xref: /dragonfly/sys/kern/kern_synch.c (revision c03f08f3)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39  * $FreeBSD: src/sys/kern/kern_synch.c,v 1.87.2.6 2002/10/13 07:29:53 kbyanc Exp $
40  * $DragonFly: src/sys/kern/kern_synch.c,v 1.87 2007/08/11 18:18:30 dillon Exp $
41  */
42 
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/kernel.h>
49 #include <sys/signalvar.h>
50 #include <sys/signal2.h>
51 #include <sys/resourcevar.h>
52 #include <sys/vmmeter.h>
53 #include <sys/sysctl.h>
54 #include <sys/lock.h>
55 #ifdef KTRACE
56 #include <sys/uio.h>
57 #include <sys/ktrace.h>
58 #endif
59 #include <sys/xwait.h>
60 #include <sys/ktr.h>
61 
62 #include <sys/thread2.h>
63 #include <sys/spinlock2.h>
64 
65 #include <machine/cpu.h>
66 #include <machine/smp.h>
67 
68 TAILQ_HEAD(tslpque, thread);
69 
70 static void sched_setup (void *dummy);
71 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
72 
73 int	hogticks;
74 int	lbolt;
75 int	lbolt_syncer;
76 int	sched_quantum;		/* Roundrobin scheduling quantum in ticks. */
77 int	ncpus;
78 int	ncpus2, ncpus2_shift, ncpus2_mask;
79 int	ncpus_fit, ncpus_fit_mask;
80 int	safepri;
81 int	tsleep_now_works;
82 
83 static struct callout loadav_callout;
84 static struct callout schedcpu_callout;
85 MALLOC_DEFINE(M_TSLEEP, "tslpque", "tsleep queues");
86 
87 #if !defined(KTR_TSLEEP)
88 #define KTR_TSLEEP	KTR_ALL
89 #endif
90 KTR_INFO_MASTER(tsleep);
91 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_beg, 0, "tsleep enter %p", sizeof(void *));
92 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_end, 1, "tsleep exit", 0);
93 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_beg, 2, "wakeup enter %p", sizeof(void *));
94 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_end, 3, "wakeup exit", 0);
95 
96 #define logtsleep1(name)	KTR_LOG(tsleep_ ## name)
97 #define logtsleep2(name, val)	KTR_LOG(tsleep_ ## name, val)
98 
99 struct loadavg averunnable =
100 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
101 /*
102  * Constants for averages over 1, 5, and 15 minutes
103  * when sampling at 5 second intervals.
104  */
105 static fixpt_t cexp[3] = {
106 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
107 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
108 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
109 };
110 
111 static void	endtsleep (void *);
112 static void	unsleep_and_wakeup_thread(struct thread *td);
113 static void	loadav (void *arg);
114 static void	schedcpu (void *arg);
115 
116 /*
117  * Adjust the scheduler quantum.  The quantum is specified in microseconds.
118  * Note that 'tick' is in microseconds per tick.
119  */
120 static int
121 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
122 {
123 	int error, new_val;
124 
125 	new_val = sched_quantum * tick;
126 	error = sysctl_handle_int(oidp, &new_val, 0, req);
127         if (error != 0 || req->newptr == NULL)
128 		return (error);
129 	if (new_val < tick)
130 		return (EINVAL);
131 	sched_quantum = new_val / tick;
132 	hogticks = 2 * sched_quantum;
133 	return (0);
134 }
135 
136 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
137 	0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
138 
139 /*
140  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
141  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
142  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
143  *
144  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
145  *     1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
146  *
147  * If you don't want to bother with the faster/more-accurate formula, you
148  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
149  * (more general) method of calculating the %age of CPU used by a process.
150  *
151  * decay 95% of `lwp_pctcpu' in 60 seconds; see CCPU_SHIFT before changing
152  */
153 #define CCPU_SHIFT	11
154 
155 static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
156 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
157 
158 /*
159  * kernel uses `FSCALE', userland (SHOULD) use kern.fscale
160  */
161 int     fscale __unused = FSCALE;	/* exported to systat */
162 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
163 
164 /*
165  * Recompute process priorities, once a second.
166  *
167  * Since the userland schedulers are typically event oriented, if the
168  * estcpu calculation at wakeup() time is not sufficient to make a
169  * process runnable relative to other processes in the system we have
170  * a 1-second recalc to help out.
171  *
172  * This code also allows us to store sysclock_t data in the process structure
173  * without fear of an overrun, since sysclock_t are guarenteed to hold
174  * several seconds worth of count.
175  *
176  * WARNING!  callouts can preempt normal threads.  However, they will not
177  * preempt a thread holding a spinlock so we *can* safely use spinlocks.
178  */
179 static int schedcpu_stats(struct proc *p, void *data __unused);
180 static int schedcpu_resource(struct proc *p, void *data __unused);
181 
182 static void
183 schedcpu(void *arg)
184 {
185 	allproc_scan(schedcpu_stats, NULL);
186 	allproc_scan(schedcpu_resource, NULL);
187 	wakeup((caddr_t)&lbolt);
188 	wakeup((caddr_t)&lbolt_syncer);
189 	callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
190 }
191 
192 /*
193  * General process statistics once a second
194  */
195 static int
196 schedcpu_stats(struct proc *p, void *data __unused)
197 {
198 	struct lwp *lp;
199 
200 	crit_enter();
201 	p->p_swtime++;
202 	FOREACH_LWP_IN_PROC(lp, p) {
203 		if (lp->lwp_stat == LSSLEEP)
204 			lp->lwp_slptime++;
205 
206 		/*
207 		 * Only recalculate processes that are active or have slept
208 		 * less then 2 seconds.  The schedulers understand this.
209 		 */
210 		if (lp->lwp_slptime <= 1) {
211 			p->p_usched->recalculate(lp);
212 		} else {
213 			lp->lwp_pctcpu = (lp->lwp_pctcpu * ccpu) >> FSHIFT;
214 		}
215 	}
216 	crit_exit();
217 	return(0);
218 }
219 
220 /*
221  * Resource checks.  XXX break out since ksignal/killproc can block,
222  * limiting us to one process killed per second.  There is probably
223  * a better way.
224  */
225 static int
226 schedcpu_resource(struct proc *p, void *data __unused)
227 {
228 	u_int64_t ttime;
229 	struct lwp *lp;
230 
231 	crit_enter();
232 	if (p->p_stat == SIDL ||
233 	    p->p_stat == SZOMB ||
234 	    p->p_limit == NULL
235 	) {
236 		crit_exit();
237 		return(0);
238 	}
239 
240 	ttime = 0;
241 	FOREACH_LWP_IN_PROC(lp, p) {
242 		/*
243 		 * We may have caught an lp in the middle of being
244 		 * created, lwp_thread can be NULL.
245 		 */
246 		if (lp->lwp_thread) {
247 			ttime += lp->lwp_thread->td_sticks;
248 			ttime += lp->lwp_thread->td_uticks;
249 		}
250 	}
251 
252 	switch(plimit_testcpulimit(p->p_limit, ttime)) {
253 	case PLIMIT_TESTCPU_KILL:
254 		killproc(p, "exceeded maximum CPU limit");
255 		break;
256 	case PLIMIT_TESTCPU_XCPU:
257 		if ((p->p_flag & P_XCPU) == 0) {
258 			p->p_flag |= P_XCPU;
259 			ksignal(p, SIGXCPU);
260 		}
261 		break;
262 	default:
263 		break;
264 	}
265 	crit_exit();
266 	return(0);
267 }
268 
269 /*
270  * This is only used by ps.  Generate a cpu percentage use over
271  * a period of one second.
272  *
273  * MPSAFE
274  */
275 void
276 updatepcpu(struct lwp *lp, int cpticks, int ttlticks)
277 {
278 	fixpt_t acc;
279 	int remticks;
280 
281 	acc = (cpticks << FSHIFT) / ttlticks;
282 	if (ttlticks >= ESTCPUFREQ) {
283 		lp->lwp_pctcpu = acc;
284 	} else {
285 		remticks = ESTCPUFREQ - ttlticks;
286 		lp->lwp_pctcpu = (acc * ttlticks + lp->lwp_pctcpu * remticks) /
287 				ESTCPUFREQ;
288 	}
289 }
290 
291 /*
292  * tsleep/wakeup hash table parameters.  Try to find the sweet spot for
293  * like addresses being slept on.
294  */
295 #define TABLESIZE	1024
296 #define LOOKUP(x)	(((intptr_t)(x) >> 6) & (TABLESIZE - 1))
297 
298 static cpumask_t slpque_cpumasks[TABLESIZE];
299 
300 /*
301  * General scheduler initialization.  We force a reschedule 25 times
302  * a second by default.  Note that cpu0 is initialized in early boot and
303  * cannot make any high level calls.
304  *
305  * Each cpu has its own sleep queue.
306  */
307 void
308 sleep_gdinit(globaldata_t gd)
309 {
310 	static struct tslpque slpque_cpu0[TABLESIZE];
311 	int i;
312 
313 	if (gd->gd_cpuid == 0) {
314 		sched_quantum = (hz + 24) / 25;
315 		hogticks = 2 * sched_quantum;
316 
317 		gd->gd_tsleep_hash = slpque_cpu0;
318 	} else {
319 		gd->gd_tsleep_hash = kmalloc(sizeof(slpque_cpu0),
320 					    M_TSLEEP, M_WAITOK | M_ZERO);
321 	}
322 	for (i = 0; i < TABLESIZE; ++i)
323 		TAILQ_INIT(&gd->gd_tsleep_hash[i]);
324 }
325 
326 /*
327  * General sleep call.  Suspends the current process until a wakeup is
328  * performed on the specified identifier.  The process will then be made
329  * runnable with the specified priority.  Sleeps at most timo/hz seconds
330  * (0 means no timeout).  If flags includes PCATCH flag, signals are checked
331  * before and after sleeping, else signals are not checked.  Returns 0 if
332  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
333  * signal needs to be delivered, ERESTART is returned if the current system
334  * call should be restarted if possible, and EINTR is returned if the system
335  * call should be interrupted by the signal (return EINTR).
336  *
337  * Note that if we are a process, we release_curproc() before messing with
338  * the LWKT scheduler.
339  *
340  * During autoconfiguration or after a panic, a sleep will simply
341  * lower the priority briefly to allow interrupts, then return.
342  */
343 int
344 tsleep(void *ident, int flags, const char *wmesg, int timo)
345 {
346 	struct thread *td = curthread;
347 	struct lwp *lp = td->td_lwp;
348 	struct proc *p = td->td_proc;		/* may be NULL */
349 	globaldata_t gd;
350 	int sig;
351 	int catch;
352 	int id;
353 	int error;
354 	int oldpri;
355 	struct callout thandle;
356 
357 	/*
358 	 * NOTE: removed KTRPOINT, it could cause races due to blocking
359 	 * even in stable.  Just scrap it for now.
360 	 */
361 	if (tsleep_now_works == 0 || panicstr) {
362 		/*
363 		 * After a panic, or before we actually have an operational
364 		 * softclock, just give interrupts a chance, then just return;
365 		 *
366 		 * don't run any other procs or panic below,
367 		 * in case this is the idle process and already asleep.
368 		 */
369 		splz();
370 		oldpri = td->td_pri & TDPRI_MASK;
371 		lwkt_setpri_self(safepri);
372 		lwkt_switch();
373 		lwkt_setpri_self(oldpri);
374 		return (0);
375 	}
376 	logtsleep2(tsleep_beg, ident);
377 	gd = td->td_gd;
378 	KKASSERT(td != &gd->gd_idlethread);	/* you must be kidding! */
379 
380 	/*
381 	 * NOTE: all of this occurs on the current cpu, including any
382 	 * callout-based wakeups, so a critical section is a sufficient
383 	 * interlock.
384 	 *
385 	 * The entire sequence through to where we actually sleep must
386 	 * run without breaking the critical section.
387 	 */
388 	id = LOOKUP(ident);
389 	catch = flags & PCATCH;
390 	error = 0;
391 	sig = 0;
392 
393 	crit_enter_quick(td);
394 
395 	KASSERT(ident != NULL, ("tsleep: no ident"));
396 	KASSERT(lp == NULL ||
397 		lp->lwp_stat == LSRUN ||	/* Obvious */
398 		lp->lwp_stat == LSSTOP,		/* Set in tstop */
399 		("tsleep %p %s %d",
400 			ident, wmesg, lp->lwp_stat));
401 
402 	/*
403 	 * Setup for the current process (if this is a process).
404 	 */
405 	if (lp) {
406 		if (catch) {
407 			/*
408 			 * Early termination if PCATCH was set and a
409 			 * signal is pending, interlocked with the
410 			 * critical section.
411 			 *
412 			 * Early termination only occurs when tsleep() is
413 			 * entered while in a normal LSRUN state.
414 			 */
415 			if ((sig = CURSIG(lp)) != 0)
416 				goto resume;
417 
418 			/*
419 			 * Early termination if PCATCH was set and a
420 			 * mailbox signal was possibly delivered prior to
421 			 * the system call even being made, in order to
422 			 * allow the user to interlock without having to
423 			 * make additional system calls.
424 			 */
425 			if (p->p_flag & P_MAILBOX)
426 				goto resume;
427 
428 			/*
429 			 * Causes ksignal to wake us up when.
430 			 */
431 			lp->lwp_flag |= LWP_SINTR;
432 		}
433 
434 		/*
435 		 * Make sure the current process has been untangled from
436 		 * the userland scheduler and initialize slptime to start
437 		 * counting.
438 		 */
439 		if (flags & PNORESCHED)
440 			td->td_flags |= TDF_NORESCHED;
441 		p->p_usched->release_curproc(lp);
442 		lp->lwp_slptime = 0;
443 	}
444 
445 	/*
446 	 * Move our thread to the correct queue and setup our wchan, etc.
447 	 */
448 	lwkt_deschedule_self(td);
449 	td->td_flags |= TDF_TSLEEPQ;
450 	TAILQ_INSERT_TAIL(&gd->gd_tsleep_hash[id], td, td_threadq);
451 	atomic_set_int(&slpque_cpumasks[id], gd->gd_cpumask);
452 
453 	td->td_wchan = ident;
454 	td->td_wmesg = wmesg;
455 	td->td_wdomain = flags & PDOMAIN_MASK;
456 
457 	/*
458 	 * Setup the timeout, if any
459 	 */
460 	if (timo) {
461 		callout_init(&thandle);
462 		callout_reset(&thandle, timo, endtsleep, td);
463 	}
464 
465 	/*
466 	 * Beddy bye bye.
467 	 */
468 	if (lp) {
469 		/*
470 		 * Ok, we are sleeping.  Place us in the SSLEEP state.
471 		 */
472 		KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0);
473 		/*
474 		 * tstop() sets LSSTOP, so don't fiddle with that.
475 		 */
476 		if (lp->lwp_stat != LSSTOP)
477 			lp->lwp_stat = LSSLEEP;
478 		lp->lwp_ru.ru_nvcsw++;
479 		lwkt_switch();
480 
481 		/*
482 		 * And when we are woken up, put us back in LSRUN.  If we
483 		 * slept for over a second, recalculate our estcpu.
484 		 */
485 		lp->lwp_stat = LSRUN;
486 		if (lp->lwp_slptime)
487 			p->p_usched->recalculate(lp);
488 		lp->lwp_slptime = 0;
489 	} else {
490 		lwkt_switch();
491 	}
492 
493 	/*
494 	 * Make sure we haven't switched cpus while we were asleep.  It's
495 	 * not supposed to happen.  Cleanup our temporary flags.
496 	 */
497 	KKASSERT(gd == td->td_gd);
498 	td->td_flags &= ~TDF_NORESCHED;
499 
500 	/*
501 	 * Cleanup the timeout.
502 	 */
503 	if (timo) {
504 		if (td->td_flags & TDF_TIMEOUT) {
505 			td->td_flags &= ~TDF_TIMEOUT;
506 			error = EWOULDBLOCK;
507 		} else {
508 			callout_stop(&thandle);
509 		}
510 	}
511 
512 	/*
513 	 * Since td_threadq is used both for our run queue AND for the
514 	 * tsleep hash queue, we can't still be on it at this point because
515 	 * we've gotten cpu back.
516 	 */
517 	KASSERT((td->td_flags & TDF_TSLEEPQ) == 0, ("tsleep: impossible thread flags %08x", td->td_flags));
518 	td->td_wchan = NULL;
519 	td->td_wmesg = NULL;
520 	td->td_wdomain = 0;
521 
522 	/*
523 	 * Figure out the correct error return.  If interrupted by a
524 	 * signal we want to return EINTR or ERESTART.
525 	 *
526 	 * If P_MAILBOX is set no automatic system call restart occurs
527 	 * and we return EINTR.  P_MAILBOX is meant to be used as an
528 	 * interlock, the user must poll it prior to any system call
529 	 * that it wishes to interlock a mailbox signal against since
530 	 * the flag is cleared on *any* system call that sleeps.
531 	 */
532 resume:
533 	if (p) {
534 		if (catch && error == 0) {
535 			if ((p->p_flag & P_MAILBOX) && sig == 0) {
536 				error = EINTR;
537 			} else if (sig != 0 || (sig = CURSIG(lp))) {
538 				if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
539 					error = EINTR;
540 				else
541 					error = ERESTART;
542 			}
543 		}
544 		lp->lwp_flag &= ~(LWP_BREAKTSLEEP | LWP_SINTR);
545 		p->p_flag &= ~P_MAILBOX;
546 	}
547 	logtsleep1(tsleep_end);
548 	crit_exit_quick(td);
549 	return (error);
550 }
551 
552 /*
553  * This is a dandy function that allows us to interlock tsleep/wakeup
554  * operations with unspecified upper level locks, such as lockmgr locks,
555  * simply by holding a critical section.  The sequence is:
556  *
557  *	(enter critical section)
558  *	(acquire upper level lock)
559  *	tsleep_interlock(blah)
560  *	(release upper level lock)
561  *	tsleep(blah, ...)
562  *	(exit critical section)
563  *
564  * Basically this function sets our cpumask for the ident which informs
565  * other cpus that our cpu 'might' be waiting (or about to wait on) the
566  * hash index related to the ident.  The critical section prevents another
567  * cpu's wakeup() from being processed on our cpu until we are actually
568  * able to enter the tsleep().  Thus, no race occurs between our attempt
569  * to release a resource and sleep, and another cpu's attempt to acquire
570  * a resource and call wakeup.
571  *
572  * There isn't much of a point to this function unless you call it while
573  * holding a critical section.
574  */
575 static __inline void
576 _tsleep_interlock(globaldata_t gd, void *ident)
577 {
578 	int id = LOOKUP(ident);
579 
580 	atomic_set_int(&slpque_cpumasks[id], gd->gd_cpumask);
581 }
582 
583 void
584 tsleep_interlock(void *ident)
585 {
586 	_tsleep_interlock(mycpu, ident);
587 }
588 
589 /*
590  * Interlocked spinlock sleep.  An exclusively held spinlock must
591  * be passed to msleep().  The function will atomically release the
592  * spinlock and tsleep on the ident, then reacquire the spinlock and
593  * return.
594  *
595  * This routine is fairly important along the critical path, so optimize it
596  * heavily.
597  */
598 int
599 msleep(void *ident, struct spinlock *spin, int flags,
600        const char *wmesg, int timo)
601 {
602 	globaldata_t gd = mycpu;
603 	int error;
604 
605 	crit_enter_gd(gd);
606 	_tsleep_interlock(gd, ident);
607 	spin_unlock_wr_quick(gd, spin);
608 	error = tsleep(ident, flags, wmesg, timo);
609 	spin_lock_wr_quick(gd, spin);
610 	crit_exit_gd(gd);
611 
612 	return (error);
613 }
614 
615 /*
616  * Directly block on the LWKT thread by descheduling it.  This
617  * is much faster then tsleep(), but the only legal way to wake
618  * us up is to directly schedule the thread.
619  *
620  * Setting TDF_SINTR will cause new signals to directly schedule us.
621  *
622  * This routine is typically called while in a critical section.
623  */
624 int
625 lwkt_sleep(const char *wmesg, int flags)
626 {
627 	thread_t td = curthread;
628 	int sig;
629 
630 	if ((flags & PCATCH) == 0 || td->td_lwp == NULL) {
631 		td->td_flags |= TDF_BLOCKED;
632 		td->td_wmesg = wmesg;
633 		lwkt_deschedule_self(td);
634 		lwkt_switch();
635 		td->td_wmesg = NULL;
636 		td->td_flags &= ~TDF_BLOCKED;
637 		return(0);
638 	}
639 	if ((sig = CURSIG(td->td_lwp)) != 0) {
640 		if (SIGISMEMBER(td->td_proc->p_sigacts->ps_sigintr, sig))
641 			return(EINTR);
642 		else
643 			return(ERESTART);
644 
645 	}
646 	td->td_flags |= TDF_BLOCKED | TDF_SINTR;
647 	td->td_wmesg = wmesg;
648 	lwkt_deschedule_self(td);
649 	lwkt_switch();
650 	td->td_flags &= ~(TDF_BLOCKED | TDF_SINTR);
651 	td->td_wmesg = NULL;
652 	return(0);
653 }
654 
655 /*
656  * Implement the timeout for tsleep.
657  *
658  * We set LWP_BREAKTSLEEP to indicate that an event has occured, but
659  * we only call setrunnable if the process is not stopped.
660  *
661  * This type of callout timeout is scheduled on the same cpu the process
662  * is sleeping on.  Also, at the moment, the MP lock is held.
663  */
664 static void
665 endtsleep(void *arg)
666 {
667 	thread_t td = arg;
668 	struct lwp *lp;
669 
670 	ASSERT_MP_LOCK_HELD(curthread);
671 	crit_enter();
672 
673 	/*
674 	 * cpu interlock.  Thread flags are only manipulated on
675 	 * the cpu owning the thread.  proc flags are only manipulated
676 	 * by the older of the MP lock.  We have both.
677 	 */
678 	if (td->td_flags & TDF_TSLEEPQ) {
679 		td->td_flags |= TDF_TIMEOUT;
680 
681 		if ((lp = td->td_lwp) != NULL) {
682 			lp->lwp_flag |= LWP_BREAKTSLEEP;
683 			if (lp->lwp_proc->p_stat != SSTOP)
684 				setrunnable(lp);
685 		} else {
686 			unsleep_and_wakeup_thread(td);
687 		}
688 	}
689 	crit_exit();
690 }
691 
692 /*
693  * Unsleep and wakeup a thread.  This function runs without the MP lock
694  * which means that it can only manipulate thread state on the owning cpu,
695  * and cannot touch the process state at all.
696  */
697 static
698 void
699 unsleep_and_wakeup_thread(struct thread *td)
700 {
701 	globaldata_t gd = mycpu;
702 	int id;
703 
704 #ifdef SMP
705 	if (td->td_gd != gd) {
706 		lwkt_send_ipiq(td->td_gd, (ipifunc1_t)unsleep_and_wakeup_thread, td);
707 		return;
708 	}
709 #endif
710 	crit_enter();
711 	if (td->td_flags & TDF_TSLEEPQ) {
712 		td->td_flags &= ~TDF_TSLEEPQ;
713 		id = LOOKUP(td->td_wchan);
714 		TAILQ_REMOVE(&gd->gd_tsleep_hash[id], td, td_threadq);
715 		if (TAILQ_FIRST(&gd->gd_tsleep_hash[id]) == NULL)
716 			atomic_clear_int(&slpque_cpumasks[id], gd->gd_cpumask);
717 		lwkt_schedule(td);
718 	}
719 	crit_exit();
720 }
721 
722 /*
723  * Make all processes sleeping on the specified identifier runnable.
724  * count may be zero or one only.
725  *
726  * The domain encodes the sleep/wakeup domain AND the first cpu to check
727  * (which is always the current cpu).  As we iterate across cpus
728  *
729  * This call may run without the MP lock held.  We can only manipulate thread
730  * state on the cpu owning the thread.  We CANNOT manipulate process state
731  * at all.
732  */
733 static void
734 _wakeup(void *ident, int domain)
735 {
736 	struct tslpque *qp;
737 	struct thread *td;
738 	struct thread *ntd;
739 	globaldata_t gd;
740 #ifdef SMP
741 	cpumask_t mask;
742 	cpumask_t tmask;
743 	int startcpu;
744 	int nextcpu;
745 #endif
746 	int id;
747 
748 	crit_enter();
749 	logtsleep2(wakeup_beg, ident);
750 	gd = mycpu;
751 	id = LOOKUP(ident);
752 	qp = &gd->gd_tsleep_hash[id];
753 restart:
754 	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
755 		ntd = TAILQ_NEXT(td, td_threadq);
756 		if (td->td_wchan == ident &&
757 		    td->td_wdomain == (domain & PDOMAIN_MASK)
758 		) {
759 			KKASSERT(td->td_flags & TDF_TSLEEPQ);
760 			td->td_flags &= ~TDF_TSLEEPQ;
761 			TAILQ_REMOVE(qp, td, td_threadq);
762 			if (TAILQ_FIRST(qp) == NULL) {
763 				atomic_clear_int(&slpque_cpumasks[id],
764 						 gd->gd_cpumask);
765 			}
766 			lwkt_schedule(td);
767 			if (domain & PWAKEUP_ONE)
768 				goto done;
769 			goto restart;
770 		}
771 	}
772 
773 #ifdef SMP
774 	/*
775 	 * We finished checking the current cpu but there still may be
776 	 * more work to do.  Either wakeup_one was requested and no matching
777 	 * thread was found, or a normal wakeup was requested and we have
778 	 * to continue checking cpus.
779 	 *
780 	 * The cpu that started the wakeup sequence is encoded in the domain.
781 	 * We use this information to determine which cpus still need to be
782 	 * checked, locate a candidate cpu, and chain the wakeup
783 	 * asynchronously with an IPI message.
784 	 *
785 	 * It should be noted that this scheme is actually less expensive then
786 	 * the old scheme when waking up multiple threads, since we send
787 	 * only one IPI message per target candidate which may then schedule
788 	 * multiple threads.  Before we could have wound up sending an IPI
789 	 * message for each thread on the target cpu (!= current cpu) that
790 	 * needed to be woken up.
791 	 *
792 	 * NOTE: Wakeups occuring on remote cpus are asynchronous.  This
793 	 * should be ok since we are passing idents in the IPI rather then
794 	 * thread pointers.
795 	 */
796 	if ((domain & PWAKEUP_MYCPU) == 0 &&
797 	    (mask = slpque_cpumasks[id]) != 0
798 	) {
799 		/*
800 		 * Look for a cpu that might have work to do.  Mask out cpus
801 		 * which have already been processed.
802 		 *
803 		 * 31xxxxxxxxxxxxxxxxxxxxxxxxxxxxx0
804 		 *        ^        ^           ^
805 		 *      start   currentcpu    start
806 		 *      case2                 case1
807 		 *        *        *           *
808 		 * 11111111111111110000000000000111	case1
809 		 * 00000000111111110000000000000000	case2
810 		 *
811 		 * case1:  We started at start_case1 and processed through
812 		 *  	   to the current cpu.  We have to check any bits
813 		 *	   after the current cpu, then check bits before
814 		 *         the starting cpu.
815 		 *
816 		 * case2:  We have already checked all the bits from
817 		 *         start_case2 to the end, and from 0 to the current
818 		 *         cpu.  We just have the bits from the current cpu
819 		 *         to start_case2 left to check.
820 		 */
821 		startcpu = PWAKEUP_DECODE(domain);
822 		if (gd->gd_cpuid >= startcpu) {
823 			/*
824 			 * CASE1
825 			 */
826 			tmask = mask & ~((gd->gd_cpumask << 1) - 1);
827 			if (mask & tmask) {
828 				nextcpu = bsfl(mask & tmask);
829 				lwkt_send_ipiq2(globaldata_find(nextcpu),
830 						_wakeup, ident, domain);
831 			} else {
832 				tmask = (1 << startcpu) - 1;
833 				if (mask & tmask) {
834 					nextcpu = bsfl(mask & tmask);
835 					lwkt_send_ipiq2(
836 						    globaldata_find(nextcpu),
837 						    _wakeup, ident, domain);
838 				}
839 			}
840 		} else {
841 			/*
842 			 * CASE2
843 			 */
844 			tmask = ~((gd->gd_cpumask << 1) - 1) &
845 				 ((1 << startcpu) - 1);
846 			if (mask & tmask) {
847 				nextcpu = bsfl(mask & tmask);
848 				lwkt_send_ipiq2(globaldata_find(nextcpu),
849 						_wakeup, ident, domain);
850 			}
851 		}
852 	}
853 #endif
854 done:
855 	logtsleep1(wakeup_end);
856 	crit_exit();
857 }
858 
859 /*
860  * Wakeup all threads tsleep()ing on the specified ident, on all cpus
861  */
862 void
863 wakeup(void *ident)
864 {
865     _wakeup(ident, PWAKEUP_ENCODE(0, mycpu->gd_cpuid));
866 }
867 
868 /*
869  * Wakeup one thread tsleep()ing on the specified ident, on any cpu.
870  */
871 void
872 wakeup_one(void *ident)
873 {
874     /* XXX potentially round-robin the first responding cpu */
875     _wakeup(ident, PWAKEUP_ENCODE(0, mycpu->gd_cpuid) | PWAKEUP_ONE);
876 }
877 
878 /*
879  * Wakeup threads tsleep()ing on the specified ident on the current cpu
880  * only.
881  */
882 void
883 wakeup_mycpu(void *ident)
884 {
885     _wakeup(ident, PWAKEUP_MYCPU);
886 }
887 
888 /*
889  * Wakeup one thread tsleep()ing on the specified ident on the current cpu
890  * only.
891  */
892 void
893 wakeup_mycpu_one(void *ident)
894 {
895     /* XXX potentially round-robin the first responding cpu */
896     _wakeup(ident, PWAKEUP_MYCPU|PWAKEUP_ONE);
897 }
898 
899 /*
900  * Wakeup all thread tsleep()ing on the specified ident on the specified cpu
901  * only.
902  */
903 void
904 wakeup_oncpu(globaldata_t gd, void *ident)
905 {
906 #ifdef SMP
907     if (gd == mycpu) {
908 	_wakeup(ident, PWAKEUP_MYCPU);
909     } else {
910 	lwkt_send_ipiq2(gd, _wakeup, ident, PWAKEUP_MYCPU);
911     }
912 #else
913     _wakeup(ident, PWAKEUP_MYCPU);
914 #endif
915 }
916 
917 /*
918  * Wakeup one thread tsleep()ing on the specified ident on the specified cpu
919  * only.
920  */
921 void
922 wakeup_oncpu_one(globaldata_t gd, void *ident)
923 {
924 #ifdef SMP
925     if (gd == mycpu) {
926 	_wakeup(ident, PWAKEUP_MYCPU | PWAKEUP_ONE);
927     } else {
928 	lwkt_send_ipiq2(gd, _wakeup, ident, PWAKEUP_MYCPU | PWAKEUP_ONE);
929     }
930 #else
931     _wakeup(ident, PWAKEUP_MYCPU | PWAKEUP_ONE);
932 #endif
933 }
934 
935 /*
936  * Wakeup all threads waiting on the specified ident that slept using
937  * the specified domain, on all cpus.
938  */
939 void
940 wakeup_domain(void *ident, int domain)
941 {
942     _wakeup(ident, PWAKEUP_ENCODE(domain, mycpu->gd_cpuid));
943 }
944 
945 /*
946  * Wakeup one thread waiting on the specified ident that slept using
947  * the specified  domain, on any cpu.
948  */
949 void
950 wakeup_domain_one(void *ident, int domain)
951 {
952     /* XXX potentially round-robin the first responding cpu */
953     _wakeup(ident, PWAKEUP_ENCODE(domain, mycpu->gd_cpuid) | PWAKEUP_ONE);
954 }
955 
956 /*
957  * setrunnable()
958  *
959  * Make a process runnable.  The MP lock must be held on call.  This only
960  * has an effect if we are in SSLEEP.  We only break out of the
961  * tsleep if LWP_BREAKTSLEEP is set, otherwise we just fix-up the state.
962  *
963  * NOTE: With the MP lock held we can only safely manipulate the process
964  * structure.  We cannot safely manipulate the thread structure.
965  */
966 void
967 setrunnable(struct lwp *lp)
968 {
969 	crit_enter();
970 	ASSERT_MP_LOCK_HELD(curthread);
971 	if (lp->lwp_stat == LSSTOP)
972 		lp->lwp_stat = LSSLEEP;
973 	if (lp->lwp_stat == LSSLEEP && (lp->lwp_flag & LWP_BREAKTSLEEP))
974 		unsleep_and_wakeup_thread(lp->lwp_thread);
975 	crit_exit();
976 }
977 
978 /*
979  * The process is stopped due to some condition, usually because p_stat is
980  * set to SSTOP, but also possibly due to being traced.
981  *
982  * NOTE!  If the caller sets SSTOP, the caller must also clear P_WAITED
983  * because the parent may check the child's status before the child actually
984  * gets to this routine.
985  *
986  * This routine is called with the current lwp only, typically just
987  * before returning to userland.
988  *
989  * Setting LWP_BREAKTSLEEP before entering the tsleep will cause a passive
990  * SIGCONT to break out of the tsleep.
991  */
992 void
993 tstop(void)
994 {
995 	struct lwp *lp = curthread->td_lwp;
996 	struct proc *p = lp->lwp_proc;
997 
998 	lp->lwp_flag |= LWP_BREAKTSLEEP;
999 	lp->lwp_stat = LSSTOP;
1000 	crit_enter();
1001 	/*
1002 	 * If LWP_WSTOP is set, we were sleeping
1003 	 * while our process was stopped.  At this point
1004 	 * we were already counted as stopped.
1005 	 */
1006 	if ((lp->lwp_flag & LWP_WSTOP) == 0) {
1007 		/*
1008 		 * If we're the last thread to stop, signal
1009 		 * our parent.
1010 		 */
1011 		p->p_nstopped++;
1012 		lp->lwp_flag |= LWP_WSTOP;
1013 		if (p->p_nstopped == p->p_nthreads) {
1014 			p->p_flag &= ~P_WAITED;
1015 			wakeup(p->p_pptr);
1016 			if ((p->p_pptr->p_sigacts->ps_flag & PS_NOCLDSTOP) == 0)
1017 				ksignal(p->p_pptr, SIGCHLD);
1018 		}
1019 	}
1020 	tsleep(lp->lwp_proc, 0, "stop", 0);
1021 	p->p_nstopped--;
1022 	crit_exit();
1023 }
1024 
1025 /*
1026  * Yield / synchronous reschedule.  This is a bit tricky because the trap
1027  * code might have set a lazy release on the switch function.   Setting
1028  * P_PASSIVE_ACQ will ensure that the lazy release executes when we call
1029  * switch, and that we are given a greater chance of affinity with our
1030  * current cpu.
1031  *
1032  * We call lwkt_setpri_self() to rotate our thread to the end of the lwkt
1033  * run queue.  lwkt_switch() will also execute any assigned passive release
1034  * (which usually calls release_curproc()), allowing a same/higher priority
1035  * process to be designated as the current process.
1036  *
1037  * While it is possible for a lower priority process to be designated,
1038  * it's call to lwkt_maybe_switch() in acquire_curproc() will likely
1039  * round-robin back to us and we will be able to re-acquire the current
1040  * process designation.
1041  */
1042 void
1043 uio_yield(void)
1044 {
1045 	struct thread *td = curthread;
1046 	struct proc *p = td->td_proc;
1047 
1048 	lwkt_setpri_self(td->td_pri & TDPRI_MASK);
1049 	if (p) {
1050 		p->p_flag |= P_PASSIVE_ACQ;
1051 		lwkt_switch();
1052 		p->p_flag &= ~P_PASSIVE_ACQ;
1053 	} else {
1054 		lwkt_switch();
1055 	}
1056 }
1057 
1058 /*
1059  * Compute a tenex style load average of a quantity on
1060  * 1, 5 and 15 minute intervals.
1061  */
1062 static int loadav_count_runnable(struct lwp *p, void *data);
1063 
1064 static void
1065 loadav(void *arg)
1066 {
1067 	struct loadavg *avg;
1068 	int i, nrun;
1069 
1070 	nrun = 0;
1071 	alllwp_scan(loadav_count_runnable, &nrun);
1072 	avg = &averunnable;
1073 	for (i = 0; i < 3; i++) {
1074 		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1075 		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1076 	}
1077 
1078 	/*
1079 	 * Schedule the next update to occur after 5 seconds, but add a
1080 	 * random variation to avoid synchronisation with processes that
1081 	 * run at regular intervals.
1082 	 */
1083 	callout_reset(&loadav_callout, hz * 4 + (int)(krandom() % (hz * 2 + 1)),
1084 		      loadav, NULL);
1085 }
1086 
1087 static int
1088 loadav_count_runnable(struct lwp *lp, void *data)
1089 {
1090 	int *nrunp = data;
1091 	thread_t td;
1092 
1093 	switch (lp->lwp_stat) {
1094 	case LSRUN:
1095 		if ((td = lp->lwp_thread) == NULL)
1096 			break;
1097 		if (td->td_flags & TDF_BLOCKED)
1098 			break;
1099 		++*nrunp;
1100 		break;
1101 	default:
1102 		break;
1103 	}
1104 	return(0);
1105 }
1106 
1107 /* ARGSUSED */
1108 static void
1109 sched_setup(void *dummy)
1110 {
1111 	callout_init(&loadav_callout);
1112 	callout_init(&schedcpu_callout);
1113 
1114 	/* Kick off timeout driven events by calling first time. */
1115 	schedcpu(NULL);
1116 	loadav(NULL);
1117 }
1118 
1119