we are a process, we release_curproc() before messing with
450  * the LWKT scheduler.
451  *
452  * During autoconfiguration or after a panic, a sleep will simply
453  * lower the priority briefly to allow interrupts, then return.
454  */
455 int
456 tsleep(void *ident, int flags, const char *wmesg, int timo)
457 {
458 	struct thread *td = curthread;
459 	struct lwp *lp = td->td_lwp;
460 	struct proc *p = td->td_proc;		/* may be NULL */
461 	globaldata_t gd;
462 	int sig;
463 	int catch;
464 	int id;
465 	int error;
466 	int oldpri;
467 	struct callout thandle;
468 
469 	/*
470 	 * NOTE: removed KTRPOINT, it could cause races due to blocking
471 	 * even in stable.  Just scrap it for now.
472 	 */
473 	if (tsleep_now_works == 0 || panicstr) {
474 		/*
475 		 * After a panic, or before we actually have an operational
476 		 * softclock, just give interrupts a chance, then just return;
477 		 *
478 		 * don't run any other procs or panic below,
479 		 * in case this is the idle process and already asleep.
480 		 */
481 		splz();
482 		oldpri = td->td_pri & TDPRI_MASK;
483 		lwkt_setpri_self(safepri);
484 		lwkt_switch();
485 		lwkt_setpri_self(oldpri);
486 		return (0);
487 	}
488 	logtsleep2(tsleep_beg, ident);
489 	gd = td->td_gd;
490 	KKASSERT(td != &gd->gd_idlethread);	/* you must be kidding! */
491 
492 	/*
493 	 * NOTE: all of this occurs on the current cpu, including any
494 	 * callout-based wakeups, so a critical section is a sufficient
495 	 * interlock.
496 	 *
497 	 * The entire sequence through to where we actually sleep must
498 	 * run without breaking the critical section.
499 	 */
500 	catch = flags & PCATCH;
501 	error = 0;
502 	sig = 0;
503 
504 	crit_enter_quick(td);
505 
506 	KASSERT(ident != NULL, ("tsleep: no ident"));
507 	KASSERT(lp == NULL ||
508 		lp->lwp_stat == LSRUN ||	/* Obvious */
509 		lp->lwp_stat == LSSTOP,		/* Set in tstop */
510 		("tsleep %p %s %d",
511 			ident, wmesg, lp->lwp_stat));
512 
513 	/*
514 	 * Setup for the current process (if this is a process).
515 	 */
516 	if (lp) {
517 		if (catch) {
518 			/*
519 			 * Early termination if PCATCH was set and a
520 			 * signal is pending, interlocked with the
521 			 * critical section.
522 			 *
523 			 * Early termination only occurs when tsleep() is
524 			 * entered while in a normal LSRUN state.
525 			 */
526 			if ((sig = CURSIG(lp)) != 0)
527 				goto resume;
528 
529 			/*
530 			 * Early termination if PCATCH was set and a
531 			 * mailbox signal was possibly delivered prior to
532 			 * the system call even being made, in order to
533 			 * allow the user to interlock without having to
534 			 * make additional system calls.
535 			 */
536 			if (p->p_flag & P_MAILBOX)
537 				goto resume;
538 
539 			/*
540 			 * Causes ksignal to wake us up when.
541 			 */
542 			lp->lwp_flag |= LWP_SINTR;
543 		}
544 
545 		/*
546 		 * Make sure the current process has been untangled from
547 		 * the userland scheduler and initialize slptime to start
548 		 * counting.
549 		 */
550 		p->p_usched->release_curproc(lp);
551 		lp->lwp_slptime = 0;
552 	}
553 
554 	/*
555 	 * If the interlocked flag is set but our cpu bit in the slpqueue
556 	 * is no longer set, then a wakeup was processed inbetween the
557 	 * tsleep_interlock() and here.  This can occur under extreme loads
558 	 * if the IPIQ fills up and gets processed synchronously by, say,
559 	 * a wakeup() or other IPI sent inbetween the interlock and here.
560 	 *
561 	 * Even the usched->release function just above can muff it up.
562 	 */
563 	if (flags & PINTERLOCKED) {
564 		if ((td->td_flags & TDF_TSLEEPQ) == 0) {
565 			logtsleep2(ilockfail, ident);
566 			goto resume;
567 		}
568 	} else {
569 		id = LOOKUP(ident);
570 		_tsleep_interlock(gd, ident, flags);
571 	}
572 	lwkt_deschedule_self(td);
573 	td->td_flags |= TDF_TSLEEP_DESCHEDULED;
574 	td->td_wmesg = wmesg;
575 
576 	/*
577 	 * Setup the timeout, if any
578 	 */
579 	if (timo) {
580 		callout_init(&thandle);
581 		callout_reset(&thandle, timo, endtsleep, td);
582 	}
583 
584 	/*
585 	 * Beddy bye bye.
586 	 */
587 	if (lp) {
588 		/*
589 		 * Ok, we are sleeping.  Place us in the SSLEEP state.
590 		 */
591 		KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0);
592 		/*
593 		 * tstop() sets LSSTOP, so don't fiddle with that.
594 		 */
595 		if (lp->lwp_stat != LSSTOP)
596 			lp->lwp_stat = LSSLEEP;
597 		lp->lwp_ru.ru_nvcsw++;
598 		lwkt_switch();
599 
600 		/*
601 		 * And when we are woken up, put us back in LSRUN.  If we
602 		 * slept for over a second, recalculate our estcpu.
603 		 */
604 		lp->lwp_stat = LSRUN;
605 		if (lp->lwp_slptime)
606 			p->p_usched->recalculate(lp);
607 		lp->lwp_slptime = 0;
608 	} else {
609 		lwkt_switch();
610 	}
611 
612 	/*
613 	 * Make sure we haven't switched cpus while we were asleep.  It's
614 	 * not supposed to happen.  Cleanup our temporary flags.
615 	 */
616 	KKASSERT(gd == td->td_gd);
617 
618 	/*
619 	 * Cleanup the timeout.
620 	 */
621 	if (timo) {
622 		if (td->td_flags & TDF_TIMEOUT) {
623 			td->td_flags &= ~TDF_TIMEOUT;
624 			error = EWOULDBLOCK;
625 		} else {
626 			callout_stop(&thandle);
627 		}
628 	}
629 
630 	/*
631 	 * Make sure we have been removed from the sleepq.  This should
632 	 * have been done for us already.
633 	 */
634 	_tsleep_remove(td);
635 	td->td_wmesg = NULL;
636 	if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
637 		td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
638 		kprintf("td %p (%s) unexpectedly rescheduled\n",
639 			td, td->td_comm);
640 	}
641 
642 	/*
643 	 * Figure out the correct error return.  If interrupted by a
644 	 * signal we want to return EINTR or ERESTART.
645 	 *
646 	 * If P_MAILBOX is set no automatic system call restart occurs
647 	 * and we return EINTR.  P_MAILBOX is meant to be used as an
648 	 * interlock, the user must poll it prior to any system call
649 	 * that it wishes to interlock a mailbox signal against since
650 	 * the flag is cleared on *any* system call that sleeps.
651 	 */
652 resume:
653 	if (p) {
654 		if (catch && error == 0) {
655 			if ((p->p_flag & P_MAILBOX) && sig == 0) {
656 				error = EINTR;
657 			} else if (sig != 0 || (sig = CURSIG(lp))) {
658 				if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
659 					error = EINTR;
660 				else
661 					error = ERESTART;
662 			}
663 		}
664 		lp->lwp_flag &= ~(LWP_BREAKTSLEEP | LWP_SINTR);
665 		p->p_flag &= ~P_MAILBOX;
666 	}
667 	logtsleep1(tsleep_end);
668 	crit_exit_quick(td);
669 	return (error);
670 }
671 
672 /*
673  * Interlocked spinlock sleep.  An exclusively held spinlock must
674  * be passed to msleep().  The function will atomically release the
675  * spinlock and tsleep on the ident, then reacquire the spinlock and
676  * return.
677  *
678  * This routine is fairly important along the critical path, so optimize it
679  * heavily.
680  */
681 int
682 msleep(void *ident, struct spinlock *spin, int flags,
683        const char *wmesg, int timo)
684 {
685 	globaldata_t gd = mycpu;
686 	int error;
687 
688 	_tsleep_interlock(gd, ident, flags);
689 	spin_unlock_wr_quick(gd, spin);
690 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
691 	spin_lock_wr_quick(gd, spin);
692 
693 	return (error);
694 }
695 
696 /*
697  * Interlocked serializer sleep.  An exclusively held serializer must
698  * be passed to serialize_sleep().  The function will atomically release
699  * the serializer and tsleep on the ident, then reacquire the serializer
700  * and return.
701  */
702 int
703 serialize_sleep(void *ident, struct lwkt_serialize *slz, int flags,
704 		const char *wmesg, int timo)
705 {
706 	globaldata_t gd = mycpu;
707 	int ret;
708 
709 	ASSERT_SERIALIZED(slz);
710 
711 	_tsleep_interlock(gd, ident, flags);
712 	lwkt_serialize_exit(slz);
713 	ret = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
714 	lwkt_serialize_enter(slz);
715 
716 	return ret;
717 }
718 
719 /*
720  * Directly block on the LWKT thread by descheduling it.  This
721  * is much faster then tsleep(), but the only legal way to wake
722  * us up is to directly schedule the thread.
723  *
724  * Setting TDF_SINTR will cause new signals to directly schedule us.
725  *
726  * This routine must be called while in a critical section.
727  */
728 int
729 lwkt_sleep(const char *wmesg, int flags)
730 {
731 	thread_t td = curthread;
732 	int sig;
733 
734 	if ((flags & PCATCH) == 0 || td->td_lwp == NULL) {
735 		td->td_flags |= TDF_BLOCKED;
736 		td->td_wmesg = wmesg;
737 		lwkt_deschedule_self(td);
738 		lwkt_switch();
739 		td->td_wmesg = NULL;
740 		td->td_flags &= ~TDF_BLOCKED;
741 		return(0);
742 	}
743 	if ((sig = CURSIG(td->td_lwp)) != 0) {
744 		if (SIGISMEMBER(td->td_proc->p_sigacts->ps_sigintr, sig))
745 			return(EINTR);
746 		else
747 			return(ERESTART);
748 
749 	}
750 	td->td_flags |= TDF_BLOCKED | TDF_SINTR;
751 	td->td_wmesg = wmesg;
752 	lwkt_deschedule_self(td);
753 	lwkt_switch();
754 	td->td_flags &= ~(TDF_BLOCKED | TDF_SINTR);
755 	td->td_wmesg = NULL;
756 	return(0);
757 }
758 
759 /*
760  * Implement the timeout for tsleep.
761  *
762  * We set LWP_BREAKTSLEEP to indicate that an event has occured, but
763  * we only call setrunnable if the process is not stopped.
764  *
765  * This type of callout timeout is scheduled on the same cpu the process
766  * is sleeping on.  Also, at the moment, the MP lock is held.
767  */
768 static void
769 endtsleep(void *arg)
770 {
771 	thread_t td = arg;
772 	struct lwp *lp;
773 
774 	ASSERT_MP_LOCK_HELD(curthread);
775 	crit_enter();
776 
777 	/*
778 	 * cpu interlock.  Thread flags are only manipulated on
779 	 * the cpu owning the thread.  proc flags are only manipulated
780 	 * by the older of the MP lock.  We have both.
781 	 */
782 	if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
783 		td->td_flags |= TDF_TIMEOUT;
784 
785 		if ((lp = td->td_lwp) != NULL) {
786 			lp->lwp_flag |= LWP_BREAKTSLEEP;
787 			if (lp->lwp_proc->p_stat != SSTOP)
788 				setrunnable(lp);
789 		} else {
790 			_tsleep_wakeup(td);
791 		}
792 	}
793 	crit_exit();
794 }
795 
796 /*
797  * Make all processes sleeping on the specified identifier runnable.
798  * count may be zero or one only.
799  *
800  * The domain encodes the sleep/wakeup domain AND the first cpu to check
801  * (which is always the current cpu).  As we iterate across cpus
802  *
803  * This call may run without the MP lock held.  We can only manipulate thread
804  * state on the cpu owning the thread.  We CANNOT manipulate process state
805  * at all.
806  */
807 static void
808 _wakeup(void *ident, int domain)
809 {
810 	struct tslpque *qp;
811 	struct thread *td;
812 	struct thread *ntd;
813 	globaldata_t gd;
814 #ifdef SMP
815 	cpumask_t mask;
816 #endif
817 	int id;
818 
819 	crit_enter();
820 	logtsleep2(wakeup_beg, ident);
821 	gd = mycpu;
822 	id = LOOKUP(ident);
823 	qp = &gd->gd_tsleep_hash[id];
824 restart:
825 	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
826 		ntd = TAILQ_NEXT(td, td_sleepq);
827 		if (td->td_wchan == ident &&
828 		    td->td_wdomain == (domain & PDOMAIN_MASK)
829 		) {
830 			KKASSERT(td->td_gd == gd);
831 			_tsleep_remove(td);
832 			if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
833 				td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
834 				lwkt_schedule(td);
835 				if (domain & PWAKEUP_ONE)
836 					goto done;
837 			}
838 			goto restart;
839 		}
840 	}
841 
842 #ifdef SMP
843 	/*
844 	 * We finished checking the current cpu but there still may be
845 	 * more work to do.  Either wakeup_one was requested and no matching
846 	 * thread was found, or a normal wakeup was requested and we have
847 	 * to continue checking cpus.
848 	 *
849 	 * It should be noted that this scheme is actually less expensive then
850 	 * the old scheme when waking up multiple threads, since we send
851 	 * only one IPI message per target candidate which may then schedule
852 	 * multiple threads.  Before we could have wound up sending an IPI
853 	 * message for each thread on the target cpu (!= current cpu) that
854 	 * needed to be woken up.
855 	 *
856 	 * NOTE: Wakeups occuring on remote cpus are asynchronous.  This
857 	 * should be ok since we are passing idents in the IPI rather then
858 	 * thread pointers.
859 	 */
860 	if ((domain & PWAKEUP_MYCPU) == 0 &&
861 	    (mask = slpque_cpumasks[id] & gd->gd_other_cpus) != 0) {
862 		lwkt_send_ipiq2_mask(mask, _wakeup, ident,
863 				     domain | PWAKEUP_MYCPU);
864 	}
865 #endif
866 done:
867 	logtsleep1(wakeup_end);
868 	crit_exit();
869 }
870 
871 /*
872  * Wakeup all threads tsleep()ing on the specified ident, on all cpus
873  */
874 void
875 wakeup(void *ident)
876 {
877     _wakeup(ident, PWAKEUP_ENCODE(0, mycpu->gd_cpuid));
878 }
879 
880 /*
881  * Wakeup one thread tsleep()ing on the specified ident, on any cpu.
882  */
883 void
884 wakeup_one(void *ident)
885 {
886     /* XXX potentially round-robin the first responding cpu */
887     _wakeup(ident, PWAKEUP_ENCODE(0, mycpu->gd_cpuid) | PWAKEUP_ONE);
888 }
889 
890 /*
891  * Wakeup threads tsleep()ing on the specified ident on the current cpu
892  * only.
893  */
894 void
895 wakeup_mycpu(void *ident)
896 {
897     _wakeup(ident, PWAKEUP_MYCPU);
898 }
899 
900 /*
901  * Wakeup one thread tsleep()ing on the specified ident on the current cpu
902  * only.
903  */
904 void
905 wakeup_mycpu_one(void *ident)
906 {
907     /* XXX potentially round-robin the first responding cpu */
908     _wakeup(ident, PWAKEUP_MYCPU|PWAKEUP_ONE);
909 }
910 
911 /*
912  * Wakeup all thread tsleep()ing on the specified ident on the specified cpu
913  * only.
914  */
915 void
916 wakeup_oncpu(globaldata_t gd, void *ident)
917 {
918 #ifdef SMP
919     if (gd == mycpu) {
920 	_wakeup(ident, PWAKEUP_MYCPU);
921     } else {
922 	lwkt_send_ipiq2(gd, _wakeup, ident, PWAKEUP_MYCPU);
923     }
924 #else
925     _wakeup(ident, PWAKEUP_MYCPU);
926 #endif
927 }
928 
929 /*
930  * Wakeup one thread tsleep()ing on the specified ident on the specified cpu
931  * only.
932  */
933 void
934 wakeup_oncpu_one(globaldata_t gd, void *ident)
935 {
936 #ifdef SMP
937     if (gd == mycpu) {
938 	_wakeup(ident, PWAKEUP_MYCPU | PWAKEUP_ONE);
939     } else {
940 	lwkt_send_ipiq2(gd, _wakeup, ident, PWAKEUP_MYCPU | PWAKEUP_ONE);
941     }
942 #else
943     _wakeup(ident, PWAKEUP_MYCPU | PWAKEUP_ONE);
944 #endif
945 }
946 
947 /*
948  * Wakeup all threads waiting on the specified ident that slept using
949  * the specified domain, on all cpus.
950  */
951 void
952 wakeup_domain(void *ident, int domain)
953 {
954     _wakeup(ident, PWAKEUP_ENCODE(domain, mycpu->gd_cpuid));
955 }
956 
957 /*
958  * Wakeup one thread waiting on the specified ident that slept using
959  * the specified  domain, on any cpu.
960  */
961 void
962 wakeup_domain_one(void *ident, int domain)
963 {
964     /* XXX potentially round-robin the first responding cpu */
965     _wakeup(ident, PWAKEUP_ENCODE(domain, mycpu->gd_cpuid) | PWAKEUP_ONE);
966 }
967 
968 /*
969  * setrunnable()
970  *
971  * Make a process runnable.  The MP lock must be held on call.  This only
972  * has an effect if we are in SSLEEP.  We only break out of the
973  * tsleep if LWP_BREAKTSLEEP is set, otherwise we just fix-up the state.
974  *
975  * NOTE: With the MP lock held we can only safely manipulate the process
976  * structure.  We cannot safely manipulate the thread structure.
977  */
978 void
979 setrunnable(struct lwp *lp)
980 {
981 	crit_enter();
982 	ASSERT_MP_LOCK_HELD(curthread);
983 	if (lp->lwp_stat == LSSTOP)
984 		lp->lwp_stat = LSSLEEP;
985 	if (lp->lwp_stat == LSSLEEP && (lp->lwp_flag & LWP_BREAKTSLEEP))
986 		_tsleep_wakeup(lp->lwp_thread);
987 	crit_exit();
988 }
989 
990 /*
991  * The process is stopped due to some condition, usually because p_stat is
992  * set to SSTOP, but also possibly due to being traced.
993  *
994  * NOTE!  If the caller sets SSTOP, the caller must also clear P_WAITED
995  * because the parent may check the child's status before the child actually
996  * gets to this routine.
997  *
998  * This routine is called with the current lwp only, typically just
999  * before returning to userland.
1000  *
1001  * Setting LWP_BREAKTSLEEP before entering the tsleep will cause a passive
1002  * SIGCONT to break out of the tsleep.
1003  */
1004 void
1005 tstop(void)
1006 {
1007 	struct lwp *lp = curthread->td_lwp;
1008 	struct proc *p = lp->lwp_proc;
1009 
1010 	crit_enter();
1011 	/*
1012 	 * If LWP_WSTOP is set, we were sleeping
1013 	 * while our process was stopped.  At this point
1014 	 * we were already counted as stopped.
1015 	 */
1016 	if ((lp->lwp_flag & LWP_WSTOP) == 0) {
1017 		/*
1018 		 * If we're the last thread to stop, signal
1019 		 * our parent.
1020 		 */
1021 		p->p_nstopped++;
1022 		lp->lwp_flag |= LWP_WSTOP;
1023 		wakeup(&p->p_nstopped);
1024 		if (p->p_nstopped == p->p_nthreads) {
1025 			p->p_flag &= ~P_WAITED;
1026 			wakeup(p->p_pptr);
1027 			if ((p->p_pptr->p_sigacts->ps_flag & PS_NOCLDSTOP) == 0)
1028 				ksignal(p->p_pptr, SIGCHLD);
1029 		}
1030 	}
1031 	while (p->p_stat == SSTOP) {
1032 		lp->lwp_flag |= LWP_BREAKTSLEEP;
1033 		lp->lwp_stat = LSSTOP;
1034 		tsleep(p, 0, "stop", 0);
1035 	}
1036 	p->p_nstopped--;
1037 	lp->lwp_flag &= ~LWP_WSTOP;
1038 	crit_exit();
1039 }
1040 
1041 /*
1042  * Yield / synchronous reschedule.  This is a bit tricky because the trap
1043  * code might have set a lazy release on the switch function.   Setting
1044  * P_PASSIVE_ACQ will ensure that the lazy release executes when we call
1045  * switch, and that we are given a greater chance of affinity with our
1046  * current cpu.
1047  *
1048  * We call lwkt_setpri_self() to rotate our thread to the end of the lwkt
1049  * run queue.  lwkt_switch() will also execute any assigned passive release
1050  * (which usually calls release_curproc()), allowing a same/higher priority
1051  * process to be designated as the current process.
1052  *
1053  * While it is possible for a lower priority process to be designated,
1054  * it's call to lwkt_maybe_switch() in acquire_curproc() will likely
1055  * round-robin back to us and we will be able to re-acquire the current
1056  * process designation.
1057  */
1058 void
1059 uio_yield(void)
1060 {
1061 	struct thread *td = curthread;
1062 	struct proc *p = td->td_proc;
1063 
1064 	lwkt_setpri_self(td->td_pri & TDPRI_MASK);
1065 	if (p) {
1066 		p->p_flag |= P_PASSIVE_ACQ;
1067 		lwkt_switch();
1068 		p->p_flag &= ~P_PASSIVE_ACQ;
1069 	} else {
1070 		lwkt_switch();
1071 	}
1072 }
1073 
1074 /*
1075  * Compute a tenex style load average of a quantity on
1076  * 1, 5 and 15 minute intervals.
1077  */
1078 static int loadav_count_runnable(struct lwp *p, void *data);
1079 
1080 static void
1081 loadav(void *arg)
1082 {
1083 	struct loadavg *avg;
1084 	int i, nrun;
1085 
1086 	nrun = 0;
1087 	alllwp_scan(loadav_count_runnable, &nrun);
1088 	avg = &averunnable;
1089 	for (i = 0; i < 3; i++) {
1090 		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1091 		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1092 	}
1093 
1094 	/*
1095 	 * Schedule the next update to occur after 5 seconds, but add a
1096 	 * random variation to avoid synchronisation with processes that
1097 	 * run at regular intervals.
1098 	 */
1099 	callout_reset(&loadav_callout, hz * 4 + (int)(krandom() % (hz * 2 + 1)),
1100 		      loadav, NULL);
1101 }
1102 
1103 static int
1104 loadav_count_runnable(struct lwp *lp, void *data)
1105 {
1106 	int *nrunp = data;
1107 	thread_t td;
1108 
1109 	switch (lp->lwp_stat) {
1110 	case LSRUN:
1111 		if ((td = lp->lwp_thread) == NULL)
1112 			break;
1113 		if (td->td_flags & TDF_BLOCKED)
1114 			break;
1115 		++*nrunp;
1116 		break;
1117 	default:
1118 		break;
1119 	}
1120 	return(0);
1121 }
1122 
1123 /* ARGSUSED */
1124 static void
1125 sched_setup(void *dummy)
1126 {
1127 	callout_init(&loadav_callout);
1128 	callout_init(&schedcpu_callout);
1129 
1130 	/* Kick off timeout driven events by calling first time. */
1131 	schedcpu(NULL);
1132 	loadav(NULL);
1133 }
1134 
1135